
conference

proceedings

22nd USENIX
Security
Symposium

Washington, D.C., USA
August 14–16, 2013

Proceedings of the 22nd U
SEN

IX Security Sym
posium

 W

ashington, D.C., USA
August 14–16, 2013

Sponsored by

© 2013 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the
author or the author’s employer. Permission is granted for the noncommercial reproduction of
the complete work for educational or research purposes. Permission is granted to print, primarily
for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-03-4

Thanks to Our USENIX Security ’13 Sponsors

Media Sponsors and Industry Partners
ACM Queue

ADMIN magazine
Computer

The Data Center Journal
Distributed Management

Task Force (DMTF)
Free Software Magazine

HPCwire
IEEE Security & Privacy

InfoSec News
Linux Journal

Linux Pro Magazine
LXer

No Starch Press

O’Reilly Media
SecurityOrb
Server Fault

UserFriendly.org
Virus Bulletin

Silver Sponsors

Bronze Sponsors

Thanks to Our USENIX and LISA Supporters

USENIX Patrons
Google InfoSys Microsoft Research NetApp VMware

USENIX and LISA Partners
Cambridge Computer Google

USENIX Partners
Nutanix Meraki

USENIX Benefactors
Akamai EMC Hewlett-Packard Linux Journal

Linux Pro Magazine Oracle Puppet Labs

USENIX Association

August 14–16, 2013
Washington, D.C.

Proceedings of the
22nd USENIX Security Symposium

Conference Organizers

Program Chair
Sam King, University of Illinois and

Adrenaline Mobility

Program Committee
Nikita Borisov, University of Illinois
Elie Bursztein, Google
Srdjan Capkun, ETH Zurich
Shuo Chen, Microsoft Research
Sonia Chiasson, Carleton University
Adam Chlipala, Massachusetts Institute of Technology
William Enck, North Carolina State University
Adrienne Porter Felt, Google
Kevin Fu, University of Michigan
Roxana Geambasu, Columbia University
Ian Goldberg, University of Waterloo
Matthew Green, John Hopkins University
Chris Grier, University of California, Berkeley
Thorsten Holz, Ruhr-Universität Bochum
Jaeyeon Jung, Microsoft Research
Benjamin Livshits, Microsoft Research
Jonathan McCune, Google
Fabian Monrose, University of North Carolina,

Chapel Hill
Niels Provos, Google
Prateek Saxena, National University of Singapore
Stuart Schechter, Microsoft Research
Hovav Shacham, University of California, San Diego
Micah Sherr, Georgetown University
Elaine Shi, University of Maryland, College Park
Cynthia Sturton, University of California, Berkeley

Shuo Tang, University of Illinois and
Adrenaline Mobility

Patrick Traynor, Georgia Institute of Technology
David Wagner, University of California, Berkeley
Tara Whalen, Carleton University
Michal Zalewski, Google
Nickolai Zeldovich, Massachusetts Institute

of Technology

Invited Talks Chair
Michael Bailey, University of Michigan

Invited Talks Committee
Elie Bursztein, Google
Wenke Lee, Georgia Institute of Technology
Stefan Savage, University of California, San Diego

Poster Session Coordinator
William Enck, North Carolina State University

Rump Session Chair
Nikita Borisov, University of Illinois

Steering Committee
Matt Blaze, University of Pennsylvania
Dan Boneh, Stanford University
Casey Henderson, USENIX
Tadayoshi Kohno, University of Washington
Fabian Monrose, University of North Carolina,

Chapel Hill
Niels Provos, Google
David Wagner, University of California, Berkeley

External Reviewers
Moheeb Abu Rajab
Devdatta Akhawe
Chaitrali Amrutkar
Kevin Butler
Henry Carter
Chang Ee Chien
Shane S. Clark
Manuel Costa
Thurston Dang
Lucas Davi
Murph Finnicum
Matt Fredrikson

Robert Gawlik
Matthew Hicks
Pieter Hooimeijer
Ling Huang
Rob Jansen
Shrinivas Krishnan
Ben Leong
Charles Lever
Wenchao Li
Zhenkai Liang
Nicolas Lidzborski
Haohui Mai

Alex Moshchuk
Shishir Nagaraja
Jannik Pewny
Amir Rahmati
Bradley Reaves
Alessandro Reina
Tom Roeder
Christian Seifert
Monirul Sharif
Tim Sherwood
Kevin Z. Snow
Emil Stefanov

Jay Stokes
Kurt Thomas
Sebastian Uellenbeck
Joel Weinberger
Andrew White
Yinglian Xie
Fang Yu
Apostolis Zarras
Yulong Zhang
Thomas Zimmermann

22nd USENIX Security Symposium
August 14–16, 2013
Washington, D.C.

Message from the Program Chair . vii

Wednesday, August 14, 2013
Network Security
Greystar: Fast and Accurate Detection of SMS Spam Numbers in Large Cellular Networks
using Grey Phone Space .1
Nan Jiang, University of Minnesota; Yu Jin and Ann Skudlark, AT&T Labs; Zhi-Li Zhang, University of Minnesota

Practical Comprehensive Bounds on Surreptitious Communication Over DNS .17
Vern Paxson, University of California, Berkeley, and International Computer Science Institute; Mihai Christodorescu,
Qualcomm Research; Mobin Javed, University of California, Berkeley; Josyula Rao, Reiner Sailer, Douglas
Lee Schales, and Marc Ph. Stoecklin, IBM Research; Kurt Thomas, University of California, Berkeley; Wietse
Venema, IBM Research; Nicholas Weaver, ICSI and University of California, San Diego

Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks33
Nico Golde, Kévin Redon, and Jean-Pierre Seifert, Deutsche Technische Universität Berlin and Telekom
Innovation Laboratories

Potpourri
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations .49
Istvan Haller and Asia Slowinska, VU University Amsterdam; Matthias Neugschwandtner, Vienna University of
Technology; Herbert Bos, VU University Amsterdam

MetaSymploit: Day-One Defense against Script-based Attacks with Security-Enhanced
Symbolic Analysis .65
Ruowen Wang, Peng Ning, Tao Xie, and Quan Chen, North Carolina State University

Towards Automatic Software Lineage Inference .81
Jiyong Jang, Maverick Woo, and David Brumley, Carnegie Mellon University

Mobile Security I
Securing Embedded User Interfaces: Android and Beyond .97
Franziska Roesner and Tadayoshi Kohno, University of Washington

Automatic Mediation of Privacy-Sensitive Resource Access in Smartphone Applications113
Benjamin Livshits and Jaeyeon Jung, Microsoft Research

Flexible and Fine-grained Mandatory Access Control on Android for Diverse Security
and Privacy Policies .131
Sven Bugiel, Saarland University; Stephan Heuser, Fraunhofer SIT; Ahmad-Reza Sadeghi, Technische
Universität Darmstadt and Center for Advanced Security Research Darmstadt

(Wednesday, August 14, continues on p. iv)

Applied Crypto I
Proactively Accountable Anonymous Messaging in Verdict .147
Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford, Yale University

ZQL: A Compiler for Privacy-Preserving Data Processing .163
Cédric Fournet, Markuld Kohlweiss, and George Danezis, Microsoft Research; Zhengqin Luo, MSR-INRIA Joint
Centre

DupLESS: Server-Aided Encryption for Deduplicated Storage .179
Mihir Bellare and Sriram Keelveedhi, University of California, San Diego; Thomas Ristenpart, University of
Wisconsin-Madison

Large-Scale Systems Security I
Trafficking Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse195
Kurt Thomas, University of California, Berkeley, and Twitter; Damon McCoy, George Mason University; Chris
Grier, University of California, Berkeley, and International Computer Science Institute; Alek Kolcz, Twitter;
Vern Paxson, University of California, Berkeley, and International Computer Science Institute

Impression Fraud in On-line Advertising via Pay-Per-View Networks .211
Kevin Springborn, Broadcast Interactive Media; Paul Barford, Broadcast Interactive Media and University of
Wisconsin-Madison

The Velocity of Censorship: High-Fidelity Detection of Microblog Post Deletions .227
Tao Zhu, Independent Researcher; David Phipps, Bowdoin College; Adam Pridgen, Rice University; Jedidiah R.
Crandall, University of New Mexico; Dan S. Wallach, Rice University

Thursday, August 15, 2013
Large-Scale Systems Security II
You Are How You Click: Clickstream Analysis for Sybil Detection .241
Gang Wang and Tristan Konolige, University of California, Santa Barbara; Christo Wilson, Northeastern
University; Xiao Wang, Renren Inc.; Haitao Zheng and Ben Y. Zhao, University of California, Santa Barbara

Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness257
Devdatta Akhawe, University of California, Berkeley; Adrienne Porter Felt, Google, Inc.

An Empirical Study of Vulnerability Rewards Programs .273
Matthew Finifter, Devdatta Akhawe, and David Wagner, University of California, Berkeley

Applied Crypto II
Secure Outsourced Garbled Circuit Evaluation for Mobile Devices .289
Henry Carter, Georgia Institute of Technology; Benjamin Mood, University of Oregon; Patrick Traynor, Georgia
Institute of Technology; Kevin Butler, University of Oregon

On the Security of RC4 in TLS .305
Nadhem AlFardan, Royal Holloway, University of London; Daniel J. Bernstein, University of Illinois at Chicago
and Technische Universiteit Eindhoven; Kenneth G. Paterson, Bertram Poettering, and Jacob C.N. Schuldt, Royal
Holloway, University of London

PCF: A Portable Circuit Format for Scalable Two-Party Secure Computation .321
Ben Kreuter, University of Virginia; Benjamin Mood, University of Oregon; abhi shelat, University of Virginia;
Kevin Butler, University of Oregon

Protecting and Understanding Binaries
Control Flow Integrity for COTS Binaries .337
Mingwei Zhang and R. Sekar, Stony Brook University

Native x86 Decompilation Using Semantics-Preserving Structural Analysis and Iterative
Control-Flow Structuring .353
Edward J. Schwartz, Carnegie Mellon University; JongHyup Lee, Korea National University of Transportation;
Maverick Woo and David Brumley, Carnegie Mellon University

Strato: A Retargetable Framework for Low-Level Inlined-Reference Monitors .369
Bin Zeng and Gang Tan, Lehigh University; Úlfar Erlingsson, Google Inc.

Current and Future Systems Security
On the Security of Picture Gesture Authentication .383
Ziming Zhao and Gail-Joon Ahn, Arizona State University and GFS Technology, Inc.; Jeong-Jin Seo, Arizona
State University; Hongxin Hu, Delaware State University

Explicating SDKs: Uncovering Assumptions Underlying Secure Authentication and Authorization 399
Rui Wang, Microsoft Research Redmond; Yuchen Zhou, University of Virginia; Shuo Chen and Shaz Qadeer,
Microsoft Research Redmond; David Evans, University of Virginia; Yuri Gurevich, Microsoft Research
Redmond

Enabling Fine-Grained Permissions for Augmented Reality Applications with Recognizers 415
Suman Jana, The University of Texas at Austin; David Molnar and Alexander Moshchuk, Microsoft Research;
Alan Dunn, The University of Texas at Austin; Benjamin Livshits, Helen J. Wang, and Eyal Ofek, Microsoft
Research

Hardware and Embedded Security I
CacheAudit: A Tool for the Static Analysis of Cache Side Channels .431
Goran Doychev, IMDEA Software Institute; Dominik Feld, Saarland University; Boris Köpf and Laurent
Mauborgne, IMDEA Software Institute; Jan Reineke, Saarland University

Transparent ROP Exploit Mitigation Using Indirect Branch Tracing .447
Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis, Columbia University

FIE on Firmware: Finding Vulnerabilities in Embedded Systems using Symbolic Execution 463
Drew Davidson, Benjamin Moench, Somesh Jha, and Thomas Ristenpart, University of Wisconsin—Madison

Friday, August 16, 2013
Hardware and Embedded Security II
Sancus: Low-cost Trustworthy Extensible Networked Devices with a Zero-software Trusted
Computing Base .479
Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens, KU Leuven

Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing
for Obfuscation .495
Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara, University of Waterloo

KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Object 511
Hojoon Lee, Korea Advanced Institute of Science and Technology (KAIST); HyunGon Moon, Seoul National
University; DaeHee Jang and Kiwhan Kim, Korea Advanced Institute of Science and Technology (KAIST);
Jihoon Lee and Yunheung Paek, Seoul National University; Brent ByungHoon Kang, Korea Advanced Institute
of Science and Technology (KAIST)

(Friday, August 16, continues on p. vi)

Mobile Security II
WHYPER: Towards Automating Risk Assessment of Mobile Applications .527
Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie, North Carolina State University

Effective Inter-Component Communication Mapping in Android with Epicc: An Essential Step Towards
Holistic Security Analysis .543
Damien Octeau and Patrick McDaniel, Pennsylvania State University; Somesh Jha, University of Wisconsin;
Alexandre Bartel, University of Luxembourg; Eric Bodden, Technische Universität Darmstadt; Jacques Klein
and Yves Le Traon, University of Luxembourg

Jekyll on iOS: When Benign Apps Become Evil .559
Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee, Georgia Institute of Technology

Large Scale Systems Security III
Measuring the Practical Impact of DNSSEC Deployment .573
Wilson Lian, University of California, San Diego; Eric Rescorla, RTFM, Inc.; Hovav Shacham and Stefan
Savage, University of California, San Diego

ExecScent: Mining for New C&C Domains in Live Networks with Adaptive Control Protocol Templates . . . 589
Terry Nelms, Damballa, Inc. and Georgia Institute of Technology; Roberto Perdisci, University of Georgia and
Georgia Institute of Technology; Mustaque Ahamad, Georgia Institute of Technology and New York University
Abu Dhabi

ZMap: Fast Internet-wide Scanning and Its Security Applications .605
Zakir Durumeric, Eric Wustrow, and J. Alex Halderman, University of Michigan

Web Security
Eradicating DNS Rebinding with the Extended Same-Origin Policy .621
Martin Johns and Sebastian Lekies, SAP Research; Ben Stock, Friedrich-Alexander-Universität
Erlangen-Nürnberg

Revolver: An Automated Approach to the Detection of Evasive Web-based Malware637
Alexandros Kapravelos and Yan Shoshitaishvili, University of California, Santa Barbara; Marco Cova,
University of Birmingham; Christopher Kruegel and Giovanni Vigna, University of California, Santa Barbara

Language-based Defenses against Untrusted Browser Origins .653
Karthikeyan Bhargavan and Antoine Delignat-Lavaud, INRIA Paris-Rocquencourt; Sergio Maffeis, Imperial
College London

Attacks
Take This Personally: Pollution Attacks on Personalized Services .671
Xinyu Xing, Wei Meng, and Dan Doozan, Georgia Institute of Technology; Alex C. Snoeren, University of
California, San Diego; Nick Feamster and Wenke Lee, Georgia Institute of Technology

Steal This Movie: Automatically Bypassing DRM Protection in Streaming Media Services687
Ruoyu Wang, University of California, Santa Barbara and Tsinghua University; Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna, University of California, Santa Barbara

USENIX Association 22nd USENIX Security Symposium vii

Message from the
22nd USENIX Security Symposium

Program Chair

It is my great pleasure to welcome you to the 22nd USENIX Security Symposium. We have an outstanding event in
store for you, and for that, I thank all of you—the authors, the invited speakers, the program committee members
and other organizers, the external reviewers, the sponsors, the USENIX staff, and the attendees. The USENIX
Security Symposium would not be the premier venue that it is if it were not for your involvement.

This year, USENIX Security received 277 submissions. As in previous years, the program committee used a
multi-round reviewing process. The authors of submissions were not revealed to the reviewers, and every paper was
reviewed by at least two reviewers. Papers that received a positive score in the first round were reviewed by one to
four additional reviewers. The program committee met to discuss the submissions in April at the Microsoft Research
campus in Redmond, Washington. Jaeyeon Jung at Microsoft Research devoted a huge amount of time to ensure that
all aspects of the meeting ran smoothly; I am deeply grateful to her for all of her hard work as host. I would also like
to thank Microsoft Research and USENIX for funding the meals during the PC meeting.

After very careful and extensive deliberations, the program committee decided to accept or conditionally accept 44
papers—a record for USENIX Security. The quality of these papers is very high—a testimony to the strength of our
community!

The entire program committee invested a tremendous effort in reviewing and discussing these papers. Please join
me in thanking the program committee and all the external reviewers, listed on page ii, for their countless hours of
work. I would also like to thank Sonia Chiasson for serving as deputy chair and handling the submissions for which
I had a conflict.

We also have a wonderful selection of invited talks for you. I would like to thank the invited talks committee—
Michael Bailey, Elie Bursztein, Wenke Lee, and Stefan Savage—for all of the hard work they invested toward ensur-
ing an exciting, interesting, educational, and invigorating invited talks track. The Poster and Rump Sessions have
also been hits at previous USENIX Security Symposiums, and I think you will find them to be “can’t miss” events
at this year’s USENIX Security too. I would like to thank Will Enck for serving as this year’s Poster Session Chair,
and Nikita Borisov for serving as this year’s Rump Session Chair.

I am also deeply grateful to the entire staff at USENIX. They have worked incredibly hard to help make USENIX
Security one of the top conferences in the field. Please join me in thanking them. Please also join me in thanking
Joseph Schwartz for capturing USENIX Security on video.

Finally, I would like to thank all of the authors who submitted their research papers, posters, and Rump Session
talks.

Welcome to Washington, DC for the 22nd USENIX Security Symposium! I hope you enjoy the conference.

Sam King, University of Illinois and Adrenaline Mobility
USENIX Security ’13 Program Chair

USENIX Association 22nd USENIX Security Symposium 1

Greystar: Fast and Accurate Detection of SMS Spam Numbers in Large
Cellular Networks using Grey Phone Space

Nan Jiang
University of Minnesota

Yu Jin
AT&T Labs

Ann Skudlark
AT&T Labs

Zhi-Li Zhang
University of Minnesota

Abstract
In this paper, we present the design of Greystar, an inno-
vative defense system for combating the growing SMS
spam traffic in cellular networks. By exploiting the fact
that most SMS spammers select targets randomly from
the finite phone number space, Greystar monitors phone
numbers from the grey phone space (which are associ-
ated with data only devices like laptop data cards and
machine-to-machine communication devices like elec-
tricity meters) and employs a novel statistical model to
detect spam numbers based on their footprints on the
grey phone space. Evaluation using five month SMS
call detail records from a large US cellular carrier shows
that Greystar can detect thousands of spam numbers each
month with very few false alarms and 15% of the de-
tected spam numbers have never been reported by spam
recipients. Moreover, Greystar is much faster in detect-
ing SMS spam than existing victim spam reports, reduc-
ing spam traffic by 75% during peak hours.

1 Introduction

The explosion of mobile devices in the past decade has
brought with it an onslaught of unwanted SMS (Short
Message Service) spam [1]. It has been reported that
the number of spam messages in the US has risen 45%
in 2011 to 4.5 billion messages [2]. In 2012, there
were 350K variants of SMS spam messages accounted
for globally [3] and more than 69% of the mobile users
claimed to have received text spam [4]. The sheer vol-
ume of spam messages not only inflicts an annoying user
experience, but also incur significant costs to both cel-
lular service providers and customers alike. In contrast
to email spam where the number of possible email ad-
dresses is unlimited - and therefore the spammer gener-
ally needs a seed list beforehand, SMS spammers can
more easily reach victims by, e.g., simply enumerating
all numbers from the finite phone number space. This,

combined with wide adoption of mobile phones, makes
SMS a medium of choice among spammers. Further-
more, the increasingly rich functionality provided by
smart mobile devices also enables spammers to carry out
more sophisticated attacks through both voice and data
channels, for example, using SMS spam to entice users to
visit certain websites for product advertisement or other
illicit activities.
Because SMS spam inflicts financial loss to mobile

users and adverse impact to cellular network perfor-
mance, the objective of defense techniques is to restrict
spam numbers quickly before they reach too many vic-
tims. To this end, instead of applying popular solutions in
controlling email spam (e.g., filtering based on sending
patterns), which can cause a high false alarm rate, cellu-
lar carriers often seek help from their customers to alert
them of emerging spamming activities. More specifi-
cally, cellular carriers deploy reporting mechanism for
spam victims to report received spam messages and then
examine and restrict these reported spam numbers ac-
cordingly. Such spam detection techniques using victim
spam reports are very accurate, thanks to the human in-
telligence added while submitting these reports. How-
ever, these methods can suffer from significant delay due
to the low report rate and slow user responses, rendering
them inefficient in controlling SMS spam.

To address the issues in existing solutions, in this pa-
per, we carry out extensive analysis of SMS spamming
activities using five months of SMS call detail records
collected from a large cellular network in the US and the
SMS spam messages reported from the spam recipients
to that cellular carrier. We find that a majority of spam-
mers choose targets randomly from a few area codes or
the entire phone number space, and initiate spam traffic
at high rates. To detect such aggressive random spam-
mers, we advance a novel notion of grey phone space.
Grey phone space comprises a collection of grey phone
numbers (or grey numbers in short). Grey numbers are
associated with two types of mobile devices: data only

2 22nd USENIX Security Symposium USENIX Association

devices (e.g., many laptop data cards and data modems,
etc.) and machine-to-machine (M2M) communication
devices (e.g., utility meters and medical devices, etc.).
These grey numbers usually do not participate actively in
SMS communication as other mobile numbers do (e.g.,
those associated with smartphones), they thereby form
a grey territory that legitimate mobile users rarely enter.
In the mean time, the wide dispersion of grey numbers
makes them hard to be evaded by spammers who choose
targets randomly.

On top of grey phone space, we propose the design
of Greystar. Greystar employs a novel statistical model
to detect spam numbers based on their interactions with
grey numbers and other non-grey phone numbers. We
evaluate Greystar using five months of SMS call records.
Experimental results indicate that Greystar is superior to
the existing SMS spam detection algorithms, which rely
heavily on victim spam reports, in terms of both accuracy
and detection speed. In particular, Greystar detected over
34K spam numbers in five months while only generating
two false positives. In addition, more than 15% of the de-
tected spam numbers have never been reported by mobile
users. Moreover, Greystar reacts fast to emerging spam-
ming activities, with a median detection time of 1.2 hours
after spamming activities occur. In 50% of the cases,
Greystar is at least 1 day ahead of victim spam reports.
The high accuracy and fast response time allow us to re-
strict more spam numbers soon after spamming activities
emerge, and hence to reduce a majority of the spam mes-
sages in the network. We demonstrate through simula-
tion on real network data that, after deploying Greystar,
we can reduce 75% of the spam messages during peak
hours. In this way, Greystar can greatly benefit the cellu-
lar carriers by alleviating the load from aggressive SMS
spam messages on network resources as well as limiting
their adverse impact on legitimate mobile users.

The remainder of this paper is organized as follows.
We introduce the SMS architecture and the datasets used
in our study in Section 2. We then motivate the design of
Greystar in Section 3. In Section 4 we study the SMS ac-
tivities of spammers and legitimate users. The definition
of grey numbers is presented in Section 5. In Section 6,
we explain in detail the design of Greystar. Evaluation
results are presented in Section 7. Section 8 discusses
the related work and Section 9 concludes the paper.

2 Background and Datasets

In this section, we briefly describe the cellular network
focused in our study. We then introduce the datasets and
our ground truth for identifying spam phone numbers.

2.1 SMS Architecture in UMTS
The cellular network under study utilizes primarily
UMTS (Universal Mobile Telecommunication System),
a popular 3G mobile communication technology adopted
by many mobile carriers across the globe. Here we intro-
duce the architecture for delivering SMS messages inside
UMTS networks (for other aspects regarding UMTS net-
works, e.g., mobile data channels, see [5]). Fig. 1 de-
picts a schematic view of the architecture. When send-
ing an SMS message, an end user equipment (UEA)
directly communicates with a cell tower (or node-B),
which forwards the message to a Radio Network Con-
troller (RNC). The RNC then delivers the message to a
Mobile Switching Center (MSC) server, where the mes-
sage enters the Signaling System 7 (SS7) network and
is stored temporarily at a Short Message Service Center
(SMSC). From the SMSC, the message will be routed to
the serving MSC of the recipient (UEB), then to the serv-
ing RNC and Node-B, and finally reaches UEB. Sim-
ilarly, messages originated from other carrier networks
(e.g., from UEC) will also traverse the SS7 network and
bypass the serving MSC before arriving at UEB

1.

Figure 1: SMS architecture in UMTS networks.

2.2 Datasets
In this paper, we use two different datasets for our study.

SMS Call Detail Records (CDRs) are used for under-
standing SMS user/spammer activities and evaluating the
performance of the proposed Greystar system. These
records were collected at the serving MSC’s of SMS re-
cipients (see Fig. 1). This means that CDR records rep-
resent SMS messages targeting registered mobile cus-
tomers of the UMTS network under study2 and have been

1Note that similar SMS architecture is also adopted in other types
of 3G/4G cellular networks. Additionally, in this paper, we only focus
on SMS through the voice control channel. Short message services
through mobile data channels, such as iMessage, Tweets and MMS,
etc., are out of the scope of this paper (though defenses for fighting
email spam can be applied to detect short message spam through data
channels, which we shall discuss in Section 8).

2SMS messages targeting mobile users in other carrier networks and
landline numbers are not seen at the serving MSCs and hence are not

2

USENIX Association 22nd USENIX Security Symposium 3

successfully routed through the SS7 network. The CDR
dataset spans 5 months from Jan 2012 to May 2012. Each
record contains the SMS receiving time, the originating
number, the terminating number and the International
Mobile Equipment Identity (IMEI) for the device asso-
ciated with the terminating number3. We note that CDR
records do not contain text content of the original SMS
messages.

Victim spam reports contain spam messages reported
by spam recipients to the carrier. The said cellular car-
rier deploys an SMS spam reporting service for its users:
when a user receives an SMS text and deems it as a spam
message, s/he can forward the message to a spam report
number designated by the cellular service provider. Once
the spam is forwarded, an acknowledgment message is
returned, which asks the user to reply with the spam-
mer’s phone number (referred to as the spam number
hereafter). Once the above two-stage process is com-
pleted within a predefined time interval, a spam report
is created, which includes the reporter’s phone number,
the spam number, the reporting time and the text content
of the reported spam message. We employ six months
of spam reports from Jan 2012 to June 2012 in order to
cover spam numbers observed between Jan and May but
are reported after May due to the delay of the spam re-
ports (see Section 3.2).

We emphasize that no customer personal information
was collected or used for our study. All customer identi-
fies were anonymized before any analysis was conducted.
In particular, for phone numbers, only the area code (i.e.,
the first 3 digits of the 10 digit North American num-
bers) was used and the remaining digits were hashed.
Similarly we only retain the first 8-digit Type Alloca-
tion Code (TAC) of the IMEI to identify device types and
anonymize the remaining 8-digit to preserve customers’
privacy. In addition, to adhere to the confidentiality un-
der which we have access to the data, in places we only
present normalized views of our results while retaining
the scientifically relevant magnitudes.

2.3 Obtaining Ground Truth
Although victim spam reports provide us with ground
truth for some spam numbers, they are by no means com-
prehensive and can be noisy (see Section 3.2). Therefore,

included in CDR records.
3IMEI’s are stored at MSC’s and are updated every time users con-

nect to the network. Although we have observed that spammers some-
times modify the IMEIs of their spamming devices (e.g., through spe-
cial equipment like SIM boxes), IMEI spoofing among legitimate users
is rare. Therefore we can reliably identify the types of user devices
based on their corresponding IMEIs. Meanwhile, since all the CDRs
are collected at MSCs, we can identify the original phone numbers that
initiate the SMS messages. Hence our approach is not affected even
when spammers employ spoofing techniques to change their caller IDs.

in this paper, we employ a more reliable source of ground
truth. In particular, we request the fraud agents from the
said UMTS carrier to manually verify spam number can-
didates detected by us. These fraud agents are exposed
to much richer (and more expensive) sources of informa-
tion. For example, fraud agents can investigate the own-
ership and the price plan information of the candidates,
examine their SMS sending patterns and correlate them
with known spam numbers in terms of their network lo-
cations and active times, etc. The final decision is made
conservatively by corroborating different evidence.

Admittedly, fraud agents can make mistakes during
their investigation. Meanwhile, their breadth may be
limited by not being able to inspect all mobile numbers
in the network. Nevertheless, fraud agents provide us
with the most authoritative ground truth available for our
study. It is worth mentioning that such investigation by
fraud agents has been deployed independently for SMS
spam number detection and restriction for more than one
year and no false alarm has yet been observed (e.g., no
user complaint is observed so far regarding incorrectly
restricted phone numbers). Therefore, in our study, we
will treat fraud agents as a black box authority, i.e., we
submit a list of spam number candidates to fraud agents
and they return a list of confirmed spam numbers.

3 Objectives and Existing Solutions

In this section, we discuss the objectives of developing
an effective defense against SMS spam by comparing
the difference between SMS spam and traditional email
spam. We then review the most widely adopted SMS
spam detection method based on crowdsourcing victim
spam reports and point out its inefficacy. In the end, we
present the rationale of the proposed Greystar system.

3.1 SMS Spam Defense Objectives
In a conventional SMS spamming scenario, an SMS
spammer (note that we refer to an SMS spammer as the
person who employs a set of spam numbers to launch
SMS spam campaigns) first invests in a set of phone
numbers and special high-speed devices, such as 3G
modems and SIM boxes [6]. Using these devices, s/he
then initiates unsolicited SMS messages to a large num-
ber of mobile phone numbers. Akin to traditional email
spam, the objective of SMS spam is to advertise certain
information to entice further actions from the message
recipients, e.g., calling a fraud number or clicking on a
URL link embedded in the message which points to a
malicious site. However, SMS spamming activities ex-
hibit unique characteristics which shift the focus of the
defense mechanisms and hence render inapplicable or

3

4 22nd USENIX Security Symposium USENIX Association

inefficient existing solutions for defending against tradi-
tional email spam.
Email service providers usually detect and filter email

spam at their mail servers, to which they have full access.
There they can build accurate spam filters by exploiting
rich features in emails including the text content. Spam
filters at end user devices are also a common choice,
where email clients (apps) filter spam while retrieving
emails from remote mail servers. Though blacklist of
email spammers are sometimes used to assist spam clas-
sification [7–9], restricting email spam senders is usually
not the main focus of the defense, since it requires close
collaboration between email providers and network car-
riers. Moreover, it is observed that many spam emails
are originated from legitimate hosts due to botnet activ-
ities [10], which makes restricting spam originators an
inapplicable solution.

In comparison to emails which are generally stored on
servers and wait for users to retrieve them, SMS mes-
sages are delivered instantly to the recipients through the
SS7 network. Along the path, SMS messages are only
cached temporarily at SMSC (only when the recipients
are offline), leaving little time for cellular carriers to re-
act to them. The task becomes even more challenging es-
pecially when the SMS traffic volume peaks during busy
hours. Filtering SMS spam at end user devices (e.g., us-
ing mobile apps) is also not applicable given many SMS
capable devices (e.g., feature phones) do not support run-
ning such apps. In addition, for a user with a pay-per-
use SMS plan, she is already charged for the spam mes-
sage once it arrives at her device. More importantly, even
when SMS spam filters are deployed at SMSC’s and end
user devices, SMS spammers can still inflict significant
loss to the carrier and other mobile users. This is because
the huge number of spam messages can lead to a signif-
icant increase in the SMS traffic volume at the cell tow-
ers serving the spam senders, possibly causing conges-
tion and hence deteriorating voice/data usage experience
of nearby users. For example, we have found the SMS
traffic volume at cell towers can easily get multiplied by
more than 10 times due to the activities of spammers.
Therefore, the focus of the SMS spam defense is to con-
trol spam numbers as soon as possible before they reach
a large number of victims.
An efficient SMS spam detection algorithm is hence

expected to react quickly to emerging spamming activi-
ties. Meanwhile, the focus on restricting spam numbers
places a strong emphasis on the accuracy of the algo-
rithm. First, it requires a spam detection algorithm to
limit false alarms, because false alarms can lead to incor-
rect restriction of legitimate users from accessing SMS
services. Second, it demands the algorithm detect as
many spam numbers as possible so as to minimize the
impact of SMS spam activities on the network. Such

high accuracy requirements are hard to achieve solely
based on the SMS sending patterns of the spammers.
For example, it is difficult to separate spam campaigns
from legitimate SMS campaigns, such as a school send-
ing messages to its students to alert adverse weather con-
ditions. These legitimate senders can exhibit character-
istics that are common to SMS spammers4. Spammers
may also alter their sending patterns to mimic legitimate
users to avoid detection. As a result, cellular carriers of-
ten seek the assistance from their customers to alert them
of emerging SMS spam activities.

3.2 Spam Detection by Crowdsourcing
Victim Spam Reports

The emphasis on high accuracy gives rise to the wide
adoption of spam detection methods based on victim
spam reports which were introduced in Section 2. Victim
spam reports represent a more reliable and cleaner source
of SMS spam samples, as all the spam messages con-
tained in the reports have been vetted and classified by
mobile users (using human intelligence). To further mit-
igate the possible errors caused during the two-step re-
porting process, cellular carriers often crowdsource spam
reports from different users. For example, a simple yet
effective strategy is to identify a spam number after re-
ceiving reports from K distinct users. Meanwhile, de-
fense mechanisms based on victim spam reports are also
of low cost, because only numbers reported by users need
to be further analyzed. Due to this reason, spam reports
are usually a trigger for more sophisticated investigation
on the senders, such as their sending patterns, service
plans, etc..

Despite the high accuracy and low cost, detecting SMS
spam based on spam reports is analogus to performing
spam filtering at user devices. The major drawback is
detection delay, which we illustrate in Fig. 2 based on
the CDR data from January 2012. The red solid curve
in Fig. 2 measures how long it takes for a spam num-
ber to be reported after spam starts (a.k.a. report delay).
We consider a spam number starts spamming when it
first reaches at least 50 victims in an hour (see Section 4
for discussion on spamming rates). From Fig. 2, we ob-
serve that less than 3% of the spam numbers are reported
within 1 hour after spamming starts. More than 50% of
the spam numbers are reported 1 day after. The report
delay is mainly due to the extremely low report rate from
users. In fact, less than 1 in 10,000 spam messages were

4Maintaining a whitelist of such legitimate intensive SMS users can
be challenging. First, we have little information to identify the white
list if the users are outside the network. Second, even for the users
inside the network, the whitelist can still be dynamic, with new busi-
nesses/organizations initiating/stopping SMS broadcasting services ev-
ery day. More importantly, users are not obliged to report to the carrier
when they intend to start such services.

4

USENIX Association 22nd USENIX Security Symposium 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delay (hours in log scale)

C
D

F

0.1 0.5 2 5 10 50 200

Report delay
User delay

Figure 2: Lags of user reports.

Spamming rate (# targets per hour) in log scale

1
−

C
D

F

1 5 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spam number
Legitimate number

Figure 3: Spamming rate.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Areacode RU

R
an

do
m

 s
pa

m
m

in
g

ra
tio

Figure 4: Target selection strategies.

reported during the five month observation period. Aside
from causing a long detection delay, the low report rate
also leads to many missed detections (see Section 7).

In addition, even when a victim reports a spam mes-
sage, how long it takes him/her is at the reporter’s dis-
cretion. The blue dotted curve in Fig. 2 shows how fast
a user reports a spam message after receiving it (user
delay). Note that each user can receive multiple spam
messages (possibly with different text content) from the
same sender and hence can report the same sender multi-
ple times. Thus, we define user delay as the time differ-
ence between when a user reports a spam message and
the last time that the user receives spam from that par-
ticular spam number before the report. We observe in
Fig. 2 , among users who report spam, half of the spam
messages are reported more than 1 hour after they receive
the spam messages. Around 20% spam are reported even
after a day. Due to such a long delay, spammers have
already inflicted significant loss to the network and its
customers.

In addition to the problem of detection delay, the cur-
rent two-stage reporting method is error-prone. We find
around 10% reporters fail to provide a valid spam num-
ber at the second stage. Moreover, spam report based
methods are vulnerable to attacks, as attackers can eas-
ily game with the detection system by sending bogus
reports to Denial-of-Service (DoS) legitimate numbers.
All these drawbacks render spam detection using victim
spam reports an insufficient solution.

3.3 Overview of Greystar
Recognizing the drawbacks of existing victim report
based solutions, we introduce the rationale behind
Greystar. The objective of Greystar is to accurately de-
tect SMS spam while at the same time being able to con-
trol spam numbers as soon as possible before they reach
too many victims. To this end, we advance a novel notion
of grey phone numbers. These grey numbers usually do

not communicate with other mobile numbers using SMS,
they thereby form a grey territory that legitimate mobile
users rarely enter. On the other hand, as we shall see
in Section 4, it is difficult for spammers to avoid touch-
ing these grey numbers due to the random target selec-
tion strategies that they usually adopt. Greystar then pas-
sively monitors the footprints of SMS senders on these
grey numbers to detect impending spam activities target-
ing a large number of mobile users.

Greystar addresses the problems in existing spam re-
port based solutions as follows. First, the population
of grey numbers is much larger and widely distributed
(see Section 5), providing us with more “spam alerts”
to capture more spam numbers more quickly. Second,
by passively monitoring SMS communication with grey
numbers, we avoid the user delay and errors introduced
when submitting spam reports. Last, Greystar detects
spammers based on their interactions with grey phone
space. This prevents malicious users from gaming the
Greystar detection system and launching DoS attacks
against other legitimate users.
In the following, we first discuss related work in Sec-

tion 8. We then study the difference of spamming and
legitimate SMS activities in Section 4, which lays the
foundation of the Greystar system. In Section 5 we in-
troduce our methodology for identifying grey numbers.
We then present the design of Greystar in Section 6 and
evaluate it in Section 7.

4 Analyzing SMS Activities of Spammers
and Legitimate Users

We first formally define SMS spamming activities. Dur-
ing a spamming process, a spammer selects (following
a certain strategy) a sequence of target phone numbers,
X := {x1,x2, · · · ,xi, · · · } (1 ≤ i ≤ n), to send SMS mes-
sages to over a time window T . Each target phone num-
ber is a concatenation of two components, the 3-digit

5

6 22nd USENIX Security Symposium USENIX Association

area code xa
i , which is location specific, and the 7-digit

subscriber number xs
i . Note that we only examine US

phone numbers (which have 10 digits excluding the lead-
ing country code “1”). Phone numbers of SMS senders
from other countries which follow the same North Amer-
ican Numbering Plan (NANP) are removed before the
study. All the statistics in this section are calculated
based on a whole month data from January 2012. To
compare the activities of spam numbers and legitimate
numbers, we obtain an equal amount of samples from
both groups. In particular, the spam numbers are identi-
fied from victim spam reports and the legitimate numbers
are randomly sampled from the remaining SMS senders
appearing in the month-long CDR data set. Both samples
of phone numbers are checked by fraud agents before the
analysis to remove false positives and false negatives.

4.1 SMS Sending Rates
We first compare the SMS sending rates of known spam
numbers and legitimate numbers.We measure the send-
ing rate at the granularity of hours, i.e., the average num-
ber of unique recipients a phone number communicates
with hourly.The CCDF curves of the sending rates are
shown in Fig. 3.

From Fig. 3, spam numbers have a much higher SMS
sending rate than legitimate numbers. This is not surpris-
ing given the purpose of spamming is to reach as many
victims as possible within a short time period. In par-
ticular, more than 95% of spam numbers have a sending
rate above 5 and more than 70% spam numbers exhibit
a sending rate above 50. In contrast, more than 97%
of the legtimate numbers have a sending rate below 5.
As we can see in Section 6, by enforcing a threshold on
the sending rate, we can filter out most of the legitimate
numbers without missing many spam numbers.

Due to their high spamming rates, at the node-Bs that
spam numbers are connected to, we find that the sheer
volume of spamming traffic is astonishing. Spamming
traffic can exceed normal SMS traffic by more than 10
times. Even at RNCs, which serve multiple node-Bs,
traffic from spamming can account for 80% to 90% of to-
tal SMS traffic at times. Such a high traffic volume from
spammers can exert excessive loads on the network, af-
fecting legitimate SMS traffic. Furthermore, since SMS
messages are carried over the voice control channel, ex-
cessive SMS traffic can deplete the network resource,
and thus can potentially cause dropped calls and other
network performance degradation. Meanwhile, the in-
creasing malware app instances that propagate through
the SMS channel also emphasize the importance of re-
stricting SMS spam activities in cellular networks.

We note that, although most legitimate numbers send
SMS at low rates (e.g., below 50), due to the large pop-

ulation size of the legitimate numbers, there are still
many of them with high sending rates indistinguishable
from those of spam numbers. Investigation shows that
they belong to organizations which use the SMS service
to disseminate information to their stakeholders, e.g.,
churches, schools, restaurants, etc. How to distinguish
these legitimate intensive SMS senders from SMS spam-
mers is the main focus of our Greystar system.

4.2 Spammer Target Selection Strategy
We next study how spammers select spamming targets.
We characterize their target selection strategies at two
levels, i.e., how spammers choose area codes and how
they select phone numbers within each area code.
We define the metric area code relative uncertainty

(rua) to measure whether a spammer favors phone num-
bers within certain area codes. The rua is defined as:

rua(X) :=
H(Xa)

Hmax(Xa)
=

−∑q∈Q P(q) logP(q)

log|Q|
,

where P(q) represents the proportion of target phone
numbers with the same area code q and |Q| is the total
number of area codes in the US. Intuitively, a large rua
(e.g., greater than 0.7) indicates that the spammer uni-
formly chooses targets across all the area codes. In con-
trast, a small rua means the targets of the spammer come
from only a few area codes.
We next define a metric random spamming ratio to

measure how spammers select targets within each area
code. Let Pa be the proportion of active phone num-
bers5 within area code a. For a particular spamming
target sequence Xa of a spam number, if the spammer
randomly chooses targets, the proportion of active phone
numbers in Xa should be close to Pa. Otherwise, we be-
lieve the spammer has some prior knowledge (e.g., with
an obtained target list) to select specific phone numbers
to spam. Based on this idea, we carry out a one sided Bi-
nomial hypothesis test for each spammer and each area
code to see if the corresponding target selection strat-
egy is random within that area code. The random spam-
ming ratio is then defined as the proportion of area codes
within which a spammer selects targets randomly (i.e.,
the test fails to reject the randomness hypothesis with P-
value=0.05). Note that, for each spam number, only area
codes with more than 100 victims are tested to ensure the
validity of the test.

5The active phone numbers are identified as all registered phone
numbers inside the carrier’s billing database who have unexpired ser-
vice plans. We find that the active numbers are uniform across all area
codes, possibly due to frequent phone number recycling within carrier
networks (e.g., phone numbers originally used by landlines are reas-
signed to mobile phones) and users switching between cellular carriers
while retaining the same phone numbers.

6

USENIX Association 22nd USENIX Security Symposium 7

8 22nd USENIX Security Symposium USENIX Association

few numbers which have sent no more than 1 SMS mes-
sage during the one month period. For a majority of
these numbers, all the messages they have received are
spam (as indicated by the fact that most probability mass
is squeezed to a small region close to 1). This implies
that these SMS inactive numbers are good indicators of
spamming activities, i.e., SMS senders who communi-
cate with them are more likely to be spammers.

5 SMS Grey Phone Number Space

In order to utilize these SMS inactive numbers for spam
detection, we want to first answer the following ques-
tions. Why do these numbers have a low volume of SMS
activity? Is there an inexpensive way to identify a sta-
ble set of such numbers for building the detection sys-
tem? To answer these questions, we carry out an in-
depth analysis of SMS inactive users. We then define
grey phone space and propose a method for identifying
the grey phone space using CDR records. In the end,
we study properties of grey phone space and show the
potential of using it to detect spamming activities.

5.1 Investigating Service Plans
Cellular carriers often provide their customers with a rich
set of features to build their personal service plans. Users
are free to choose the best combination of features to
balance their needs and the cost. For example, a fre-
quent voice caller often opts in an unlimited voice plan
and a user who watches online videos a lot can choose
a data plan with a larger data cap. Therefore, service
plans encode demographic properties of the associated
users. We hence study the correlations between different
service plan features and SMS activeness to understand
these SMS inactive users.
More specifically, we extract all the service plans as-

sociated with the legitimate user samples, which include
features related to voice, data and SMS services. We cal-
culate the Pearson correlation coefficients of the SMS ac-
tiveness and individual plan features (treated as binary
variables). The features are then ranked according to the
correlation values. We summarize the top 5 features that
are positively and negatively correlated with SMS active-
ness in Table 1.

Top 5 negatively correlated Top 5 positively correlated
Text restricted Monthly unlimited voice/text

Voice restricted Messaging unlimited
Text msg pay per use Rollover family plan

Voice/data prepaid Unlimited SMS/MMS
Large cap data plans Small cap data plans

Table 1: Corr. of activeness and plan features.

The top 5 features with negative correlations are in
the first column of Table 1. Many of these SMS in-
active users are enrolled in the pay-per-use SMS plan,
a common economical choice for users who rarely ac-
cess SMS services. Interestingly, a large number of SMS
inactive users have restrictions on their voice/text plans
and have been simultaneously enrolled in large cap data
plans. Such restrictions only apply for mobile users with
data only devices, such as tablets and laptop data cards,
etc. In contrast, the top 5 features with positive corre-
lations are summarized in the second column. Most of
SMS active users have unlimited SMS plans, a favorable
choice of frequent SMS communicators. Many of them
have also enrolled in small cap data plans and unlimited
MMS plans, which are dedicated for smartphone users.

Though service plans demonstrate clear distinctions
between SMS inactive and active users, relying on ser-
vice plans to identify SMS inactive users is not effec-
tive in practice due to two reasons. First, service plans
change frequently, especially when users upgrade their
devices. Second, query service plan information per-
sistently during run time can be very expensive. Fortu-
nately, our analysis above also reveals that service plans
are strongly correlated with the device types, e.g., data
only device users are less active compared to smartphone
users. Can we use device types as a proxy to identify
SMS inactive users instead? We shall explore such pos-
sibilities in the following section.

SMS towards data only devices. Like phones, laptops
and other data only devices are also equipped with SIM
cards and hence, once connected to the network, are able
to receive SMS messages. We therefore can capture CDR
records to these devices at MSCs. However, manufactur-
ers often restrict text usage on these devices by masking
the APIs related to SMS functions. Meanwhile, at the
billing stage, text messages to these data only devices
(with a text restricted plan) are not charged by the carrier.
There are exceptions such as laptops enrolled in regular
text messaging plans, however, such cases are rare based
on our observations.

5.2 Identifying Grey Phone Space
The device associated with each phone number can be
found in the CDR data based on the first eight-digit TAC
of the IMEI. We use the most updated TAC to device
mapping from the UMTS carrier in January 2013 and
have identified 27 mobile device types (defined by the
carrier) which we summarize in Table 2. We note that
finer grained analysis at individual device level is also
feasible. However, we find that, except for the vehicle
tracking devices which we shall see soon, devices within
each category have strong similarity in their SMS active-
ness distributions. Hence we gain little by defining grey

8

USENIX Association 22nd USENIX Security Symposium 9

Number of active TNs (log and normalized)

G
re

y
TN

 p
er

ce
nt

ag
e

(n
or

m
al

ize
d)

a 5a 20a 50a

b
2b

3b
4b

Figure 8: Grey number distribution.

Pct. of grey nbrs touched (log and normalized)

C
D

F

a 5a 20a 100a 500a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spam nbr
User
User|grey

Figure 9: Grey ratio.

Prop. of grey numbers accessed (normalized)

D
en

si
ty

0 5a 10a 15a

0
20

40
60

80
10

0

Spam number
Legitimate number

Figure 10: Distr. of θ and θ ∗.

numbers at the device level.

Type Examples
Data-
only

Laptop data cards, tablets, netbooks, eReaders, 3G
data modems, etc.

M2M Security alarms, telematics, vehicle tracking de-
vices, point-of-sale terminals, medical devices, etc.

Phone Smartphones, feature phones, quick messaging
phones, PDAs, etc.

Table 2: Device categories and examples.

Fig. 7 shows the CDF distributions of SMS active-
ness of phone numbers associated with different device
types. We observe three clusters of CDF curves. The
first one consists of curves concentrating at the top-left
corner, representing devices with very low SMS active-
ness. This cluster covers all data only devices and a ma-
jority of machine-to-machine devices (see [11] for more
discussions of M2M devices). The second cluster lies in
the middle of the plot, which includes all phone devices.
The third cluster contains only one M2M device type,
which covers all vehicle tracking devices. Interestingly,
the curve of such devices shows a bi-modal shape, where
some devices communicate frequently using SMS while
other devices mainly stay inactive. Based on Fig. 7, we
define grey numbers as the ones that are associated with
devices in the first cluster, i.e., data only devices and
M2M devices excluding the vehicle tracking device cate-
gory. The collection of all grey number are referred to as
the grey phone space. The grey numbers are representa-
tives of a subset of SMS inactive users7. Meanwhile, the
grey phone space defined in this way is stable because it

7We use devices in the first cluster as our definitions of grey space,
however, as we have seen in Fig. 7, even within the grey number cate-
gories there are still (a very few) numbers that are highly active in SMS
communication. The proposed beta-binomial classification model (dis-
cussed in detail in Section 6) will take into account this fact. Intuitively,
the model detects a spam number only when it is observed to have sig-
nificant interaction with the grey space. Given a majority of the grey
numbers that are SMS inactive, the chance that a phone number is mis-

is tied to mobile devices instead of specific phone num-
bers, whose behaviors can change over time (e.g., when
a user upgrades the device). Furthermore, grey numbers
can be identified directly based on the IMEIs in the CDR
data with little cost, as opposed to querying and main-
taining service plan information for individual users.

5.3 Characterizing Grey Phone Space
We next study the distribution of grey numbers and show
how grey phone space can help us detect spamming ac-
tivities.
Fig. 8 shows the size of each area code in the phone

space (the x-axis, in terms of the number of active phone
numbers) and the proportion of grey phone numbers out
of all active phone numbers in that area code (the y-axis).
The correlation coefficient of two dimensions is close to
0, indicating that grey numbers exist in both densely and
sparsely populated areas. The wide distribution of grey
numbers ensures a better chance of detecting spam num-
bers equipped with random spamming strategies. To il-
lustrate this point, we calculate the proportion of grey
numbers out of all the numbers accessed by spam num-
bers (red solid curve) and legitimate users (blue dotted
curve). We observe that a predominant portion of legit-
imate users never touch grey phone space. In fact, less
than 1% of the users have ever accessed grey numbers in
the 1 month observation period. In addition, we show the
same distribution for legitimate users (who have sent to
at least 50 recipients in a month) conditioned on having
touched at least one grey number. Compared to the spam
numbers which tend to access more grey numbers (red
solid curve), these legitimate users communicate with
much fewer grey numbers. In most cases, the access
of grey numbers is triggered by users replying to spam
numbers who usually use M2M devices to launch spam.

classified as a spam number due to its interaction with these outliers in
the grey space is very small.

9

10 22nd USENIX Security Symposium USENIX Association

5.4 Discussion: Greyspace vs. Darkspace

In addition to the grey phone space, the “dark” phone
space (i.e., formed by unassigned phone numbers) can
also be a choice for detecting spam activities using
the same technique proposed in this paper. Analogous
concepts of grey IP addresses and dark IP addresses
for detecting anomalous activities have been explored
in [12,13]. However, unlike IP addresses which are often
assigned to organizations in blocks (i.e., sharing the same
IP prefix), the phone number space is shared by differ-
ent cellular service providers, landline service providers
and even (IP) TV providers. Even if some phone num-
bers are assigned in blocks initially to a certain provider,
the frequent phone number assignment changes caused
by new user subscription, old user termination, recy-
cling of phone numbers and phone number porting in/out
between different providers will ultimately result in the
shared ownership of the phone number space as we have
seen today. For example, different cellular and landline
providers can have phone numbers under the same legit-
imate area code. It is difficult to tell which phone num-
ber belongs to which provider without inquiring the right
provider.
This poses significant challenges when we want to

identify dark (unassigned) phone numbers. As dark
phone numbers can be anywhere in the phone number
space (within legitimate area codes) and can belong to
any provider, it is rather difficult to determine a dark
number, at least from the perspective of a single provider.
For instance, just because a phone number is not assigned
to any user/device belonging to a particular provider, it
does not necessarily mean that such a number is dark. In
other words, accurate detection of dark numbers requires
the collaboration of all the owners of the phone num-
ber space, which is an intractable task. Meanwhile, such
dark number repository needs to be updated frequently
to reflect the changes of phone number assignments.
In comparison, grey numbers can be defined easily

with respect to a particular provider: these are phone
numbers assigned to devices belonging to customers of
that provider where there are usually less SMS activities
originated from these numbers (devices). Meanwhile,
whether a number is grey is readily available to us (based
on the existing the IMEI numbers inside CDR records)
without any extra work.

6 System Design

In this section, we first present an overview of Greystar.
We then introduce the detection model and how we
choose parameters for the model.

6.1 System Overview
The logic of Greystar is illustrated in Alg. 1, which runs
periodically at a predefined frequency. In our experi-
ment, we run Greystar hourly. Greystar employs a time
window of W (e.g., W equals 24 hours in our studies).
The footprint of each SMS originating number s, e.g.,
the sets of grey and non-grey numbers accessed by s (de-
noted as Gs and Ns, respectively), are identified from the
CDR data within W . After that, a filtering process is
conducted which asserts two requirements on originat-
ing numbers to be classified, i.e., in the past 24 hours:
i) the sender is active enough (which has sent messages
to no less than M = 50 recipients. Recall the high send-
ing rates of known spam numbers in Fig. 3); and ii) the
sender has touched at least one grey number. These two
criteria, especially the second one, can help significantly
reduce the candidates to be classified in the follow-up
step. In fact, we find that, on average, less than 0.1%
of users send SMS to grey numbers in each day. More
importantly, these users cover a majority of active SMS
spammers in the network as we shall see in Section 7.
As a consequence, this filtering step can noticeably re-
duce the system load as well as potential false alarms.

Algorithm 1 Greystar algorithm.
1: Input: CDR records D from the past W = 24 hours, M=50;
2: Output: Spam number candidates C;
3: From D, extract all SMS senders Orig;
4: for each s ∈ Orig do
5: Extract the CDR records associated with s: Ds ⊂ D;
6: From Ds, identify the grey numbers Gs and non-grey

numbers Ns accessed by s;
7: if |Gs|+ |Ns| ≥ M and |Gs| > 0 then
8: if detect spamnbr(Gs, Ns)=1 then
9: C := C∪{s};

10: end if
11: end if
12: end for

Once a sender passes the filtering process, the function
detect spamnbr is called to classify the sender into either
a spam number or a legitimate number based on Gs and
Ns associated with that sender. In this paper, we propose
a novel Beta-Binomial model for building the classifier,
which we explain in detail next.

6.2 Classifier Design
We assume a random SMS spammer selects spamming
targets following a two-step process. First, the spammer
chooses a specific target phone number block. Second,
the spammer uniformly chooses target phone numbers
from that block. Let θ denote the density of grey num-
bers in the target block and X := {xi},1 ≤ i ≤ n be the

10

USENIX Association 22nd USENIX Security Symposium 11

sequence of target phone numbers selected. Meanwhile,
let k be the number of grey numbers in X . The target se-
lection process can then be formulated as the following
generative process.

1. Choose a target block with grey number density θ ;

2. Choose xi ∼ Bernoulli(θ), 1 ≤ i ≤ n;

We note that θ varies as a spammer chooses differ-
ent phone number blocks. The choice of phone num-
ber blocks is arbitrary. For example, A spammer can
choose a large phone block across multiple area codes or
a small one consisting of only a fraction of phone num-
bers within one area code. Therefore, θ itself can be
considered as a random variable. We assume θ follows a
Beta distribution8, i.e., θ ∼ Beta(α,β), with a probabil-
ity density function as:

P(θ |α,β) =
Γ(α + β)

Γ(α)Γ(β)
θ α(1−θ)β

,

where Γ is the gamma function. Therefore, the random
variable k follows a Beta-Binomial distribution:

P(k|n,α,β) =

(

n
k

)

Γ(k + α)Γ(n− k + β)

Γ(n + α + β)

Γ(α + β)

Γ(α)Γ(β)

The target selection process of legitimate users can be
expressed using the same process. Because legitimate
users tend to communicate less with grey numbers, their
corresponding θ ∗’s are usually much smaller. Let α∗ and
β ∗ be the parametrization of the Beta distribution asso-
ciated with θ ∗. For a phone number that has accessed n
targets, out of which k are grey numbers, we classify it
as a spam number (i.e., detect spamnbr returns 1) if

P(spammer|k,n)

P(legitimate|k,n)
=

P(k|n,α,β)P(spammer)
P(k|n,α∗,β ∗)P(legitimate)

> 1,

where the first equation is derived using the Bayes theo-
rem. It is equivalent to

P(k|n,α,β)

P(k|n,α∗,β ∗)
>

P(legitimate)
P(spammer)

= η

In practice, it is usually unclear how many spammers are
in the network, therefore, to estimate η directly is chal-
lenging. We instead choose η through experiments.

8In Bayesian inference, the Beta distribution is the conjugate prior
probability distribution for the Bernoulli and binomial distributions. In-
stead of using the Bernoulli model, we can model the second stage of
the target selection process as sampling from a multinomial distribu-
tion corresponding to different device types. In this case, the conjugate
prior distribution of the multinomial parameters is the Dirichlet distri-
bution. However, our preliminary experiments show little performance
gain from applying the more sophisticated model in comparison to the
increased computation cost.

6.3 Parameter Selection

There are five parameters to be estimated in the classifier,
α̂, β̂ , α̂∗, β̂ ∗ and η . We use the data from January 2012 to
determine these parameters. To obtain ground truth, we
submit to the fraud agents a list of all the SMS senders
that i) have sent to more than 50 recipients in a 24 hour
time window; and ii) at least one of the recipients is grey
(recall the filtering criteria in Algorithm 1). Fraud agents
carry out investigation on these numbers for us and label
spam numbers in the list. We then divide the January data
into two subsets, the first two weeks of data for fitting
the Beta-binomial models (i.e., to determine the first four
parameters) and the rest of data is reserved for testing the
classifier to estimate η .

In particular, using the training data set, we estimate
the parameters for two Beta-binomial models using max-
imum likelihood estimation. With the estimated pa-
rameters, we illustrate the probability density function
θ ∼ Beta(α,β) and θ ∗ ∼ Beta(α̂∗, β̂ ∗) in Fig. 10. The
density functions agree with our previous observations
in Fig. 9. The mass of the probability function corre-
sponding to the legitimate users concentrates on a narrow
region close to 0, implying that legitimate users commu-
nicate much less with grey numbers than non-grey num-
bers. In contrast, the density associated with spam num-
bers widely spreads out, indicating more grey numbers
are touched by spam numbers due to their random target
selection strategies.
We evaluate the accuracy of the classifier given differ-

ent choices of η on the test data set and the Receiver
Operating Characteristic (ROC) curve is displayed in
Fig. 11. The x-axis represents the false alarm rate (or
the false positive rate) and the y-axis stands for the true
detection rate (or the true positive rate). From Fig. 11,
with a certain η , Greystar can detect more than 85%
spam numbers without producing any false alarm. We
will choose this η value in the rest of our experiments9.

7 Greystar Evaluation

In this section, we conduct an extensive evaluation of
Greystar using five months of CDR data and compare it
with the methods based on victim spam reports in terms
of accuracy, detection delay and the effectiveness in re-
ducing spam traffic in the network.

9Note that the exact parameter values used in Greystar are propri-
etary and we are not able to release them in the paper. We have also
tested the choice of η using different partitioning of the training/test
data. The η remains stable across experiments.

11

12 22nd USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Figure 11: ROC curve (false positive
rate vs. true positive rate.

Jan Feb Mar Apr May

N
um

be
r o

f T
N

s
0

20
00

40
00

60
00

80
00

10
00

0

Confirmed
Missed
Additional

Figure 12: Accuracy evaluation (in
comparison to victim spam reports).

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delay (hours in log scale)

C
D

F

Report 1+
Report 3+

Figure 13: Detection speed compared
to spam report based methods.

7.1 Accuracy Evaluation

To estimate the accuracy and the false alarm rate, we
again consult with the fraud agents to check the num-
bers from Greystar detection results. False negatives (or
missed detections), on the other hand, are more difficult
to identify. Given the huge number of negative examples
classified, we are unable to have all of them examined by
the fraud agents to identify all missed detections because
of the high manual investigation cost. As an alternative
solution, we compare Greystar detection results with vic-
tim spam reports to obtain a lower bound estimate of the
missed detections.

More formally, let Sg denote the detection results from
Greystar and Sc be the spam numbers contained in the
victim spam reports received during the same time pe-
riod. We define missed detections of Greystar as Sc −Sg.
In addition, we define additional detections of Greystar
as Sg − Sc to measure the value brought by Greystar to
the existing spam defense solution. The monthly accu-
racy evaluation results are displayed in Fig. 12.

The blue bars in Fig. 12 illustrate the spam numbers
validated by fraud agents in each month. Greystar is able
to detect thousands of spam numbers per month. The as-
cending trend of detected spam numbers coincides with
the increase of victim spam reports in the five-month ob-
servation window. This implies that Greystar is able to
keep up with the increase of spam activities. In addition
to the large number of true detections, Greystar is highly
accurate given only two potential false alarms are identi-
fied by fraud agents in 5 months. Interestingly, these two
numbers are associated with tenured smartphone users
who suddenly behave abnormally and initiate SMS mes-
sages to many recipients whom they have never commu-
nicated with in the past. We suspect these users have
been infected by SMS spamming malware that launch
spam campaigns from the users’ devices without their
consent. To identify SMS spamming malware and hence

Time (hours) in a week

sp

am
 m

sg
s

(n
or

m
al

ize
d)

0
2a

4a
6a

8a
10

a
12

a

0 50 100 150

Total Report 1+ Greystar

Figure 14: Number of spam messages after restriction.

removing such false alarms will be our future work.
In comparison to the victim spam reports, Greystar

detects over 1000 addition spam numbers that were not
reported by spam victims while missing less than 500
monthly. Meanwhile, although a majority of the spam
numbers detected by Greystar are also reported by spam
victims, Greystar can detect these numbers much faster
than methods based on victim reports, and consequently
can suppress more spam messages in the network. We
illustrate this point in the next section.

7.2 Detection Speed and Benefits to Cellu-
lar Carriers

We note that, to reduce noise, cellular carriers often rely
on multiple spam reports (e.g., K reports) from different
victims to confirm a spam number. We refer to such a
crowdsourcing method as the K+ algorithm. To evaluate
the speed of Greystar, we compare it with two versions of
the K+ algorithms, namely, 1+ and 3+. Comparing with

12

USENIX Association 22nd USENIX Security Symposium 13

1+ supplies us with the lower bound of the time differ-
ence and comparison with 3+ illustrates the real benefit
brought by Greystar to practical spam defense solutions.
More specifically, we measure how many hours Greystar
detects a spam number ahead of 1+ and 3+, respectively.
Fig. 13 shows the CDF curves of the comparison results,
where we highlight the location on the x-axis correspond-
ing to 24 hours with a green vertical line. We observe that
Greystar is much faster than K+ algorithms. For exam-
ple, Greystar is one day ahead of 1+ in 50% of the cases
and is one day before 3+ in more than 90% of the times.
We find that, on average, it takes less than 1.2 hours

for Greystar to detect a spam number after it starts spam-
ming (i.e., starts sending messages to more than 50 vic-
tims in an hour). The fast response time of Greystar is
accredited to the much larger population of grey num-
bers, from which Greystar can gather evidence to detect
more spam numbers more quickly. In addition, collect-
ing evidence passively from grey numbers eliminates the
delay during the human reporting process (recall Fig. 2).
Therefore, Greystar is characterized with a much faster
detection speed than the K+ algorithm. Such a gain in
the detection speed can lead to more successful reduction
of spam traffic in the network. We illustrate this point
next.

For simplicity, we assume a spam number can be in-
stantly restricted after being detected. We run simulation
on a one week dataset (the first week of January 2012)
and calculate the number of spam messages appearing
in each hour assuming a particular spam detection algo-
rithm is deployed exclusively in the network. The results
are illustrated in Fig. 14. The total spam messages are
contributed by known spam numbers observed in that
week. We observe that Greystar can successfully sup-
press the majority of spam messages. During peak hours
when the total number of spam messages exceeds 600K,
only around 150K remains after Greystar is deployed. In
other words, Greystar leads to an overall reduction of
75% of spam messages during peak hours. In compar-
ison, 1+ only guarantees a spam reduction of 50% due
to long detection delay. We note that, due to the noise
in the spam reports, cellular providers often employ K+
(K ≥ 3) instead of 1+ to avoid false alarms. In this case,
the benefit from Greystar is even more substantial.

7.3 Analysis of Missed Detections
In this section, we investigate the missed detections
(false negatives) from Greystar, i.e., the spam number
candidates that were not detected by Greystar but have
been reported by spam victims. There are around 500
such numbers in each month and totally around 27K
missed detections. We note that we focus only on a sub-
set of the candidates who are customers of the cellular

network under study, for whom we have access to a much
richer set of information sources to carry out the inves-
tigation. We believe the conclusions from analyzing this
subset of candidates also apply for other candidates out-
side the network.

We classify these candidates into three groups based
on the volume of the associated CDR records.

No volume. We do not observe any CDR record for
19.5% of the numbers. We inquiry the SMS billing
records for these numbers and find that many of them
initiate a vast amount of SMS traffic to foreign countries,
such as Canada and Jamaica, etc., and hence no CDR
record has been collected to trigger Greystar detection.

Low volume. We find around 27% of the missed de-
tections have accessed less than 50 recipients during the
observation period. We study the text content inside the
victim spam reports to understand the root cause of these
missed detections. The most popular text content are
party advertisements and promotions from local restau-
rants. Users are likely to have registered with these mer-
chants in the past and hence received ads from them. For
the rest of the numbers, we find many send out spam
messages to advertise mobile apps and premium SMS
services. From the users’ comments posted on online fo-
rums and social media sites [14, 15], we find two of the
advertised apps are messenger/dating apps which have
issues with their default personal settings. Without man-
ual correction, these apps, once initiated, will send out
friend requests to a few random users of the apps. Spam
messages from the remaining numbers are also likely to
be sent out without users’ consent, especially the ones
that broadcast premium SMS services. We suspect they
are caused by apps abusing permissions or even behav-
iors of malware apps. For example, one app advertised
by spam is reported to contain malware that sent SMS
text to the contact list on the infected device, where the
text contains a URL for downloading that malware.

High volume. The rest of the phone numbers send SMS
to a large number of recipients. From the reported spam
text, we find 7.1% of them belong to legitimate advertiser
who broadcast to registerred customers and are somehow
reported by the recipients. For the rest of numbers, we
find their spam topics are quite different from those of
the detected ones. In particular, 11% of these numbers
are associated with adult sites or hotlines, in comparison
to only 0.06% among the detected numbers. Meanwhile,
17.6% of them advertise local shopping deals, as op-
posed to only 2.1% among the detected ones. Such dif-
ference suggests that these spam victims somehow gave
out their phone numbers to spammers, e.g., while visiting
malicious sites to register services or to purchase prod-
ucts. In addition, we extract the voice call history associ-
ated with these high volume candidates. Interestingly, we

13

14 22nd USENIX Security Symposium USENIX Association

find that about 4% of these numbers have initiated phone
calls to many terminating numbers in the past. We sus-
pect that these spammers employ auto-dialers to harvest
active phone numbers (i.e., the ones that have answered
the calls) from the phone number space. With the list
of active phone numbers, spammers can send spam more
effectively and avoid detection in the mean time.

Admittedly, there are spam numbers in these three
categories that are missed by Greystar because they are
equipped with a target number list obtained through auto-
dialing or social engineering techniques (for example,
accurate target lists can potentially be obtained by ap-
plying techniques discussed in [16]). SMS traffic from
these users is not differentiable from that of the legiti-
mate users. However, we emphasize that these missed
detections only account for less than 9% of all the spam
numbers detected and they will not have a significant im-
pact on the efficacy of Greystar for reducing the overall
spam traffic. In fact, we find that, on average, the missed
detections sent 37% less spam messages in comparison
to the spam numbers detected by Greystar. On the other
hand, we do see the needs of combining Greystar and
other methods to build a more robust defense solution.
For example, many malicious activities can be better de-
tected by correlating different channels (e.g., voice, SMS
and data). Meanwhile, cellular carriers can collaborate
with mobile marketplace to detect and control suspicious
apps that can potentially initiate spam.

8 Related Work

The demographic features and network behaviors of
SMS spammers were analyzed in [6]. [16] investigated
the security impact of SMS messages and discussed the
potential of denying voice service by sending SMS to
large and accurate phone hitlists at a high rate. Mean-
while, [16] also discussed several ways of harvesting ac-
tive phone numbers, which can potentially be employed
by SMS spammers to generate accurate target number
lists to launch spam campaign more efficiently and to
evade detection. Similar short message services carried
by the data channel were also studied. For example, [17]
characterized spam campaigns from “wall” messages be-
tween Facebook users. [18–21] analyzed Twitter spam.
[22, 23] studied talkback spam on weblogs. Meanwhile,
akin to SMS spammers, the behaviors of email spam-
mers were characterized in [24–27]. In comparison, we
not only study the strategies of SMS spammers but also
propose an effective spam detection solution based on
our analysis.

In addition to the victim spam reports mentioned ear-
lier, network behaviors of spammers, e.g., sending pat-
terns, have been used in SMS spam detection, such
as [28]. Similar network statistics based methods de-

signed for email spam detection can also be applied for
identifying SMS spam, such as [29–32]. However, these
methods often suffer from large false positive rates, be-
cause many legitimate customers can exhibit SMS send-
ing patterns similar to those of spammers. In contrast,
Greystar utilizes a novel concept of grey phone space
to detect spam numbers, which yields an extremely low
false alarm rate.

Some systems have been developed in the form of
smartphone apps to classify spam messages on user mo-
bile devices [33–35]. However, not all mobile devices
support executing such apps. Furthermore, from a user’s
perspective, this method is a late defense as the spam
message has already arrived on his/her device and the
user may already be charged for the spam message.
Moreover, the high volume of spam messages that have
already traversed the cellular network may have resulted
in congestion and other adverse network performance
impacts. Greystar is deployed inside the carrier network
and hence do not have these drawbacks. As we have seen
in Section 7, Greystar can quickly detect spam numbers
once they start spamming and hence significantly reduce
spam traffic volume in the network.

Similar to our work, many works have leveraged un-
wanted traffic for anomaly detection, such as Internet
dark space [13, 36], grey space [12], honeynet [37, 38]
and failed DNS traffic [39], etc. We are the first to ad-
vance the notion of grey phone space and propose a novel
statistical method for identifying SMS spam using grey
phone space.

9 Conclusion and Future Work

In this paper, we presented the design of Greystar, an in-
novative system for fast and accurate detection of SMS
spam numbers. Greystar monitors a set of grey phone
numbers, which signify impending spam activities tar-
geting a large number of mobile users, and employs an
advanced statistical model for detecting spam numbers
according to their interactions with grey phone numbers.
Using five months of SMS call detail records collected
from a large cellular network in the US, we conducted
extensive evaluation of Greystar in terms of the detec-
tion accuracy and speed, and demonstrated the great po-
tential of Greystar for reducing SMS spam traffic in the
network.

Our future work will focus on applying Greystar to de-
tect other suspicious activities in cellular networks, such
as telemarketing campaigns. Meanwhile, we will corre-
late Greystar detection results with cellular data traffic to
detect malware engaged in such spamming activities.

14

USENIX Association 22nd USENIX Security Symposium 15

Acknowledgments

The work was supported in part by the NSF grants CNS-
1017647 and CNS-1117536, the DTRA grant HDTRA1-
09-1-0050. We thank Peter Coulter, Cheri Kerstetter and
Colin Goodall for their useful discussions and construc-
tive comments. Finally, we thank our shepherd, Patrick
Traynor, for his many suggestions on improving the pa-
per.

References

[1] Federal communications commission. Spam:
unwanted text messages and email, 2012.
http://www.fcc.gov/guides/spam-unwanted-
text-messages-and-email.

[2] Mobile spam texts hit 4.5 billion.
http://www.businessweek.com/news/2012-04-
30/mobile-spam-texts-hit-4-dot-5-billion-raising-
consumer-ire.

[3] C. Baldwin. 350,000 different types
of spam sms messages were tar-
geted at mobile users in 2012, 2013.
http://www.computerweekly.com/news/2240178681/
350000-different-types-of-spam-SMS-messages-
were-targeted-at-mobile-users-in-2012.

[4] 69% of mobile phone users get text spam, 2012.
http://abcnews.go.com/blogs/technology/2012/08/
69-of-mobile-phone-users-get-text-spam/.

[5] Y. Jin, N. Duffield, A. Gerber, P. Haffner, W.-L.
Hsu, G. Jacobson, S. Sen, S. Venkataraman, and
Z.-L. Zhang. Making sense of customer tickets in
cellular networks. In Proc. of the 30th IEEE In-
ternational Conference on Computer Communica-
tions, 2011.

[6] I. Murynets and R. Jover. Crime scene investiga-
tion: Sms spam data analysis. In Proc. of the 12th
ACM Internet Measurement Conference, 2012.

[7] S. Sinha, M. Bailey, and F. Jahanian. Improving
SPAM blacklisting through dynamic thresholding
and speculative aggregation. In Proc. of the 17th
Annual Network and Distributed System Security
Symposium, 2010.

[8] J. Jung and E. Sit. An empirical study of spam traf-
fic and the use of DNS black lists. In Proc. of the
4th ACM Internet Measurement Conference, 2004.

[9] A. Ramachandran, N. Feamster, and D. Dagon. Re-
vealing botnet membership using dnsbl counter-
intelligence. In Proc. of the 2nd Workshop on

Steps to Reducing Unwanted Traffic on the Inter-
net, 2006.

[10] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten,
and I. Osipkov. Spamming botnets: signatures and
characteristics. In Proc. of the 2008 ACM SIG-
COMM Annual Conference, 2008.

[11] M. Shafiq, L. Ji, A. Liu, J. Pang, and J. Wang.
A first look at cellular machine-to-machine traffic:
large scale measurement and characterization. In
Proc. of the 2012 ACM International Conference
on Measurement and Modeling of Computer Sys-
tems, 2012.

[12] Y. Jin, G. Simon, K. Xu, Z.-L. Zhang, and V. Ku-
mar. Gray’s anatomy: dissecting scanning activities
using ip gray space analysis. In Proc. of the 2nd
Workshop on Tackling Computer Systems Problems
with Machine Learning Techniques, 2007.

[13] R. Pang, V. Yegneswaran, P. Barford, V. Paxson,
and L. Peterson. Characteristics of internet back-
ground radiation. In Proc. of the 4th ACM Internet
measurement conference, 2004.

[14] Sms watchdog. http://www.smswatchdog.com.

[15] 800notes - Directory of unknown callers.
http://www.800notes.com.

[16] W. Enck, P. Traynor, P. McDaniel, and T. La Porta.
Exploiting open functionality in sms-capable cellu-
lar networks. In Proc. of the 12th ACM Conference
on Computer and Communications Security, 2005.

[17] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and
B. Zhao. Detecting and characterizing social spam
campaigns. In Proc. of the 10th ACM Internet Mea-
surement Conference, 2010.

[18] S. Ghosh, B. Viswanath, F. Kooti, N. Sharma,
G. Korlam, F. Benevenuto, N. Ganguly, and
K. Gummadi. Understanding and combating link
farming in the twitter social network. In Proc. of
the 21st International World Wide Web Conference,
2012.

[19] K. Thomas, C. Grier, V. Paxson, and D. Song. Sus-
pended accounts in retrospect: an analysis of Twit-
ter spam. In Proc. of the 11th ACM Internet Mea-
surement Conference, 2011.

[20] C. Yang, R. Harkreader, J. Zhang, S. Shin, and
G. Gu. Analyzing spammers’ social networks for
fun and profit: a case study of cyber criminal
ecosystem on twitter. In Proc. of the 21st Inter-
national World Wide Web Conference, 2012.

15

16 22nd USENIX Security Symposium USENIX Association

[21] C. Grier, K. Thomas, V. Paxson, and M. Zhang.
@spam: the underground on 140 characters or less.
In Proc. of the 17th ACM Conference on Computer
and Communications Security, 2010.

[22] E. Bursztein, P. Lam, and J. Mitchell. Track-
back spam abuse and prevention. In Proc. of the
2009 ACM workshop on Cloud computing security,
2009.

[23] E. Bursztein, B. Gourdin, and J. Mitchell. Reclaim-
ing the blogosphere talkback a secure linkback pro-
tocol for weblogs. In Proc. of the 16th Euro-
pean Symposium on Research in Computer Secu-
rity, 2011.

[24] C. Kreibich, C. Kanich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. On the
spam campaign trail. In Proc. of the 1st USENIX
Workshop on Large-Scale Exploits and Emergent
Threats, 2008.

[25] C. Kreibich, C. Kanich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamcraft:
An inside look at spam campaign orchestration. In
Proc. of the 2nd USENIX Workshop on Large-Scale
Exploits and Emergent Threats, 2009.

[26] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalytics:
An empirical analysis of spam marketing conver-
sion. Communications of the ACM, 52(9):99–107,
2009.

[27] A. Pathak, F. Qian, C. Hu, M. Mao, and S. Ranjan.
Botnet spam campaigns can be long lasting: evi-
dence, implications, and analysis. In Proc. of the
2009 ACM International Conference on Measure-
ment and Modeling of Computer Systems, 2009.

[28] Q. Xu, E. Xiang, Q. Yang, J. Du, and J. Zhong. Sms
spam detection using noncontent features. Intelli-
gent Systems, IEEE, 27(6):44 –51, 2012.

[29] T. Ouyang, S. Ray, M. Rabinovich, and M. Allman.
Can network characteristics detect spam effectively
in a stand-alone enterprise? In Proc. of the 12th
Passive and Active Measurement conference, 2011.

[30] M. Sirivianos, K. Kim, and X. Yang. Introducing
social trust to collaborative spam mitigation. In
Proc. of the 30th IEEE International Conference on
Computer Communications, 2011.

[31] S. Hao, N. Syed, N. Feamster, A. Gray, and
S. Krasser. Detecting spammers with snare: spatio-
temporal network-level automatic reputation en-
gine. In Proc. of the 18th USENIX Security Sym-
posium, 2009.

[32] A. Pitsillidis, K. Levchenko, C. Kreibich,
C. Kanich, G.M. Voelker, V. Paxson, N. Weaver,
and S. Savage. Botnet judo: Fighting spam with
itself. In Proc. of the 17th Annual Network and
Distributed System Security Symposium, 2010.

[33] K. Yadav, P. Kumaraguru, A. Goyal, A. Gupta,
and V. Naik. Smsassassin: crowdsourcing driven
mobile-based system for sms spam filtering. In
Proc. of the 12th Workshop on Mobile Computing
Systems and Applications, 2011.

[34] G. Cormack, J. Hidalgo, and E. Sánz. Feature en-
gineering for mobile (sms) spam filtering. In Proc.
of the 30th international ACM SIGIR conference,
2007.

[35] H. Tan, N. Goharian, and M. Sherr. $100,000 Prize
Jackpot. Call now! Identifying the pertinent fea-
tures of SMS spam. In Proc. of the 35th Annual
ACM SIGIR Conference, 2012.

[36] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and
G. Huston. Internet background radiation revis-
ited. In Proc. of the 10th ACM Internet measure-
ment conference, 2010.

[37] The honeynet project, 2012.
http://project.honeynet.org/.

[38] G. Dunlap, S. King, S. Cinar, M. Basrai, and
P. Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. In Proc. of the
2nd USENIX Symposium on Operating Systems De-
sign and Implementation, 2002.

[39] N. Jiang, J. Cao, Y. Jin, L. Li, and Z.-L. Zhang.
Identifying suspicious activities through dns failure
graph analysis. In Proc. of the 8th IEEE Interna-
tional Conference on Network Protocols, 2010.

16

USENIX Association 22nd USENIX Security Symposium 17

Practical Comprehensive Bounds on Surreptitious
Communication Over DNS

Vern Paxson�∗ Mihai Christodorescu† Mobin Javed� Josyula Rao‡ Reiner Sailer‡

Douglas Schales‡ Marc Ph. Stoecklin‡ Kurt Thomas� Wietse Venema‡ Nicholas Weaver∗§

�UC Berkeley ∗ICSI †Qualcomm Research ‡IBM Research §UC San Diego

Abstract
DNS queries represent one of the most common forms of net-
work traffic, and likely the least blocked by sites. As such, DNS
provides a highly attractive channel for attackers who wish to
communicate surreptitiously across a network perimeter, and
indeed a variety of tunneling toolkits exist [7, 10, 13–15]. We
develop a novel measurement procedure that fundamentally
limits the amount of information that a domain can receive sur-
reptitiously through DNS queries to an upper bound specified
by a site’s security policy, with the exact setting representing
a tradeoff between the scope of potential leakage versus the
quantity of possible detections that a site’s analysts must inves-
tigate.

Rooted in lossless compression, our measurement procedure
is free from false negatives. For example, we address conven-
tional tunnels that embed the payload in the query names, tun-
nels that repeatedly query a fixed alphabet of domain names
or varying query types, tunnels that embed information in
query timing, and communication that employs combinations
of these. In an analysis of 230 billion lookups from real produc-
tion networks, our procedure detected 59 confirmed tunnels.
For the enterprise datasets with lookups by individual clients,
detecting surreptitious communication that exceeds 4 kB/day
imposes an average analyst burden of 1–2 investigations/week.

1 Introduction
Some of the most serious security threats that enterprises
face concern the potential use of surreptitious communi-
cation (Figure 1). One such scenario takes the form of
exfiltration, when an attacker with internal access aims
to transmit documents or other substantive data out of
the enterprise to a remote location [4]. Another scenario
arises in the context of interactive remote access: an at-
tacker who has patiently compromised a local system
subsequently interacts with it over the network in order
to assay the information it holds and employ it as an in-
ternal stepping stone for further probing of the enterprise.

DNS plays a pervasive role in Internet communica-
tion; indeed, the vast majority of any Internet commu-
nication ultimately begins with DNS queries. Even sites
that are highly security-conscious will find that they still

DNS server

Hijacked system
DNS serverDA

TA
 E

XF
ILT

RA
TI

O
N ENTERPRISE INTERNET

DNS server

Hijacked system

DNS server
controlled
by attacker

RE
M

O
TE

 A
CC

ES
S ENTERPRISE INTERNET

Figure 1: Two examples of surreptitious communication via
DNS tunnels through perimeter firewalls.

must allow internal clients to issue DNS queries and
receive the replies. Unless sites can restrict their sys-
tems to only intra-enterprise communication, some of
these queries will necessarily reach external systems,
giving attackers the opportunity to piggyback their ac-
tual communication over seemingly benign DNS traffic.
Thus, DNS provides a highly-attractive target for attack-
ers seeking a means of surreptitious communication.

We note that such communication fundamentally can-
not be detected at the level of individual DNS queries.
For example, an attacker could exfiltrate only one bit
of information per day by having a local system under
their control each day issue a single query for either
www.attacker.com or mail.attacker.com, where the label
used (www or mail) conveys either a 0 bit or a 1 bit.1 It
will prove intractable for a site’s security analysts (or any
detection tool) to tell that such requests reflect adversar-
ial activity, absent a great deal of additional information.

In this work we develop a principled means—rooted
in assessments of information-theoretic entropy and free
from false negatives—by which sites can analyze their

1 We assume that the attacker controls the attacker.com DNS zone.

1

18 22nd USENIX Security Symposium USENIX Association

DNS activity and detect the presence of surreptitious
communication whose volume exceeds a configurable
bound. Simpler metrics, such as volume of DNS traffic,
are not useful to distinguish tunnels from normal query
traffic, because large-scale traffic naturally exhibits a
high degree of diversity (§ 5.2). Approaches that focus
on specific syntactical patterns [29] will miss communi-
cation with different encodings. Our configurable bound
on the volume of surreptitious communication over DNS
allows sites to trade off analysis burden (detections re-
quiring investigation) versus assurance that such commu-
nication does not exceed a considerably low level.

We formulate this detection problem as having three
main components. The first concerns constructing a
sound, fairly tight estimate of the amount of information
potentially encoded in a stream of DNS queries. Here
we need to comprehensively identify all potential infor-
mation vectors, i.e., aspects of DNS queries that can en-
code information. The second regards ensuring that we
can compute such estimates with reasonable efficiency
in the face of very high volumes of DNS activity (tens of
millions of lookups per day). Finally, we need to assess
to what degree benign DNS query streams encode sig-
nificant amounts of information, and formulate effective
ways of minimizing the burden that such benign activity
imposes on a site’s security assessment process.

Thus, we conceptualize our overall goal as providing
a site’s security analysts with a high-quality, tractable set
of domains for which the corresponding DNS lookups
potentially reflect surreptitious communication. We view
it as acceptable that the analyst then needs to conduct a
manual assessment to determine which of the candidates
actually reflects a problem, provided that we keep the set
small and the process of eliminating a benign candidate
does not require much attention.

This work makes the following contributions:
• We introduce a principled means of detecting the

presence of surreptitious communication over DNS,
parameterized by a (configurable) bound on the
amount of information conveyed.

• Our approach is comprehensive because we root our
estimates of information conveyed in DNS lookups
in lossless compression of entire query streams.

• We perform an in-depth empirical analysis of
mostly-benign DNS traffic on an extensive set
of traces comprising 230 billion queries observed
across a variety of sites. For enterprise datasets
with lookups by individual clients, we find that a
bound of 4 kB/day per client and registered domain
name imposes an operationally viable analysis bur-
den. Thus, we argue that our procedure proves prac-
tical for real-world operational use.

After a summary of our information measurement pro-
cedure, we define the threat model in § 3. In § 4 we

Bound on information content

A: All Symbols D: Distinct Symbols I: Index of Distinct Symbols

min
mincompr(D)
+ mincompr(I)

mincompr(A)
sum

name

time

type

mincompr(x) = min(gzip(x), bzip2(x), ppmd(x))

Suffix: attacker.com, Client: 10.9.8.7

Figure 2: The information measurement procedure, summa-
rized in § 2. Figure 5 shows the full detection procedure.

present the extensive datasets used in our study. We
discuss information vectors potentially present in DNS
queries and ways to estimate their volume in § 5, and
explore implementation issues, including filtering tech-
niques for reducing the resources required, in § 6. We
evaluate the efficacy of our procedure in § 7, present a
real-time detector in § 8, discuss findings, limitations,
and future work in § 9, and review prior work in § 10.

2 Summary of the information measure-
ment procedure

As explained in § 6.3, we analyze DNS queries per client
and per registered domain name. For example, we aggre-
gate queries with names ending in site1.com, site2.co.uk,
and so on. We also aggregate PTR queries, but ignore
them here for clarity.

We measure the information in query name, time and
record-type sequences separately (§ 5.3). For example,
we transform a sequence of query names A to a sequence
of indices I into a table with distinct names D, and then
compress I and D with gzip. The size of the output then
gives us a measurement of the information in the input
sequence.

The key insight is that we will never under-estimate
the information in a query sequence as long as the trans-
formation and compression are reversible, i.e., we can
recover the original input sequence. Taking advantage
of this insight, we subject each query attribute sequence
to multiple (transformation, compressor) alternatives and
use the minimal result as the tightest (upper) bound.

Figure 2 illustrates our measurement procedure. For
each client and registered domain we compress both the
original and transformed query name sequences with
gzip, bzip2 and ppmd [23], and take the size of the small-
est output. We apply the same procedure to the record-
type sequences and 32-bit inter-query arrival time dis-
tances, and from these compute a combined score.

2

USENIX Association 22nd USENIX Security Symposium 19

Site Features
Vantage

Notes
Time Daily statistics: Average (Daily peak)

point span Clients Total lookups Distinct lookups
INDLAB L,N,Q,T I 1,212 d 10k (16k) 47M (164M) 310k (2.4M)
LBL N,Q I 2,776 d 6.8k (11k) 28M (154M) 867k (2.2M)
NERSC N,Q I 1,642 d 1.3k (3.3k) 9M (59M) 44k (114k)
UCB N,Q,T E a 45 d 2.1k (5.1k) 38M (52M) 3.3M (4.4M)
CHINA N,Q,T I/E b 5 d 61k (101k) 13.9M (15.7M) 468k (670k)
SIE N A c, d 53 d 123∗ (123∗) 1.45B (1.84B) 110M (129M)

Table 1: Summary of data sources. The available features are: 0x20-encoding [27] (C), caching lifetime derived from reply
time-to-live (L), query name (N), query type (Q), and timing (T). Sensor vantage points are: aggregated across multiple sites (A),
external to site (E), lookups associated with individual clients as seen at internal name servers (I), a mixture of these last two (I/E).
a The raw UCB dataset includes resolvers that employ 0x20-encoding [27] as well as a single system conducting high-volume DNS
lookups for research purposes. We preprocessed this dataset by removing lookups from the research system (totaling more than
250M) and downcasing lookups from 0x20-resolvers (cf. § 5.3). (Note that the dataset has 3 days with only partial information.)
b This dataset’s first day starts at 7AM local time rather than midnight. The other days are complete.
c “Clients” in the SIE dataset instead reflect site resolvers, each with potentially thousands of actual clients.
d As discussed later, we omit from our evaluation the PTR reverse lookups in this data, which comprise about 10% of the lookups.

3 Threat Model

Our basic model assumes that the attacker controls both a
local system and a remote name server. The local system
will communicate with the remote name server solely by
issuing lookups for DNS names that the site’s resolver
will ultimately send to the attacker’s name server. The
attacker inspects both the content of these queries (i.e.,
the names and the associated query type, such as TXT or
AAAA) and their arrival timing.

We further assume that the internal system under the
attacker’s control makes standard queries, either because
the site’s firewalling requires internal systems to use the
site’s own resolvers, or because non-standard queries
made directly to the public Internet could expose the
communication’s anomalous nature.

For the investigation we develop in this work, we focus
on communication outbound from local systems. (We
briefly discuss inbound communication encoded in DNS
replies in § 9.) We view the outbound direction as the
most apt when concerned about exfiltration threats. In
addition, for the interactive communication scenario, the
outbound direction corresponds to the replies generated
by a local login server in response to keystrokes sent by
a remote client. The outbound traffic volume to the lo-
gin client is typically 20 times larger than the incoming
traffic [21], making DNS queries embedding outbound
traffic the larger target for that scenario, too.

We do not consider here communication that an at-
tacker spreads across multiple remote domains or mul-
tiple remote name servers (such as attacker1.com, . . .,
attackern.com), nor spread thinly across multiple local
clients. We discuss these and other evasion issues in § 9.

4 The Data
For our analysis we draw upon datasets that together
comprise 230 billion queries. The data was collected at
multiple locations across the US and China, with van-
tage points ranging from internal DNS servers to network
perimeters. We summarize each dataset and its daily traf-
fic statistics in Table 1.

INDLAB: an industrial research laboratory. Collected
with a network sniffer near an internal DNS server, this
dataset contains queries from internal clients, the reply
time-to-live, and microsecond-resolution time stamps.

LBL: a national research laboratory. This dataset con-
tains DNS queries from local clients received by several
internal DNS servers. Covering a time span of 7.5 years,
this is the largest data set in our analysis.

NERSC: a super-computer center. The dataset con-
tains queries from local clients to the site’s DNS servers.

UCB: a university campus. This data was collected
on a perimeter network, providing an aggregate view of
(outbound) DNS query traffic. This site includes servers
that use 0x20 encoding [27], which nearly doubles the
number of distinct lookup names.

CHINA: a caching server for several university net-
works in China, with visibility of individual client IP ad-
dresses.

SIE: the Security Information Exchange of the Inter-
net Software Consortium [24]. In this collaboration of
infrastructure providers, law enforcement, security com-
panies and researchers, participants2 mirror their DNS
reply traffic from name servers across the Internet. (Note
that each reply contains a copy of the query.)

With a combined average of 1.5 billion replies a day,
SIE has by far the highest data rate in our collection.

2Heavily dominated by a single large U.S. ISP.

3

20 22nd USENIX Security Symposium USENIX Association

However, we note that we use it as a means of assess-
ing to what degree our detection procedure indeed can
find actual instances of surreptitious communication over
DNS; we do not claim our procedure is tenable for actual
operational use in this environment, which is hugely ag-
gregated across (likely) millions of actual clients.

5 Establishing Communication Bounds
In this section we develop a principled approach for
bounding the amount of information possibly conveyed
by local systems to remote name servers. The next sec-
tion then presents a number of filtering steps that reduce
the resources required for detecting communication that
exceeds these bounds.

5.1 Information Vectors
We first frame the basic communication mechanisms an
attacker could employ. In general terms, we consider an
attacker who wishes to communicate a significant quan-
tity of information by sending DNS queries to a remote
domain (say D.com) whose name server(s) the attacker
controls. Such queries provide a number of information
vectors that the attacker can exploit to surreptitiously em-
bed data within the stream of queries.

We note that attackers can potentially employ multiple
vectors at the same time. We emphasize that our detec-
tion scheme does not presume use of particular encod-
ings for a given vector; the encodings we give here are
just meant to illustrate the possibilities.
Query name-content vector. A conceptually straight-
forward way to embed data is for the attacker to devise a
data encoding that conforms with the requirements im-
posed on DNS labels, limiting each to no more than
63 bytes in length, and complete DNS names to no more
than 255 bytes [18]. For example, one could use Base-64
encoded data strings as such as VVNFQwo.D.com.

To our knowledge, all available tunneling-over-DNS
tools reflect this style of approach.
Query name-codebook vector. Rather than using each
DNS query to reflect a message many bytes long, at-
tackers can encode messages using a fixed alphabet of
symbols and then transmit those symbols one at a time
using a series of queries. For example, to convey the bit-
string 00101111 one bit at a time, a client could issue the
queries: z.D.com, z.D.com, o.D.com, z.D.com, o.D.com,
o.D.com, o.D.com, o.D.com. They could of course also
use larger alphabets to obtain greater efficiency.

Encodings using this vector will in general generate
many more lookups of the same names over time com-
pared to those using the query name-content vector.
Query type vector. Along with the query name, clients
include in their requests the type of DNS Resource
Record they wish to resolve, such as PTR for reverse-
IP-address-to-hostname mappings, or AAAA to look up

IPv6 addresses. Attackers can encode a modest amount
of information per query using this 16-bit field.
Query timing vector. A more subtle information vec-
tor exists in the specific timing of queries. For example,
if the attacker can resolve the arrival times of queries to
1 sec precision, then the attacker can use the number of
seconds between successive queries as a means of con-
veying information.3

A key issue for timing vectors concerns clock preci-
sion. With an extremely precise clock (and sufficiently
low jitter), intervals between queries can convey several
bytes of information without requiring very large inter-
query delays. For example, transmitting one query every
second using a clock with 1 msec precision can convey
lg103 bits per query, totaling more than 108 KB per day.
Other information vectors. Inspecting the DNS query
format reveals several additional fields possibly avail-
able for communicating information: query identifiers, a
number of flags, options, the query count, and the 16-bit
address class field included in each query. We argue that
none of these provide a reliable end-to-end information
vector for an attacker, given the assumption in our threat
model that the attacker’s client must relay its queries via
a site’s standard (non-cooperative) resolver. Such re-
layed queries will not preserve query identifiers. The
flags either do not survive the relaying process (e.g., Re-
cursion Desired) or will appear highly anomalous if they
vary (e.g., requesting DNSSEC validation), and likewise
DNS options (EDNS0) do not survive relaying, as un-
known options return an error [26], and the current op-
tions themselves are generally implemented on a hop-
by-hop basis. Similarly, query counts other than 1 would
appear highly anomalous and likely fail to actually prop-
agate through the site’s name server. Likewise, use of
any address class value other than IN (Internet) would
be readily detectable as anomalous.

5.2 Challenge: Diversities Seen in Practice
A natural starting point when attempting to detect surrep-
titious DNS communication is to posit that the encodings
used for the communication will stand out as strikingly
different than typical DNS activity. If so, we can target
the nature of the encoding for our detection.

What we find, however, is that while potential encod-
ings may differ from typical DNS activity, they do not
sufficiently stand out from the diverse range of benign
activity. When we monitor at a large scale—such as
analyzing the traffic from the 1000s of systems in an
enterprise—we observe a striking degree of fairly ex-
treme forms of DNS lookups.

3In addition, the specific query received after the given interval
could also convey additional information using one of the previously
described vectors.

4

USENIX Association 22nd USENIX Security Symposium 21

50 100 150 200

1
10

0

Length of domain names (bytes)

All lookups
Distinct lookups

N
um

be
ro

fl
en

gt
hs

≥
 X

(lo
g)

10
00

0

Figure 3: Distribution of the lengths of all individual (solid)
or all distinct (dashed) domain name prefixes queried during
a sample day of data from LBL. The horizontal lines mark
that 76K (all) and 58K (distinct) lookups were ≥ 100 bytes.
Lengths do not include the registered domain targeted by the
lookup. Note that the plot shows the upper 1% of all queries,
but the upper 18% of all distinct queries.

To illustrate, we consider DNS activity observed on
a sample day in 2011 at LBL. It includes 35M queries
issued from 9.4k hosts. These queries in total span
1.2M distinct names, and if we discard the first com-
ponent of each name, 620K distinct subdomains. These
subdomains are themselves rooted in 137K distinct reg-
istered domains (i.e., one level under com or co.uk).

One natural question concerns the frequency with
which operational DNS traffic exhibits peculiarly long
query names, since many natural encodings for surrep-
titious communication will aim to pack as much infor-
mation into each query as possible. Figure 3 shows the
distribution of domain name prefix lengths ≥ 50 bytes
(i.e., characters) looked up in our sample day. We see
that queries with names even larger than 100 bytes oc-
cur routinely: while rare in a relative sense (only 0.2% of
query names are this large), 76,523 such queries occurred
on that day. Restricting our analysis to distinct names
(dashed line) does not appreciably lower this prevalence.

For concreteness, here are some examples of what
such queries look like:
JohnsonHouse\032Officejet....sonhouse1.members.mac.com

www.10.1.2.3.static.becau....orant.edu.za.research.edu

awyvrvcataaaegdid5tmr7ete....ilu.license.crashplan.com

g63uar2ejiq5tlrkg3zezf2fk....emc6pi88tz.er.spotify.com

5.1o19sr00ors95qo0p73415p....7rn92.i.02.s.sophosxl.net

where we have elided between 63 characters (first exam-
ple) and 197 characters (last example). See Appendix A
for the complete names.

Thus, simply attempting to detect queries that include
unusually large names does not appear viable. Similarly,
the examples above illustrate that benign traffic already
includes DNS queries that use opaque encodings, so we
do not see a promising angle to pursue with regard to rec-
ognizing surreptitious communication due to the syntax
of its encoding.

1e+00 1e+02 1e+04 1e+06 1e+08

1
10

0
10

00
0

Total size of domain names looked up (bytes)

All lookups
Distinct lookups

N
um

be
ro

fs
iz

es
≥

X
[lo

g]

4k
B

Figure 4: Distribution of the total length of domain name pre-
fixes sent to different registered domains, computed as the sum
of all names (solid) or distinct names (dashed). The horizon-
tal lines mark that 1,186 registered domains received ≥ 4kB of
names, while 114 received ≥ 4kB of distinct names.

A different perspective we might pursue is that if only
a small number of remote name servers receive the bulk
of the site’s queries, then we might be able to explic-
itly examine each such set of traffic. Figure 3, however,
shows that large volumes of queries are spread across
numerous remote name servers. The plot shows how
many registered domains received a given total size of
queries (the sum of the lengths of all of the prefixes sent
to that domain). If we restrict our view to the total size of
distinct queries that a registered domain receives, more
than 100 registered domains each received in excess of
4kB of query names. If we include prefixes for repeated
lookups, the figure is ten times higher.

Surprising query diversity also manifests in other di-
mensions. For example, surreptitious communication
that leverages the transmission of repeated queries in a
codebook-like fashion requires using low-TTL answers
to prevent local caching from suppressing queries. How-
ever, we find that in benign traffic, low TTLs are not un-
usual: in a day of queries for external names that we ex-
amined, a little under 1% of the answers had TTLs of 0
or 1, and 38% are ≤ 60 sec. We also find instances of
large numbers of repeated queries arising from benign
activity such as misconfigurations and failures.

In summary, the variations we find operationally are
surprisingly rich—enough so to illustrate that our prob-
lem domain will not lend itself to conceptually simple
approaches due to the innate diversity that benign DNS
lookups manifest when observed at scale.

To illustrate the difficulty, we evaluated the perfor-
mance of a naive detector that simply sums up the vol-
ume of lookups sent to each domain, alerting on any
client sending the domain more than 4,096 bytes in one
day. In steady-state (using the same methodology as in
§ 7, including the Identified Domain List discussed be-
low), this detector produces 200x more alerts than our
actual procedure. If we alter the detector to only sum the
volume of distinct lookups, we still must abide 5x more

5

22 22nd USENIX Security Symposium USENIX Association

alerts (and lose the ability to detect codebook-style en-
codings). We emphasize that because our actual proce-
dure has no false negatives, all of these additional alerts
represent false positives.

5.3 Establishing Accurate Bounds on
Query Stream Information Content

Given that simple heuristic detection approaches will not
suffice due to the innate diversity of DNS queries, we
now pursue developing principled, direct assessments of
upper bounds on the volume of data a given client poten-
tially transmits in its queries.

A key observation is that—provided we do not under-
estimate the potential data volume—we can avoid any
false negatives; our procedure will indeed identify any
actual surreptitious communication of a given size over
DNS. Given this tenet, the art then becomes formulating
a sufficiently tight upper bound so we do not erroneously
flag lookups from a client to a given domain as reflecting
a significantly larger volume of information than actually
transmitted.

We can obtain tight bounds by quantifying the size
of carefully chosen representations of a client’s query
stream. If we obtain these representations in a lossless
fashion (i.e., we can recover the original query stream
from the representation), then the bound is necessarily
conservative in the sense of never underestimating the
true information content of the queries. At the same time,
the representation must be compact enough to reduce any
redundancy from the query stream as efficiently as possi-
ble in order to obtain a tight estimate. Thus, the task we
face is to determine a representation of the query stream
that efficiently captures its elements, but does so in a re-
versible fashion. In general, we seek forms of lossless
compression with high compression ratios.

Conceptually, the heart of our approach is to take
encoded query streams and feed them to compression al-
gorithms such as gzip, using the size of the compressor’s
output as our estimate. While simple in abstract terms,
pursuing this effectively requires (1) care in encoding the
streams to try to achieve as tight a bound as possible,
and (2) structuring the analysis procedure to execute ef-
ficiently given a huge volume of data to process.

For the rest of this section, we address the first of these
issues. We then discuss execution efficiency in § 6.
Character casing. The first question regarding encoding
query streams concerns the most obvious source of varia-
tion, namely the particular names used in the queries. For
these, one significant encoding issue concerns casing.
While the DNS specification states that names are treated
in a case-insensitive manner, in practice resolvers tend to
forward along names with whatever casing a client em-
ploys when issuing the query to the resolver.

Together, these considerations mean that, for example,

a query for foo.D.com and FoO.D.COM will both arrive at
the same D.com name server, with the casing of the full
query name preserved. Accordingly, we must downcase
query name suffixes in order to correctly group them to-
gether (i.e., to account for the fact that the same name
server will receive them), but preserve casing in terms of
computing information content, since indeed the attacker
can extract one bit of information per letter in a query
(including the domain itself) depending on its casing.
0x20-encoding. Preserving casing in queries can raise
a difficulty for formulating tight bounds on informa-
tion content due to the presence of 0x20-encoding [27],
which seeks to artificially increase the entropy in DNS
queries to thwart some forms of blind-spoofing attacks.
While the presence of arbitrary casing due to use of
0x20-encoding does indeed reflect an increase in the ac-
tual information content of a stream of queries, this par-
ticular source of variation is not of use to the attacker;
they cannot in fact extract information from it.

We found that unless we take care, our UCB dataset,
which includes queries from a number of resolvers that
employ 0x20-encoding, will indeed suffer from signifi-
cant overestimates of query stream information content.
The presence of such resolvers however means that their
clients cannot exploit casing as an information vector,
since the resolver will destroy the client’s original cas-
ing. Accordingly, we developed a robust procedure (de-
tails omitted due to limited space) for identifying queries
emanating from resolvers that employ 0x20-encoding.
For those query sources we downcase the queries to ac-
curately reflect that casing does not provide any informa-
tion.

This procedure identified 205 clients in the UCB
dataset. Other than those clients, we left casing intact.
Employing codepoints. General compressors such as
gzip do not make any assumptions about the particular
structure of the data they process. However, our partic-
ular problem domain has certain characteristics that can
improve the compression process if we can arrange to
leverage them. In particular, we know that DNS query
streams often repeat at the granularity of entire queries.
We can expose this behavior to a general compressor
by constructing codepoints, as follows. We preprocess
a given client’s query stream, replacing each distinct
query with a small integer reflecting an index into a ta-
ble that enumerates the distinct names. For example, this
would reduce a query stream of foo.X.com, bar.X.com,
bar.X.com, foo.X.com, bar.X.com to the stream 1, 2, 2,
1, 2, plus a dictionary that maps 1 to foo.X.com and 2
to bar.X.com. The particular encoding we use employs
24-bit integers (we take care in our information-content
estimation to include the dictionary size).
Representing query types. For datasets that include
query types, we construct a separate, parallel compres-

6

USENIX Association 22nd USENIX Security Symposium 23

sion stream for processing the corresponding 16-bit val-
ues, i.e., we do not intermingle the query types with the
query names.

Representing timing. Individual query timings offer
only quite limited information content. Thus, for an at-
tacker to make effective use of timing, they will need to
send a large number of queries. This means that we likely
will benefit from capturing not absolute timestamps but
intervals between queries. We compute such intervals as
32-bit integers representing multiples of R, our assumed
lower bound on the timing resolution the attacker can
achieve. Again we construct a separate, parallel com-
pression stream for processing these.

Clearly, the value of R can significantly affect the
amount of information the attacker can extract from the
timing of queries; but R will be fundamentally limited by
network jitter. To formulate a defensible value of R, we
asked the authors of [17] regarding what sort of timing
variation their measurements found for end systems con-
ducting DNS queries. Using measurements from about a
quarter million distinct IP addresses, they computed the
maximum timing difference seen for each client in a set
of 10 DNS queries it issued. The median value of this
difference across all of the clients was 32 msec. Only
a quarter of the clients had a difference under 10 msec.
Accordingly, for our study we have set R to 10 msec.

Constructing unified estimates. As described above,
we separately process the query names, types, and tim-
ing. Formulating a final estimated bound on a query
stream’s information content then is simply a matter
of adding the three corresponding estimates. We note,
though, that by tracking each separately, we can identify
which one contributes the most significantly (per Fig-
ure 6 below).

Bakeoffs. Finally, as outlined above we have sev-
eral potential choices to make in formulating our upper-
bound information estimates: which compressor should
we employ? Should we use codepoints or allow the
compressor to operate without them (thus not imposing
the size of the dictionary)? We note that we do not in
fact have to make particular choices regarding these is-
sues; we can try each option separately, and then sim-
ply choose the one that happens to perform best (gener-
ates the lowest information estimates) in a given context.
Such “bakeoffs” are feasible since we employ lossless
techniques to construct our estimates; we know that each
estimate is sound, and thus the lowest of a set is indeed
the tightest upper bound we can obtain.

The drawback with trying multiple approaches, of
course, is that it requires additional computation. In the
next section we turn to how to minimize the computation
we must employ to formulate our estimates.

6 Implementation
The previous section described our approach to devel-
oping an accurate bounds on the amount of information
conveyed using DNS queries to a given domain’s name
server(s). Computing these estimates and acting upon
their corresponding detections, however, raises a number
of issues with regards to reducing the resources required
for employing this approach.

In this section we discuss practical issues that arise
when implementing our detection approach. One signif-
icant set of these concern filtering: either restricting the
DNS queries we examine in order to conserve computing
(or memory) resources, or reducing the burden that our
detection imposes on a site’s security analysts. The key
property of these filtering stages is their efficacy in con-
cert, which is crucial for the scalability of our approach.
Figure 5 shows the different stages of processing in our
detection procedure and how they pare down in several
steps the volume of both the queries that we must exam-
ine and the number of domain name suffixes to consider.

We describe our detection procedure as implemented
for off-line analysis here, and discuss our experiences
with a real-time detector in § 8.

6.1 Cached Query Filter
A query from a DNS client system cannot exfiltrate in-
formation unless it is forwarded by the recursive resolver.
Thus a highly useful optimization for the internal van-
tage point (as discussed in § 4) is to model the recursive
resolver’s cache and not consider any query where the
resolver obtained the result from its cache.

We can accomplish this by observing the replies with
the TTL field. We maintain a shadow cache based on
the query attributes (contained in the reply) and the reply
TTL values, and do not consider later queries until their
information expires from the shadow cache.

The result of this filtering is to eliminate the disadvan-
tage of the internal vantage point, as this filter ensures
that later stages only process uncached requests. With
the INDLAB dataset, this reduces the number of detec-
tions by about 2x for the timing vector, and about 10%
for query names. Unfortunately not all of our datasets
support this filtering.

6.2 Uninteresting Query Filter
We remove lookups that target domain names within the
local organization itself, or within closely-related orga-
nizations. Due to their relatively high volume, we find
that such lookups can result in a large number of detec-
tions, but the likelihood that someone will actually use
a DNS tunnel between such domains will be negligible.
Likewise, we remove lookups of PTR (address-to-name)
records for local and reserved network address ranges.

7

24 22nd USENIX Security Symposium USENIX Association

Investigate
4,089 queries

1 suffix

Bound on information content

min
mincompr(D)
+ mincompr(I)

mincompr(A)
sum

name

time

type

Suffix: attacker.com, Client: 10.9.8.7

Pre-processing
of queries

Filtering on
suffix and client level

…

DNS
queries

Ingestion
of queries

Grouping by
suffixes & clients

Cached query
filter (§ 6.1)
Removing

41M queries
0 suffixes

Uninteresting query
filter (§ 6.2)
Removing

1.5M queries
41 suffixes

Fast entropy
filter (§ 6.4)
Removing

1.8M queries
65K suffixes

<4kB information
content (§ 6.5)

Removing
78K queries
34 suffixes

Inspected
Domain List (§ 6.7)

Removing
185K queries

11 suffixes

A: All Symbols D: Distinct Symbols I: Index of Distinct Symbols
mincompr(x) = min(gzip(x), bzip2(x), ppmd(x))

queries

Total input
45M queries
65K suffixes

…

(§ 6.3)

Figure 5: The full detection procedure. The numbers (grey) reflect a day at the INDLAB network for which the detection procedure
flagged a new domain name (a relatively rare event).

Finally, we exclude names without a valid global top-
level domain. This eliminates numerous queries from
systems that are misconfigured or confused.

6.3 Grouping by Suffix and Client
In this stage of our detection procedure, we compute
statistics per (lookup name suffix, client)-pair that will
serve as input to the lightweight filter described in § 6.4.

Due to the voluminous nature of our data, we ag-
gregate these statistics at the level of registered domain
names (e.g., one level under com or co.uk). With IPv4
PTR lookups we aggregate at two and three labels un-
der in-addr.arpa (corresponding with /16 or /24 network
ranges), and with IPv6 PTR lookups we aggregate at
12 labels under ip6.arpa (corresponding with /48 net-
work ranges). The reasoning behind these choices is
that shorter PTR suffixes will in general represent large
blocks that are parents to multiple organizations; thus,
the presence of tunneling associated with such suffixes
would require compromise of a highly sensitive infras-
tructure system. In our results for PTR lookups we find
no indications of surreptitious communication.

We then compute for each query suffix and client the
numbers of unique and distinct lookup names includ-
ing that suffix, as well as the combined length of those
lookup names. We group suffixes in a case-insensitive
manner, but count as distinct any lookup names that dif-
fer only in case (cf. § 5.3).

6.4 Fast Filtering of Non-Tunnel Traffic
The very high volume of DNS queries means we can ob-
tain significant benefit from considering additional mea-
sures for pre-filtering the traffic before we compute the
principled bounds described in § 5. For each domain
suffix, we use computationally lightweight metrics that
overestimate the information content present in the in-

formation vectors described in § 5.1. We then compare
the sum of these metrics across all information vectors
against a minimum-information content threshold, I. If
the sum total (guaranteed to not underestimate) lies be-
low the threshold, the traffic for the corresponding do-
main suffix cannot represent communication of interest.
This approach allows us to short-circuit the detection
process and eliminate early on numerous domain suf-
fixes.
Fast filter for the query name vector. We consider the
following quantities from a sequence of lookups made by
some host during one day: the total number of lookups
L, the number of distinct query names Dname in those
lookups, and the total number of bytes Cname in those dis-
tinct query names. We remark that we can determine all
three quantities with minimal computational and mem-
ory overhead.

Query name tunnels encode information in terms of
the characters and the repetition patterns of the names
looked up. Each character in a name may convey up to 1
byte of information, contributing up to Cname bytes in to-
tal. According to Shannon’s law, the number of bits con-
veyed per lookup amounts to at most log2 Dname. There-
fore the combined upper bound on information conveyed
in bytes by such a tunnel amounts to:

Iname =Cname +L · log2 Dname

8
Fast filter for the query type vector. We filter the query
type vector similarly. Again, we consider a sequence of
DNS lookups with a given suffix made by some host dur-
ing one day. If we use Dtype to denote the number of
distinct query types in those lookups and Ctype the total
number of bytes in those distinct query types, we have:

Itype =Ctype +L ·
log2 Dtype

8

8

USENIX Association 22nd USENIX Security Symposium 25

Fast filter for the query timing vector. The timing vec-
tor is more complicated because we need to discretize
the time information and create symbols representing
the encoded data as it appears in the timing vector. We
parametrize this process by the time resolution R that the
network environment affords to the attacker.

Intuitively, for a given number of lookups L observed
over a day, the amount of potential information encoded
in time is maximal when the number of distinct inter-
arrival times, k, is maximal. This is due to the fact that,
without knowing the distribution of inter-arrival times,
the empirical entropy from the inter-arrival times may be
upper-bounded by L · log2 k, where log2 k is the number
of bits encoded by a single lookup.

As a consequence, to assess the upper-bound on the
information content for a fixed L and an assumed time-
slot size (expressed as time resolution R), we need to
determine into how many distinct inter-arrival times k we
can partition one day into, while imposing as uniform a
distribution of inter-arrival times as possible (i.e., leading
to maximal entropy).

By maximizing k subject to the constraint that the dis-
tribution of distinct inter-arrival times is uniform (omit-
ting details for brevity), and upper-bounding k by L− 1
(the number of intervals), we find that we can express
the upper bound on the information amount in the timing
vector as:

Itime = L · log2

(

min
(

L−1,
⌊

2M
L−1

⌋

+1
))

where M = 86,400
R denotes the number of time slots with

resolution R over one day (86,400 seconds).
Unified fast filter. From the above equations, we can
now formulate the following unified test condition to
handle all types of information vectors:

If Iname + Itype + Itime < I, the suffix is not a
candidate tunnel.

We then eliminate from further detailed analysis the
name suffixes that are not candidate tunnels.
Choosing the thresholds. The fast filter relies on two
parameters, the information content threshold I and the
time resolution R. In order to select security-relevant
values for these parameters, we measured their impact
on the analyst’s workload. (Note that in § 5.3 we also
framed empirical evidence that R = 10 msec appears
fairly conservative.) It is clear that both reducing the in-
formation content threshold and reducing the time reso-
lution can increase the false positive rate, and relatedly
the analyst’s workload.

Figure 6 shows how varying these parameters affects
the analyst for INDLAB data. One can see, for exam-
ple, that decreasing the information content threshold I

256 512 1k 2k 4k 8k 16k

1
10

1

10

100

Detection threshold (bytes)

A
n
al
y
st

w
or
k
lo
ad

(s
u
ffi
x
es

p
er

w
ee
k
)

name + time + query type name

time query type

1 3 10 30 100

1.5

2

2.5

3

Time resolution (ms)

A
n
a
ly
st

w
o
rk
lo
a
d

(s
u
ffi
x
es

p
er

w
ee
k
)

Figure 6: The impact of the information content threshold I
and the time resolution R on the number of suffixes to val-
idate manually per week for the INDLAB dataset. The top
chart reflects a value R = 10 msec, and the bottom chart I
= 4,096 bytes.

from 4,096 to 256 bytes (and potentially increasing secu-
rity) would increase the number of domain name suffixes
passed to the analyst for manual inspection 50-fold. The
plot also shows a clear power-law relationship between
analyst workload and I, with the former scaling as ap-
proximately x−1.38 in the latter.

Setting the information content threshold I to
4,096 bytes and the time resolution R to 10 ms thus
provides a good balance between analyst workload and
potential detections. Sites might of course revisit these
parameters based on their particular threat models and
networking environments.

6.5 Bounding Information Content
For each (suffix, client)-pair that remains after the pre-
ceding filter steps, we compute the size of gzip, bzip2
and ppmd [23] compression for the series of all corre-
sponding lookup names, selecting the lowest value. We
also assess a codepoint-oriented analysis (§ 5.3), com-
puting the gzip, bzip2 and ppmd compression sizes for
the series of distinct (unique) lookup names, selecting
the lowest value, and adding the lowest value of the gzip,
bzip2 and ppmd compression sizes for the corresponding
distinct lookup name indices. Given these two assess-
ments, we choose the smaller as the best (tightest) upper
bound on the amount of information potentially trans-
ferred through lookup names to the given domain suffix
(cf. box “Bound on Information Content” in Figure 5).

Next, we apply the same procedure to the correspond-
ing inter-query arrival times (in R = 10 msec units) and
query record types, if this information is available. Fi-

9

26 22nd USENIX Security Symposium USENIX Association

nally, we add up the results from the lookup name, time
and type information vectors, and if their sum lies below
I, we discard the (suffix, client)-pair.

6.6 Inspected Domain List
We expect sites to employ our analysis procedure over
an extended period of time. For example, once a site sets
it up, it might run as a daily batch job to process the last
24 hours of lookups. An analyst inspects the traffic as-
sociated with any domains flagged by the procedure and
renders a decision regarding whether the activity appears
benign or malicious.

An important observation is that the same benign do-
mains will often reappear day after day, due to the basic
nature of their lookups. However, the analyst needn’t
reexamine such domains, as the verdict will prove the
same. (See § 9 for further discussion of this point.) Given
this, we presume the use of an Inspected Domain List
(IDL) that accumulates previous decisions regarding do-
mains over time. For a given day’s detections, we omit
flagging for the analyst any that already appear on the
IDL. Once populated, such a dynamic list can greatly
reduce the ongoing burden that our detection procedure
places on a site’s analysts.

A final issue regarding the IDL concerns its granu-
larity. For example, if our procedure flags s1.v4.ipv6-
exp.l.google.com and we put that precise domain on the
IDL, then this will not spare the analyst from having
to subsequently investigate i2.v4.ipv6-exp.l.google.com.4

However we note that the analyst’s decision process will
focus heavily on registered domains. In this example,
the analyst will likely quickly decide to mark the detec-
tion as benign because for it to represent an actual prob-
lem would require subversion of some of Google’s name
servers, which would represent an event likely signifi-
cantly more serious than an attacker communicating sur-
reptitiously out of the site. In addition, the analyst will
reach this conclusion simply by inspecting the registered
domain google.com, rather than studying all of the sub-
domains in depth.

Accordingly, once an analyst inspects a detection, we
place on the IDL the corresponding registered domain,
which we compute by consulting Mozilla’s Effective
TLD Names list [20]. In this example, com appears on
the list (meaning that any domain directly under it will
reflect a registration), so we add google.com to the IDL.
Any subsequent matching against the IDL likewise em-
ploys trimming of names using the same procedure.

We note that we could implement the IDL with finer
granularity than described above. In particular, we could
frame it in terms of per-client filtering, or using custom
entropy thresholds. We leave exploring these refinements
for future work.

4 Both of these are actual detections.

Exfiltration Scenario
Estimated Data Volume

Total Name Timing Type
Query name-content 111% 110% 0.4% 0.01%
Query name-codebook 109% 103% 5.6% 0.1%
Timing 105% 0.8% 104% 0.2%
Query type 111% 0.6% 6.8% 104%

Table 2: Estimates of data volumes produced by our procedure
measured against specific exfiltration scenarios, showing the
total estimate, and the individual contributions from the query
name, timing, and type information estimation.

7 Evaluation
In this section we evaluate the efficacy of our detection
procedure in terms of assuring that it can detect explicit
instances of communication tunneled over DNS (§ 7.1)
and investigating its performance on data from produc-
tion networks (§ 7.2). For this latter, we assess both the
procedure’s ability to find actual surreptitious communi-
cation, and, just as importantly, what sort of burden it
imposes on security analysts due to the events generated.

7.1 Validating on Synthetic Data
To validate our procedure’s ability to accurately measure
communication embedded in DNS queries, we assessed
what sort of estimates it produces for scenarios under
which we fully control the DNS communication used for
exfiltration. Table 2 summarizes the results, comparing
the information vector used for exfiltration vs. the esti-
mates of the volume of data present in the corresponding
lookups, both in total and when restricted to just consid-
ering a single information vector. All values are percent-
ages of the actual exfiltration size, so a value of 105 indi-
cates an estimate that was 105% of the true size (i.e., the
estimate was 5% too high). Naturally, estimators that fo-
cus on information vectors different from those used in a
given exfiltration scenario can greatly underestimate the
data volume if used in isolation, highlighting the need to
combine such estimators into a final comprehensive sum.

Regarding the scenarios reflected in the table, to assess
tunnels based on encoding information directly in query
names, we recorded Iodine [10] queries while sending a
99,438-byte compressed file with scp. The 11 % differ-
ence (shown in the “Query name-content” row) between
measured content and actual content is nearly all due
to tunnel encapsulation overhead (SSH, TCP/IP headers,
Iodine framing). As we are not aware of any available
tunneling tools that leverage repeated (codebook-style)
queries, timing, or varying query types, we wrote sim-
ple proof-of-principle implementations for testing pur-
poses. The codebook-style implementation used 16 dis-
tinct names that each convey four data bits per query,

10

USENIX Association 22nd USENIX Security Symposium 27

Type Of Activity \ Dataset INDLAB LBL NERSC UCB CHINA SIE SIEUNIQ

Lookups (days) 57B (1,212) 73B (2,565) 12B (1,642) 1.7B (45) 69M (5) 77B (53) 12B (53)
Detection threshold 4kB 4kB 4kB 10kB 10kB 10kB 10kB
Confirmed DNS channel 0 2 0 0 0 57 57
Benign use 286 306 29 200 41 4,815 1,088
Malware 2 2 0 5 2 74 73
Misconfiguration 49 62 5 126 8 310 182
IPv4 PTR 11 29 4 26 3 N/A N/A
IPv6 PTR 0 5 0 1 0 N/A N/A
Unknown 14 27 0 13 13 1 1
Total 362 433 38 371 67 5,256 1,401
Domains flagged (first week) 16 5 3 199 (67+) 3,002 798
Domains flagged (typical week) 2.0 1.1 0.15 32 N/A 358 97

Table 3: Number of domains flagged in each dataset, broken out by the type of activity that the use of the domain represents. The
INDLAB, UCB and CHINA analyses cover all information vectors: LBL and NERSC incorporate query names and types, but
not timing; SIE considers only query names; and SIEUNIQ only the contents of query names (not repetitions). SIE and SIEUNIQ

analyses includes additional considerations discussed in the Appendix.

while the timing-interval implementation used one name
and 16 distinct time intervals spaced 10 ms apart. The
query-type implementation used one name and 16 dis-
tinct query types. In addition, these tunnels used five
distinct query names for command and control. We ex-
filtrated a 10,000-byte compressed file and found that the
difference between the estimated exfiltration volume and
the actual size ranged from 5–11 %.

These results confirm that our procedure can readily
detect information that is encoded into query names, tim-
ing, or query record types, and that it can provide mean-
ingful upper bounds.

7.2 Evaluation on Operational Data
We now turn to evaluating our detection procedure as ap-
plied to the extensive datasets we gathered, comprising
230 billion lookups from the networks listed in Table 1.

A key question for whether our detector is opera-
tionally viable concerns the combination of (1) how
many domains it flags for analysis, coupled with (2) how
quickly an analyst can identify the common case of a
flagged domain not in fact posing a threat.

The filtering steps in § 6 aim to address the first issue.
Regarding the second issue, as we briefly discussed in
§ 6.6 we find that often analysts can rely on fate-sharing
to quickly determine they needn’t further investigate a
candidate domain. For example, a site’s analyst can rea-
son that a detection of google.com or mcafee.com is safe
to ignore, because if indeed an attacker has control over
those domains’ name servers, the site has (much) bigger
problems than simply the presence of surreptitious com-
munication to the sites.

Table 3 summarizes the findings across all of the
datasets. For each dataset, the row in bold gives the to-

tal number of different domains flagged by our detector
(many appear in more than one day), and the bottom row
reflects the “steady state” burden on an analyst investi-
gating detections for the given environment. We parti-
tion the datasets into two groups. The logs for INDLAB,
LBL and NERSC include individual per-client lookups,
and thus these sites represent the sort of environments
for which we target our detection, using a threshold of
4 kB/day. The lookups recorded for UCB, CHINA and
SIE, on the other hand, are primarily aggregated across
many clients, and thus for these datasets we cannot per-
form per-client analysis. We do not aim to treat these
datasets as operational environments for our detection
procedure, but rather to assess what sort of surreptitious
communication the procedure can detect in real traffic.
For them, we use a higher threshold of 10 kB/day to limit
our own analysis burden in assessing the resulting detec-
tions. Finally, the SIE dataset introduces some additional
complexities, as discussed in Appendix B.

We classified the detections based on manual analysis
to assign each to one of six general categories, as follows.

Confirmed DNS channel reflects domains for which
we could amass strong evidence that indeed the detection
represents surreptitious communication over DNS. For
LBL, both flagged domains correspond to tunnels that
staff members acknowledge having set up to obtain free
Internet access in WiFi hotspots that allow out DNS traf-
fic without requiring payment. One used DNStunnel [8],
the other NSTX [13].

For SIE, we identified 3 types of tunnels. One type
(responsible for 42 domains) corresponds to a product of-
fered by Dynamic Internet Technology, a company that
builds tools to evade censorship [9]. These tunnels en-
code most requests in two 31-character labels, using only

11

28 22nd USENIX Security Symposium USENIX Association

alphanumerics, followed by an identifier that appears to
identify the tunnel itself. Another 10 domains all have
whois information leading to MMC Networks Limited
(of Gibraltar), a company that provides a program of-
fering “Free WiFi” using tunneling [28]. The tunneling
technology used for these is a variant of Iodine, with the
main difference being use of only alphanumeric charac-
ters for the encoding. We also found 5 domains that use
Iodine, for reasons we have not been able to identify.

Finally, we examined an addition 150 billion DNS
records captured in a separate 259 days of monitoring
from SIE. Due to monitoring gaps, this expanded data is
unsuitable for analyzing long-term analyst burden. But
in it (using a somewhat higher detection threshold) we
detected 42 new tunnel instances, including a new tunnel
type belonging to vpnoverdns.com.

Benign use encompasses a number of different sce-
narios that we believe would lead an analyst to fairly
quickly decide that the corresponding activity does not
appear problematic. These scenarios include flagging
of: (1) a well-known site (e.g., google.com), for which
a name server breach would reflect a catastrophe, so
very likely has not occurred (fate-sharing). (2) A sis-
ter site (e.g., a partner institute), where a similar ar-
gument holds. (3) ISPs, for which sometimes lo-
cal systems look up many hostnames corresponding
to end-user systems. For example, in LBL we ob-
serve queries for numerous names such as 201-11-50-
242.mganm703.dsl.brasiltelecom.net.br. (4) Directory-
style services offered over DNS, including blocklists,
user-generated content, and catalogs. (5) Software li-
cense servers. (6) Cloud-based antivirus services.

Malware indicates lookups associated with malware
activity or sites flagged (for example, by McAfee’s
SiteAdvisor service) as malicious. For SIE these also
include lookups such as p9b-8-na-5w-2z3-djmu-...-njx-
2es.info, i.e., 62-character labels consisting of letters or
numbers separated by dashes. We concluded that these
lookups reflect malware activity because names follow-
ing the same pattern appeared in a trace generated by a
researcher running bots within a contained environment.

Misconfiguration generally reflect clients making
large volumes of lookups due to configuration prob-
lems that lead to repeated failures. For example, in one
LBL instance we observed more than 60,000 lookups
of 33 different names within a single domain, such as
ldap. tcp.standardname-...isi.fhg.de. Other problems we

observed include lookups apparently based on email ad-
dresses, such as itunes@new-music.itunes.com; subdo-
mains appearing to be IP addresses; repeated failures
of names with narrow, rigid structures; and domains in
search paths that have lookups encapsulating a client’s
entire stream of queries sent to other domains.

IPv4 PTR and IPv6 PTR reflect lookups under the in-

addr.arpa and ip6.arpa zones, respectively. These zones
provide a decentralized mapping from numeric IP ad-
dresses to domain names. As discussed in § 6.2, we do
not flag PTR lookup suffixes that correspond to address
ranges that are local to the organization, or that are re-
served. As noted in § 6.3, for IPv4 PTR lookups we only
flag suffixes corresponding to /16 or /24 netblocks, and
for IPv6, /48 netblocks.

Unknown reflects domains for which we could not ar-
rive via manual analysis at a confident determination re-
garding how to classify the activity. For example, one
striking instance concerns a number of domains (primar-
ily seen in CHINA traffic, but also SIE) that issue thou-
sands of lookups such as:
wojnlbefrhpfumrupmsn.0ule365.net

jnrlciinsszxahnfrvxe.0ule365.net

okgjeqckeqrxdigktkua.0ule365.net

Here, the domain (0ule365.net) is associated with a Chi-
nese gaming site. Other instances following the same
pattern appear to be associated with phishing sites related
to such gaming sites.

Domains flagged in first week and in typical week
reflect the two extreme behaviors of our Inspected Do-
main List approach (§ 6.6). In the first week of operation
our detector reports a peak number of domains; once the
list is primed, it flags domains at a much lower rate. (We
special-case the figure for CHINA because that entire
dataset spans less than a week.)

Finally, the main conclusion we highlight regarding
the Total row is the low number of events that analysts
would have to inspect. (Even for SIE, the average load
aggregated across the more than 100 participating sites
comes to about 50 detections per day, given I increased
from 4 kB to 10 kB.)

8 Real-Time Operation
As developed so far, our analysis procedure operates in
an offline fashion, processing full days as a single unit.
While this suffices to enable analysts to detect DNS exfil-
tration on a daily basis, real-time detection would enable
immediate identification of such activity and thus much
quicker response. In this section we explore the viability
of adapting our scheme for such detection.

Our real-time variant uses gzip and bzip2 as the com-
pression functions. We can adapt both the cached query
filter and the “uninteresting query” filter to streaming op-
eration, with the only consideration being that we modify
the cached query filter to actively flush all cache entries
as their TTLs expire to minimize statekeeping.

Adapting the fast filter and the compression-based fil-
ters takes more consideration, since they naturally pro-
cess entire sets of activity as a unit. In addition, if we
try to use a compressor in a stream fashion, we must deal
with the compressor’s destructive operation: if we add

12

USENIX Association 22nd USENIX Security Symposium 29

data to a stream and call flush() to obtain the size of
the compressed result, the flush() operation changes
the compressor’s internal state—adding more data and
calling flush() again can produce a larger output than
simply compressing all of the data at once.

Our approach combines the fast filter and the com-
pression measurement for each (domain, client) pair as
follows. Initially, for each pair we only track the un-
compressed input. Upon receiving new input, we check
whether the total message length plus maximum possi-
ble entropy contribution from the timing, and query, and
query type could possibly lead to the pair generating an
alert. If not, we simply append the new information to
the list of previously seen queries.

If the total could cross our threshold, we allocate com-
pressors, feed them all of the recorded input, and in-
voke flush(). If the resulting entropy lies below the
alert threshold, we simply update the uncompressed data
threshold that could possibly generate an alert, discard
the compressed data, and continue. Otherwise, we gen-
erate an alert, create new compressors, feed them all the
previous data, and pass all subsequent data to them as it
arrives. These new compressors allow us to compute a
full 24-hour entropy total for the (domain, client) pair to
aid the analyst. After 24 hours we generate a summary
for each pair and discard the associated state.

For good performance we parallelized this approach,
running the cached-query and uninteresting-query filters
in a single process that dispatches each (suffix, client)
pair to one of 15 distinct child processes. We verified
that the implementation produces a consistent analysis
by processing the same day of INDLAB data using both
the original batch implementation (with only gzip and
bzip2) and the real-time variant (70M DNS queries, 36M
non-empty replies). They fully agreed, with the real-
time implementation requiring 28 minutes and 4.5GB
of RAM to process the day of traffic. The execution
totaled 53 CPU-core-minutes on a dual processor Intel
Xeon X5570 system. Given these results, we conclude
that real-time operation is quite viable.

9 Discussion
This paper demonstrates how we can comprehensively
measure the information content of an outbound DNS
query stream. Our lossless compression-based procedure
measures all information that an attacker can effectively
send via names, types, and timing, regardless of the ac-
tual encoding used. This procedure also has only two
tuning parameters, the threshold of detection and the tim-
ing precision.

Some minor DNS features remain that we have not
included in our analysis procedure. We have omitted
these for simplicity, since in their usual (benign) use,
they appear almost always to have a single value for a

given client. These information vectors include request-
ing DNSSEC information (single bit) and the query’s
class (which for modern traffic is almost always type IN,
“Internet”). Similarly, future EDNS0 extensions could
appear that recursive resolvers will forward intact, pro-
viding a new information vector. For all such features,
we can simply employ an additional compressor opti-
mized with the use of a very low-cost special case of
using a single bit to indicate that for a given client, the
feature never changes.

Attackers can tunnel information in DNS replies as
well as in queries, and indeed existing tunnels do so.
Since replies can include domain names (returned for
example in CNAME records) or unstructured byte strings
(e.g., TXT records), replies can potentially convey large
volumes of data. (We remind the reader that in this
work we have focused on analyzing DNS queries rather
than responses since for the scenarios of particular
interest—exfiltration or remote interactive access—the
query streams will generally carry the bulk of the data.)

Attackers who can successfully mimic the appear-
ance of benign data-rich query streams (such as block-
list lookup services) can trick analysts into deeming their
surreptitious communication as harmless. Similarly, an
attacker who compromises a previously benign domain
can encode their traffic using the same style of lookups
as the domain originally used. These problems are or-
thogonal to the question of flagging the activity.

Attackers aware of our detection procedure can in ad-
dition design their tunnels to keep the information con-
tent below the 4 kB per day threshold. Given that we ag-
gregate information content metrics per domain, a sim-
ple evasion strategy would be to spread the traffic across
K > 1 domains, and then send < 4 kB per day to each,
but in aggregate communicate K times that volume. A
possible detection approach we envision pursuing con-
sists of analyzing each client’s lookups in their entirety,
rather than on a per-destination-domain basis. Coupled
with an expanded Inspected Domain List (§ 6.6) to re-
move the major contributors to DNS traffic, we would
aim with this approach to compute a bound on the total
information content each client communicates via all of
its external DNS queries.

Finally, attackers could spread their exfiltration across
multiple compromised clients, so that each client’s query
stream remains below the detection threshold. Our expe-
riences with external vantage points such as UCB indi-
cates that we still might be able to find the activity of
groups of clients, since that vantage point already ag-
gregates multiple clients into a single apparent source.
However, a combination of using multiple compromised
clients and K external name servers might prove exceed-
ingly difficult to detect for the sort of thresholds we have
employed in this work.

13

30 22nd USENIX Security Symposium USENIX Association

10 Related Work
Four areas of prior work have particular relevance to our
study: covert communication; designing ways of tunnel-
ing communication over DNS traffic; detecting such tun-
neling; and establishing bounds on the volume of covert
communication.

We adopt Moskowitz and Kang’s classification of
covert communication channels [19]. In particular, a
storage channel is a covert channel where the output al-
phabet consists of different responses all taking the same
time to be transmitted, and a timing channel is a covert
channel where the output alphabet is made up of differ-
ent time values corresponding to the same response. Ac-
cordingly, we treat covert communication via DNS query
content (name, type and other attributes) as a storage
channel, and covert communication via query timing as
a timing channel.

Conventional DNS tunnels are similar in construction:
they are bi-directional, directly embedding the outbound
information flow in query names, and the inbound flow
in server responses. In the absence of outbound data,
the client sends low-frequency queries to poll the tun-
nel server for any pending data. The functionality of
these tunnels ranges from a simple client-to-server vir-
tual circuit to full IP-level connectivity. Examples are
NSTX [13], dns2tcp [7], Iodine [10], OzymanDNS [15],
tcp-over-dns [25], and Heyoka [14]. DNS exfiltration has
also been a tool in the attacker’s toolbox for a number of
years (per [22] and the references therein).

Beyond query names, the DNS message format con-
tains a variety of fields that could be used for embed-
ding data (as we detail in § 5.1). In addition to the
DNS-specific message fields, timing (e.g., the timing of
queries) provides a rich vector for embedding data. This
is not unique to DNS traffic, but present in all Internet
traffic, allowing any message to be encoded in the inter-
arrival times between packets. Gianvecchio et al. [12]
showed how to automatically construct timing channels
that mimic the statistical properties of legitimate net-
work traffic to evade detection. Our detection technique
avoids such complication by measuring information con-
tent rather than particular statistical properties.

One approach for detecting covert communication
over DNS examines the statistical properties of DNS traf-
fic streams. Karasaridis et al. propose DNS tunnel detec-
tion by computing hourly the Kullback-Leibler distance
between baseline and observed DNS packet-size distri-
butions [16]. To defeat such temporal statistical anomaly
detectors, Butler et al. propose stealthy half-duplex and
full-duplex DNS tunneling schemes [5]. They also pro-
pose the use of Jensen-Shannon divergence of per-host
byte distributions of DNS payloads to detect tunneled
traffic. Their detection technique only flags whether
the aggregate traffic contains tunneled communication; it

does not identify the potential tunneled domains. In addi-
tion, the detection rate depends to a large extent on the ra-
tio of tunneled traffic to normal traffic. In [3], the authors
show that domain names in legitimate DNS queries have
1-, 2-, and 3-gram fingerprints following Zipf distribu-
tions, which distinguishes them from the higher-entropy
names used in DNS tunneling. The evaluations in these
works do not particularly address practicality for opera-
tional use, however, since the authors validate their hy-
potheses on short, low-volume benign and synthetic tun-
neled traces collected using free DNS tunneling tools. As
we discuss in § 5.2, large-scale DNS traffic often exhibits
extensive diversity in multiple dimensions, which likely
will exacerbate issues of false positives.

Our work overlaps with work on algorithmically-
generated domain names by Yadav et al. [29]. The most
salient difference is that their algorithm assumes a spe-
cific model of name construction (distributions of letters
and bigrams). Instead of focusing on specific name pat-
terns and missing communication that uses different en-
codings, we measure the aggregate information content
of a query stream regardless of how encodings are gen-
erated for the query name, type or timing.

Detection of timing channels has been studied before,
and we mention here only a few recent results. Cabuk
et al. [6] observe that timing-based tunnels often in-
troduce artificial regularity in packet inter-arrival times
and present detection methods based on this characteris-
tic. More generally, Gianvecchio and Wang [11] identify
timing-based tunnels in general Internet traffic (not just
DNS) by using conditional entropy measures to identify
the subtle distortions introduced by the tunnel in packet
inter-arrival time distributions. These works use time in-
tervals of 20 msec or more; we use a more conservative
10 msec timing resolution, and do not assume the pres-
ence of detectable distortions.

While the general problem of surreptitious communi-
cation has received extensive examination in the litera-
ture of covert channels and steganography, more closely
related to our work is previous research on bounding the
volume of surreptitious communication in other proto-
cols. Borders et al. studied this problem for HTTP, ob-
serving that covert communication is constrained to the
user-generated part of an outgoing request [1, 2]. By
removing fixed protocol data and data derived from in-
bound communication, the authors show how to deter-
mine a close approximation to the true volume of infor-
mation flows in HTTP requests. An analogous approach
for our problem domain would be to track the domain
names a system receives from remote sources (such as
web pages and incoming email), and to exclude lookups
for these names as potentially conveying information.
Such tracking, however, appears infeasible without re-
quiring extensive per-system monitoring.

14

USENIX Association 22nd USENIX Security Symposium 31

11 Summary
We have presented a comprehensive procedure to de-
tect stealthy communication that an adversary transmits
via DNS queries. We root our detection in establishing
principled bounds on the information content of entire
query streams. Our approach combines careful encod-
ing and filtering stages with the use of lossless compres-
sion, which provides guarantees that we never underes-
timate information content regardless of the specific en-
coding(s) an attacker employs.

We demonstrated that our procedure detects conven-
tional tunnels that encode information in query names,
as well as previously unexplored tunnels that repeatedly
query names from a fixed alphabet, vary query types, or
embed information in query timing. We applied our de-
tection procedure to 230 billion lookups from a range
of production networks and addressed numerous chal-
lenges posed by anomalous-yet-benign DNS query traf-
fic. In our assessment we found that for datasets with
lookups by individual clients and a threshold of detect-
ing 4 kB/day of exfiltrated data per client and domain, the
procedure typically flags about 1–2 events per week for
enterprise sites. For a bound of 10 kB, it typically flags
50 per day for extremely aggregated logs at the scale of
a national ISP. In addition, buried within this vast num-
ber of lookups our procedure found 59 confirmed tunnels
used for surreptitious communication.

Acknowledgments
Our thanks to Partha Bannerjee, Scott Campbell, Haixin
Duan, Robin Sommer, and James Welcher for facilitating
some of the data and processing required for this work.
Our thanks too to Christian Rossow and the anonymous
reviewers for their valuable comments.

This work would not have been possible without the
support of IBM’s Open Collaboration Research awards
program. In addition, elements of this work were sup-
ported by the U.S. Army Research Office under MURI
grant W911NF-09-1-0553, and by the National Sci-
ence Foundation under grants 1161799, 1223717, and
1237265. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors.

References
[1] BORDERS, K., AND PRAKASH, A. Towards Quantifica-

tion of Network-Based Information Leaks via HTTP. In
Proceedings of the 3rd USENIX Workshop on Hot Topics
in Security (2008), USENIX Association.

[2] BORDERS, K., AND PRAKASH, A. Quantifying Infor-
mation Leaks in Outbound Web Traffic. In Proceedings
of the IEEE Symposium on Security and Privacy (2009),
USENIX Association.

[3] BORN, K., AND GUSTAFSON, D. Detecting DNS Tun-
nels Using Character Frequency Analysis. In Proceedings
of the 9th Annual Security Conference (2010).

[4] BROMBERGER, S. DNS as a Covert Channel
Within Protected Networks. http://energy.gov/
sites/prod/files/oeprod/DocumentsandMedia/
DNS Exfiltration 2011-01-01 v1.1.pdf, 2011.

[5] BUTLER, P., XU, K., AND YAO, D. Quantitatively an-
alyzing stealthy communication channels. In Proceed-
ings of International Conference on Applied Cryptogra-
phy and Network Security (2011).

[6] CABUK, S., BRODLEY, C. E., AND SHIELDS, C. Ip
covert timing channels: design and detection. In Pro-
ceedings of the 11th ACM conference on Computer and
communications security (New York, NY, USA, 2004),
CCS ’04, ACM, pp. 178–187.

[7] DEMBOUR, O. DNS2tcp. http://www.hsc.fr/
ressources/outils/dns2tcp/index.html.en.

[8] DNStunnel. http://www.dnstunnel.de/.

[9] Dynamic Internet Technology. http://www.dit-inc.us/.

[10] EKMAN, E., AND ANDERSSON, B. Iodine, tunnel IPv4
over DNS. http://code.kryo.se/iodine/, 2011.

[11] GIANVECCHIO, S., AND WANG, H. An entropy-based
approach to detecting covert timing channels. Depend-
able and Secure Computing, IEEE Transactions on 8, 6
(Nov/Dec. 2011), 785–797.

[12] GIANVECCHIO, S., WANG, H., WIJESEKERA, D., AND

JAJODIA, S. Model-based covert timing channels: Au-
tomated modeling and evasion. In Proceedings of the
11th international symposium on Recent Advances in In-
trusion Detection (Berlin, Heidelberg, 2008), RAID ’08,
Springer-Verlag, pp. 211–230.

[13] GIL, T. NSTX (IP-over-DNS). http://thomer.com/
howtos/nstx.html.

[14] Heyoka. http://heyoka.sourceforge.net/.

[15] KAMINSKY, D. OzyManDNS.

[16] KARASARIDIS, A., MEIER-HELLSTERN, K., AND

HOEFLIN, D. Detection of DNS anomalies using flow
data analysis. In Global Telecommunications Conference
(GLOBECOM) (2006).

[17] KREIBICH, C., WEAVER, N., NECHAEV, B., AND PAX-
SON, V. Netalyzr: Illuminating the edge network. In Pro-
ceedings of the ACM Internet Measurement Conference
(IMC) (Melbourne, Australia, November 2010), pp. 246–
259.

[18] MOCKAPETRIS, P. Domain names—implementation
and specification. RFC 1035, Internet Engineering Task
Force, Nov. 1987.

[19] MOSKOWITZ, I. S., AND KANG, M. H. Covert chan-
nels - here to stay? In Proceedings of the Ninth Annual
Conference on Computer Assurance (1994), pp. 235–244.

[20] MOZILLA. Public Suffix List. Published online at http:
//publicsuffix.org/. Last accessed on May 4, 2012.

15

32 22nd USENIX Security Symposium USENIX Association

[21] PAXSON, V. Empirically-Derived Analytic Models of
Wide-Area TCP Connections. IEEE/ACM Transactions
on Networking 2, 4 (Aug. 1994), 316–336.

[22] RICKS, B. DNS Data Exfiltrationa Using SQL In-
jection. http://www.defcon.org/images/defcon-16/
dc16-presentations/defcon-16-ricks.pdf, 2008.

[23] SHKARIN, D. PPMd. http://www.compression.ru/ds/
ppmdj1.rar, 2006.

[24] Security Information Exchange. http://sie.isc.org/.

[25] tcp-over-dns. http://analogbit.com/software/
tcp-over-dns.

[26] VIXIE, P. Extension Mechanisms for DNS (EDNS0).
RFC 2671 (Proposed Standard), Aug. 1999.

[27] VIXIE, P., AND DAGON, D. Use of Bit 0x20 in DNS
Labels to Improve Transaction Identity. Work in progress,
Internet Engineering Task Force, 2008.

[28] Wi-Free. http://wi-free.com/.

[29] YADAV, S., REDDY, A. K. K., REDDY, A. N., AND

RANJAN, S. Detecting algorithmically generated mali-
cious domain names. In Proceedings of the 10th annual
conference on Internet measurement (2010), IMC ’10,
ACM, pp. 48–61.

A Full Names for Examples
For completeness, Figure 7 lists the full names of various DNS
lookups that in the main body of the text we elided portions
for readability. Note that for some names we introduced minor
changes for privacy considerations.

B Issues Evaluating the SIE Dataset
The SIE data’s extreme volume and qualitatively different na-
ture necessitated several changes to our analysis procedure.
Our access to the data was via a Hadoop cluster, requiring cod-
ing of our algorithms in the Pig and Scala languages. These
provide efficient support for only a subset of the functionality
we employed when analyzing the other datasets. A significant
difference in this regard was that we were confined to only us-
ing gzip for compression; bzip2 and ppmd were not available.

Another important difference concerns the definition of
“client”. A single large American ISP dominates the SIE data,
representing roughly 90% of the traffic. This ISP uses clusters
of resolvers to process requests. Thus, a single abstract resolver
manifests as multiple “client IP addresses”, which we deter-
mined come from the same /28 address prefix. Therefore we
treat query source IP addresses equivalent in their top 28 bits as
constituting a single source.

This extreme aggregation leads to significant increases in de-
tections, as we are now measuring the information volume for
queries aggregated across potentially hundreds of thousands
of clients. One particular increase in benign alerts arises due
to popular names with short TTLs (e.g., www.google.com).
With so many clients, every popular name becomes immedi-
ately refetched whenever its TTL expires, leading to a steady
stream of closely-spaced lookups. This very high level of ag-
gregation also generates such a large volume of detections for

5.1o19sr00ors95qo0p73415p3r8r8q777634r5o86osn295ss2rqos
s3r9601ro3.1r1p7r4719o34393648s2345nn60qnqoop45psos37n
551s002n80850sr2r8n3.r1105qqq28r7pn82843rp76383qr6344q
qpq7rpnrp63o957687r980r.rrqs656p04pn614q6n76o97883op73
r0p787rn92.i.02.s.sophosxl.net

g63uar2ejiq5tlrkg3zezf2fksjrxpxyvro4ce5yz65udnjn.dagbuu
5pkocwcaxkntmxzwvkbulhg3qlj6ho7jwobeddjqvv.gepxfdwfhu7
6on6gza2nkringxp35e6g3ftpqlpl5h6uofgo.kukjy4jvybu7jhrl
hrgxe7es3lmkxdrpmpb4lg7wmbpygjg7.gef2uoemc6pi88tz.er.s
potify.com

awyvrvcataaaegdid5tmr7eteje2kst35frnnr3kupbfc6hr.gq3dey
4qnjvqtoltoj2dq5bxnmaauaaeaiaaeg7xa4ut3ilu.license.cra
shplan.com

www.10.1.2.3.static.because.dul.is.rfc.ignorant.edu.za.
static.because.dul.is.rfc.ignorant.edu.za.research.edu

JohnsonHouse\032Officejet\032J6400\032\032The\032Johnso
n\032MacBook. ipp. tcp.johnsonhouse1.members.mac.com

(a) Example DNS names with more than 100 bytes in length (cf. § 5.2).

1751913.86c0ade0d13143ab83d7e4f60cbd204c.00000000.xello
.xobni.com

1753942.86c0ade0d13143ab83d7e4f60cbd204c.00000000.xello
.xobni.com

1756950.86c0ade0d13143ab83d7e4f60cbd204c.00000000.xello
.xobni.com

1758762.86c0ade0d13143ab83d7e4f60cbd204c.00000000.xello
.xobni.com

(b) Example DNS names with little variation between consecutive
queries.

p9b-8-na-5w-2z3-djmu-7pk-qy-0-bok-re9-ym-v9h-av-njx-2es
.info

(c) Example DNS name reflecting malware activity (cf. § 7.2).

ldap. tcp.standardname-des-ersten-standorts. sites.dc.
msdcs.isi26.isi.fhg.de

(d) Example DNS name originating from client misconfiguration
(cf. § 7.2).

Figure 7: Full names of examples used in the main text. We
line-break each name at 54/55 characters.

reverse lookups that we excluded them from the SIE analysis,
which removes about 10% of the queries.

As previously discussed in § 4, we emphasize that the role of
the SIE dataset for our evaluation is simply to give us a (huge)
target environment in which to validate that we can find actual
tunnels. We do not envision our procedure as operationally vi-
able for this environment; nor does such an environment strike
us as making sense in terms of conforming with our threat
model, which focuses on tightly controlled enterprises, rather
than wide-open ISPs.

Given this perspective, to keep our own manual analysis
tractable, for SIE we used a detection threshold I of 10 kB
rather than the 4 kB value we use for the other datasets.

We also explored the effects of other analysis changes. First,
we investigated conducting our analysis on the SIE queries re-
duced to distinct, sorted names. This transformation removes
our opportunity of assessing query name-codebook informa-
tion vectors, but preserves our ability to estimate data con-
veyed through the query name-content vector—the only type
of encoding employed by known DNS tunneling tools. Table 2
shows this version of the SIE data as SIEUNIQ. The reduction
in analyst load is quite significant, more than a factor of three.

16

USENIX Association 22nd USENIX Security Symposium 33

Let Me Answer That For You: Exploiting Broadcast Information in Cellular

Networks

Nico Golde, Kévin Redon, Jean-Pierre Seifert

Technische Universität Berlin and Deutsche Telekom Innovation Laboratories

{nico, kredon, jpseifert}@sec.t-labs.tu-berlin.de

Abstract

Mobile telecommunication has become an important part

of our daily lives. Yet, industry standards such as GSM

often exclude scenarios with active attackers. Devices

participating in communication are seen as trusted and

non-malicious. By implementing our own baseband

firmware based on OsmocomBB, we violate this trust

and are able to evaluate the impact of a rogue device with

regard to the usage of broadcast information. Through

our analysis we show two new attacks based on the pag-

ing procedure used in cellular networks. We demonstrate

that for at least GSM, it is feasible to hijack the trans-

mission of mobile terminated services such as calls, per-

form targeted denial of service attacks against single sub-

scribers and as well against large geographical regions

within a metropolitan area.

1 Introduction

While past research on Global System for Mobile Com-

munications (GSM) mainly focused on theoretical re-

search [17, 18], a very recent research direction chal-

lenged the fundamental GSM security assumptions with

respect to the practical availability of open GSM equip-

ment. The assumptions have been made on both sides of

the radio part of the cellular network. One side of the

radio link is the Base Station System (BSS) consisting of

the Base Transceiver Station (BTS) and the Base Station

Controller (BSC), while the other side of the radio part is

the modem or the so-called baseband of a cellular phone.

Traditionally, both radio stacks have been carefully kept

out of reach for any kind of malicious activities.

But a booming market for used telecommunication

equipment, cheap software defined radios, leakage of

some hardware specifications, and a well-trained open

source community finally broke up this closed cellular

world. The overall community work culminated in three

open source projects: OpenBSC, OpenBTS, and Osmo-

comBB [20, 25, 45]. These open source projects consti-

tute the long sought and yet publicly available counter-

parts of the previously closed radio stacks. Although all

of them are still constrained to 2G network handling, re-

cent research provides open source software to tamper

with certain 3G base stations [24]. Needless to say that

those projects initiated a whole new class of so far uncon-

sidered and practical security investigations within the

cellular communication research, [28, 30, 34].

Despite the recent roll-out of 4G networks, GSM re-

mains the dominant cellular standard in many countries.

Moreover, as most new LTE devices are backwards com-

patible to GSM, this older standard will not vanish soon

at all, but rather complement 3G and LTE connectivity

in areas with pure GSM coverage. Several other rea-

sons such as worse indoor coverage and the lower num-

ber of deployed UMTS and LTE base stations contribute

to this. Additionally, telecommunication providers have

already begun to reuse their existing GSM infrastructure

within non-voice scenarios which require a much slower

data communication than modern network technologies

are capable of. This is especially the case for Machine

to Machine (M2M) or so-called Internet of Things (IoT)

communications over GSM. Corresponding applications

will soon become parts of our daily life and will make us

more dependent than ever on GSM, cf. [19, 35]. Given

this pervasive GSM usage, it is very important to evalu-

ate the security offered by a standard which is more than

20 years old and is based on assumptions, many of which

no longer hold true.

This paper continues the challenge of the mobile

security assumption that certain active attacks can be

safely excluded from the threat model. Towards this

goal we show novel attacks against mobile terminated

services. While the root cause also exists in newer

standards such as UMTS or LTE, we demonstrate the

impact of it in commercially deployed GSM networks.

To the best of our knowledge, the limitations of currently

available hard- and software would make it very difficult

34 22nd USENIX Security Symposium USENIX Association

Figure 1: Simplified GSM network infrastructure.

to test these attacks in UMTS and LTE networks. Prior

to publishing this research, we responsibly notified the

respective standard organisations via a carrier of our

research results.

In summary, we make the following main contributions:

• We present the paging response attack, a novel and

practical attack against mobile terminated services.

• We show the feasibility and the implementation of

a mobile phone firmware which is capable to steal a

short message over-the-air and to perform denial of

service attacks against mobile terminated services

in GSM networks. Furthermore, we evaluated these

attacks to be present in major European operator

networks.

• We eventually assess the boundary conditions for a

large-scale paging response attack in order to cause

denial of service conditions within a large geo-

graphical area of a major city.

The remainder of the paper is structured as follows.

Section 2 provides an overview of the 3GPP GSM net-

work infrastructure, as well as details about logical chan-

nels and paging protocol procedures required to under-

stand our attacks; Section 3 details our novel attack that

exploits the paging procedure as used in GSM; Sec-

tion 4 describes characteristics of location areas in a

large metropolitan area and the respective requirements

to perform a large-scale denial of service attack against

these regions; Section 5 discusses two different counter-

measures to address the attacks; Section 6 provides an

overview of related research; Section 7 concludes our re-

search.

2 Background and Overview

This section briefly describes the GSM cellular network

infrastructure. We continue to explain the important

types and functions of logical channels. Furthermore,

we depict the protocol details required to understand the

basis of our attack.

2.1 GSM Infrastructure

Despite the complexity of a complete GSM mobile net-

work architecture [3], only a few entities are relevant to

this work. In the following paragraph, we provide the

necessary background on the infrastructure components

of relevance to this research. Figure 1 illustrates the ar-

chitecture and connections between these components:

• BTS: The Base Transceiver Station is a phone’s ac-

cess point to the network. It relays radio traffic to

and from the mobile network and provides access

to the network over-the-air. A set of BTSs is con-

trolled by a Base Station Controller (BSC) and is

part of a Base Station System (BSS).

• MS: The Mobile Station is the mobile device inter-

acting with the mobile operator network. It com-

prises hardware and software required for mobile

communication (baseband processor, SIM card, and

a GSM stack implementation). The MS interacts

with the BTS over a radio link, also known as the

Um interface. In this paper, the mobile phone of a

victim is often referred to as MS. We will also use

the term MS, user, subscriber, phone, and mobile

device interchangeably.

• MSC: The Mobile Switching Center [6] is a core

network entity responsible for routing services,

such as calls and short messages, through the net-

work. It utilizes components from BSSs to establish

connections to mobile devices, organizes hand-over

procedures and connects the cellular network to the

Public Switched Telephone Network (PSTN).

• VLR: The Visitor Location Register maintains loca-

tion and management data for mobile subscribers

roaming in a specific geographical area handled by

an MSC. It acts as a local database cache for vari-

ous subscriber information obtained from the cen-

tral Home Location Register (HLR), e.g., the mo-

bile identity. A subscriber can only be present in

one VLR at a time. Each of the areas served has

an associated unique identifier, the Location Area

Code (LAC) [3,8]. As soon as a phone leaves a cer-

tain geographical area called Location Area (LA), it

has to perform the Location Update procedure [4]

to notify the network of this event.

2.2 GSM Logical Channels

The available GSM frequencies are shared among a num-

ber of mobile carriers. Each of the GSM frequency bands

is divided into multiple carrier frequencies by means of

Frequency Division Multiple Access (FDMA). A BTS

USENIX Association 22nd USENIX Security Symposium 35

serves at least one associated carrier frequencies identi-

fied by the Absolute Radio-Frequency Channel Number

(ARFCN). The ARFCN provides a dedicated pair of up-

link and downlink frequencies for receiving and trans-

mitting data over the Um interface [10]. Because the ra-

dio frequency is shared among a number of subscribers,

GSM uses Time Division Multiple Access (TDMA) as

channel access method and divides physical channels

provided by the ARFCN into 8 time slots. A sequence of

8 consecutive time slots is called a TDMA frame. Mul-

tiple TDMA frames form a multiframe. It consists either

of 51 or 21 TDMA frames (respectively control frames

or traffic frames). Multiframes are further partitioned to

provide logical channels.

The two categories of logical channels in GSM are

control channels and traffic channels [5]. Control chan-

nels provide means for signaling between the network

and the MS. Because our attack is solely based on signal-

ing, we focus on the details of control channels. There

are three categories of control channels:

• BCH: Broadcast Channels provide a point-to-

multipoint, unidirectional channel from the BTS to

mobile stations (transmitted on the downlink fre-

quency). Among other functionalities, they act

as beacon channels and include logical channels

for frequency correction (FCCH), synchronization

(SCH), and information about the cell configuration

and identity (BCCH) [5, 7].

• CCCH: Common Control Channels are used for

signaling between the BTS and MS, both on the up-

link and downlink. They are used by the MS to re-

quest radio resources and to access the mobile net-

work.

• DCCH: Dedicated Control Channels carry signal-

ing messages related to handover procedures or con-

nection establishment, e.g., during call setups.

For our attack, we are mainly interested in logical chan-

nels that are part of the CCCH and DCCH categories.

These categories consist of several logical channels. The

logical channels of interest are as follows:

• PCH: The Paging Channel is used by the BTS to in-

form an MS about an incoming service (via paging

request messages on the downlink channel). The

PCH, which is part of the CCCH, will be monitored

by any MS in idle mode unless it is currently using

a dedicated channel.

• RACH: The Random Access Channel provides a

shared uplink channel utilized by the MS to request

a dedicated channel from the BTS. Placing a phone

call or receiving an incoming service always re-

quires a phone to setup a dedicated signaling chan-

nel beforehand.

• AGCH: The Access Grant Channel provides a

downlink channel used by the BTS to transmit as-

signment messages that notify mobile stations of

assigned channel details. A successful channel re-

quest on the RACH will result in an Immediate As-

signment message on the AGCH. These assignment

messages contain the required configuration param-

eters that enable the MS to tune to the requested

channel.

• SDCCH: The Standalone Dedicated Control Chan-

nel is used on both uplink and downlink. It is em-

ployed for call setup and signaling between BTS

and MS. Furthermore, it can be utilized to transmit

short messages to the MS.

It is important to note that both the BCH and CCCH

channel types are point-to-multipoint channels. This im-

plies that information on the logical downlink channels is

broadcasted to all subscribers served by a specific BTS.

Throughout this work we will see how this can be abused

to model new attacks.

2.3 Mobile Terminated Service Procedures

The GSM specifications differ between traffic originat-

ing or terminating at a mobile phone. This is referred

to as Mobile Originated (MO) and Mobile Terminated

(MT) traffic. As outlined previously, we aim to attack

MT services, such as phone calls or SMS. Thus, in the

following we concentrate on the underlying protocol pro-

cedures associated with MT services [4].

In order to deliver a service to a phone, the MSC

needs to determine the location of the respective sub-

scriber. This has to be done for two reasons. First, mo-

bile phones will be idle most of the time to save battery

power and so will not be in constant contact with the net-

work. Thus, the operator does not always know the spe-

cific BTS that provides the best reception level to the MS.

Therefore, it must broadcast this signal of an incoming

service through at least the entire location area. Second,

broadcasting this information through the whole opera-

tor network would impose a huge performance overhead

and possibly overload the paging channel [42].

In a first step, the core network determines the

responsible MSC/VLR for the target subscriber with the

help of the HLR. Next, the MSC obtains the location

information for the destination subscriber from the

VLR and sends a paging message to all BSCs in the

subscriber’s location area. This message includes a

list of cell identifiers/base stations serving the specific

36 22nd USENIX Security Symposium USENIX Association

location area [13]. The message also contains the

mobile identity of the subscriber, which is usually either

a International Mobile Subscriber Identity (IMSI) or

a Temporary Mobile Subscriber Identity (TMSI). We

illustrate the remaining protocol logic using a successful

MT phone call as depicted in Figure 2.

1. The BSC sends a paging command message which

includes the subscriber identity to all base stations

within the location area. All base stations re-

encapsulate the mobile identity and transmit it as

part of a paging request message on the downlink

PCH.

2. When receiving a paging request on the PCH, each

MS compares the Mobile Identity (MI) included in

the request with its own. The result determines

whether the message is addressed to itself or a dif-

ferent subscriber.

3. In case of an identity match, the MS needs to ac-

quire access to Radio Resources (RR) in order to

receive the MT service. To do so, it sends a channel

request including a random reference number on the

uplink RACH.

4. Upon receipt of the channel request, the network

allocates radio resources and a dedicated channel.

Next, it acknowledges the request and sends details

of the allocated channel to the MS in an immediate

assignment message on the AGCH downlink. To al-

low the MS to identify its assignment, the message

contains the random reference of the requester.

5. The AGCH is a shared downlink channel. There-

fore, an MS receiving an assignment message com-

pares the included reference with the one sent in the

request. If the reference matches, the MS tunes to

the dedicated signaling channel included in the as-

signment.

6. After this step succeeded, the Mobile Station estab-

lishes a signaling link, usually over the SDCCH, by

sending a GSM Layer 2 SABM frame containing a

Layer 3 paging response message.

7. Following this, the MS and BTS undergo an authen-

tication, ciphering and service setup procedure. De-

tails of this procedure are not relevant for our attack.

We skip these details here.

The GSM standard specifies [4] three types of paging

requests – type 1, 2, and 3. The type stipulates the num-

ber of subscribers that can be addressed with the pag-

ing request. Type 1 can page one or two subscribers,

Subscriber
MS

Network
BTS

 Paging request
PCH

 Immediate assignment

 SABM (Paging response)

 Channel request
RACH

AGCH

 Cipher/Service setup

MI
comparison

Reference
comparison

SDCCH

RR connection
establishment

②

⑤

Figure 2: Mobile Terminated (MT) paging procedure.

type 2 two or three subscribers, and type 3 paging re-

quests are directed towards four subscribers at once. A

recent study [30] suggests that in real operator networks

the vast majority of paging requests is of type 1. During

our experiments, we verified that 98% of all paging re-

quests that we observed are type 1 requests. Therefore,

we ignore type 2 and type 3 paging requests in our study.

3 Attack Description

In this section, we will provide the theoretical back-

ground of our attack, introduce our experimental setup

and elaborate on the feasibility of such an attack.

3.1 The Two Threat Models

Denial of Service Attacks. The first threat comprises

an active attacker, interested in significantly disturbing

mobile terminated services within a specific geograph-

ical area, e.g., a district or a part of a city. In certain

situations it is desirable to ensure that a person or

a device is not reachable via mobile telephony. For

example a third-party may want to prevent a specific call

from reaching the victim. The effect would be similar

to the ability of selectively jamming incoming services

for a set of subscribers. This includes individuals and

groups of individuals. Such an attack would also have

considerable business ramifications. While it would not

compromise the general operation of the carrier, it would

affect their revenue. The inability to receive a phone call

will not only leave angry customers, it further impacts

the generated billing as subscribers are charged when

a call is connected. If any subscriber is able to place

phone calls, but nobody is able to receive services, no

profit is created. An exception here are short messages,

as SMS operates in store-and-forward fashion and does

not create billing on delivery of a message, but on its

submission.

USENIX Association 22nd USENIX Security Symposium 37

Mobile Terminated Impersonation. The second threat

considers an attacker who aims to hijack a mobile ter-

minated service. As a result, the service would be de-

livered to the attacker instead of the victim. This turns

a passive adversary, who is able to observer air traffic,

into an active attacker who can accept the mobile termi-

nated service and impersonate the victim. For example

an attacker could be interested in hijacking the delivery

of an SMS message. Consequently, it is possible to read

its content and at the same time prevent its submission

to the victim. In practice this could, for example, allow

an attacker to steal a mobile TAN (mTAN), which is of-

ten used as two-factor authentication for online banking,

or any other valuable secret from the message. We also

consider an attacker who wants to impersonate a victim

that is being called. By hijacking the MT call setup, it

is almost impossible for the calling person to verify the

callee’s identity by means other than the voice.

3.2 Paging Response Attack Description

Our attack is inspired by two specific properties of GSM

networks and its protocols.

Network State: GSM networks involve complex state

machines [4] and face high amounts of traffic while op-

erating on tight radio resource constraints. Consequently,

it is desirable to keep states as short as possible.

Broadcast Information: the paging procedure is initi-

ated on a broadcast medium, namely the PCH portion

of the CCCH, and more importantly is performed before

any authentication or cipher setup takes place. This im-

plies that any subscriber, including an adversary phone,

is able to observe paging requests for other subscribers,

plus the inherent inability of the network to distinguish

between a fake paging response and a genuine one.

As a net result, it is possible to exploit these aspects

to send paging response messages on behalf of a victim

being paged. The network stack can under no circum-

stances determine which of the replies is the legitimate

paging response by the intended subscriber.

Denial of Service. The GSM documents do not specify

the network behavior in such a situation. Therefore, the

behavior of such a race condition is implementation de-

pendent and may be exploitable. However, the state ma-

chine nature of GSM protocols suggest that if an attacker

is able to answer a paging request faster than the intended

subscriber, it will no longer be in a state in which it ex-

pects a paging response and thus will ignore the message

of a victim. Consequently, the victim will receive a chan-

nel release message from the network. Next, the service

setup will not succeed if the attacker does not provide the

correct cryptographic keys required to complete authen-

tication and cipher setup. Accordingly, the service setup

cannot proceed and for example, a call will be dropped.

The result is a novel and powerful denial of service attack

against MT services that 1. does not rely on frequency

jamming; 2. does not rely on resource exhaustion; and

3. is very hard to detect.

We verified that it is indeed possible to win the

race for the fastest paging response time, as we will

demonstrate. We were able to carry out such an attack

in all major German operator networks including O2,

Vodafone, T-Mobile, and E-Plus.

MT Session Hijacking. Exploiting the paging proce-

dure does not only allow to disturb communication. It

is important to note that in certain network configura-

tions, this attack could be abused beyond performing de-

nial of service attacks. Not all countries properly au-

thenticate each service and use encryption. For example,

only under 20% of the networks analyzed by the gsmmap

project [41] authenticate mobile terminated phone calls

100% of the time. 50% of the tested networks only au-

thenticate 10% of the services [28].

In such a network, an adversary can effectively

takeover any MT service that is not authenticated and

impersonate a victim. We assume a network without en-

cryption and insufficient authentication as above. If the

attacker is able to successfully exploit the race condition

on the air interface, it is possible to directly hijack an

MT service by following the protocol specifications. The

paging response attack proceeds as in the DoS scenario.

However, in this case, by winning the race, an attacker

can accept, e.g., a victim’s phone call or short message.

The victim of such an attack is thus faced with two

consequences. For a mobile terminated call, it is not safe

to assume that the called party is indeed the desired per-

son. For short messages this implies that a message may

not reach the victim, but additionally also that its con-

tents cannot be considered secret.

Even if the network is configured to use encryption, an

attacker is merely required to perform an additional step.

In an encrypted network without proper authentication,

the paging procedure is followed by the cipher setup.

During this process to create an encrypted channel, the

network sends a cipher mode command message to no-

tify the MS of the encryption algorithm to be used. The

cipher mode complete response from the MS indicates a

completion of the cipher setup. In a network that uses

encryption, this response has to be encrypted using the

session key Kc as input to the A5 encryption algorithm.

This session key is derived from a secret key Ki that is

stored on the SIM card issued by the operator and a ran-

dom challenge RAND sent from the network to the MS.

Due to the lack of perpetual authentication, an attacker

can fully impersonate the victim after cracking the ses-

sion key Kc and sending the cipher mode complete mes-

38 22nd USENIX Security Symposium USENIX Association

sage. The cracked session key then allows to decrypt the

subsequent communication that follows the cipher setup.

In practice, essentially both commonly used GSM ci-

pher algorithms, A5/2 and A5/1, have been broken and

demonstrated to be cryptographically weak [17, 18, 23,

39]. The session key can be acquired before hijacking

the service by sniffing air traffic and using the kraken

tool [40]. Also, some networks are configured to still

use A5/0 [26], which does not provide any encryption.

This further simplifies such an attack in those commer-

cially deployed networks. Furthermore, for the subse-

quent paging response attack, an attacker does not even

require physical proximity to a victim, because, as ex-

plained earlier, the carrier network is paging throughout

an entire location area. In order to exploit this, an at-

tacker requires a mobile device that enables him to ob-

serve traffic on the air interface and send arbitrary mes-

sages to the network. Additionally, a practical attack re-

quires the fake response to arrive prior to the victim’s

message. Therefore, the attack is significantly challeng-

ing in terms of timing.

We successfully implemented both, the MT service

hijacking and the denial of service attack. For the sake

of simplicity, we obtained the session key through the

SIM browser in the engineering mode of a Blackberry

phone. Nevertheless, as outlined before this step, it can

be trivially obtained by a 3rd party by using a tool like

kraken [40]. Cracking of Kc is merely a step that has

to be performed prior to our attack, but is not part of

the problem itself, which is the race condition. Given

a known Kc, our code to take over an MT session, can

hijack the transmission of a short message delivery in a

real network.

It is important to note that the main reason for evaluat-

ing the paging race condition in GSM was the availability

of freely modifiable hardware and software. However,

modern telecommunication standards such as UMTS or

LTE are making use of exactly the same paging proce-

dure principles [11,14,15]. Insufficient cryptography and

authentication further escalate the problem, but the root

cause does not only pertain to GSM.

We will continue to examine the requirements, bound-

ary conditions, and feasibility of mounting such an attack

in practice.

3.3 Experimental Setup

Launching such an attack requires hardware and soft-

ware to interact with GSM base stations. More precisely,

the attack relies on a device which allows us to mod-

ify its baseband (BB) implementation in order to con-

trol its radio communication. Traditionally this has been

very difficult due to the closed nature of the GSM indus-

try (phone manufacturers, baseband vendors, infrastruc-

ture equipment suppliers). For many years there existed

no freely modifiable radio communication hardware with

GSM stack implementations. While the GSM specifica-

tions are publicly available (very comprehensive though,

over 1000 PDF documents), there are very few manufac-

turers of GSM equipment who have released any public

documentation.

However, this situation has changed in the last years

with the availability of inexpensive hardware such as

the Universal Software Radio Peripheral (USRP) [22]

and various software implementations around the Osmo-

com [45] project. Additionally, in 2004 the source code

of the Vitelcom TSM30 mobile phone was uploaded

to a Sourceforge project [37] which allowed a broader

audience to study a GSM phone stack for the first time.

Hardware Selection. There are basically three possi-

ble choices when it comes to the hardware selection of

our desired radio device: USRP, Vitelcom TSM30, and

certain TI Calypso chipset based phones. All of these

devices can be utilized as GSM radio transceivers with

software modifications. Yet some of these come with in-

trinsic disadvantages. First, for the USRP there is cur-

rently no GSM baseband implementation that allows the

device to be used as a handset. While we could have

implemented this, it would have been a very demanding

task. Second, even though available, the TSM30 source

code is a full-featured baseband implementation, which

is too complex for our needs. Moreover, the availabil-

ity of TSM30 devices is sparse and they are not easy to

obtain.

Instead we used Motorola C123 and Motorola C118

phones, which are based on the TI Calypso chipset.

These phones are inexpensive (around 20 Euros), easy

to obtain in quantity, and more importantly can be

used in combination with the Free Software baseband

implementation OsmocomBB [47]. This enables us

to receive over-the-air traffic and send arbitrary GSM

frames.

Implementation. OsmocomBB implements a simplified

version of the GSM stack. The GSM physical layer (L1)

firmware runs on the phone, while the data-link layer

(L2) and Layer 3 (L3) run on a computer as an appli-

cation (layer23). L1 and layer23 communicate with each

other via a UART serial connection. Layer 2 implements

a modified version of the Link Access Protocol for the D

channel (LAPD) used in ISDN, called Link Access Pro-

tocol on the Dm channel (LAPDm). Layer 3 comprises

three sublayers: Radio Resource management, Mobility

Management, and Connection Management. As our at-

tack is based on paging, which is part of Layer 3, we

required a modified version of the layer23 application.

USENIX Association 22nd USENIX Security Symposium 39

Figure 3: Experimental setup: Motorola C1XX phones

with custom firmware, GPS receivers, and a laptop for

serial communication.

In practice our attack is particularly time critical, be-

cause we have to win a race condition on the air inter-

face. It became evident that a layer23 implementation

that runs on a computer is far too slow to win the race

given the bottlenecks such as queueing between multiple

layers, scheduling, and the use of UART serial communi-

cation. Consequently, we reimplemented a minimal ver-

sion of LAPDm and Layer 3 directly in the L1 firmware

to allow it to run solely on the phone. Specifically this

includes the paging protocol, which is part of the radio

resource sublayer.

Figure 3 shows our experimental setup consisting of

a notebook and several OsmocomBB phones. The serial

cables are required in order to flash the firmware. Using

this implementation we can camp on specific ARFCNs,

observe paging requests within a location area, and send

arbitrary GSM layer2/layer3 messages in a timely man-

ner. Additionally, we used OpenBTS [20] in combina-

tion with a USRP as a BTS to test our setup and perform

various measurements as later described in Section 3.5.

3.4 Targeted Attacks

Attacking individual persons requires our OsmocomBB

phone to observe air traffic and respond to specific pag-

ing requests. In particular paging requests that contain

the victims mobile identity. For privacy reasons, most

network operators use TMSIs as mobile identities rather

than the static IMSI. The TMSI is only valid within a lo-

cation area and is subject to frequent changes [9]. There-

fore, we need to determine the presence and the TMSI of

a victim in a given location area.

For this we implemented the method proposed by

Kune et al. to reveal the mapping between TMSI and

subscriber [30]. We modified OsmocomBB’s layer23

mobile application and introduced functionality that is-

sues n (where n is 10-20) phone calls in a row. Next,

the application terminates the connection before the tar-

get phone is ringing, but late enough so that the network

generates a paging request. The victim phone does not

ring during this early stage of the protocol flow, because

it does not know yet what type of service is incoming. In

our tests we empirically determined that, e.g., a time of

3.7 seconds after the CC-Establishment confirmed state

has the desired effect in the O2 network. The exact tim-

ing may differ slightly, depending on the network that

is used to initiate the call and the network in which the

victim resides.

At the same time, a second phone is monitoring the

PCH of any BTS within the target location area for pag-

ing requests. All TMSIs contained in the observed pag-

ing requests are logged together with a precise timestamp

of the event. It makes sense to choose the ARFCN with

the best signal reception to minimize errors and possible

delays. By first limiting the resulting log to time ranges

in which our calls were initiated, we can extract a num-

ber of candidate TMSIs. Further filtering the result set

for TMSIs occurring in repeating patterns that reflect our

call pattern yields to a very small set of candidate TM-

SIs or even single TMSIs. This process can be repeated

to narrow down the set of candidate TMSIs to a man-

ageable number. If the network uses IMSIs for identi-

fication, then an attacker could use the same process to

determine the subscriber’s identity. Alternatively, an at-

tacker could use a Home Location Register query service

to obtain the IMSI directly [1].

By default, the monitoring phone does not react to any

paging request. After obtaining the victim TMSI, we

transfer the TMSI via HDLC over the serial connection

to the monitoring phone. This also changes the phone’s

role from a solely passive listener to an attacker. It starts

to compare TMSIs contained in paging request with the

supplied victim TMSI. On every match, the attacking

phone promptly initiates the previously introduced pag-

ing protocol procedure to respond first. As a result, the

paging response by the victim will be ignored and the

call will be dropped unless we fully accept the service.

At this point, it is not possible to reach the victim any-

more. To block MT services over a longer period of time,

the subscriber identification procedure needs to be reis-

sued due to TMSI reallocations over time [4].

3.5 Feasibility

The success of such an exploit depends essentially on

the response time of the attacker and victim devices. To

achieve maximum impact, an attacker phone needs to re-

spond faster than the “average” customer device. The

response time of the phone depends on a number of fac-

40 22nd USENIX Security Symposium USENIX Association

Table 1: List of tested phones, baseband chipset, and base-

band vendor.

Phone model BB chipset BB vendor

Blackberry Curve 9300 Marvell PXA930 Marvell

iPhone 4s MDM6610 Qualcomm

Samsung Galaxy S2 XMM 6260 Infineon

Nokia N900 TI Rapuyama Nokia

Nokia 3310 TI MAD2WDI Nokia

Motorola C123 TI Calypso OsmocomBB1

SciPhone Dream G2 MT6235 Mediatek

Sony Ericsson W800i DB2010 Ericsson

Sony Xperia U NovaThor U8500 ST-Ericsson

1 Layer1 paging attack code and modified layer23 application.

tors that are difficult to measure. This includes signal

quality, weather, network saturation, application proces-

sor operating system, GSM time slots, and others. Yet,

most of these parameters only have very little impact on

the overall response time.

As the baseband chipset and its GSM stack imple-

mentation handles all radio communication, including

the upper layer GSM logic, we suspect it to be a key

contributor to a fast response time. We validate this

claim by measuring the timing of various phones with

different baseband vendors. Referring to a market

report [2], Qualcomm and Intel alone account for 60%

of the baseband revenue in 2011. Yet, relevant baseband

chips and stacks that are currently available in mobile

phones on the market are Qualcomm, Intel (formerly

Infineon), Texas Instruments, ST-Ericsson, Renesas

(formerly Nokia), Marvell, and Mediatek. We tested

timing behavior for different phones for each of these

vendors. Additionally, we also tested the response time

for the OsmocomBB layer23 application to back up our

claim that this implementation is too slow to perform

our attack. Table 1 lists the tested phone models, chipset

names, and the corresponding baseband vendor.

Timing Measurements. It is not feasible to modify the

tested devices itself for measurements, as we only have

access to the operating system on the application pro-

cessor, and not the baseband. Furthermore, the phone

could only guess when its response hits the serving net-

work. Thus, in order to estimate the paging response

time, we operate our own test GSM BTS based on a

USRP and OpenBTS [20]. OpenBTS implements a sim-

plified GSM network stack running on commodity hard-

ware while using the USRP device as a transceiver. We

patched OpenBTS to obtain timing information for the

different steps during the paging procedure. Specifically,

we are interested in the time a phone needs to acquire

a radio channel and to send the paging response. This

includes two parts of the paging procedure, the time

between the initial paging request and the channel re-

quest, and the time between the initial paging request

and the reception of the paging response. We log both

of these timestamps for the relevant baseband vendors

in nanoseconds using clock gettime(2). Additionally, we

measure the same for an attack phone running our own

lightweight, OsmocomBB-based baseband implementa-

tion. To trigger paging activity, we consecutively send

250 short messages, one after each channel teardown, to

our test devices.

While we could have also used software like

OpenBSC [25] in combination with a nanoBTS [27], we

decided to utilize OpenBTS to be in full control over the

transmission and reception. The nanoBTS is controlled

over Ethernet, runs its own operating system, including

scheduling algorithms, and cannot be modified. Thus,

we used OpenBTS to minimize the deviation that may

occur due to the nature of this BTS device.

Timing Observations. Figure 4 summarizes the results

of our time measurements for each baseband vendor. It

shows the elapsed time between the first paging request

message sent to the phone, the arrival of the channel

request message, and the occurrence of the paging re-

sponse. Interestingly, the generation of the phone had

little influence on the response timing. In our tests, a

Nokia 3310, which is almost 10 years older than the

tested Nokia N900, shows almost the same timing behav-

ior. We do not have a definitive answer to explain this ob-

servation. However, a plausible explanation can be found

in the age of GSM. GSM was developed in the 1980s and

most of the mobile telephony stacks for GSM are of this

0

200

400

600

800

1000

1200

Nokia 3310

OsmocomBB layer23

Sony Ericsson w800i

iPhone 4s

Sciphone Dream G2

Sony Xperia U

Samsung Galaxy S2

Blackberry 9300 Curve

OsmocomBB L1 attack

Nokia N900

Ti
m

e
in

 m
ill

is
ec

on
ds

Tested mobile phone

channel request
paging response

Figure 4: Time difference between initial paging request

and subsequent channel request or paging response for

different baseband vendors. Confidence interval: 95%.

USENIX Association 22nd USENIX Security Symposium 41

era. As most baseband vendors nowadays concentrate

their efforts on exploring the technical challenges of 3G

and 4G telephony standards, we believe that GSM stacks

have not been modified for a long time. We do not ex-

pect significant modifications of baseband stacks by the

respective vendors nowadays. Thus, we assume that tim-

ing behavior across different phone platforms using the

same baseband will show similar patterns.

The most important observation from Figure 4 is that

on average, with a confidence interval of 95%, our min-

imal OsmocomBB-based implementation is the fastest

in transmitting the channel request and paging response.

For our implementation, there is roughly a 180 millisec-

onds delay between the paging request and the arrival of

the paging response. Thus, on average our attack imple-

mentation is able to transmit the final paging response

prior to all other major basebands and can be conducted

within the duration of a single multiframe (235.4 ms).

This includes the OsmocomBB layer23 mobile applica-

tion, which is significantly slower than our self-contained

layer1 attack software and shows similar timing perfor-

mance as conventional phones.

Therefore, with a very high likelihood, our software is

able to win the race. It is also noteworthy that our light-

weight stack can transmit the paging response almost im-

mediately after the channel request (and reception of the

Immediate Assignment). The test devices show a gap of

at least 200ms before the transmission of the paging re-

sponse. We expect that this is related to internal schedul-

ing algorithms and queuing mechanisms between differ-

ent layers of the baseband implementation.

4 Attacking Location Areas

Besides attacking individual subscribers, we show that it

is also possible to leverage this attack to disrupt network

service in large geographical regions. As explained in

Section 2, the serving network does not always have the

knowledge of the exact location a subscriber resides in.

As a consequence, it also does not know which BTS is

currently within a good reception of the mobile device.

The phone announces a change of the location area by

performing the Location Update [4] procedure. By mon-

itoring System Information [4] messages on the Broad-

cast Control Channel (BCCH), a phone can keep track

of location areas served by the BTSs within reception.

The aforementioned lack of knowledge is compensated

by the network by distributing paging requests through-

out all base stations in the location area. This implies that

an adversary is able to observe and respond to paging re-

quests not only transmitted by a single a BTS, but within

a larger geographical region formed by the location area.

We already showed in Section 3.5 that we win the race

for the paging response with high probability. Given that

an attacker is able to answer all paging requests that can

be observed on the PCH, it is possible to perform a denial

of service attack against all MT services within the loca-

tion area. Depending on its size, the impact of this would

be massive, e.g., breaking MT calls in areas as large as

city districts or even bigger regions. However, in practice

there are a few obstacles to consider.

Depending on the paging activity, it is unlikely that

service in an entire geographical can be disrupted by a

single attacker phone. In order to send the paging re-

sponse, the MS has to tune to a dedicated channel. As

a result, it would not be able to observe paging requests

while being in dedicated mode. After sending the re-

sponse, the attacker MS has to resynchronize with the

BTS to observe CCCH/PCH traffic again. By logging

timestamps for the various protocol steps, we measured

the time for this procedure on the OsmocomBB side. On

average we need 745 milliseconds to resynchronize in

order to receive further paging requests after we sent the

response. Furthermore, as shown in Figure 4, we need

on average 180 milliseconds to transmit the paging re-

sponse. This means that in ideal conditions, with a single

phone, we are able to handle up to

60s

745ms+180ms
= 64.8 paging requests per minute.

Depending on the network activity, this may or may not

be enough to answer all paging requests. Additionally,

we need to examine the different paging activities that

can be seen in real operator networks. If the paging ac-

tivity is very large, then the attacker may need to use

multiple phones to perform the attack.

Finally, to get an understanding of the impact of such

an attack, we need to determine the size of the geograph-

ical region covered by a location area.

4.1 Location Area Paging Activity

An attack against an entire location area, e.g., in a

metropolitan area, requires an adversary to respond to

all paging requests in that area. Consequently, the ef-

ficiency of a large-scale attack depends on the operator

specific paging activities and the allocated resources on

the attacker side.

For the purpose of estimating paging activity, we mod-

ified our OsmocomBB stack to log all TMSIs in com-

bination with a time stamp of its appearance. Because

the paging requests are broadcasted throughout a loca-

tion area, camping on one operator BTS for that area is

sufficient to observe all paging activity for that area on

the CCCH/PCH. We recorded the TMSIs in paging re-

quests for all major German operators in a metropolitan

area over a time period of 24 hours. The logs were cre-

ated at exactly the same location, at the same date and

42 22nd USENIX Security Symposium USENIX Association

(a) Unfiltered measurement (b) Filtered paging requests caused by T3113 timer

Figure 5: Number of TMSIs per minute contained in paging requests of four major German operators over 24 hours.

time. We observed that in some cases the network is not

paging with the TMSI but with the IMSI. E.g., if the sub-

scriber is marked as attached to the network but cannot

be reached using the TMSI, the MSC starts paging using

the IMSI. In this case, depending on the operator network

configuration, paging may also be performed outside of

the location area. However, this type of paging request

is the minority and thus ignored in our measurements.

Furthermore, assuming that a subscriber is present in the

monitored location area, the network very likely already

paged using the TMSI in this area. Obviously, it is sim-

ple to implement the attack in the case that network pages

using IMSIs instead of TMSIs. In fact our code can also

handle IMSIs.

Figure 5a summarizes the paging observations. The

first observation to be made is that paging activity heav-

ily varies throughout the time of the day. The observed

pattern is not random, but rather reflects human activity

during typical days. It is also interesting to note that the

amount of paging requests heavily differs among the var-

ious tested operators. While for example E-Plus at peak

times has a rate of roughly 415 TMSIs contained in pag-

ing requests per minute, Vodafone has almost 1200 in the

same time period.

Such differences can be caused for example by the

number of active subscribers in the network, or the size

of the respective location area. During this measurement,

we noticed several reoccurring TMSI patterns. Vodafone

is actually always paging each TMSI at least two times.

A second paging request is always issued two seconds

after the initial paging request. This explains the mas-

sive amount of paging requests and we suspect this to be

an attempt to improve the overall subscriber availability.

Also, our logged data shows that some of these TMSIs

are paged at regular intervals. We believe that these re-

quests may partially be directed at M2M devices, e.g.,

for remote monitoring.

Figure 5b shows a filtered version of Figure 5a.

Specifically, we filtered appearances of TMSIs contained

in paging requests that we do not need to respond to.

3GPP TS 04.08 [4] specifies a timer, T3113, that is set

on transmission of a paging request. If no paging re-

sponse was received prior to the expiry of this timer, the

network reissues the paging request by paging the mo-

bile subscriber again. However, assuming that we are

able to observe and respond to all paging requests, this

retransmission would not occur during an attack. There-

fore, these can be filtered from the result. By analyz-

ing the logged TMSIs and the respective timestamps, we

recorded the reappearance of each TMSI that was orig-

inally transmitted as part of a paging request. The vast

majority of reappearances in time reach a common max-

imum which we assume is the timer value. A prevalent

value seems to be five seconds. It is also reasonable that

this is caused by a triggered timer. A normal call setup

takes longer than five seconds [30] and short messages

are queued at the SMS service center and likely transmit-

ted over the same channel following one paging request.

As a result, the overall activity of relevance in practice

is lower than the general amount of TMSIs contained in

observed paging requests. The Vodafone measurements

can be reduced by almost 22% during peak times and

33% during low activity times. However, due to the lim-

ited memory resources of the attacking phones, we can-

not take this into account during an active attack.

4.2 A Randomized Attack Strategy using

TMSIs

The measured data in Section 4.1 suggests that even in

location areas with low paging activity an attacker needs

more than a single phone to respond to all paging re-

quests. Thus, paging requests need to be distributed

across multiple attacking phones. While serial commu-

USENIX Association 22nd USENIX Security Symposium 43

0

5000

10000

15000

20000

25000

30000

35000

00 32 64 96 c8 fa

O
bs

er
ve

d
T

M
S

Is

Byte value in hexadecimal

(a) Byte 3

0

5000

10000

15000

20000

25000

30000

35000

40000

00 32 64 96 c8 fa

O
bs

er
ve

d
T

M
S

Is

Byte value in hexademical

(b) Byte 2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

00 32 64 96 c8 fa

O
bs

er
ve

d
T

M
S

Is

Byte value in hexadecimal

(c) Byte 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

00 32 64 96 c8 fa

O
bs

er
ve

rd
 T

M
S

Is

Byte value in hexadecimal

(d) Byte 0

Figure 6: Statistical distribution of each TMSI byte contained in paging requests for O2. Based on 437734 TMSIs.

nication could be used to coordinate these efforts, it also

poses a significant slowdown. Consequently, using se-

rial communication would lower the chance to win the

race. We therefore decided to not make use of any actual

communication between attacking devices, but to use a

probabilistic approach instead.

For this, we analyzed the TMSI values to determine

the statistical distribution of each individual TMSI byte

as contained in respective paging requests. Namely, to

prevent the collection of mobile subscriber identities and

thus enable tracking, mobile phones are in most cases

identified by their TMSI instead of their IMSI. To pro-

vide strong anonymity, a network should therefore suffi-

ciently randomize those short term identities to provide

unlinkability. A statistically uniform distribution would

ease randomly distributing the paging load across mul-

tiple phones. However, an analysis of collected TMSIs

made it clear that not all bits of the TMSI are sufficiently

random or at least uniformly distributed. This may be,

because some parts of the TMSI can be related to, e.g.,

the time of its allocation [8]. We also observed that cer-

tain bytes of the TMSI appear more frequently in specific

ARFCNs. Thus, we further analyzed the distribution of

each individual of the four TMSI bytes, for all tested op-

erators. We use O2 as an example operator here even

though nearly identical patterns can be seen for other car-

riers.

Figure 6 shows for each possible byte value how of-

Figure 7: Cumulative distribution function for Byte 0

(LSB) of TMSIs contained in paging requests observed

for O2.

ten a specific value was found in TMSIs contained in

paging requests that we logged. As visible, all byte val-

ues are not uniformly distributed. However, 6a, 6b, and

6c show a significantly different pattern from 6d. Not

every possible value of the least significant byte (LSB)

of the TMSI is encountered with equal frequency on the

air interface. For example the value 0xff is not used at

all. Some seem to be more likely than others. Nonethe-

less, 6d shows that value ranges are close to a uniform

distribution. This becomes more plausible in Figure 7,

which compares the cumulative distribution function for

observed values of the LSB and the uniform distribution.

We make use of this characteristic to delegate specific

attack phones to dedicated TMSI LSB byte ranges. This

way, we can distribute the immense amount of paging be-

tween several phones by simply using randomization and

thus avoid coordination at all. Outliers for certain value

ranges could be compensated by adding more phones to

the specific range. To prevent recompilation of our Os-

mocomBB based firmware for distinct value range, we

introduced a mechanism to configure the range at run-

time. This mechanism is similar to the TMSI setting de-

scribed in Section 3.4 and is based on a HDLC message

over serial.

A similar distribution could be achieved by hashing

TMSI values and assigning individual phones to specific

hash prefixes. However for simplicity and to reduce the

response time as much as possible we decided not to do

this.

4.3 Mapping Location Areas

When performing a large-scale attack against a geo-

graphic region, we have to determine the size covered by

the location area. Specifically, this knowledge enables an

adversary to precisely plan the affected zone of such an

attack. An attacker carefully selects the target location

areas for specific regions and operators.

Location areas are not organized to cover an equally

large area. As pointed out in Section 4.1, this impacts

the paging activity that can be observed in a specific

location area. Their size differs among operators and

specifics of the covered environment. In fact, because of

44 22nd USENIX Security Symposium USENIX Association

its impact on mobility management, location area plan-

ning is an important aspect for mobile network operators.

Its size manifests a trade-off between subscriber-induced

and network-induced performance degradation. Small

location areas can cause a significant signaling overhead

in the core network due to frequent location updates. It

has already been demonstrated, that this can lead to de-

nial of service like conditions [36]. A large location area

causes additional load due to the paging overhead.

The Location Area Code (LAC), which is part of the

Location Area Identifier (LAI), is broadcasted by each

BTS in regular intervals on the BCCH via a System In-

formation Type 3 message. To map location areas, we

use a slightly modified version of the cell log applica-

tion from the OsmocomBB tool-chain. cell log scans all

ARFCNs in the assigned GSM frequency spectrum for a

carrier signal. It then attempts to sync to these frequen-

cies and logs decoded system information messages as

broadcasted on the BCCH. In combination with off-the-

shelf GPS receivers, we determine the geographic loca-

tion of the observed LAC.

By slowly driving through the city in a car, we col-

lected a number of waypoints and the respective GSM

cells in sight. To minimize the loss due to driving speed,

the scan process was performed simultaneously on eight

OsmocomBB devices. In order to estimate the surface

covered by a location area, we calculated the convex hull

of points within the same LAC. The size of location areas

in a metropolitan area such as Berlin varies from 100km2

to 500km2. From our study, the average location area in

Berlin covers around 200km2. Data from OpenCellID

and Crowdflow [29, 31] indicate that outside of the city

center location areas exist that cover over 1000km2. Fig-

ure 8 shows location areas that we mapped for one of the

four major operators in Berlin.

Most location areas partially overlap with geographic

regions that are part of a different area. These results

provide a rough insight on dimensions of location areas

in a metropolitan area. It also shows that a large-scale

denial of service attack based on the paging procedure

has a significant impact to a large number of subscribers.

4.4 Amplification of the Paging Response

Attack

The attack procedure as introduced in Section 3 does pre-

vent MT services from being delivered to a subscriber.

However, it does not provide a persistent way to cause

denial of service conditions. Access to mobile services

is denied as long as an adversary is running the attack.

Accordingly, calls reissued by subscribers to reach a per-

son, have to be attacked again, which may further raise

the paging load. To prevent this, we make use of another

attack that has been publicized before. Munaut discov-

Figure 8: Location Areas of Vodafone Germany in Berlin.

ered that the IMSI DETACH message is not authenticated

in GSM and 3G networks [34]. As a result, an attacker

can easily craft detach messages on behalf of a victim.

This message acts as an indication to the network that a

subscriber is no longer marked as available for the car-

rier. As a result, the network marks the mobile station as

detached and will no longer page the subscriber until it

reassociates with the network. Consequently, this stops

the network from delivering MT services. During nor-

mal operation, this message is generated by the phone

and sent to the network, e.g., when it is being switched

off.

The mobile identity contained in the detach indication

message is not limited to IMSIs, but can also contain

TMSIs. By combining the paging response attack with

the IMSI detach attack, it is therefore possible to amplify

its effect. After each paging response, our OsmocomBB

implementation reuses the collected mobile identity to

send a detach message. Accordingly, our attack ensures

that an initial call to a subscriber will be terminated and

that reissued services such as calls will not cause paging

activity again. Thus, by doing so, we effectively reduce

the paging load over time.

4.5 Large-scale Attack Feasibility

We continue to evaluate the feasibility of a large-scale

attack using multiple phones against commercially de-

ployed networks. The transmission of a large number

of RACH bursts and SDCCH channel allocations may

be limited due to radio resource bottlenecks. We there-

fore verify, whether or not a single cell provides enough

resources, or an attack needs to be conducted in a dis-

tributed fashion.

Prerequisites. In the following, we denote the TMSI

paging request activity as rrequest and the number of re-

USENIX Association 22nd USENIX Security Symposium 45

quired phones to handle this respectively as nphones. As

discussed in Section 4.2, the TMSI LSB value range is

used to equally distribute the paging load across multi-

ple attacking phones. Therefore, assigned phones need

to wait for a range match. On average this requires

tmatching = rrequest/nphones seconds. On a match, the phone

sends a channel request on the RACH and a paging re-

sponse on an SDCCH in tresponse seconds. It finally syn-

chronizes back to the CCCH in tsync seconds to be pre-

pared for the next run. The required time for an attack

is therefore tattack = tmatching + tresponse + tsync seconds.

Thus, for a successful attack, the minimum number of

phones an adversary requires is nphones ≥ rrequest · tattack.

RACH Resource Constraints. The available resources

provided by a single cell depend on its configuration.

The GSM specifications defines a number of valid chan-

nel configurations [7]. Thus, an adversary is lim-

ited by the number of available RACH slots and the

number of SDCCHs that a cell provides. In practice

cells in metropolitan areas use the BCCH+CCCH or

FCCH+SCH+CCCH+BCCH channel configurations on

the first time slot. These are not combined with DCCHs

and therefore allow all 51 bursts on the uplink of a 235.4

ms 51-multiframe to be used to transmit channel requests

on the RACH. Because the RACH is a shared medium,

collisions with requests of other subscribers may occur.

According to Traynor et al. [36], the maximum resulting

throughput is 37%. As a result, an attacker can transmit

up to rRACH = 51/0.2354 · 0.37 ≈ 80 channel requests

per second in a single cell. Consequently, given that

nphones ≤ nRACH = rRACH · tattack is true, a single cell can

fulfill the channel request requirements.

SDCCH Resource Constraints. Following the chan-

nel allocation, the adversary phone uses an SDCCH to

send the paging response. Analogical to the RACH, SD-

CCHs in medium- or large-sized cells in a metropoli-

tan area are provided on a separate time slot. A typ-

ical SDCCH/8+SACCH/8 channel configuration com-

prises of 8 SDCCHs per 51-multiframe, in theory offer-

ing: rSDCCH = 8/0.2354 = 34SDCCH/second. Clearly

this may make the signaling channel the major bottle-

neck for this attack. Accordingly, the occupation time of

these channels needs to be taken into account. For ex-

ample according to Traynor et al., a rough estimation of

the occupation time of the channel for an Insert Call For-

warding operation is 2.7 seconds [36]. Compared to this,

our attack occupies the channel for a very short duration,

as shown in Section 3.5.

Similar to the RACH requirements, the maximum

number of attacking phones per cell is therefore bounded

by nphones ≤ nSDCCH = rSDCCH · tattack.

Example Computation. The following is an exam-

ple, based on the peak values from our measurements

gathered for the E-Plus network and as reflected in Ta-

Table 2: Example resource requirements for

E-Plus.

Variable Value Reference

rrequest 415paging/min Section 4.1

tresponse 180ms Section 3.5

tsync 745ms Section 4

ble 2. Based on the previous equations, at least nphones ≈
10.820phones are required to attack a typical location of

E-Plus. Given the costs of the Motorola devices, this

is a reasonably small amount. Each paging response

attack lasts tattack ≈ 1.564seconds. This allows up to

nRACH ≈ 125phones without a saturation of the RACH.

For the SDCCH, the above formula yields to a maximum

of nSDCCH ≈ 53phones. It is also important to note that

the number of phones is proportional to the impact. This

means that half of the attacking phones would still be

able disrupt service for half of the subscribers of a loca-

tion area.

A single cell therefore provides enough resources to

attack a complete location area of a considerably small

operator. In practice these resources are shared with le-

git MO and MT traffic. The exact traffic patterns and

the number of cells per location is unknown. Further-

more, a combination with the IMSI detach attack pre-

vents phones that reside in the location area to generate

further MT activity. As we cannot estimate these activ-

ities, we do not include this in our calculation. Never-

theless, the results indicate the required resources for a

large-attack do not extensively exhaust the resources pro-

vided by a cell. Additionally, there is no technical limita-

tion of distributing attacking phones across small number

of different cells.

5 Countermeasures

In this section we present two countermeasures against

the attacks we developed. Specifically, we propose dif-

ferent approaches to resolve both problems. A solution

is required to not only fix the denial of service issue, but

at the same time the MT service hijacking. Unlike the

second prevention strategy, the first solution solves both

issues at once, but requires a protocol change.

For the first solution, we propose a change to the

paging protocol procedure [4]. To perform authentica-

tion, the network is sending a 128 bit random challenge

(RAND) to the subscriber. Based on the secret key Ki

that is only stored on the SIM card or in the authenti-

cation center of the network, the subscriber computes a

32 bit response value using the A3 algorithm. The so-

called Signed Response (SRES) value is sent back to the

46 22nd USENIX Security Symposium USENIX Association

network. In the same fashion, the operator network com-

putes SRES based on Ki as stored in the authentication

center. If both SRES values match, the subscriber suc-

cessfully authenticated itself to the network. However,

as mandated in the GSM specification, the authentica-

tion is performed after the paging response is processed.

The same principle applies to UMTS [12]. Therefore,

the paging response itself is not authenticated. By adapt-

ing the protocol to include the RAND value in the pag-

ing request and SRES in the paging response, this can

be changed. This implies that all of the paging responses

are authenticated, which eliminates session hijacking. At

the same time a paging response that includes authenti-

cation information can be used by the network to validate

the response before changing the state to not expect fur-

ther paging responses. Thus, also solving the denial of

service attack. It is important to note that this requires

a fresh RAND for every authentication to prevent replay

attacks. This is similar to the protocol change proposed

by Arapinis et al. [16], which encrypts the paging request

using a shared session key called unlikability key. While

they use this key to prevent tracking of subscribers via

IMSI paging, the same modification also prevents our

described attacks. Unfortunately, partly due to the dif-

ficulty of updating devices in the field, the industry is

reluctant to apply new protocol changes to commercially

deployed networks.

The second solution involves no protocol change, but

has to dismantle each problem individually. MT session

hijacking issue can be addressed, by enforcing authen-

tication for each service request. This would also over-

come MO session hijacking. In order to eliminate the de-

nial of service attack, the MSC/VLR state machine needs

to be changed. Specifically, the MSC/VLR has to be able

to map all incoming paging responses to the correct ser-

vice as long as no fully authenticated session exists. Ac-

cordingly, this circumvents the denial of service attack.

6 Related Work

In the last years, various attacks against cellular networks

and their protocol stacks have been published. We sep-

arate related work into two parts. First, attacks that al-

low an adversary to impersonate a victim. Second, de-

nial of service attacks in mobile networks that result in

customers not being able to receive MT services.

Impersonation. In [28] Nohl and Melette demonstrated

that it is possible to impersonate a subscriber for mo-

bile originated services. By first sniffing a transaction

over-the-air, cracking the session key Kc, and knowing a

victims TMSI, they were able to place a phone call on

behalf of a victim. The authors of [24] used a femtocell

device under their control in order to impersonate a sub-

scriber that is currently booked into the femtocell. By

relaying authentication challenges to a victim, they were

able to send SMS messages on behalf of the subscriber.

Our work in this paper is different, as we do not attack

MO services, but MT services. Thus, in our research,

the considered victim is, e.g., the called party and not the

caller. Contrary to attacking MO services, attacking MT

services is time critical.

Denial of Service. We consider relevant types of de-

nial of service attacks in mobile networks that affect MT

services for subscribers. We determined three types of

denial of service attacks that fulfill this requirement: at-

tacks directly targeting the victim phone, attacks focus-

ing on the network, and attacks affecting subscribers, but

without direct communication.

The first type comprises DoS attacks that target mo-

bile devices directly, most notably phones. These issues

are usually baseband/phone specific and caused by im-

plementation flaws. Several vulnerabilities have been

discovered in mobile phones that can lead to code ex-

ecution and denial of service conditions [33, 46]. Par-

ticularly, the Curse-of-Silence flaw enabled an adversary

to disable the MT SMS functionality of specific Nokia

devices [44]. In [38] Racic et al. demonstrate that it

is possible to stealthily exhaust mobile phone batteries

by repeatedly sending crafted MMS messages to a vic-

tim. Consequently, the phone battery will drain very fast,

eventually the phone will switch off, and MT services

can no longer be delivered to a victim. Our attack is in-

herently different from these kinds of attacks, because it

is independent from the target device type and does not

interact with the victim directly at all.

The second category consists of attacks that target the

operator itself, and as a consequence also impact MT ser-

vices for subscribers. These types are caused by design

flaws. Spaar showed in [43] that it is feasible to exhaust

channel resources of a base station by continuously re-

questing new channels on the RACH. Unlike our attack,

this attack is limited to a single BTS and does not af-

fect subscribers served by a different cell. Therefore, to

attack a metropolitan area, an attacker needs to commu-

nicate with and attack every BTS in that area. Enck et

al. [21] showed that it is practical to deny voice or SMS

services within a specific geographical area, by sending

a large number of short messages to subscribers in that

area. Serror et al. [42] exhibit that similar conditions

can be achieved in CDMA2000 networks by causing a

significant paging load and delay of paging messages

via Internet originating packets to phones. A compara-

ble resource consumption attack for 3G/WiMax has been

demonstrated by Lee et al. in [32]. As Traynor et al. out-

line [36], it is also possible to degrade the performance

of large networks by utilizing a phone botnet and, e.g.,

repeatedly adding and deleting call forwarding settings.

All of these attacks exhaust network resources mostly

USENIX Association 22nd USENIX Security Symposium 47

due to generated signaling load. As a result, services can

no longer be reliably offered to mobile subscribers, effec-

tively causing denial of service conditions. This includes

MT and MO services. We exploit a race condition in the

MT paging procedure and do not attack the core network

itself. Our attack does not intend to generate excessive

signaling traffic in the network. As a result, it is not pre-

vented by proposed mitigations for these kind of issues

from previous research.

Our attack fits into the last of the three types of attacks

that result in DoS for MT services. Most network attacks

aim to abuse generated signaling to decrease the over-

all performance of the operator network. Attacks against

mobile devices merely use the network as a bearer to de-

liver a specific payload to the phone. The third category

is stipulated by attacks that target the mobile device it-

self, but do not send any payload to it. The aforemen-

tioned IMSI detach attack discovered by Munaut [34]

can effectively cause that a service such as a call, will

not result in paging requests by the network anymore.

As described in section 4.4, this design flaw even sup-

ports our attack. Contrary to this vulnerability, the pag-

ing response attack allows us to precisely control when

and where a victim can be reached or not. After sending

a detach indication, an attacker cannot control anymore

for how long this state is kept.

Our approach can be used either to hijack a session

or to perform a denial of service attacks. We do attack

mobile stations but neither by exhausting network re-

sources, nor by directly communicating to the target de-

vice. We can target specific geographical areas, specific

subscribers or a group of subscribers without the need to

build a hit list of phone numbers residing in that area. De-

pending on the target, the attack can be either distributed

or performed from a single phone. Additionally, the in-

volved costs for this attack are as cheap as acquiring the

required number of Motorola C1XX phones.

7 Conclusion

The trust in the security of cellular networks and specif-

ically the widely used GSM standard has been shat-

tered several times. Yet, attacks against mobile termi-

nated services are a minority. The undisturbed operation

of telecommunication networks is traditionally based on

trust. The inherent trust that each subscriber and par-

ticipant in communication plays by the rules. Nonethe-

less, due to several available and modifiable software and

hardware projects for telecommunication, this trust rela-

tionship has to be considered broken. In this paper we

showed how to exploit the trust in paging procedures on

a broadcast medium. We demonstrated that it is possible

to leverage a race condition in the paging protocol to a

novel denial of service attack and the possibility to hi-

jack mobile terminated services in GSM. Moreover, we

showed that this attack can not only disturb communi-

cation for single subscribers, but can also greatly affect

telephony in a larger geographical region formed by lo-

cation areas. A motivated attacker can interrupt com-

munication on a large scale by merely utilizing a set of

inexpensive consumer devices that are available on the

market. This is considerably more efficient compared

to traditional radio jamming due to the broad frequency

range of mobile carrier networks and the size of location

areas. In order to mitigate these attacks, we propose two

different countermeasures of which one does not require

a protocol change. We strongly encourage future stan-

dards to consider threats caused by active attackers that

tamper with user equipment and protocol stacks.

8 Acknowledgement

The authors would like to thank Dieter Spaar, Harald

Welte, Holger Freyther, Benjamin Michéle, Alex Dent,

and Dmitry Nedospasov for technical discussions and

their help in reviewing this paper.

References

[1] Routo Messaging. http://www.routomessaging.com.

[2] Gartner Says Worldwide Smartphone Sales Soared in Fourth

Quarter of 2011 With 47 Percent Growth. http://www.

gartner.com/it/page.jsp?id=1924314, February 2012.

[3] 3GPP. Digital cellular telecommunications system (Phase 2+);

Network architecture (GSM 03.02 version 7.1.0 Release 1998).

Tech. rep., 3rd Generation Partnership Project, 2000. 3GPP TS

03.02 V7.1.0.

[4] 3GPP. Digital cellular telecommunications system (Phase 2+);

Mobile radio interface layer 3 specification (3GPP TS 04.08 ver-

sion 7.9.1 Release 1998). Tech. rep., 3rd Generation Partnership

Project, 2001. 3GPP TS 04.08 V7.9.1.

[5] 3GPP. Digital cellular telecommunications system (Phase 2+);

Multiplexing and multiple access on the radio path (3GPP TS

05.02 version 8.9.0 Release 1999). Tech. rep., 3rd Generation

Partnership Project, 2001. 3GPP TS 05.02 V8.9.0.

[6] 3GPP. Digital cellular telecommunications system (Phase 2+);

Base Station System - Mobile Services Switching Centre (BSS-

MSC) Interface - Interface Principles (3GPP TS 08.02 version

8.0.1 Release 1999). Tech. rep., 3rd Generation Partnership

Project, 2002. 3GPP TS 08.02 V8.0.1.

[7] 3GPP. Digital cellular telecommunications system (Phase 2+);

Mobile Station - Base Station System (MS - BSS) Interface Chan-

nel Structures and Access Capabilities (3GPP TS 04.03 version

8.0.2 Release 1999). Tech. rep., 3rd Generation Partnership

Project, 2002. 3GPP TS 04.03 V8.0.2.

[8] 3GPP. Digital cellular telecommunications system (Phase 2+);

Numbering, addressing and identification (3GPP TS 03.03 ver-

sion 7.8.0 Release 1998). Tech. rep., 3rd Generation Partnership

Project, 2003. 3GPP TS 03.03 V7.8.0.

[9] 3GPP. Digital cellular telecommunications system (Phase 2+);

Security-related network functions (3GPP TS 03.20 version 8.6.0

Release 1999). Tech. rep., 3rd Generation Partnership Project,

2008. 3GPP TS 03.20 V8.6.0.

48 22nd USENIX Security Symposium USENIX Association

[10] 3GPP. Digital cellular telecommunications system (Phase 2+);

Radio transmission and reception (3GPP TS 45.005 version 9.1.0

Release 9). Tech. rep., 3rd Generation Partnership Project, 2010.

3GPP TS 45.005 V9.1.0.

[11] 3GPP. Universal Mobile Telecommunications System

(UMTS);Physical channels and mapping of transport chan-

nels onto physical channels (FDD)(3GPP TS 25.211 version

9.2.0 Release 9). Tech. rep., 3rd Generation Partnership Project,

2010. 3GPP TS 25.211 9.2.0.

[12] 3GPP. Universal Mobile Telecommunications System (UMTS);

LTE;3G security; Security architecture(3GPP TS 33.102 version

9.4.0 Release 9). Tech. rep., 3rd Generation Partnership Project,

2011. 3GPP TS 33.102 V9.4.0.

[13] 3GPP. Digital cellular telecommunications system (Phase 2+);

Mobile Switching Centre - Base Station system (MSC-BSS) in-

terface; Layer 3 specification (3GPP TS 48.008 version 9.8.0 Re-

lease 9). Tech. rep., 3rd Generation Partnership Project, 2012.

3GPP TS 48.008 V9.8.0.

[14] 3GPP. LTE;Evolved Universal Terrestrial Radio Access (E-

UTRA); User Equipment (UE) procedures in idle mode(3GPP

TS 36.304 version 9.9.0 Release 9). Tech. rep., 3rd Generation

Partnership Project, 2012. 3GPP TS 36.304 V9.9.0.

[15] 3GPP. Universal Mobile Telecommunications System

(UMTS);User Equipment (UE) procedures in idle mode

and procedures for cell reselection in connected mode(3GPP

TS 25.304 version 9.8.0 Release 9). Tech. rep., 3rd Generation

Partnership Project, 2012. 3GPP TS 25.304 V9.8.0.

[16] ARAPINIS, M., MANCINI, L., RITTER, E., RYAN, M., GOLDE,

N., REDON, K., AND BORGAONKAR, R. New Privacy Issues in

Mobile Telephony: Fix and Verification. In Proceedings of the

19th ACM Conference on Computer and Communications Secu-

rity (October 2012).

[17] BARKAN, E., BIHAM, E., AND KELLER, N. Instant Ciphertext-

Only Cryptanalysis of GSM Encrypted Communication. J. Cryp-

tol. 21, 3 (Mar. 2008), 392–429.

[18] BIRYUKOV, A., SHAMIR, A., AND WAGNER, D. Real Time

Cryptanalysis of A5/1 on a PC. In Proceedings of the 7th Inter-

national Workshop on Fast Software Encryption (London, UK,

UK, 2001), FSE ’00, Springer-Verlag, pp. 1–18.

[19] BOSWARTHICK, D., ELLOUMI, O., AND HERSENT, O. M2M

Communications: A Systems Approach. Wiley, March 2012.

[20] D. BURGESS ET AL. OpenBTS. http://openbts.org.

[21] ENCK, W., TRAYNOR, P., MCDANIEL, P., AND LA PORTA, T.

Exploiting open functionality in SMS-capable cellular networks.

In Proceedings of the 12th ACM conference on Computer and

communications security (New York, NY, USA, 2005), CCS ’05,

ACM, pp. 393–404.

[22] ETTUS. USRP. http://www.ettus.com/products, 2009.

[23] FRANK A. STEVENSON. [A51] The call of Kraken. http://

web.archive.org/web/20100812204319/http://lists.

lists.reflextor.com/pipermail/a51/2010-July/

000683.html, July 2010.

[24] GOLDE, N., REDON, K., AND BORGAONKAR, R. Weaponizing

Femtocells: The Effect of Rogue Devices on Mobile Telecom-

munications. In Proceedings of the 19th Annual Network & Dis-

tributed System Security Symposium (Feb. 2012).

[25] H. WELTE. OpenBSC. http://openbsc.osmocom.org.

[26] INFOSECURITY MAGAZINE. Indian company hacks GSM and

usurps IMSI. http://www.infosecurity-magazine.com/

view/24680/indian-company-hacks-gsm-and-usurps-

imsi/, March 2012.

[27] IP.ACCESS LTD. nanoBTS 1800. http://www.ipaccess.

com/picocells/nanoBTS_picocells.php.

[28] KARSTEN NOHL AND LUCA MELETTE. Defending mo-

bile phones. http://events.ccc.de/congress/2011/

Fahrplan/events/4736.en.html, December 2011.

[29] KRELL, M. Crowdflow. http://crowdflow.net.

[30] KUNE, D. F., KOELNDORFER, J., HOPPER, N., AND KIM, Y.

Location leaks over the GSM air interface. In Proceedings of the

19th Annual Network & Distributed System Security Symposium

(Feb. 2012).

[31] LANDSPURG, T. OpenCellID. http://opencellid.org.

[32] LEE, P. P. C., BU, T., AND WOO, T. On the detection of signal-

ing DoS attacks on 3G/WiMax wireless networks. Comput. Netw.

53, 15 (2009), 2601–2616.

[33] MULLINER, C., GOLDE, N., AND SEIFERT, J.-P. SMS of

Death: From Analyzing to Attacking Mobile Phones on a Large

Scale. In Proceedings of the 20th USENIX Security Symposium

(San Francisco, CA, USA, August 2011).

[34] MUNAUT, S. IMSI DETACH DoS. http://security.

osmocom.org/trac/ticket/2, May 2010.

[35] NOKIA SIEMENTS NETWORKS. Nokia Siemens Networks pro-

motes GSM for Machine to Machine applications. http://www.

nokiasiemensnetworks.com/news-events/press-room/

press-releases/nokia-siemens-networks-promotes-

gsm-for-machine-to-machine-applications.

[36] P. TRAYNOR, M. LIN, M. ONGTANG, V. RAO, T. JAEGER, T.

LA PORTA, P. MCDANIEL. On Cellular Botnets: Measuring

the Impact of Malicious Devices on a Cellular Network Core.

In ACM Conference on Computer and Communications Security

(CCS) (November 2009).

[37] PURPLELABS. Tsm30 firmware. http://web.archive.

org/web/20090325133430/http://sourceforge.net/

projects/plabs, November 2004.

[38] RACIC, R., MA, D., AND CHEN, H. Exploiting MMS Vul-

nerabilities to Stealthily Exhaust Mobile Phone’s Battery. In Se-

curecomm and Workshops, 2006 (28 2006-sept. 1 2006), pp. 1

–10.

[39] SECURITY RESEARCH LABS. A5/1 decryption project.

http://opensource.srlabs.de/projects/a51-decrypt.

[40] SECURITY RESEARCH LABS. Decrypting GSM phone calls.

https://srlabs.de/decrypting_gsm/.

[41] SECURITY RESEARCH LABS. GSM security map. http://

www.gsmmap.org.

[42] SERROR, J., ZANG, H., AND BOLOT, J. C. Impact of paging

channel overloads or attacks on a cellular network. In Proceed-

ings of the 5th ACM workshop on Wireless security (New York,

NY, USA, 2006), WiSe ’06, ACM, pp. 75–84.

[43] SPAAR, D. RACH flood DoS. http://security.osmocom.

org/trac/ticket/1, November 2009.

[44] T. ENGEL. Remote SMS/MMS Denial of Service - Curse Of

Silence. http://berlin.ccc.de/~tobias/cursesms.txt,

December 2008.

[45] VARIOUS CONTRIBUTORS. Osmocom project. http://

osmocom.org.

[46] WEINMANN, R.-P. Baseband Attacks: Remote Exploitation of

Memory Corruptions in Cellular Protocol Stacks. In Proceedings

of the 21st USENIX Workshop on Offensive Technologies (Belle-

vue, WA, USA, August 2012).

[47] WELTE, H., MUNAUT, S., EVERSBERG, A., AND OTHER CON-

TRIBUTORS. OsmocomBB. http://bb.osmocom.org.

USENIX Association 22nd USENIX Security Symposium 49

Dowsing for overflows: A guided fuzzer to find buffer boundary violations

Istvan Haller

VU University Amsterdam

Asia Slowinska

VU University Amsterdam

Matthias Neugschwandtner

Vienna University of Technology

Herbert Bos

VU University Amsterdam

Abstract
Dowser is a ‘guided’ fuzzer that combines taint tracking,

program analysis and symbolic execution to find buffer

overflow and underflow vulnerabilities buried deep in a

program’s logic. The key idea is that analysis of a pro-

gram lets us pinpoint the right areas in the program code

to probe and the appropriate inputs to do so.

Intuitively, for typical buffer overflows, we need con-

sider only the code that accesses an array in a loop, rather

than all possible instructions in the program. After find-

ing all such candidate sets of instructions, we rank them

according to an estimation of how likely they are to con-

tain interesting vulnerabilities. We then subject the most

promising sets to further testing. Specifically, we first

use taint analysis to determine which input bytes influ-

ence the array index and then execute the program sym-

bolically, making only this set of inputs symbolic. By

constantly steering the symbolic execution along branch

outcomes most likely to lead to overflows, we were able

to detect deep bugs in real programs (like the nginx

webserver, the inspircd IRC server, and the ffmpeg

videoplayer). Two of the bugs we found were previ-

ously undocumented buffer overflows in ffmpeg and the

poppler PDF rendering library.

1 Introduction

We discuss Dowser, a ‘guided’ fuzzer that combines taint

tracking, program analysis and symbolic execution, to

find buffer overflow bugs buried deep in the program’s

logic.

Buffer overflows are perennially in the top 3 most dan-

gerous software errors [12] and recent studies suggest

this will not change any time soon [41, 38]. There are

two ways to handle them. Either we harden the software

with memory protectors that terminate the program when

an overflow occurs (at runtime), or we track down the

vulnerabilities before releasing the software (e.g., in the

testing phase).

Memory protectors include common solutions like

shadow stacks and canaries [11], and more elaborate

compiler extensions like WIT [3]. They are effective in

preventing programs from being exploited, but they do

not remove the overflow bugs themselves. Although it

is better to crash than to allow exploitation, crashes are

undesirable too!

Thus, vendors prefer to squash bugs beforehand and

typically try to find as many as they can by means of fuzz

testing. Fuzzers feed programs invalid, unexpected, or

random data to see if they crash or exhibit unexpected be-

havior1. As an example, Microsoft made fuzzing manda-

tory for every untrusted interface for every product, and

their fuzzing solution has been running 24/7 since 2008

for a total of over 400 machine years [18].

Unfortunately, the effectiveness of most fuzzers is

poor and the results rarely extend beyond shallow bugs.

Most fuzzers take a ‘blackbox’ approach that focuses

on the input format and ignores the tested software tar-

get. Blackbox fuzzing is popular and fast, but misses

many relevant code paths and thus many bugs. Blackbox

fuzzing is a bit like shooting in the dark: you have to be

lucky to hit anything interesting.

Whitebox fuzzing, as implemented in [18, 7, 10], is

more principled. By means of symbolic execution, it ex-

ercises all possible execution paths through the program

and thus uncovers all possible bugs – although it may

take years to do. Since full symbolic execution is slow

and does not scale to large programs, it is hard to use it to

find complex bugs in large programs [7, 10]. In practice,

the aim is therefore to first cover as much unique code as

possible. As a result, bugs that require a program to ex-

ecute the same code many times (like buffer overflows)

are hard to trigger except in very simple cases.

Eventual completeness, as provided by symbolic ex-

ecution, is both a strength and a weakness, and in this

paper, we evaluate the exact opposite strategy. Rather

1See http://www.fuzzing.org/ for a collection of available

fuzzers

1

50 22nd USENIX Security Symposium USENIX Association

than testing all possible execution paths, we perform spot

checks on a small number of code areas that look likely

candidates for buffer overflow bugs and test each in turn.

The drawback of our approach is that we execute a

symbolic run for each candidate code area—in an itera-

tive fashion. Moreover, we can discover buffer overflows

only in the loops that we can exercise. On the other hand,

by homing in on promising code areas directly, we speed

up the search considerably, and manage to find compli-

cated bugs in real programs that would be hard to find

with most existing fuzzers.

Contributions The goal we set ourselves was to de-

velop an efficient fuzzer that actively searches for buffer

overflows directly. The key insight is that careful analy-

sis of a program lets us pinpoint the right places to probe

and the appropriate inputs to do so. The main contribu-

tion is that our fuzzer directly zooms in on these buffer

overflow candidates and explores a novel ‘spot-check’

approach in symbolic execution.

To make the approach work, we need to address two

main challenges. The first challenge is where to steer

the execution of a program to increase the chances of

finding a vulnerability. Whitebox fuzzers ‘blindly’ try to

execute as much of the program as possible, in the hope

of hitting a bug eventually. Instead, Dowser uses infor-

mation about the target program to identify code that is

most likely to be vulnerable to a buffer overflow.

For instance, buffer overflows occur (mostly) in code

that accesses an array in a loop. Thus, we look for such

code and ignore most of the remaining instructions in the

program. Furthermore, Dowser performs static analysis

of the program to rank such accesses. We will evalu-

ate different ranking functions, but the best one so far

ranks the array accesses according to complexity. The

intuition is that code with convoluted pointer arithmetic

and/or complex control flow is more prone to memory

errors than straightforward array accesses. Moreover, by

focusing on such code, Dowser prioritizes bugs that are

complicated—typically, the kind of vulnerabilities that

static analysis or random fuzzing cannot find. The aim

is to reduce the time wasted on shallow bugs that could

also have been found using existing methods. Still, other

rankings are possible also, and Dowser is entirely agnos-

tic to the ranking function used.

The second challenge we address is how to steer the

execution of a program to these “interesting” code areas.

As a baseline, we use concolic execution [43]: a com-

bination of concrete and symbolic execution, where the

concrete (fixed) input starts off the symbolic execution.

In Dowser, we enhance concolic execution with two op-

timizations.

First, we propose a new path selection algorithm.

As we saw earlier, traditional symbolic execution aims

at code coverage—maximizing the fraction of individ-

ual branches executed [7, 18]. In contrast, we aim

for pointer value coverage of selected code fragments.

When Dowser examines an interesting pointer derefer-

ence, it steers the symbolic execution along branches that

are likely to alter the value of the pointer.

Second, we reduce the amount of symbolic input as

much as we can. Specifically, Dowser uses dynamic

taint analysis to determine which input bytes influence

the pointers used for array accesses. Later, it treats only

these inputs as symbolic. While taint analysis itself is not

new, we introduce novel optimizations to arrive at a set

of symbolic inputs that is as accurate as possible (with

neither too few, nor too many symbolic bytes).

In summary, Dowser is a new fuzzer targeted at ven-

dors who want to test their code for buffer overflows and

underflows. We implemented the analyses of Dowser as

LLVM [23] passes, while the symbolic execution step

employs S2E [10]. Finally, Dowser is a practical solu-

tion. Rather than aiming for all possible security bugs, it

specifically targets the class of buffer overflows (one of

the most, if not the most, important class of attack vec-

tors for code injection). So far, Dowser found several

real bugs in complex programs like nginx, ffmpeg, and

inspircd. Most of them are extremely difficult to find

with existing symbolic execution tools.

Assumptions and outline Throughout this paper, we

assume that we have a test suite that allows us to reach

the array accesses. Instructions that we cannot reach, we

cannot test. In the remainder, we start with a big picture

and the running example (Section 2). Then, we discuss

the three main components of Dowser in turn: the se-

lection of interesting code fragments (Section 3), the use

of dynamic taint analysis to determine which inputs in-

fluence the candidate instructions (Section 4), and our

approach to nudge the program to trigger a bug during

symbolic execution (Section 5). We evaluate the system

in Section 6, discuss the related projects in Section 7. We

conclude in Section 8.

2 Big picture

The main goal of Dowser is to manipulate the pointers

that instructions use to access an array in a loop, in the

hope of forcing a buffer overrun or underrun.

2.1 Running example

Throughout the paper, we will use the function in Fig-

ure 1 to illustrate how Dowser works. The example is

a simplified version of a buffer underrun vulnerability in

the nginx-0.6.32 web server [1]. A specially crafted

2

USENIX Association 22nd USENIX Security Symposium 51

A buffer underrun vulnerability in nginx

int ngx_http_parse_complex_uri(ngx_http_request_t *r)
{
 state = sw_usual;
 u_char* p = r->uri_start; // user input
 u_char* u = r->uri.data; // store normalized uri here
 u_char ch = *p++; // the current character

 while (p <= r->uri_end) {
 switch (state) {
 case sw_usual:
 if (ch == '/')
 state = sw_slash; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_slash:
 if (ch == '/')
 *u++ = ch;
 else if (ch == '.')
 state = sw_dot; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_dot:
 if (ch == '.')
 state = sw_dot_dot; *u++ = ch;
 else if /* many more options here */
 ch = *p++; break;

 case sw_dot_dot:
 if (ch == '/')
 state = sw_slash; u -=4;
 while (*(u-1) != '/') u--;
 else if /* many more options here */
 ch = *p++; break;
 }
 }
}

 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

Nginx is a web server—in terms of market share across the million busiest sites,

it ranks third in the world. At the time of writing, it hosts about 22 million domains

worldwide. Versions prior to 0.6.38 had a particularly nasty vulnerability [1].

When nginx receives an HTTP request, the parsing function

nginx http parse complex uri, first normalizes a uri path in p=r->uri start

(line 4), storing the result in a heap buffer pointed to by u=r->uri.data (line

5). The while-switch implements a state machine that consumes the input one

character at a time, and transform it into a canonical form in u.

The source of the vulnerability is in the sw dot dot state. When provided with a

carefully crafted path, nginx wrongly sets the beginning of u to a location some-

where below r->uri.data. Suppose the uri is "//../foo". When p reaches

"/foo", u points to (r->uri.data+4), and state is sw dot dot (line 30). The

routine now decreases u by 4 (line 32), so that it points to r->uri.data. As long

as the memory below r->uri.data does not contain the character "/", u is fur-

ther decreased (line 33), even though it crosses buffer boundaries. Finally, the user

provided input ("foo") is copied to the location pointed to by u.

In this case, the overwritten buffer contains a pointer to a function, which will

be eventually called by nginx. Thus the vulnerability allows attackers to modify a

function pointer, and execute an arbitrary program on the system.

It is a complex bug that is hard to find with existing solutions. The many condi-

tional statements that depend on symbolic input are problematic for symbolic execu-

tion, while input-dependent indirect jumps are also a bad match for static analysis.

Fig. 1: A simplified version of a buffer underrun vulnerability in nginx.

input tricks the program into setting the u pointer to a lo-

cation outside its buffer boundaries. When this pointer is

later used to access memory, it allows attackers to over-

write a function pointer, and execute arbitrary programs

on the system.

Figure 1 presents only an excerpt from the original

function, which in reality spans approximately 400 lines

of C code. It contains a number of additional options in

the switch statement, and a few nested conditional if

statements. This complexity severely impedes detecting

the bug by both static analysis tools and symbolic exe-

cution engines. For instance, when we steered S2E [10]

all the way down to the vulnerable function, and made

solely the seven byte long uri path of the HTTP message

symbolic, it took over 60 minutes to track down the prob-

lematic scenario. A more scalable solution is necessary

in practice. Without these hints, S2E did not find the bug

at all during an eight hour long execution.2 In contrast,

Dowser finds it in less than 5 minutes.

The primary reason for the high cost of the analysis in

S2E is the large number of conditional branches which

depend on (symbolic) input. For each of the branches,

symbolic execution first checks whether either the con-

dition or its negation is satisfiable. When both branches

are feasible, the default behavior is to examine both. This

2All measurements in the paper use the same environment as in

Section 6.

procedure results in an exponentially growing number of

paths.

This real world example shows the need for (1) fo-

cusing the powerful yet expensive symbolic execution on

the most interesting cases, (2) making informed branch

choices, and (3) minimizing the amount of symbolic

data.

2.2 High-level overview

Figure 2 illustrates the overall Dowser architecture.

First, it performs a data flow analysis of the target pro-

gram, and ranks all instructions that access buffers in

loops 1©. While we can rank them in different ways and

Dowser is agnostic as to the ranking function we use,

our experience so far is that an estimation of complexity

works best. Specifically, we rank calculations and con-

ditions that are more complex higher than simple ones.

In Figure 1, u is involved in three different operations,

i.e., u++, u--, and u-=4, in multiple instructions inside a

loop. As we shall see, these intricate computations place

the dereferences of u in the top 3% of the most complex

pointer accesses across nginx.

In the second step 2©, Dowser repeatedly picks high-

ranking accesses, and selects test inputs which exercise

them. Then, it uses dynamic taint analysis to determine

which input bytes influence pointers dereferenced in the

candidate instructions. The idea is that, given the for-

3

52 22nd USENIX Security Symposium USENIX Association

while() {
 arr[i++] = x;

 arri[2*i-4] = 0;
}

static analysis
finds interesting
array accesses
in loops;

Fig. 2: Dowser– high-level overview.

mat of the input, Dowser fuzzes (i.e., treats as sym-

bolic), only those fields that affect the potentially vul-

nerable memory accesses, and keeps the remaining ones

unchanged. In Figure 1, we learn that it is sufficient to

treat the uri path in the HTTP request as symbolic. In-

deed, the computations inside the vulnerable function are

independent of the remaining part of the input message.

Next 3©, for each candidate instruction and the input

bytes involved in calculating the array pointer, Dowser

uses symbolic execution to try to nudge the program to-

ward overflowing the buffer. Specifically, we execute

symbolically the loop that contains the candidate instruc-

tions (and thus should be tested for buffer overflows)—

treating only the relevant bytes as symbolic. As we shall

see, a new path selection algorithm helps to guide execu-

tion to a possible overflow quickly.

Finally, we detect any overflow that may occur. Just

like in whitebox fuzzers, we can use any technique to do

so (e.g., Purify, Valgrind [30], or BinArmor [37]). In our

work, we use Google’s AddressSanitizer [34] 4©. It in-

struments the protected program to ensure that memory

access instructions never read or write so called, “poi-

soned” red zones. Red zones are small regions of mem-

ory inserted inbetween any two stack, heap or global ob-

jects. Since they should never be addressed by the pro-

gram, an access to them indicates an illegal behavior.

This policy detects sequential buffer over- and under-

flows, and some of the more sophisticated pointer cor-

ruption bugs. This technique is beneficial when search-

ing for new bugs since it will also trigger on silent

failures, not just application crashes. In the case of

nginx, AddressSanitizer detects the underflow when the

u pointer reads memory outside its buffer boundaries

(line 33).

We explain step 1© (static analysis) in Section 3,

step 2© (taint analysis) in Section 4, and step 3© (guided

execution) in Section 5.

3 Dowsing for candidate instructions

Previous research has shown that software complexity

metrics collected from software artifacts are helpful in

finding vulnerable code components [16, 44, 35, 32].

However, even though complexity metrics serve as useful

indicators, they also suffer from low precision or recall

values. Moreover, most of the current approaches oper-

ate at the granularity of modules or files, which is too

coarse for the directed symbolic execution in Dowser.

As observed by Zimmermann et al. [44], we need met-

rics that exploit the unique characteristics of vulnerabili-

ties, e.g., buffer overflows or integer overruns. In princi-

ple, Dowser can work with any metric capable of ranking

groups of instructions that access buffers in a loop. So,

the question is how to design a good metric for complex-

ity that satisfies this criterion? In the remainder of this

section, we introduce one such metric: a heuristics-based

approach that we specifically designed for the detection

of potential buffer overflow vulnerabilities.

We leverage a primary pragmatic reason behind com-

plex buffer overflows: convoluted pointer computations

are hard to follow by a programmer. Thus, we focus on

‘complex’ array accesses realized inside loops. Further,

we limit the analysis to pointers which evolve together

with loop induction variables, i.e., are repeatedly updated

to access (various) elements of an array.

Using this metric, Dowser ranks buffer accesses by

evaluating the complexity of data- and control-flows in-

volved with the array index (pointer) calculations. For

each loop in the program, it first statically determines

(1) the set of all instructions involved in modifying an ar-

ray pointer (we will call this a pointer’s analysis group),

and (2) the conditions that guard this analysis group, e.g.,

the condition of an if or while statement containing the

array index calculations. Next, it labels all such sets with

scores reflecting their complexity. We explain these steps

in detail in Sections 3.1, 3.2, and 3.3.

4

USENIX Association 22nd USENIX Security Symposium 53

5:u1=r→uri.data;

8:u2=�(u1,u10)

12:u3=u2++; … 26:u6=u2++; 32:u7=u2-4;

33:u8=�(u7,u9)

33:u9=u8--;

37:u10=�(u3,..,u6,u9)

5

5

3*10+

2*5

different
constants

55

Fig. 3: Data flow graph and analysis group associated with

the pointer u from Figure 1. For the sake of clarity, the figure

presents pointer arithmetic instructions in pseudo code. The

PHI nodes represent locations where data is merged from dif-

ferent control-flows. The numbers in the boxes represent points

assigned by Dowser.

3.1 Building analysis groups

Suppose a pointer p is involved in an “interesting” array

access instruction accp in a loop. The analysis group as-

sociated with accp, AG(accp), collects all instructions

that influence the value of the dereferenced pointer dur-

ing the execution of the loop.

To determine AG(accp), we compute an intraproce-

dural data flow graph representing operations in the loop

that compute the value of p dereferenced in accp. Then,

we check if the graph contains cycles. A cycle indicates

that the value of p in a previous loop iteration affects its

value in the current one, so p depends on the loop induc-

tion variable.

As mentioned before, this part of our work is built on

top of the LLVM [23] compiler infrastructure. The static

single assignment (SSA) form provided by LLVM trans-

lates directly to data flow graphs. Figure 3 shows an ex-

ample. Observe that, since all dereferences of pointer u

share their data flow graph, they also form a single anal-

ysis group. Thus, when Dowser later tries to find an il-

legal array access within this analysis group, it tests all

the dereferences at the same time—there is no need to

consider them separately.

3.2 Conditions guarding analysis groups

It may happen that the data flow associated with an array

pointer is simple, but the value of the pointer is hard to

follow due to some complex control changes. For this

reason, Dowser ranks also control flows: the conditions

that influence an analysis group.

Say that an instruction manipulating the array pointer

p is guarded by a condition on a variable var, e.g.,

if(var<10){*p++=0;}. If the value of var is diffi-

cult to keep track of, so is the value of p. To assess the

complexity of var, Dowser analyzes its data flow, and

determines the analysis group, AG(var) (as discussed

in Section 3.1). Moreover, we recursively analyze the

analysis groups of other variables influencing var and p

inside the loop. Thus, we obtain a number of analysis

groups which we rank in the next step (Section 3.3).

3.3 Scoring array accesses

For each array access realized in a loop, Dowser assesses

the complexity of the analysis groups constructed in Sec-

tions 3.1 and 3.2. For each analysis group, it consid-

ers all instructions, and assigns them points. The more

points an AG cumulatively scores, the more complex it

is. The overall rank of the array access is determined

by the maximum of the scores. Intuitively, it reflects the

most complex component.

The scoring algorithm should provide roughly the

same results for semantically identical code. For this rea-

son, we enforce the optimizations present in the LLVM

compiler (e.g., to eliminate common subexpressions).

This way, we minimize the differences in (the amount

of) instructions arising from the compiler options. More-

over, we analyzed the LLVM code generation strategies,

and defined a powerful set of equivalence rules, which

minimize the variation in the scores assigned to syntac-

tically different but semantically equivalent code. We

highlight them below.

Table 1 introduces all types of instructions, and dis-

cusses their impact on the final score. In principle, all

common instructions involved in array index calculations

are of the order of 10 points, except for the two instruc-

tions that we consider risky: pointer casts and functions

that return non-pointer values used in pointer calculation.

The absolute penalty for each type of instruction is not

very important. However, we ensure that the points re-

flect the difference in complexity between various code

fragments, instead of giving all array accesses the same

score. That is, instructions that complicate the array in-

dex contribute to the score, and instructions that compli-

cate the index a lot also score very high, relative to other

instructions. In Section 6, we compare our complexity

ranking to alternatives.

4 Using tainting to find inputs that matter

Once Dowser has ranked array accesses in loops in or-

der of complexity, we examine them in turn. Typically,

only a small segment of the input affects the execution

of a particular analysis group, so we want to search for

a bug by modifying solely this part of the input, while

keeping the rest constant (refer to Section 5). In the cur-

rent section, we explain how Dowser identifies the link

5

54 22nd USENIX Security Symposium USENIX Association

Instructions Rationale/Equivalence rules Points

Array index manipulations

Basic index arithmetic instr., GetElemPtr, that increases or decreases a pointer by an index, scores the same. 1 or 5

i.e., addition and subtraction Thus, operations on pointers are equivalent to operations on offsets. An instruction

scores 1 if it modifies a value which is not passed to the next loop iteration.

Other index arithmetic instr. These instructions involve more complex pointer calculations than the standard 10

e.g., division, shift, or xor add or sub. Thus, we penalize them more.

Different constant values Multiple constants used to modify a pointer make its value hard to follow. 10

It is easier to keep track of a pointer that always increases by the same value. per value

Constants used to access We assume that compilers handle accesses to structures correctly. We only consider 0

fields of structures constants used to compute the index of an array, and not the address of a field.

Numerical values Though in the context of the loop they are just constants, the compiler cannot 30

determined outside the loop predict their values. Thus they are difficult to reason about and more error prone.

Non-inlined functions Since decoupling the computation of a pointer from its use might easily lead to 500

returning non-pointer values mistakes, we heavily penalize this operation.

Data movement instructions Moving (scalar or pointer) data does not add to the complexity of computations. 0

Pointer manipulations

Load a pointer calculated It denotes retrieving the base pointer of an object, or using memory allocators. We 0

outside the loop treat all remote pointers in the same way - all score 0.

GetElemPtr An LLVM instruction that computes a pointer from a base and offset(s). (See add.) 1 or 5

Pointer cast operations Since the casting instructions often indicate operations that are not equivalent to 100

the standard pointer manipulations (listed above), they are worth a close inspection.

Table 1: Overview of the instructions involved in pointer arithmetic operations, and their penalty points.

between the components of the program input and the

different analysis groups. Observe that this result also

benefits other bug finding tools based on fuzzing, not just

Dowser and concolic execution.

We focus our discussion on an analysis group

AG(accp) associated with an array pointer dereference

accp. We assume that we can obtain a test input I

that exercises the potentially vulnerable analysis group.

While this may not always be true, we believe it is a rea-

sonable assumption. Most vendors have test suites to test

their software and they often contain at least one input

which exercises each complex loop.

4.1 Baseline: dynamic taint analysis

As a basic approach, Dowser performs dynamic taint

analysis (DTA) [31] on the input I (tainting each input

byte with a unique color, and propagating the colors on

data movement and arithmetic operations). Then, it logs

all colors and input bytes involved in the instructions in

AG(accp). Given the format of the input, Dowser maps

these bytes to individual fields. In Figure 1, Dowser finds

out that it is sufficient to treat uri as symbolic.

The problem with DTA, as sketched above, is that it

misses implicit flows (also called control dependencies)

entirely [14, 21]. Such flows have no direct assignment

of a tainted value to a variable—which would be prop-

agated by DTA. Instead, the value of a variable is com-

pletely determined by the value of a tainted variable in

a condition. In Figure 1, even though the value of u in

line 12 is dependent on the tainted character ch in line

11, the taint does not flow directly to u, so DTA would

not report the dependency. Implicit flows are notoriously

hard to track [36, 9], but ignoring them completely re-

duces our accuracy. Dowser therefore employs a solu-

tion that builds on the work by Bao et al. [6], but with a

novel optimization to increase the accuracy of the analy-

sis (Section 4.2).

Like Bao et al. [6], Dowser implements strict control

dependencies. Intuitively, we propagate colors only on

the most informative (or, information preserving) depen-

dencies. Specifically, we require a direct comparison be-

tween a tainted variable and a compile time constant. For

example, in Figure 1, we propagate the color of ch in line

11 to the variables state and u in line 12. However, we

would keep state and u untainted if the condition in

line 11 for instance had been either "if(ch!=’/’)" or

"if(ch<’/’)". As implicit flows are not the focus of

this paper we refer interested readers to [6] for details.

4.2 Field shifting to weed out false dependencies

Improving on the handling of strict control dependen-

cies by Bao et al. [6], described above, Dowser adds a

novel technique to prevent overtainting due to false de-

pendencies. The problems arise when the order of fields

in an input format is not fixed, e.g., as in HTTP, SMTP

(and the commandline for most programs). The approach

from [6] may falsely suggest that a field is dependent on

all fields that were extracted so far.

6

USENIX Association 22nd USENIX Security Symposium 55

Input: Colors in handlers:

Fig. 4: The figure shows how Dowser shuffles an input

to determine which fields really influence an analysis group.

Suppose a parser extracts fields of the input one by one, and the

analysis group depends on the fields B and D (with colors B and

D, respectively). Colors in handlers show on which fields the

subsequent handlers are strictly dependent [6], and the shaded

rectangle indicates the colors propagated to the analysis group.

Excluded colors are left out of our analysis.

For instance, lighttpd reads new header fields in a

loop and compares them to various options, roughly as

follows:

while () {

if(cmp(field, "Content") == 0)

...

else if(cmp(field, "Range") == 0)

...

else exit (-1);

field = extract_new_header_field();

}

As the parser tests for equivalence, the implicit flow will

propagate from one field to the next one, even if there

is no real dependency at all! Eventually, the last field

appears to depend on the whole header.

Dowser determines which options really matter for the

instructions in an analysis group by shifting the fields

whose order is not fixed. Refer to Figure 4, and suppose

we have run the program with options A, B, C, D, and E,

and our analysis group really depends on B and D. Once

the message gets processed, we see that the AG does not

depend on E, so E can be excluded from further analysis.

Since the last observed color, D, has a direct influence on

the AG, it is a true dependence. By performing a circular

shift and re-trying with the order D, A, B, C, E, Dowser

finds only the colors corresponding to A, B, D. Thus, we

can leave C out of our analysis. After the next circular

shift, Dowser reduces the colors to B and D only.

The optimization is based on two observations: (1) the

last field propagated to the AG has a direct influence on

the AG, so it needs to be kept, (2) all fields beyond this

one are guaranteed to have no impact on the AG. By per-

forming circular shifts, and running DTA on the updated

input, Dowser drops the undue dependencies.

Even though this optimization requires some minimal

knowledge of the input, we do not need full understand-

ing of the input grammar, like the contents or effects of

fields. It is sufficient to identify the fields whose order is

not fixed. Fortunately, such information is available for

many applications—especially when vendors test their

own code.

5 Exploring candidate instructions

Once we have learnt which part of the program input in-

fluences the analysis group AG(accp), we fuzz this part,

and we try to nudge the program toward using the pointer

p in an illegal way. More technically, we treat the inter-

esting component of the input as symbolic, the remaining

part as fixed (concrete), and we execute the loop associ-

ated with AG(accp) symbolically.

However, since in principle the cost of a complete loop

traversal is exponential, loops present one of the hard-

est problems for symbolic execution [19]. Therefore,

when analyzing a loop, we try to select those paths that

are most promising in our context. Specifically, Dowser

prioritizes paths that show a potential for knotty pointer

arithmetic. As we show in Section 6, our technique sig-

nificantly optimizes the search for an overflow.

Dowser’s loop exploration procedure has two main

phases: learning, and bug finding. In the learning phase,

Dowser assigns each branch in the loop a weight approx-

imating the probability that a path following this direc-

tion contains new pointer dereferences. The weights are

based on statistics on the variety of pointer values ob-

served during an execution of a short symbolic input.

Next, in the bug finding phase, Dowser uses the

weights determined in the first step to filter our unin-

teresting parts of the loop, and prioritize the important

paths. Whenever the weight associated with a certain

branch is 0, Dowser does not even try to explore it fur-

ther. In the vulnerable nginx parsing loop from which

Figure 1 shows an excerpt, only 19 out of 60 branches

scored a non-zero value, so were considered for the ex-

ecution. In this phase, the symbolic input represents a

real world scenario, so it is relatively long. Therefore, it

would be prohibitively expensive to be analyzed using a

popular symbolic execution tool.

In Section 5.1, we briefly review the general con-

cept of concolic execution, and then we discuss the two

phases in Sections 5.2 and 5.3, respectively.

5.1 Baseline: concrete + symbolic execution

Like DART and SAGE [17, 18], Dowser generates new

test inputs by combining concrete and symbolic execu-

tion. This technique is known as concolic execution [33].

It runs the program on a concrete input, while gather-

ing symbolic constraints from conditional statements en-

countered along the way. To test alternative paths, it sys-

tematically negates the collected constraints, and checks

whether the new set is satisfiable. If so, it yields a new

input. To bootstrap the procedure, Dowser takes a test

input which exercises the analysis group AG(accp).

As mentioned already, a challenge in applying this ap-

proach is how to select the paths to explore first. The

7

56 22nd USENIX Security Symposium USENIX Association

classic solution is to use depth first exploration of the

paths by backtracking [22]. However, since doing so

results in an exponentially growing number of paths to

be tested, the research community has proposed various

heuristics to steer the execution toward unexplored re-

gions. We discuss these techniques in Section 7.

5.2 Phase 1: learning

The aim of the learning phase is to rate the true and

false directions of all conditional branches that depend

on the symbolic input in the loop L. For each branch, we

evaluate the likelihood that a particular outcome will lead

to unique pointer dereferences (i.e., dereferences that we

do not expect to find in the alternative outcome). Thus,

we answer the question of how much we expect to gain

when we follow this path, rather than the alternative. We

encode this information into weights.

Specifically, the weights represent the likelihood of

unique access patterns. An access pattern of the pointer

p is the sequence of all values of p dereferenced during

the execution of the loop. In Figure 1, when we denote

the initial value of u by u0, then the input "//../" trig-

gers the following access pattern of the pointer u: (u0,

u0+1, u0+2, u0-2,...).

To compute the weights, we learn about the effects

of individual branches. In principle, each of them may

(a) directly affect the value of a pointer, (b) be a precon-

dition for another important branch, or (c) be irrelevant

from the computation’s standpoint. To distinguish be-

tween these cases, Dowser analyzes all possible execu-

tions of a short symbolic input. By comparing the sets

of p’s access patterns observed for both outcomes of a

branch, it discovers which branches do not influence the

diversity of pointer dereferences (i.e., are irrelevant).

Symbolic input In Section 4, we identified which part of

the test input I we need to make symbolic. We denote

this by IS. In the learning phase, Dowser executes the

loop L exhaustively. For performance reasons, we there-

fore further limit the amount of symbolic data and make

only a short fragment of IS symbolic. For instance, for

Figure 1, the learning phase makes only the first 4 bytes

of uri symbolic (not enough to trigger the bug), while

scaling up to 50 symbolic bytes in the bug finding phase.

Algorithm Dowser exhaustively executes L on a short

symbolic input, and records how the decisions taken at

conditional branch statements influence pointer derefer-

ence instructions. For each branch b along the execu-

tion path, we retain the access pattern of p realized dur-

ing this execution, AP(p). We informally interpret it as

“if you choose the true (respectively, false) direction

of the branch b, expect access pattern AP(p) (respec-

tively, AP′(p))”. This procedure results in two sets of

access patterns for each branch statement, for the taken

and non-taken branch, respectively. The final weight of

each direction is the fraction of the access patterns that

were unique for the direction in question, i.e., were not

observed when the opposite one was taken.

The above description explains the intuition behind

the learning mechanism, but the full algorithm is more

complicated. The problem is that a conditional branch b

might be exercised multiple times in an execution path,

and it is possible that all the instances of b influence the

access pattern observed.

Intuitively, to allow for it, we do not associate access

patterns with just a single decision taken on b (true or

false). Rather, each time b is exercised, we also retain

which directions were previously chosen for b. Thus, we

still collect “expected” access patterns if the true (re-

spectively, false) direction of b is followed, but we aug-

ment them with a precondition. This way, when we com-

pare the true and false sets to determine the weights

for b, we base the scores on a deeper understanding of

how an access pattern was reached.

Discussion It is important for our algorithm to avoid

false negatives: we should not incorrectly flag a branch

as irrelevant—it would preclude it from being explored

in the bug finding phase. Say that instr is an instruction

that dereferences the pointer p. To learn that a branch

directly influences instr, it suffices to execute it. Sim-

ilarly, since branches retain full access patterns of p, the

information about instr being executed is also “propa-

gated” to all its preconditions. Thus, to completely avoid

false negatives, the algorithm would require full cover-

age of the instructions in an analysis group. We stress

that we need to exercise all instructions, and not all paths

in a loop. As observed by [7], exhaustive executions of

even short symbolic inputs provide excellent instruction

coverage in practice.

While false positives are undesirable as well, they only

cause Dowser to execute more paths in the second phase

than absolutely necessary. Due to the limited path cov-

erage, there are corner cases, when false positives can

happen. Even so, in nginx, only 19 out of 60 branches

scored a non-zero value, which let us execute the com-

plex loop with a 50-byte-long symbolic input.

5.3 Phase 2: hunting bugs

In this step, Dowser executes symbolically a real-world

sized input in the hope of finding a value that triggers a

bug. Dowser uses the feedback from the learning phase

(Section 5.2) to steer its symbolic execution toward new

and interesting pointer dereferences. The goal of our

heuristic is to avoid execution paths that do not bring any

new pointer manipulation instructions. Thus, Dowser

shifts the target of symbolic execution from traditional

code coverage to pointer value coverage.

8

USENIX Association 22nd USENIX Security Symposium 57

Dowser’s strategy is explicitly dictated by the weights.

As a baseline, the execution follows a depth-first explo-

ration, and when Dowser is about to select the direction

of a branch b that depends on the symbolic input, it ad-

heres to the following rules:

• If both the true and false directions of b have

weight 0, we do not expect b to influence the vari-

ety of access patterns. Thus, Dowser chooses the

direction randomly, and does not intend to examine

the other direction.

• If only one direction has a non-zero weight, we ex-

pect to observe unique access patterns only when

the execution paths follows this direction, and

Dowser favors it.

• If both of b’s directions have non-zero weights, both

the true and false options may bring unique ac-

cess patterns. Dowser examines both directions,

and schedules them in order of their weights.

Intuitively, Dowser’s symbolic execution tries to select

paths that are more likely to lead to overflows.

Guided fuzzing This concludes our description of

Dowser’s architecture. To summarize, Dowser helps

fuzzing by: (1) finding “interesting” array accesses,

(2) identifying the inputs that influence the accesses, and

(3) fuzzing intelligently to cover the array. Moreover,

the targeted selection procedure based on pointer value

coverage and the small number of symbolic input values

allow Dowser to find bugs quickly and scale to larger ap-

plications. In addition, the ranking of array accesses per-

mits us to zoom in on more complicated array accesses.

6 Evaluation

In this section, we first zoom in on the running example

of nginx from Figure 1 to evaluate individual compo-

nents of the system in detail (Section 6.1). In Section 6.2,

we consider seven real-world applications. Based on

their vulnerabilities, we evaluate our dowsing mecha-

nism. Finally, we present an overview of the attacks de-

tected by Dowser.

Since Dowser uses a ‘spot-check’ rather than ‘code

coverage’ approach to bug detection, it must analyze

each complex analysis group separately, starting with the

highest ranking one, followed by the second one, and so

on. Each of them runs until it finds a bug or gets termi-

nated. The question is when we should terminate a sym-

bolic execution run. Since symbolic execution of a single

loop is highly optimized in Dowser, we found each bug

in less than 11 minutes, so we execute each symbolic run

for a maximum of 15 minutes.

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

Analysis groups

C
om

pl
ex

ity
 (p

oi
nt

s
sc

or
ed

)

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

threshold (26 points)

Fig. 5: Scores of the analysis groups in nginx.

Our test platform is a Linux 3.1 system with an

Intel(R) Core(TM) i7 CPU clocked at 2.7GHz with

4096KB L2 cache. The system has 8GB of memory. For

our experiments we used an OpenSUSE 12.1 install. We

ran each test multiple times and present the median.

6.1 Case study: Nginx

In this section, we evaluate each of the main steps of our

fuzzer by looking at our case study of nginx in detail.

6.1.1 Dowsing for candidate instructions

We measure how well Dowser highlights potentially

faulty code and filters out the uninteresting fragments.

Our first question is whether we can filter out all the

simple loops and focus on the more interesting ones.

This turns out to be simple. Given the complexity scor-

ing function from Section 3, we find that across all appli-

cations all analysis groups with a score less than 26 use

just a single constant and at most two instructions modi-

fying the offset of an array. Thus, in the remainder of our

evaluation, we set our cut-off threshold to 26 points.

As shown in Table 2, nginx has 517 outermost loops,

and only 140 analysis groups that access arrays. Thus,

we throw out over 70% of the loops immediately3. Fig-

ure 5 presents the sorted weights of all the analysis

groups in nginx. The distribution shows a quick drop

after a few highly complex analysis groups. The long

tail represents the numerous simple loops omnipresent in

any code. 55.7% of the analysis groups score too low to

be of interest. This means that Dowser needs to examine

only the remaining 44.3%, i.e., 62 out of 140 analysis

groups, or at most 12% of all loops. Out of these, the

buffer overflow in Figure 1 ranks 4th.

6.1.2 Taint analysis in context of hunting for bugs

In Section 4 we mentioned that ‘traditional’ dynamic

taint analysis misses implicit flows, i.e., flows that have

3In principle, if a loop accesses multiple arrays, it also contains

multiple access groups. Thus, these 140 analysis groups are located in

fewer than 140 loops.

9

58 22nd USENIX Security Symposium USENIX Association

no direct assignment of a tainted value to a variable. The

problem turns out to be particularly serious for nginx.

It receives input in text format, and transforms it to ex-

tract numerical values or various flags. As such code

employs conditional statements, DTA misses the depen-

dencies between the input and analysis groups.

Next, we evaluate the usefulness of field shifting.

First, we implement the taint propagation exactly as pro-

posed by Bao et al. [6], without any further restrictions.

In that case, an index variable in the nginx parser be-

comes tainted, and we mark all HTTP fields succeeding

the uri field as tainted as well. As a result, we introduce

more symbolic data than necessary. Next, we apply field

shifting (Section 4.2) which effectively limits taint prop-

agation to just the uri field. In general, the field shifting

optimization improves the accuracy of taint propagation

in all applications that take multiple input fields whose

order does not matter. On the other hand, it will not help

if the order is fixed.

6.1.3 Importance of guiding symbolic execution

We now use the nginx example to assess the importance

of guiding symbolic execution to a vulnerability condi-

tion. For nginx, the input message is a generic HTTP re-

quest. Since it exercises the vulnerable loop for this anal-

ysis group, its uri starts with ”//”. Taint analysis allows

us to detect that only the uri field is important, so we

mark only this field as symbolic. As we shall see, with-

out guidance, symbolic execution does not scale beyond

very short uri fields (5-6 byte long). In contrast, Dowser

successfully executes 50-byte-long symbolic uris.

When S2E [10] executes a loop, it can follow one of

the two search strategies: depth-first search, or maximiz-

ing code coverage (as proposed in SAGE [18]). The first

one aims at complete path coverage, and the second at

executing basic blocks that were not seen before. How-

ever, none can be applied in practice to examine the com-

plex loop in nginx. The search is so costly that we mea-

sured the runtime for only 5-6 byte long symbolic uri

fields. The DFS strategy handled the 5-byte-long input

in 139 seconds, the 6-byte-long in 824 seconds. A 7-byte

input requires more than 1 hour to finish. Likewise, the

code coverage strategy required 159, and 882 seconds,

respectively. The code coverage heuristic does not speed

up the search for buffer overflows either, since besides

executing specific instructions from the loop, memory

corruptions require a very particular execution context.

Even if 100% code coverage is reached, they may stay

undetected.

As we explained in Section 5, the strategy employed

by Dowser does not aim at full coverage. Instead, it

actively searches for paths which involve new pointer

dereferences. The learning phase uses a 4-byte-long

symbolic input to observe access patterns in the loop.

It follows a simple depth first search strategy. As the

bug clearly cannot be triggered with this input size, the

search continues in the second, hunting bugs, phase. The

result of the learning phase disables 66% of the condi-

tional branches significantly reducing the exponentially

of the subsequent symbolic execution. Because of this

heuristic, Dowser easily scales up to 50 symbolic bytes

and finds the bug after just a few minutes. A 5-byte-long

symbolic input is handled in 20 seconds, 10 bytes in 42

seconds, 20 bytes in 63 seconds, 30 in 146 seconds, 40

in 174 seconds and 50 in 253 seconds. These numbers

maintain an exponential growth of 1.1 for each added

character. Even though Dowser still exhibits the expo-

nential behavior, the growth rate is fairly low. Even in

the presence of 50 symbolic bytes, Dowser quickly finds

the complex bug.

In practice, symbolic execution has problems dealing

with real world applications and input sizes. The number

of execution paths quickly overwhelms these systems.

Since triggering buffer overflows not only requires a vul-

nerable basic block, but also a special context, traditional

symbolic execution tools are ill suited. Dowser, instead,

requires the application to be executed symbolically for

only a very short input, and then it deals with real-world

input sizes instead of being limited to a few input bytes.

Combined with the ability to extract the relevant parts of

the original input, this enables searching for bugs in ap-

plications like web servers where input sizes were con-

sidered until now to be well beyond the scalability of

symbolic execution tools.

6.2 Overview

In this section, we consider several applications. First,

we evaluate the dowsing mechanism, and we show that

it successfully highlights vulnerable code fragments.

Then, we summarize the memory corruptions detected

by Dowser. They come from six real world applications

of several tens of thousands LoC, including the ffmpeg

videoplayer of 300K LoC. The bug in ffmpeg, and one

of the bugs in poppler were not documented before.

6.2.1 Dowsing for candidate instructions

We now examine several aspects of the dowsing mecha-

nism. First, we show that there is a correlation between

Dowser’s scoring function and the existence of memory

corruption vulnerabilities. Then, we discuss how our fo-

cus on complex loops limits the search space, i.e., the

amount of analysis groups to be tested. We start with a

description of our data set.

Data set To evaluate the effectiveness of Dowser,

we chose six real world programs: nginx, ffmpeg,

10

USENIX Association 22nd USENIX Security Symposium 59

Program Vulnerability Dowsing Symbolic input Symbolic execution

AG score Loops LoC V-S2E M-S2E Dowser

nginx 0.6.32 CVE-2009-2629 4th out of 62/140 517 66k URI field > 8 h > 8 h 253 sec

heap underflow 630 points 50 bytes

ffmpeg 0.5 UNKNOWN 3rd out of 727/1419 1286 300k Huffman table > 8 h > 8 h 48 sec

heap overread 2186 points 224 bytes

inspircd 1.1.22 CVE-2012-1836 1st out of 66/176 1750 45k DNS response 200 sec 200 sec 32 sec

heap overflow 625 points 301 bytes

poppler 0.15.0 UNKNOWN 39th out of 388/904 1737 120k JPEG image > 8 h > 8 h 14 sec

heap overread 1075 points 1024 bytes

poppler 0.15.0 CVE-2010-3704 59th out of 388/904 1737 120k Embedded font > 8 h > 8 h 762 sec

heap overflow 910 points 1024 bytes

libexif 0.6.20 CVE-2012-2841 8th out of 15/31 121 10k EXIF tag/length > 8 h 652 sec 652 sec

heap overflow 501 points 1024 + 4 bytes

libexif 0.6.20 CVE-2012-2840 15th out of 15/31 121 10k EXIF tag/length > 8 h 347 sec 347 sec

off-by-one error 40 points 1024 + 4 bytes

libexif 0.6.20 CVE-2012-2813 15th out of 15/31 121 10k EXIF tag/length > 8 h 277 sec 277 sec

heap overflow 40 points 1024 + 4 bytes

snort 2.4.0 CVE-2005-3252 24th out of 60/174 616 75k UDP packet > 8 h > 8 h 617 sec

stack overflow 246 points 1100 bytes

Table 2: Applications tested with Dowser. The Dowsing section presents the results of Dowser’s ranking scheme. AG score is

the complexity of the vulnerable analysis group - its position among other analysis groups; X/Y denotes all analysis groups that are

”complex enough” to be potentially analyzed/all analysis groups which access arrays; and the number of points it scores. Loops

counts outermost loops in the whole program, and LoC - the lines of code according to sloccount. Symbolic input specifies how

many and which parts of the input were determined to be marked as symbolic by the first two components of Dowser. The last

section shows symbolic execution times until revealing the bug. Almost all applications proved to be too complex for the vanilla

version of S2E (V-S2E). Magic S2E (M-S2E) is the time S2E takes to find the bug when we feed it with an input with only a minimal

symbolic part (as identified in Symbolic input). Finally, the last column is the execution time of fully-fledged Dowser.

inspircd, libexif, poppler, and snort. Addition-

ally, we consider the vulnerabilities in sendmail tested

by Zitser et al. [45]. For these applications, we analyzed

all buffer overflows reported in CVE [26] since 2009. For

ffmpeg, rather than include all possible codecs, we just

picked the ones for which we had test cases. Out of 27

CVE reports, we took 17 for the evaluation. The remain-

ing ten vulnerabilities are out of the scope of this paper –

nine of them are related to an erroneous usage of a cor-

rect function, e.g., strcpy, and one was not in a loop. In

this section, we consider the analysis groups from all the

applications together, giving us over 3000 samples, 17 of

which are known to be vulnerable4.

When evaluating Dowser’s scoring mechanism, we

also compare it to a straightforward scoring function that

treats all instructions uniformly. For each array access, it

considers exactly the same AGs as Dowser. However, in-

stead of the scoring algorithm (Table 1), each instruction

gets 10 points. We will refer to this metric as count.

Correlation For both Dowser’s and the count scor-

ing functions, we computed the correlation between the

number of points assigned to an analysis group and the

existence of a memory corruption vulnerability. We used

4Since the scoring functions are application agnostic, it is sound to

compare their results across applications.

the Spearman rank correlation [2], since it is a reliable

measure that is appropriate even when we do not know

the probability distribution of the variables, or when the

association between the variables is non-linear.

The positive correlation for Dowser is statistically sig-

nificant at p < 0.0001, for count — at p < 0.005. The

correlation for Dowser is stronger.

Dowsing The Dowsing columns of Table 2 shows that

our focus on complex loops limits the search space from

thousands of LoC to hundreds of loops, and finally to a

small number of “interesting” analysis groups. Observe

that ffmpeg has more analysis groups than loops. That

is correct. If a loop accesses multiple arrays, it contains

multiple analysis groups.

By limiting the analysis to complex cases, we focus

on a smaller fraction of all AGs in the program, e.g., we

consider 36.9% of all the analysis groups in inspircd,

and 34.5% in snort. ffmpeg, on the other hand, con-

tains lots of complex loops that decode videos, so we also

observe many “complex” analysis groups.

In practice, symbolic execution, guided or not is ex-

pensive, and we can hardly afford a thorough analysis of

more than just a small fraction of the target AGs of an ap-

plication, say 20%-30%. For this reason, Dowser uses a

scoring function, and tests the analysis groups in order of

11

60 22nd USENIX Security Symposium USENIX Association

0 20 40 60 80 100
% of analysis groups analyzed

%
 o

f b
ug

s
de

te
ct

ed

0

20

40

60

80

100

Dowser
Count
Random

Fig. 6: A comparison of random testing and two scoring func-

tions: Dowser’s and count. It illustrates how many bugs we

detect if we test a particular fraction of the analysis groups.

decreasing score. Specifically, Dowser looks at complex-

ity. However, alternative heuristics are also possible. For

instance, one may count the instructions that influence

array accesses in an AG. To evaluate whether Dowser’s

heuristics are useful, we compare how many bugs we dis-

cover if we examine increasing fractions of all AGs, in

descending order of the score. So, we determine how

many of the bugs we find if we explore the top 10% of

all AGs, how many bugs we find when we explore the

top 20%, and so on. In our evaluation, we are comparing

the following ranking functions: (1) Dowser’s complex-

ity metric, (2) counting instructions as described above,

and (3) random.

Figure 6 illustrates the results. The random ranking

serves as a baseline—clearly both count and Dowser

perform better. In order to detect all 17 bugs, Dowser

has to analyze 92.2% of all the analysis groups. How-

ever, even with just 15% of the targets, we find almost

80% (13/17) of all the bugs. At that same fraction of

targets, count finds a little over 40% of the bugs (7/17).

Overall, Dowser outperforms count beyond the 10% in

the ranking. It also reaches the 100% bug score earlier

than the alternatives, although the difference is minimal.

The reason why Dowser still requires 92% of the AGs

to find all bugs, is that some of the bugs were very sim-

ple. The “simplest” cases include a trivial buffer over-

flow in poppler (worth 16 points), and two vulnera-

bilities in sendmail from 1999 (worth 20 points each).

Since Dowser is designed to prioritize complex array ac-

cesses, these buffer overflows end up in the low scoring

group. (The “simple” analysis groups – with less than 26

points – start at 47.9%). Clearly, both heuristics provide

much better results than random sampling. Except for

the tail, they find the bugs significantly quicker, which

proves their usefulness.

To summarize, we have shown that a testing strategy

based on Dowser’s scoring function is effective. It lets

us find vulnerabilities quicker than random testing or a

scoring function based on the length of an analysis group.

6.2.2 Symbolic execution

Table 2 presents attacks detected by Dowser. The last

section shows how long it takes before symbolic execu-

tion detects the bug. Since the vanilla version of S2E

cannot handle these applications with the whole input

marked as symbolic, we also run the experiments with

minimal symbolic inputs (“Magic S2E”). It represents

the best-case scenario when an all-knowing oracle tells

the execution engine exactly which bytes it should make

symbolic. Finally, we present Dowser’s execution times.

We run S2E for as short a time as possible, e.g., a

single request/response in nginx and transcoding a sin-

gle frame in ffmpeg. Still, in most applications, vanilla

S2E fails to find bugs in a reasonable amount of time.

inspircd is an exception, but in this case we explic-

itly tested the vulnerable DNS resolver only. In the case

of libexif, we can see no difference between “Magic

S2E” and Dowser, so Dowser’s guidance did not influ-

ence the results. The reason is that our test suite here

was simple, and the execution paths reached the vulner-

ability condition quickly. In contrast, more complex ap-

plications process the inputs intensively, moving sym-

bolic execution away from the code of interest. In all

these cases, Dowser finds bugs significantly faster. Even

if we take the 15 minute tests of higher-ranking analy-

sis groups into account, Dowser provides a considerable

improvement over existing systems.

7 Related work

Dowser is a ’guided’ fuzzer which draws on knowledge

from multiple domains. In this section, we place our sys-

tem in the context of existing approaches. We start with

the scoring function and selection of code fragments.

Next, we discuss traditional fuzzing. We then review

previous work on dynamic taint analysis in fuzzing, and

finally, discuss existing work on whitebox fuzzing and

symbolic execution.

Software complexity metrics Many studies have shown

that software complexity metrics are positively corre-

lated with defect density or security vulnerabilities [29,

35, 16, 44, 35, 32]. However, Nagappan et al. [29] ar-

gued that no single set of metrics fits all projects, while

Zimmermann et al. [44] emphasize a need for metrics

that exploit the unique characteristics of vulnerabilities,

e.g., buffer overflows or integer overruns. All these ap-

proaches consider the broad class of post-release defects

or security vulnerabilities, and consider a very generic

set of measurements, e.g., the number of basic blocks in a

function’s control flow graph, the number of global or lo-

cal variables read or written, the maximum nesting level

12

USENIX Association 22nd USENIX Security Symposium 61

of if or while statements and so on. Dowser is very dif-

ferent in this respect, and to the best of our knowledge,

the first of its kind. We focus on a narrow group of secu-

rity vulnerabilities, i.e., buffer overflows, so our scoring

function is tailored to reflect the complexity of pointer

manipulation instructions.

Traditional fuzzing Software fuzzing started in earnest

in the 90s when Miller et al. [25] described how they

fed random inputs to (UNIX) utilities, and managed

to crash 25-33% of the target programs. More ad-

vanced fuzzers along the same lines, like Spike [39],

and SNOOZE [5], deliberately generate malformed in-

puts, while later fuzzers that aim for deeper bugs are

often based on the input grammar (e.g., Kaksonen [20]

and [40]). DeMott [13] offers a survey of fuzz testing

tools. As observed by Godefroid et al. [18], traditional

fuzzers are useful, but typically find only shallow bugs.

Application of DTA to fuzzing BuzzFuzz [15] uses

DTA to locate regions of seed input files that influence

values used at library calls. They specifically select li-

brary calls, as they are often developed by different peo-

ple than the author of the calling program and often lack

a perfect description of the API. Buzzfuzz does not use

symbolic execution at all, but uses DTA only to ensure

that they preserve the right input format. Unlike Dowser,

it ignores implicit flows completely, so it could never find

bugs such as the one in nginx (Figure 1). In addition,

Dowser is more selective in the application of DTA. It’s

difficult to assess which library calls are important and

require a closer inspection, while Dowser explicitly se-

lects complex code fragments.

TaintScope [42] is similar in that it also uses DTA to

select fields of the input seed which influence security-

sensitive points (e.g., system/library calls). In addi-

tion, TaintScope is capable of identifying and bypassing

checksum checks. Like Buzzfuzz, it differs from Dowser

in that it ignores implicit flows and assumes only that li-

brary calls are the interesting points. Unlike BuzzFuzz,

TaintScope operates at the binary level, rather than the

source.

Symbolic-execution-based fuzzing Recently, there has

been much interest in whitebox fuzzing, symbolic ex-

ecution, concolic execution, and constraint solving.

Examples include EXE [8], KLEE [7], CUTE [33],

DART [17], SAGE [18], and the work by Moser et

al. [28]. Microsoft’s SAGE, for instance, starts with a

well-formed input and symbolically executes the pro-

gram under test in attempt to sweep through all feasi-

ble execution paths of the program. While doing so,

it checks security properties using AppVerifier. All of

these systems substitute (some of the) program inputs

with symbolic values, gather input constraints on a pro-

gram trace, and generate new input that exercises differ-

ent paths in the program. They are very powerful, and

can analyze programs in detail, but it is difficult to make

them scale (especially if you want to explore many loop-

based array accesses). The problem is that the number of

paths grows very quickly.

Zesti [24] takes a different approach and executes

existing regression tests symbolically. Intuitively, it

checks whether they can trigger a vulnerable condition

by slightly modifying the test input. This technique

scales better and is useful for finding bugs in paths in

the neighborhood of existing test suites. It is not suit-

able for bugs that are far from these paths. As an ex-

ample, a generic input which exercises the vulnerable

loop in Figure 1 has the uri of the form ”//{arbitrary

characters}”, and the shortest input triggering the bug is

”//../”. When fed with ”//abc”, [24] does not find

the bug—because it was not designed for this scenario.

Instead, it requires an input which is much closer to the

vulnerability condition, e.g., ”//..{an arbitrary char-

acter}”. For Dowser, the generic input is sufficient.

SmartFuzz [27] focuses on integer bugs. It uses

symbolic execution to construct test cases that trigger

arithmetic overflows, non-value-preserving width con-

versions, or dangerous signed/unsigned conversions. In

contrast, Dowser targets the more common (and harder

to find) case of buffer overflows. Finally, Babić et al. [4]

guide symbolic execution to potentially vulnerable pro-

gram points detected with static analysis. However, the

interprocedural context- and flow-sensitive static analy-

sis proposed does not scale well to real world programs

and the experimental results contain only short traces.

8 Conclusion

Dowser is a guided fuzzer that combines static analysis,

dynamic taint analysis, and symbolic execution to find

buffer overflow vulnerabilities deep in a program’s logic.

It starts by determining ‘interesting’ array accesses, i.e.,

accesses that are most likely to harbor buffer overflows.

It ranks these accesses in order of complexity—allowing

security experts to focus on complex bugs, if so de-

sired. Next, it uses taint analysis to determine which in-

puts influence these array accesses and fuzzes only these

bytes. Specifically, it makes (only) these bytes symbolic

in the subsequent symbolic execution. Where possible

Dowser’s symbolic execution engine selects paths that

are most likely to lead to overflows. Each three of the

steps contain novel contributions in and of themselves

(e.g., the ranking of array accesses, the implicit flow

handling in taint analysis, and the symbolic execution

based on pointer value coverage), but the overall contri-

bution is a new, practical and complete fuzzing approach

that scales to real applications and complex bugs that

would be hard or impossible to find with existing tech-

13

62 22nd USENIX Security Symposium USENIX Association

niques. Moreover, Dowser proposes a novel ‘spot-check’

approach to finding buffer overflows in real software.

Acknowledgment

This work is supported by the European Research Coun-

cil through project ERC-2010-StG 259108-ROSETTA,

the EU FP7 SysSec Network of Excellence and by

the Microsoft Research PhD Scholarship Programme

through the project MRL 2011-049. The authors would

like to thank Bartek Knapik for his help in designing the

statistical evaluation.

References

[1] CVE-2009-2629: Buffer underflow vulnerability in ng-

inx. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-

2629, 2009.

[2] ACZEL, A. D., AND SOUNDERPANDIAN, J. Complete Business

Statistics, sixth ed. McGraw-Hill, 2006.

[3] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA, M., AND

CASTRO, M. Preventing memory error exploits with WIT. In

Proceedings of the 2008 IEEE Symposium on Security and Pri-

vacy (2008), S&P’08.

[4] BABIĆ, D., MARTIGNONI, L., MCCAMANT, S., AND SONG,

D. Statically-directed dynamic automated test generation. In

Proceedings of the 2011 International Symposium on Software

Testing and Analysis (2011), ISSTA’11.

[5] BANKS, G., COVA, M., FELMETSGER, V., ALMEROTH, K.,

KEMMERER, R., AND VIGNA, G. SNOOZE: toward a stateful

network protocol fuzZEr. In Proceedings of the 9th international

conference on Information Security (2006), ISC’06.

[6] BAO, T., ZHENG, Y., LIN, Z., ZHANG, X., AND XU, D. Strict

control dependence and its effect on dynamic information flow

analyses. In Proceedings of the 19th International Symposium on

Software testing and analysis (2010), ISSTA’10.

[7] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted

and automatic generation of high-coverage tests for complex sys-

tems programs. In Proceedings of the 8th USENIX Symposium on

Operating Systems Design and Implementation (2008), OSDI’08.

[8] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L.,

AND ENGLER, D. R. EXE: Automatically generating inputs of

death. In CCS ’06: Proceedings of the 13th ACM conference on

Computer and communications security (2006).

[9] CAVALLARO, L., SAXENA, P., AND SEKAR, R. On the Limits

of Information Flow Techniques for Malware Analysis and Con-

tainment. In Proceedings of the Fifth Conference on Detection

of Intrusions and Malware & Vulnerability Assessment (2008),

DIMVA’08.

[10] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A

platform for in vivo multi-path analysis of software systems. In

Proceedings of the 16th Intl. Conference on Architectural Support

for Programming Languages and Operating Systems (2011), AS-

PLOS’11.

[11] COWAN, C., PU, C., MAIER, D., HINTONY, H., WALPOLE, J.,

BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND ZHANG,

Q. StackGuard: Automatic Adaptive Detection and Prevention

of Buffer-Overflow Attacks. In Proceedings of the 7th USENIX

Security Symposium (1998), SSYM’98.

[12] CWE/SANS. CWE/SANS TOP 25 Most Dangerous Soft-

ware Errors. www.sans.org/top25-software-errors,

2011.

[13] DEMOTT, J. The evolving art of fuzzng. DEFCON 14,

http://www.appliedsec.com/files/The_Evolving_Art_of_Fuzzing.odp

2005.

[14] FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The

program dependence graph and its use in optimization. ACM

Trans. Program. Lang. Syst. 9 (1997), 319–349.

[15] GANESH, V., LEEK, T., AND RINARD, M. Taint-based directed

whitebox fuzzing. In Proceedings of the 31st International Con-

ference on Software Engineering (2009), ICSE’09.

[16] GEGICK, M., WILLIAMS, L., OSBORNE, J., AND VOUK,

M. Prioritizing software security fortification through code-level

metrics. In Proc. of the 4th ACM workshop on Quality of protec-

tion (Oct. 2008), QoP’08, ACM Press.

[17] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: di-

rected automated random testing. In Proceedings of the 2005

ACM SIGPLAN conference on Programming language design

and implementation (2005), PLDI’05.

[18] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. A. Auto-

mated Whitebox Fuzz Testing. In Proceedings of the 15th Annual

Network and Distributed System Security Symposium (2008),

NDSS’08.

[19] GODEFROID, P., AND LUCHAUP, D. Automatic partial loop

summarization in dynamic test generation. In Proceedings of the

2011 International Symposium on Software Testing and Analysis

(2011), ISSTA’11.

[20] KAKSONEN, R. A functional method for assessing protocol im-

plementation security. Tech. Rep. 448, VTT, 2001.

[21] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND SONG,

D. DTA++: Dynamic taint analysis with targeted control-flow

propagation. In Proceedings of the 18th Annual Network and

Distributed System Security Symposium (2011), NDSS’11.

[22] KHURSHID, S., PĂSĂREANU, C. S., AND VISSER, W. Gener-

alized symbolic execution for model checking and testing. In

Proceedings of the 9th international conference on Tools and

algorithms for the construction and analysis of systems (2003),

TACAS’03.

[23] LATTNER, C., AND ADVE, V. LLVM: A compilation framework

for lifelong program analysis & transformation. In Proceedings

of the international symposium on Code generation and optimiza-

tion (2004), CGO’04.

[24] MARINESCU, P. D., AND CADAR, C. make test-zesti: a sym-

bolic execution solution for improving regression testing. In

Proc. of the 2012 International Conference on Software Engi-

neering (June 2012), ICSE’12, pp. 716–726.

[25] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An empirical

study of the reliability of UNIX utilities. Commun. ACM 33 (Dec

1990), 32–44.

[26] MITRE. Common Vulnerabilities and Exposures (CVE).

http://cve.mitre.org/, 2011.

[27] MOLNAR, D., LI, X. C., AND WAGNER, D. A. Dynamic test

generation to find integer bugs in x86 binary linux programs. In

Proceedings of the 18th conference on USENIX security sympo-

sium (2009), SSYM’09.

[28] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring multiple

execution paths for malware analysis. In Proceedings of the 2007

IEEE Symposium on Security and Privacy (2007), SP’07, IEEE

Computer Society.

[29] NAGAPPAN, N., BALL, T., AND ZELLER, A. Mining metrics to

predict component failures. In Proceedings of the 28th interna-

tional conference on Software engineering (2006), ICSE’06.

14

USENIX Association 22nd USENIX Security Symposium 63

[30] NETHERCOTE, N., AND SEWARD, J. Valgrind: A Framework

for Heavyweight Dynamic Binary Instrumentation. In Proceed-

ings of the Third International ACM SIGPLAN/SIGOPS Confer-

ence on Virtual Execution Environments (2007), VEE’07.

[31] NEWSOME, J., AND SONG, D. Dynamic taint analysis: Au-

tomatic detection, analysis, and signature generation of exploit

attacks on commodity software. In Proceedings of the Network

and Distributed Systems Security Symposium (2005), NDSS’05.

[32] NGUYEN, V. H., AND TRAN, L. M. S. Predicting vulnerable

software components with dependency graphs. In Proc. of the 6th

International Workshop on Security Measurements and Metrics

(Sept. 2010), MetriSec’10, ACM Press.

[33] SEN, K., MARINOV, D., AND AGHA, G. CUTE: a concolic

unit testing engine for C. In Proceedings of the 10th European

software engineering conference held jointly with 13th ACM SIG-

SOFT international symposium on Foundations of software engi-

neering (2005), ESEC/FSE-13.

[34] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND

VYUKOV, D. AddressSanitizer: A fast address sanity checker.

In Proceedings of USENIX Annual Technical Conference (2012).

[35] SHIN, Y., AND WILLIAMS, L. An initial study on the use of

execution complexity metrics as indicators of software vulner-

abilities. In Proceedings of the 7th International Workshop on

Software Engineering for Secure Systems (2011), SESS’11.

[36] SLOWINSKA, A., AND BOS, H. Pointless tainting?: evaluating

the practicality of pointer tainting. In EuroSys ’09: Proceed-

ings of the 4th ACM European conference on Computer systems

(2009).

[37] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Body Armor

for Binaries: preventing buffer overflows without recompilation.

In Proceedings of USENIX Annual Technical Conference (2012).

[38] SOTIROV, A. Modern exploitation and memory pro-

tection bypasses. USENIX Security invited talk,

http://www.usenix.org/events/sec09/tech/slides/sotirov.pdf,

2009.

[39] SPIKE. http://www.immunitysec.com/resources-freesoftware.shtml.

[40] SUTTON, M., GREENE, A., AND AMINI, P. Fuzzing: Brute

Force Vulnerability Discovery. Addison-Wesley Professional,

2007.

[41] VAN DER VEEN, V., DUTT-SHARMA, N., CAVALLARO, L.,

AND BOS, H. Memory Errors: The Past, the Present, and the

Future. In Proceedings of The 15th International Symposium on

Research in Attacks, Intrusions and Defenses (2012), RAID’12.

[42] WANG, T., WEI, T., GU, G., AND ZOU, W. TaintScope: A

Checksum-Aware Directed Fuzzing Tool for Automatic Software

Vulnerability Detection. In Proceedings of the 31st IEEE Sympo-

sium on Security and Privacy (2010), SP’10.

[43] WILLIAMS, N., MARRE, B., AND MOUY, P. On-the-Fly Gener-

ation of K-Path Tests for C Functions. In Proceedings of the 19th

IEEE international conference on Automated software engineer-

ing (2004), ASE’04.

[44] ZIMMERMANN, T., NAGAPPAN, N., AND WILLIAMS, L.

Searching for a Needle in a Haystack: Predicting Security Vul-

nerabilities for Windows Vista. In Proc. of the 3rd International

Conference on Software Testing, Verification and Validation (Apr.

2010), ICST’10.

[45] ZITSER, M., LIPPMANN, R., AND LEEK, T. Testing static anal-

ysis tools using exploitable buffer overflows from open source

code. In Proc. of the 12th ACM SIGSOFT twelfth international

symposium on Foundations of software engineering (Nov. 2004),

SIGSOFT ’04/FSE-12.

15

USENIX Association 22nd USENIX Security Symposium 65

MetaSymploit: Day-One Defense Against Script-based Attacks with
Security-Enhanced Symbolic Analysis

Ruowen Wang, Peng Ning, Tao Xie, Quan Chen
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
{rwang9, pning, qchen10}@ncsu.edu, xie@csc.ncsu.edu

Abstract
A script-based attack framework is a new type of cyber-
attack tool written in scripting languages. It carries var-
ious attack scripts targeting vulnerabilities across differ-
ent systems. It also supports fast development of new at-
tack scripts that can even exploit zero-day vulnerabilities.
Such mechanisms pose a big challenge to the defense
side since traditional malware analysis cannot catch up
with the emerging speed of new attack scripts. In this
paper, we propose MetaSymploit, the first system of fast
attack script analysis and automatic signature generation
for a network Intrusion Detection System (IDS). As soon
as a new attack script is developed and distributed, Meta-
Symploit uses security-enhanced symbolic execution to
quickly analyze the script and automatically generate
specific IDS signatures to defend against all possible at-
tacks launched by this new script from Day One. We im-
plement a prototype of MetaSymploit targeting Metas-
ploit, the most popular penetration framework. In the
experiments on 45 real attack scripts, MetaSymploit au-
tomatically generates Snort IDS rules as signatures that
effectively detect the attacks launched by the 45 scripts.
Furthermore, the results show that MetaSymploit sub-
stantially complements and improves existing Snort rules
that are manually written by the official Snort team.

1 Introduction

Over the years, with rapid evolution of attacking tech-
niques, script-based attack frameworks have emerged
and become a new threat [2, 3, 6, 39]. A script-based at-
tack framework is an attack-launching platform written
in scripting languages, such as Ruby and Python. Such
framework carries various attack scripts, each of which
exploits one or more vulnerabilities of a specific applica-
tion across multiple versions. With the high productivity
of using scripting languages, attackers can easily develop
new attack scripts to exploit new vulnerabilities.

To launch an attack, an attacker runs an attack script on
the framework remotely. By probing a vulnerable target
over the network, the attack script dynamically composes
an attack payload, and sends the payload to the target to
exploit the vulnerability. The attack framework also pro-
vides many built-in components with APIs of various at-
tack functionalities to support rapid development of new
attack scripts. Once a zero-day vulnerability is found,
a new attack script can be quickly developed and dis-
tributed in hacking communities, where other attackers
even script kiddies can directly download the new script
to launch attacks exploiting the zero-day vulnerability.

A well-known example of the script-based attack
frameworks is Metasploit [3], the most popular Ruby-
based penetration framework. It has more than 700
attack scripts targeting various vulnerable applications
on different operating systems (OSes). It also pro-
vides built-in components for creating new attack scripts.
Metasploit was originally developed for penetration test-
ing using proof-of-concept scripts. But with years of im-
provements, it has become a full-fledged attack frame-
work. Unfortunately, as an open source project, Metas-
ploit can be easily obtained and used by attackers for
illegal purposes. For example, it was reported that the
well-known worm “Conficker” used a payload generated
by Metasploit to spread [5]. A Metasploit attack script
was immediately distributed after a zero-day vulnerabil-
ity was found in Java 7 [32]. A four-year empirical study
shows real malicious network traffic related to Metas-
ploit on a worldwide scale. Moreover, the study shows
that many Metasploit attack scripts are used by attack-
ers almost immediately after the scripts are distributed in
hacking communities [33].

When a new attack script is distributed and captured
by security vendors, the traditional approach to defend
against it is to first set up a controlled environment with
a vulnerable application installed. Then security analysts
repeatedly run the script to exploit the environment over
a monitored network, collecting a large number of at-

66 22nd USENIX Security Symposium USENIX Association

tack payload samples, and finally extract common pat-
terns from the samples to generate IDS signatures.

However, with the attack framework, new attack
scripts can be quickly developed and distributed to ex-
ploit the latest vulnerabilities. This poses a great chal-
lenge that the traditional approach can hardly catch up
with the release speed of new attacks, due to the time-
consuming process of setting up test environments and
analyzing attack payload samples. In our evaluation
(Section 5), we observe that even the latest Snort IDS
rules written by security analysts cannot detect many
Metasploit-based attacks.

In this paper, we propose MetaSymploit, the first sys-
tem of fast attack script analysis and automatic IDS sig-
nature generation. As soon as a new attack script is dis-
tributed, MetaSymploit quickly analyzes the attack script
and automatically generates IDS signatures of its attack
payloads, thereby providing defense against new attacks
launched by this script from Day One. Particularly,
MetaSymploit gives the first aid to zero-day vulnerabil-
ities whose security patches are not available while the
attack scripts that exploit them are already distributed.

Specifically, MetaSymploit leverages symbolic execu-
tion while enhancing it with several security features de-
signed for attack script analysis and signature genera-
tion. By treating environment-dependent values as sym-
bolic values, MetaSymploit symbolically executes attack
scripts without interacting with actual environments or
vulnerable applications, thus substantially reducing the
time and cost of the analysis. With path exploration of
symbolic execution, MetaSymploit also explores differ-
ent execution paths in an attack script, exposing different
attack behaviors and payloads that the script produces
under different attack conditions.

To generate signatures of attack payloads, instead of
analyzing large volumes of payload samples, MetaSym-
ploit keeps track of the payload composing process in the
attack script during symbolic execution. MetaSymploit
uses symbolic values to represent variant contents in a
payload (e.g., random paddings), in order to distinguish
constant contents (e.g., vulnerability-trigger bytes) from
variant ones. When the script sends a composed payload
to launch an attack, MetaSymploit captures the payload’s
entire contents, extracts constant contents as patterns and
generates a signature specific to this payload.

In a case study, we implement a security-enhanced
symbolic execution engine for Ruby, develop MetaSym-
ploit as a practical tool targeting Metasploit, and gener-
ate Snort rules as IDS signatures. Particularly, instead
of heavily modifying the script interpreters, we design
a lightweight symbolic execution engine running on un-
modified interpreters. This lightweight design can keep
pace with the continuous upgrades of the language syn-
tax and interpreter (e.g., Ruby 1.8/1.9/2.0). Therefore,

our design supports analyzing attack scripts written in
different versions of the scripting language.

We evaluate MetaSymploit using real-world attack
scripts. We assess our automatically generated Snort
rules by launching attacks using 45 real-world Metas-
ploit attack scripts from exploit-db.com, including
one that exploits a zero-day vulnerability in Java 7. Our
rules successfully detect the attack payloads launched by
the 45 scripts. Furthermore, we also compare our rules
with the official Snort rule set written by security ana-
lysts, and have three findings: (1) the official rule set is
incomplete and 23 of the 45 attack scripts are not cov-
ered by the official rule set; (2) for the scripts covered by
the official rules, our rules share similar but more spe-
cific patterns with the official ones; (3) our studies also
expose 3 deficient official rules that fail to detect Metas-
ploit attacks. Therefore, MetaSymploit is a helpful com-
plement to improve the completeness and accuracy of ex-
isting IDS signatures to defend against attack scripts.

In summary, we make three major contributions:

1. We point out the security issues of script-based at-
tacks, and propose a scalable approach called Meta-
Symploit that uses security-enhanced symbolic ex-
ecution to automatically analyze attack scripts and
generate IDS signatures for defense.

2. We implement a security-enhanced symbolic execu-
tion engine for Ruby and develop a practical tool for
the popular Metasploit attack framework. Our tool
can generate Snort rules to defend against newly
distributed Metasploit attack scripts from Day One.

3. We demonstrate the effectiveness of MetaSymploit
using recent Metasploit attack scripts in real-world
attack environments, and also show that Meta-
Symploit can complement and improve existing
manually-written IDS signatures.

2 Background

We first give the background of how an attack script
works. Generally, when an attack script runs on top of an
attack framework, the script performs four major steps
to launch an attack. (1) The script probes the version
and runtime environment of the vulnerable target over
the network. (2) Based on the probing result and the
script’s own hard-coded knowledge base, the script iden-
tifies the specific vulnerability existing in this target. The
knowledge base is usually a list containing the informa-
tion (e.g., vulnerable return addresses) of all targets that
this script can attack. (3) Then the script dynamically
composes an attack payload customized for this target.
(4) Finally, the script sends the payload to the target to
exploit the vulnerability.

USENIX Association 22nd USENIX Security Symposium 67

1 def exploit
2 connect()
3 preamble = "\x00\x4d\x00\x03\x00\x01"
4 version = probe_ver()
5 if version == 5
6 payload = prep_ark5()
7 else
8 payload = prep_ark4()
9 end

10 preamble << payload.length
11 sock.put(preamble) # Required by protocol
12 sock.get_once()
13 sock.put(payload) # Send attack payload
14 sock.get_once()
15 ... # vulnerability triggered
16 end
17 def prep_ark5()
18 payload = shellcode()
19 payload << rand_alpha(1167 -

payload.length)
20 payload << "\xe98" + [-1172].pack("V")
21 payload << "\xeb\xf9"
22 payload << get_target_ret(5) # Tar_Ver: 5
23 payload << rand_alpha(4096 -

payload.length)
24 return payload
25 end

Listing 1: The code snippet from a real Metasploit attack script
type77.rb [4] (slightly modified for better presentation)

Depending on the attack strategy and vulnerability
type, different scripts may have different attack behav-
iors when performing these steps. For example, a brute-
force attack may keep composing and sending payloads
with guessed values until the target is compromised,
while a stealthy attack may carefully clean up the trace
in the target’s log after sending the payload.

Among these steps, composing and sending an attack
payload are the key steps of launching an attack. An at-
tack payload is typically a string of bytes composed with
four elements: (a) special and fixed bytes that can ex-
ploit a specific vulnerability; (b) an arbitrary shellcode
that attackers choose to execute after the vulnerability is
exploited. The shellcode content is usually variant, espe-
cially when obfuscated; (c) random or special paddings
(e.g., NOP 0x90) that make the payload more robust; (d)
other format bytes required by network protocols.

With the help of the rich libraries of scripting lan-
guages and the built-in components provided by the at-
tack framework, an attack script can call APIs of related
libraries or components to help it perform each step, es-
pecially composing an attack payload.

As an example, Listing 1 shows a Ruby code snip-
pet extracted from a real Metasploit attack script exploit-
ing a vulnerable application called Arkeia. In the ex-
ample, the script defines two methods. exploit is the
main method that performs the major steps to launch the
attack. prep ark5 is one of the payload composing
methods. When the script runs on Metasploit, it first

alert tcp any any -> any 617 (
msg:"Script: type77 (Win), Target Version: 5,

Behavior: Version Probing, Stack Overflow,
Pattern: JMP to Shellcode with

Vul_Ret_Addr";
content:
"|e9 38 6c fb ff ff eb f9 ad 32 aa 71|";
pcre:"/[.]{1167}\xe9\x38\x6c\xfb\xff\xff\xeb\

xf9\xad\x32\xaa\x71[a-zA-Z]{2917}/";
classtype:shellcode-detect; sid:5000656;)

Listing 2: One Snort rule signature generated for the attack payload
composed by prep ark5.

connects to the target over the network (Line 2), and then
probes the target’s version (Line 4). Here both connect
and probe ver are API methods of a built-in network
protocol component. Based on the version, it calls the
corresponding method to start composing the attack pay-
load specific to the target (Lines 5-9).

When prep ark5 is called, the payload is first as-
signed by the shellcode component, which returns a con-
figured shellcode (Line 18). Note that the shellcode can
be freely chosen and obfuscated. The shellcode compo-
nent offers several different shellcodes for different pur-
poses. Then the payload is appended (<<) with several
contents (Lines 19-23). rand alpha generates random
alphabet padding to not only extend the payload to the
required size of the network protocol, but also introduce
more randomness for evasion. The concrete bytes repre-
sent some assembly code that will jump to the shellcode
(e.g., “\xeb\xf9” and “\xe9” are two JMP instructions).
pack("V") converts the integer to bytes as the offset
of one JMP. get target ret is another attack frame-
work API that queries the script’s knowledge base (omit-
ted here due to space limit, please refer to [4]) to retrieve
the exploitable return address based on the target ver-
sion, which can hijack the control flow1 (Line 22). After
the payload is composed, the script first sends a pream-
ble packet to the target, followed by the attack payload
packet to exploit the vulnerability (Lines 11-13).

Popular attack frameworks provide plenty of built-in
components covering various network protocols, OSes,
and offering different shellcodes and NOP paddings,
which enable attackers to quickly develop new attack
scripts to exploit different targets. Furthermore, ad-
vanced attackers can create even sophisticated attack
scripts, which have multiple execution paths performing
different attack behaviors and payloads. Some of them
may be triggered only under certain attack conditions.

Therefore, the traditional approach that requires both
controlled environments and vulnerable applications is
not scalable for analyzing attack scripts. Since differ-

1In [4], the exploitable return address actually points to a
POP/POP/RET instruction sequence, which is a typical SEH-based at-
tack to hijack control flow in Windows.

68 22nd USENIX Security Symposium USENIX Association

ent attack scripts target different applications and OSes,
it is costly and time-consuming to obtain every applica-
tion (let alone the expensive commercial ones) and set
up environments for every OS. It is even harder to cre-
ate different attack conditions to expose different attack
behaviors and payloads in sophisticated attack scripts.

3 MetaSymploit

In this section, we first state the problem and assumptions
we focus on, and then give an overview of MetaSymploit,
followed by the detailed techniques in its two core parts.

3.1 Problem Statement and Assumptions
Problem Statement. We focus on the problem caused
by script-based attack frameworks and their attack
scripts: how to provide an automated mechanism that
can analyze and defend against newly distributed attack
scripts. Particularly, the mechanism should be time-
efficient in order to address the security issues caused by
two major features of attack scripts: a large number of
scripts with wide-ranging targets, and fast development
and distribution of new scripts that can be directly used
to exploit zero-day vulnerabilities.
Assumptions. We assume that both script-based at-
tack frameworks and attack scripts are available from
either public or underground hacking communities. As
soon as a new attack script is distributed, it can be
immediately captured and analyzed. We also assume
that the scripting languages used by attack frameworks
are general-purpose object-oriented scripting languages,
such as Ruby and Python. In reality, sectools.org
lists 11 most popular attack tools [6] in the public com-
munity. 8 of them are Ruby/Python-based attack frame-
works. Most of them are actively maintained with fre-
quent updates of new attack scripts.

3.2 MetaSymploit Overview
Given an attack script, the goal of MetaSymploit is to
quickly analyze fine-grained attack behaviors that the
script can perform, and automatically generate specific
IDS signatures for every attack payload that the script
can compose, providing a fast and effective defense
against attacks launched by this script. To achieve this
goal, MetaSymploit leverages symbolic execution and
enhances it with a number of security features designed
for attack scripts analysis and signature generation.

Symbolic execution2 is a program analysis technique
that executes programs with symbolic rather than con-
crete values. When executing branches related to sym-

2For more background of symbolic execution, please refer to [25]

Attack
Script

Preprocessor

 Symbolic Execution
Tracer

Normalized
Script

Return
Solution

Path
ConstraintsThird-Party

Constraint
Solvers

Payload Parser

Attack Output

Fine-grained
Tracing Dump

Successful/Failed Attack Paths;
Sequence of Multi-Step
Attacks;
Pre & Post Conditions; Etc.

IDS Signature
Generator

Patterns &
Malicious Weights

IDS
Signatures

Attack Knowledge
Base

Symbolic Class
Library

Script-based Attack Framework

Symbolic API
Extension

Behavior &
Constraint Logging

Output API
Hooking

Constant Pattern
Extracting

Pattern Refining &
Consolidating

Pattern Context
Deriving

Symbolic Execution Layer (SymExeLayer)

Attack
Script

Attack Payloads Behavioral API Calls &
Attack Constraints

Signature Generation (SigGen)

Extracted Patterns Pattern Context

IDS
Signatures

Symbolically executed

Figure 1: MetaSymploit consists of two major parts drawn in grey.
(The arrows show the workflow of an attack script analysis.)

bolic values, it maintains a path constraint set and forks
to explore different execution paths. By using sym-
bolic execution, MetaSymploit has three advantages to
achieve fast analysis and defense against attack scripts:
(1) analyzing scripts without requiring actual environ-
ments or vulnerable targets, (2) exploring different ex-
ecution paths to expose different attack behaviors, (3)
using symbolic values to represent variant contents in at-
tack payloads to ease the extraction of constant patterns.

Figure 1 shows the architecture of MetaSymploit,
which consists of two major parts, the symbolic exe-
cution layer (SymExeLayer) and the signature generator
(SigGen). Given an attack framework, SymExeLayer is
built upon the framework. It reuses the framework’s ex-
ecution facility while extending the framework interface
to support symbolic execution of attack scripts. When a
script is symbolically executed, SymExeLayer captures
all attack behaviors and payloads that the script can per-
form and compose. After the symbolic execution is done,
SigGen takes the captured results as inputs. It extracts
constant patterns by parsing the contents of the attack
payloads. It also analyzes the attack behaviors to derive
the semantic contexts that describe the extracted patterns.
Finally, SigGen combines the patterns and the contexts to
generate IDS signatures for this attack script.

More specifically, three key techniques are devel-
oped to realize the functionalities of SymExeLayer and
SigGen, respectively. As shown in Figure 1, SymExe-
Layer consists of (1) Symbolic API Extension. It extends
the APIs of both the attack framework and the script-
ing language to support symbolic values and operations.
Notably, it extends the APIs related to environments/tar-

USENIX Association 22nd USENIX Security Symposium 69

gets and variant payload contents to return symbolic val-
ues. (2) Behavioral API & Attack Constraint Logging. It
records critical API calls that represent attack behaviors.
It also logs path constraints of symbolic values related to
environments and targets. Both logs will be used for de-
riving pattern context (described later). (3) Output API
Hooking. It hooks various output APIs that are used to
send attack payloads, in order to capture complete pay-
load contents for extracting constant patterns.

SigGen consists of (1) Constant Pattern Extracting.
By parsing the payload contents, it extracts constant pat-
terns that can represent the payload. Constant patterns
include fixed contents, fixed lengths of contents, and
fixed offsets of the contents in the format. (2) Pattern
Refining and Consolidating. It refines patterns by dis-
tinguishing critical patterns from common benign bytes
and trivial patterns. It also avoids generating duplicated
signatures by examining repeated patterns. (3) Pattern
Context Deriving. In order to describe what the extracted
pattern represents, it analyzes the logs of behaviors and
constraints to derive the semantic context of the pattern.

To illustrate the workflow of MetaSymploit, we revisit
the script in Listing 1. First, SymExeLayer takes the
script as input and symbolically executes it. The script
calls a number of symbolic-extended APIs, including
probe ver, shellcode and rand alpha. Instead
of returning a concrete number, probe ver assigns
version a symbolic integer representing the target ver-
sion. shellcode and rand alpha return symbolic
strings to represent all possible shellcodes and random
paddings, respectively. Meanwhile, probe ver indi-
cates the probing behavior. SymExeLayer logs it as one
attack behavior. SymExeLayer also logs the path con-
straint version==5 since it indicates that the Line 6
branch is taken only under the attack condition that the
target version is 5. In contrast, when symbolic execution
forks to explore Line 8, SymExeLayer logs the negated
constraint version!=5.

When executing prep ark5, SymExeLayer logs
shellcode, rand alpha, and get target ret,
since these APIs indicate a typical attack behavior of
composing a stack overflow payload. Note that because
get target ret is a call with a concrete argument,
SymExeLayer uses the underlying framework to execute
it normally to get the concrete return address value. On
the other hand, SymExeLayer symbolically extends the
<< API to support appending symbolic strings. Finally,
when the composed payload is sent, the hooked output
API sock.put captures the complete payload contents.

SigGen then analyzes the payload contents and the be-
havior & constraint logs to generate signatures. List-
ing 2 shows one Snort rule generated by SigGen. The
content is the byte pattern extracted from the constant
bytes in the payload composed in Lines 20-22. The first 8

bytes are two JMP instructions and the last 4 bytes are the
return address. The pcre is a regular expression match-
ing the entire payload packet, including constant bytes
and random paddings. content provides general fast
matching, while pcre provides more precise matching.
The msg shows the pattern context. The target version
is derived from the version==5 constraint. The be-
havior and the meaning of the patterns are derived from
the logged behavioral API calls. The msg gives more in-
sights that guide security analysts to use the signature to
protect vulnerable application of specific version.

3.3 Symbolic Execution Layer

This section explains more details about the three tech-
niques of SymExeLayer that extend the attack frame-
work to perform symbolic execution and attack logging.

3.3.1 Symbolic API Extension

The key point of performing symbolic execution on at-
tack scripts is to treat all variant values involved in the
attack launching process as symbolic values, so that all
possible attack variations can be covered. Since attack
scripts use APIs to operate variant values, we extend the
variant-related APIs of both the scripting language and
the attack framework with symbolic support.

The variant-related APIs can be further divided into
two categories: direct and indirect. Direct-variant-
related APIs always return variant values. There are two
major types in this category, (1) the APIs probing ex-
ternal environments/targets, (2) the APIs generating ran-
dom payload contents. In both cases, we replace the
original APIs with our symbolic-extended ones, which
directly return symbolic values when called. As a re-
sult, the first type of APIs skips probing the actual en-
vironment/target, such as probe ver in the example.
Such skipping makes MetaSymploit scalable and effi-
cient, since there is no need to prepare different environ-
ments or applications when analyzing different scripts.
For the second type, as the payload content is a string
of bytes, the APIs use symbolic values to represent any
variant bytes, such as shellcode and rand alpha.
Hence, we can clearly distinguish concrete contents from
symbolic contents in one payload. In addition, every
symbolic value is assigned with a label showing what
it represents based on its related API, such as sym ver,
sym shellcode, and sym rand alpha. Note that
SymExeLayer uses these labels to keep the semantics of
the values, rather than relying on variable names, which
can be freely decided by attackers.

Indirect-variant-related APIs return variant values
only when their arguments are variant values. Such case
typically happens in the operations of some primitive

70 22nd USENIX Security Symposium USENIX Association

classes such as String, Integer, and some payload com-
posing operations. In SymExeLayer, we extend such
APIs by adding the logic of handling symbolic argu-
ments. If the arguments are concrete, the APIs execute
the original logic and return concrete values as normal.
If the arguments are symbolic, the APIs switch to the
symbolic handling logic, which propagates the symbolic
argument in accord with the API functionality, and re-
turns a symbolic expression. In Listing 1, for a concrete
string argument, the symbolic-extended << appends it as
normal. For a symbolic argument, it holds both the orig-
inal string and the new appended symbolic one in order
and returns them as one symbolic string expression.

3.3.2 Behavioral API & Attack Constraint Logging

Since symbolic execution is a general program analysis
technique, in order to provide additional security analy-
sis of attack scripts, for every execution path, we keep
a log recording both critical API calls that reflect attack
behaviors and path constraints that represent the attack
condition when exploring each execution path.
Behavioral API Logging. As mentioned in Section 2,
attack scripts use APIs provided by the language library
and the attack framework to launch attacks. In the analy-
sis, it is critical to capture the API calls that perform the
detailed attack behaviors during the launching process.
There are two major types of behavioral APIs, network
protocol APIs and payload-related APIs. By logging the
first type, we are able to capture all the interactions be-
tween the attack script and the target. By logging the sec-
ond type, we know exactly how a payload is composed
and keep track of its detailed format and contents.

In practice, given an attack framework, we build a
knowledge base collecting the APIs from the libraries
and components that provide network protocols and
payload-related operations. During execution, SymEx-
eLayer identifies behavioral APIs and logs them while
keeping the API call sequence in the execution path.
Note that we also log the arguments and return values
of the APIs, especially for payload-related APIs, whose
return values may be a part of the payload contents.
Attack Constraint Logging. In symbolic execution,
path constraints are the set of branch conditions involv-
ing symbolic values in one execution path. When en-
countering a new symbolic branch condition, symbolic
execution consults a constraint solver to decide which
branch(es) is feasible to take, and adds the new branch
constraint into the path constraint set. If both branches
are feasible to take, the execution path forks into two
paths to explore both branches [25].

In attack scripts, we focus on the constraints related to
environments and targets. We regard these constraints as
attack constraints because different symbolic conditions

that they represent typically indicate different attack con-
ditions reflecting the probing results of environments or
targets, therefore leading to different execution paths that
compose different payloads in consequence. In the ex-
ample, version==5 ? prep ark5 : prep ark4.

Recall that the APIs that probe external environments
and targets are symbolic-extended. The symbolic return
values of these APIs carry the labels showing what ex-
ternal source they represent. When executing a sym-
bolic branch condition, we check if any symbolic value
with external-source label is involved. If so, we log
the corresponding constraint. In the example, when
version==5 is executed, we find that sym ver is an
external source, and thus log the constraint.

In summary, this behavior & constraint logging pro-
vides a fine-grained analysis report that saves the time-
consuming work for security analysts. More importantly,
the behaviors and constraints logged in each execution
path can be further parsed to derive the semantic context
for the extracted patterns (discussed in Section 3.4.3).

3.3.3 Output API Hooking

After an attack script finishes composing an attack pay-
load, the script sends the payload as a network packet to
the target to exploit the vulnerability. This payload send-
ing step is the exact point of launching an attack. In order
to capture the complete content of the attack payload for
pattern extraction, we hook the output APIs that are used
by attack scripts for sending payload.

Starting from the network layer to the application layer
in the OSI model, we keep a list of the output APIs
and their corresponding network protocols from both the
scripting language’s own network library and the built-in
components of the attack framework.

We symbolically extend the output APIs by overrid-
ing their functionality from sending real network packets
to dumping the entire packets locally. By doing so, the
entire network flow sent from the attack script can be
dumped throughout the execution. To keep the semantic
context of each dumped packet, we associate them with
the behavior & constraint log of that execution path, so
that later the payload packets can be identified and the
extracted patterns can be correlated with the context de-
rived from the log. In the example script, the hooked
sock.put dumps two packets. With the associated log,
we identify the payload packet for pattern extraction.

Note that as a part of the network protocol APIs, the
output APIs are also behavioral APIs that need to be
logged. In addition, we also include the corresponding
network protocols in the log. Later during signature gen-
eration, the log gives a clear view of which network pro-
tocol is used, and therefore SigGen can apply the correct
packet format when parsing the packet contents.

USENIX Association 22nd USENIX Security Symposium 71

18: payload=>[<sym_shellcode, len=Sym_Int>]
19: payload=>[<sym_shellcode, len=Sym_Int>,

<sym_rand_alpha, len=(1167-Sym_Int)>]
20-22: # Appending concrete substrings
payload => [<sym_shellcode, len=Sym_Int>,

<sym_rand_alpha, len=(1167-Sym_Int)>,
<"\xe9\x38\x6c\xfb\xff\xff\xeb\xf9
\xad\x32\xaa\x71", 12>]

23: payload => [<sym_shellcode, len=Sym_Int>,
<sym_rand_alpha, len=(1167-Sym_Int)>,
<"\xe9\x38\x6c\xfb\xff\xff\xeb\xf9
\xad\x32\xaa\x71", 12>,
<sym_rand_alpha, 2917>]

Listing 3: The symbolic string form showing the content of payload
when prep ark5 is executed. Sym Int is a symbolic integer
representing the size of the shellcode.

3.4 Signature Generator

Given the dumped payload packets and the logs as inputs,
SigGen includes three techniques to generate signatures.

3.4.1 Constant Pattern Extracting

In order to generate a signature that can detect a payload
packet, it is necessary to extract a set of constant patterns
that always stay the same across different variations of
the payload. Specifically, there are three constant pat-
terns that can be extracted: fixed-content pattern, fixed-
length pattern and fixed-offset pattern. For ease of ex-
planation, we first present the formal form of a dumped
symbolic attack payload.

Recall that an attack payload is a string of bytes con-
taining both concrete contents (e.g., fixed vulnerable re-
turn address) and variant contents (e.g., arbitrary shell-
code, random padding). When a payload is being com-
posed during the symbolic execution of the attack script,
we use symbolic strings to represent variant contents and
use extended APIs to perform symbolic string opera-
tions, while keeping concrete values and operations as
normal. Thus the dumped payload packet is a big sym-
bolic string composed of a sequence of substrings, where
each substring is either a concrete byte string or a sym-
bolic string by itself. Formally, Ssym = (s1s2 . . .si . . .sn),
where si ∈ {Scon}∪{Ssym}. In addition, we also embed
< sym label, length > in Ssym to keep the semantics and
the possible length of the string, where the length is ei-
ther a concrete or symbolic integer. As an example, List-
ing 3 shows the contents of the payload when being com-
posed in Lines 18-23 of the example script. The final
dumped payload is the same as the one in Line 23.
Fixed-content pattern. This pattern has two types, ei-
ther a simple byte string or a regular expression (regex).
When parsing the payload, for each concrete substring,
we extract it as a byte string pattern, such as the 12-byte
string in the payload of Line 23. For each symbolic sub-

string, if it can be matched by a regex, we extract the
regex as a fixed pattern. If no regex is found, we move
on to the next substring. In practice, we keep a map-
ping between regex-matchable symbolic labels and the
regexes. Currently, we mainly focus on using regexes on
payload paddings to achieve precise matching. For in-
stance, we map the symbolic label sym rand alpha
to a regex pattern [a-zA-Z].
Fixed-length pattern. In some cases, although the
contents may vary, their lengths stay the same. Such
case typically happens when using padding to meet the
size requirement. To achieve precise matching, SymEx-
eLayer keeps track of the payload length during the
composition. When parsing the payload, we identify
the symbolic substrings with fixed lengths and extract
them as patterns. When executing the example script
in SymExeLayer, we keep updating the payload length.
Later when parsing <sym rand alpha, 2917> in
the dumped payload, we produce a length-quantified
regex [a-zA-Z]{2917} as shown in Listing 2.
Fixed-offset pattern. Due to the format of some net-
work protocols, some payloads can be located only after
certain offsets of the packets. For instance, some FTP-
based attack packets have regular FTP commands, fol-
lowed with overlong paths as payloads to launch over-
flow attacks. In such cases, since the network protocol
of the output API is logged, by applying the packet for-
mat of the protocol, we extract the offset of the payload,
which is a pattern for precise matching of the payload
location.

3.4.2 Pattern Refining and Consolidating

As MetaSymploit automatically generates signatures in
a large scale, there are two requirements for the qual-
ity of the signatures. First, we should avoid generating
signatures only having patterns of common benign bytes
or patterns of trivial bytes/regexes, which may otherwise
cause false positive. Second, we should avoid generating
duplicated signatures with the same pattern set, which
may cause useless redundancy and confuse the IDS.
First requirement. When a payload is finally sent
through the output API, common benign bytes are in-
troduced by network protocols as concrete substrings
in the payload packet, including default protocol bytes
(e.g., “Content-Type:text/html”) and delimiter bytes
(e.g., “\r\n”). To identify them, for each protocol, we
keep a list of benign bytes. Based on the packet format,
we examine the concrete substrings to search for the oc-
currences of benign bytes. If found, we strip the benign
part and focus on the rest bytes for pattern extraction.

In addition, it is also important to avoid generating
signatures only using trivial patterns such as too short
byte string or too general regex patterns. Thus, we set a

72 22nd USENIX Security Symposium USENIX Association

threshold of minimum byte string length (e.g., >= 10)
and a list of critical regexes (e.g., NOP regex [\x90]*).
Given a set of extracted patterns, we generate signatures
only if we can find at least one pattern whose length
is above the threshold or whose regex is critical. Note
that both the threshold and the critical regex list are
adjustable. Security analysts can also define different
thresholds and lists for different network protocols.
Second Requirement. Recall that SymExeLayer ex-
plores different execution paths in an attack script and
dumps payloads in each path. Sometimes, two paths
may differ only in a branch that is irrelevant to the pay-
load content, thus finally composing the same payloads.
Furthermore, two attack scripts may also share the same
patterns. To consolidate the same patterns from different
payloads into one signature, we keep a key-value hash
map where each key is a pattern set and each value is a
set of different payloads with the same pattern set. When
a new payload is parsed, if its pattern set already exists in
the hash map, we add this new payload, particularly its
behavior & constraint log into the corresponding value
set. The payloads and the logs in one set are analyzed
together to generate only one signature.

3.4.3 Pattern Context Deriving

Apart from pattern extraction, it is equally important to
provide the context of the patterns. The pattern context
shows the insight into the attack script, such as what at-
tack behavior and attack payload the patterns represent.
It also gives security analysts the guidance on how to use
the patterns, such as which target version and what OS
environment the patterns can be used to protect.

Therefore, we analyze the behavior & constraint log
to derive the pattern context. Since attack behaviors are
captured as behavioral APIs in the log, we derive the
context by translating the behavioral APIs into human-
readable phrases. Some APIs have straightforward
names, which can be simply translated into the descrip-
tion phrase (or even directly used), such as probe ver
=> Version Probing. Others may not be intuitive.
Particularly, certain behavior cannot be shown from a
single API but a series of API calls. In such case, we
group these API calls together as one behavioral pattern.
When such pattern is found in the log, we translate it
into the matched behavior name, such as shellcode
+ get target ret => Stack Overflow.

Sometimes, sophisticated attack scripts may have un-
precedented behaviors whose APIs do not match any pat-
terns. In such cases, we keep the derivable context while
highlighting underived behavioral APIs in the log to help
security analysts discover new attack behaviors. In fact,
we use this technique in our prototype to collect patterns.

In regard to attack constraints, since the involved sym-

bolic values represent attack conditions of each execu-
tion path, we retrieve the external source names in the
symbolic labels and bind them with the conditions de-
rived from the constraints (e.g., Target Version: 5).

Finally, when both the extracted pattern set and the
derived context are ready, SigGen combines two together
and generates a signature, which can be used to detect the
payloads associated with this specific pattern set.

4 Implementation

We implement a prototype of MetaSymploit as a practi-
cal analysis tool targeting the Ruby-based attack frame-
work Metasploit. Given a Metasploit attack script,
our tool quickly analyzes it and automatically generates
Snort rules as signatures that can defend against this spe-
cific script. Particularly, we developed a lightweight
Ruby symbolic execution engine designed for attack
script analysis. Powered by the engine, we build SymEx-
eLayer on top of the launching platform of Metasploit. In
this section, we first describe how the engine is designed
and then explain how to adapt the engine for Metasploit.

4.1 A Lightweight Symbolic Execution En-
gine for Ruby

Traditionally, developing a symbolic execution engine
requires heavy modification of the interpreter, which
causes great engineering effort since Ruby has multiple
active versions and interpreters (e.g., 1.8/1.9/2.0). How-
ever, we discover a new way to design a lightweight en-
gine without modifying the interpreter. The engine is de-
veloped purely in Ruby (9.3K SLOC) as a loadable pack-
age compatible with multiple versions of Ruby. Thus it
supports analyzing attack scripts written in different ver-
sions. Specifically, our engine has two modules: (1) a
symbolic library that introduces rich symbolic support
into Ruby; (2) a symbolic execution tracer that performs
symbolic execution based on the actual script execution.

4.1.1 Library of Symbolic Support

The symbolic library realizes the functionality of
Symbolic API Extension. The library introduces
symbolic classes to hold symbolic values (e.g.,
SymbolicString, SymbolicInteger). To be
transparent to attack scripts, we develop the same APIs
in the symbolic classes as their concrete counterparts. On
the other hand, we also extend indirect-variant-related
APIs in the concrete classes to support handling sym-
bolic arguments, so that concrete and symbolic objects
can operate with each other.

Notably, SymbolicString class plays the key role
in representing attack payloads. To hold the con-

USENIX Association 22nd USENIX Security Symposium 73

tents, SymbolicString has an internal ordered array,
where each item is either a concrete substring, or a sym-
bolic substring with the <sym label, length>
embedded. When a SymbolicString API is called,
it first checks whether the original concrete operation is
still applicable to the concrete substrings. If so, the API
uses the original logic in String to operate the concrete
substrings. Otherwise, the API treats the contents as
symbolic substrings, and processes the internal string ar-
ray as symbolic expressions. When a symbolic-extended
String API is called with symbolic arguments, it han-
dles concrete and symbolic substrings in the same way
as above and returns a SymbolicString object.

Later when SymExeLayer is integrated with Metas-
ploit, we further include the symbolic-extended APIs of
Metasploit into the symbolic library.

4.1.2 Symbolic Execution Tracer

The symbolic execution tracer transforms normal script
execution into symbolic execution. It also realizes the
functionality of Behavior & Constraint logging. To this
end, we develop three techniques based on three ad-
vanced language features in Ruby (& Python3).
(1) Fine-grained execution tracing. This technique
traces the symbolic execution line-by-line in an attack
script. It keeps track of every method call. It also ex-
plores different paths when executing branches. We de-
velop it by enhancing a language feature called Debug
tracing function with Control Flow Graph (CFG).

Debug tracing function is a step-by-step execution
tracing facility used for debugging such as Ruby’s
set trace func (Python’s sys.settrace). It
captures three major events, line, call, return. The line
event shows the number of the current executing line.
The call/return event shows the name of the method be-
ing called/returned. Every time an event happens, Debug
tracing function suspends the execution and calls a reg-
istered callback function for further event analysis.

We develop our callback function using the CFG of the
attack script. Since the CFG holds both the source code
and the control flows, it offers rich semantics for ana-
lyzing the execution details when parsing every event.
When a line event happens, we locate the current line’s
source code in the CFG. Then we retrieve all call sites
in the current line, which will be matched with the fol-
lowing call/return events happening in this line. Partic-
ularly, this tracing mechanism can log behavioral API
calls when they are found in the call sites.

Our callback function also handles branches to explore
different paths. When the line event reaches a symbolic
branch, we evaluate the branch source code and consult

3The techniques can also build an engine to analyze Python-based
attack scripts, since Ruby and Python share many language features.

a constraint solver for both true and false branch con-
straints. If a solution exists, we concretize the symbolic
branch condition to guide the interpreter to the desired
branch (explained next). If both branches can be satis-
fied, we fork the script execution process into two pro-
cesses to trace both branches. Otherwise, if no solution
is returned, we terminate the execution process. Partic-
ularly, if attack constraints are found, the callback func-
tion would perform constraint logging.
(2) Runtime symbolic variable manipulation. This
technique leverages the Runtime context binding lan-
guage feature to manipulate the runtime values of sym-
bolic variables. In particular, it inspects the values of
attack payloads during composing. It also concretizes
symbolic branch conditions to guide branch execution.

Runtime context binding can inspect and modify the
runtime states of the script, such as Ruby’s Binding
and Python’s inspect. It provides a context object that
binds the runtime scope of the current traced code. The
callback function can use this object to access all vari-
ables and methods in the scope of the traced code.

The first use of context is to inspect the runtime value
of an attack payload when it is being composed. When a
variable is detected to be assigned by payload composing
APIs, the callback uses context to keep track of its value.
The callback then logs the inspected values together with
the payload composing APIs in the behavior log.

The second use of context is to guide symbolic branch
execution. Since the interpreter cannot move forward
with a symbolic condition, when the constraint solver re-
turns a solution, for each symbolic variable in the condi-
tion, we use context to temporarily replace the symbolic
value with the solved concrete value to guide the inter-
preter to the desired branch. Later when the line event
shows that the branch is taken, we recover them back to
their symbolic form. Recall the version==5 in Listing
1. Since version is symbolic value, we temporarily re-
place its value with 5 to explore one branch, and uses a
non-5 value for the other branch.
(3) Dynamic symbolic method wrapping. In some
cases, the symbolic return values of method calls are not
associated with any variables, thus cannot be manipu-
lated using the second technique. To handle this, we
leverage the Dynamic method overriding language fea-
ture to dynamically wrap the traced method, associate its
return value with a temporary variable for manipulation.

Dynamic method overriding is a common feature in
Ruby and Python that methods can be runtimely over-
ridden and take effect immediately. Using this language
feature, we dynamically create a wrapper method and
override the original method right before the call event.
Meanwhile, we also preserve the original method, and
recover it right after the return event.

A more important use of the wrapping technique is to

74 22nd USENIX Security Symposium USENIX Association

concretize symbolic methods in branch conditions. If no
variable holds the symbolic return value of a method call
in a branch condition, to guide symbolic branch execu-
tion, we override the symbolic method with the wrapper
to return a solved concrete value. In practice some con-
straint solvers require the symbolic method calls to be
associated with variables to enable the solving.

4.2 Adaptation for Metasploit
To analyze Metasploit attack scripts, we adapt the engine
and the six techniques in both SymExeLayer and SigGen
to work with the APIs provided by Metasploit and its
built-in components.

The current prototype is based on Metasploit version
4.4 (released in Aug 2012). We select the top 10 most
popular built-in components in Metasploit: Tcp, Udp,
Ftp, Http, Imap, Exe, Seh, Omelet, Egghunter,
Brute. The first 5 are popular network protocol com-
ponents. The next 4 are used to attack Windows sys-
tems. Exe can generate exe file payloads. Seh can cre-
ate SEH-based attacks. Both Omelet and Egghunter
can compose staged payloads. The last Brute can cre-
ate bruteforce attacks. These components cover 548 real
attack scripts carried in Metasploit. By examining the
APIs provided by the launching platform and these com-
ponents of Metasploit, we perform three steps to adapt
the engine for SymExeLayer and SigGen.

First, in the symbolic library, we apply symbolic
API extension to the environment-related APIs such as
tcp.get, ftp.login, http.read response,
and variant-payload-content-related APIs such as
rand text, make nops, gen shellcode4.
The library also replaces the output APIs such as
ftp.send cmd, http.send request with our
local-dumping APIs. When the script calls these APIs
during symbolic execution, SymExeLayer redirects the
calls to the symbolic-extended APIs.

Second, to equip the symbolic execution tracer with
behavior & constraint logging ability, we build a
knowledge base collecting behavioral APIs such as
http.fingerprint, gen egghunter and keep a
mapping between APIs and their behavior meaning for
pattern context deriving. We also keep a list of symbolic
labels for identifying attack constraints.

Third, based on the standards of the protocols and the
implementation of the built-in components, we add the
packet formats and common benign bytes of the five net-
work protocols into the knowledge base. For instance,
we develop specific parsers to parse payloads embedded
in HTTP headers and FTP commands.

4The listed API names are abbreviated due to space limits. Note that
Metasploit uses payload to represent shellcode. We use shellcode as
a more general term to avoid confusion with attack payloads.

Note that both the API extension and the knowledge
base are one-time system configuration. Since Metas-
ploit components and their APIs are relatively stable for
compatibility with various attack scripts, once they are
collected and supported by MetaSymploit, newly dis-
tributed attack scripts that rely on these components can
be directly supported and automatically analyzed.

5 Evaluation

We conduct our evaluation on an Intel Core i7 Quad
2.4GHz, 8GB memory, Ubuntu 12.10 machine. We run
MetaSymploit based on Metasploit 4.4, using the offi-
cial Ruby 1.9.3 interpreter. We evaluate our approach
from three perspectives: (1) the percentage of real-world
attack scripts that can be analyzed by MetaSymploit’s
symbolic execution; (2) the effectiveness of our auto-
matically generated signatures to defend against real-
world attacks; (3) the difference between our automat-
ically generated rules and official Snort rules.

5.1 Coverage Testing with Symbolic Exe-
cution Engine

We first evaluate whether MetaSymploit can symboli-
cally execute various attack scripts. We use MetaSym-
ploit to analyze all 548 real attack scripts created with
the top 10 popular Metasploit components. As the result
shown in Table 1, 509 scripts (92.88%) are automatically
executed by MetaSymploit in the symbolic mode without
any manual modification of the scripts. Different attack
conditions in the scripts are explored. The attack pay-
loads are captured and Snort rules are generated.

In terms of analysis cost, since MetaSymploit reuses
the launching platform of Metasploit on the official Ruby
interpreter, the symbolic execution has almost the same
speed as that Metasploit executes attack scripts nor-
mally (less than one minute on average). In fact, since
the environment-related APIs are symbolic-extended, the
time for real network communication is saved. Further-
more, signatures are generated in less than 10 seconds.

Among the remaining 39 scripts that MetaSymploit
cannot automatically deal with, we encounter five main
situations that deserve more discussion.
Loop with Symbolic Condition. We find that 9 scripts
have conditional loops whose symbolic conditions can-
not be solved by constraint solvers, which may cause in-
finite looping. As a common problem in classical sym-
bolic execution, some previous approaches proposed us-
ing random concrete values to replace symbolic condi-
tions to execute loops [20]. However, in our case, do-
ing so may affect the precision of the payload contents.
Other approaches such as LESE [35] specifically handle
loops, which we plan to explore in future work.

USENIX Association 22nd USENIX Security Symposium 75

Category Num Percentage Require Manual Modification
Automatically Executed 509 92.88% No
Symbolic Loop 9 1.64% Avg 10 LOC/per script
Non-Symbolic-Extended API Call 12 2.19% Avg 3 LOC/per script
Obfuscation & Encryption 13 2.37% Not Supported
Multi-threading 3 0.55% Not Supported
Bug in Scripts 2 0.37% 2 LOC in each script
Total Coverage Auto 92.88% All 96.90%

Table 1: The distribution of different situations in the symbolic execution of the 548 Metasploit attack scripts.

Currently, after manual analysis, we find that there are
two cases of using the loops: byte-by-byte modifying a
symbolic string whose length is a symbolic integer, and
performing repeated attack steps in a bruteforce attack.
In the first case, since the string length is not concrete,
the looping rounds cannot be decided. However, we find
no matter how many rounds are, the looping result is still
a symbolic string. Therefore, we replace the loop code
that operates the symbolic string with a new symbolic
string to represent the looping result (10 LOC per script
on average), while propagating the symbolic label and
logging the loop information for further investigation.

In the second case, the Brute component provides
an API that checks whether the target is compromised or
not. It is typically used as a while loop condition. The
loop keeps attacking the target until the API returns that
the target is compromised. Since in our case the API
returns a symbolic value as the target status, to avoid in-
finite looping, we set a counter with an upper bound in
the extended version of this API, to control the looping
rounds. If there are payloads and logs captured inside the
loop, the differences between each round are analyzed to
identify the constant patterns.
Non-Symbolic-Extended API Call. Due to the time
limitations, other than the top 10 components, we have
not symbolically extended other APIs in Metasploit. We
detect 12 scripts that call the non-extended APIs related
to assembly translating and encoding the payloads. Since
very few APIs are involved, we decide to modify each of
them individually at this time, and extend the entire com-
ponents in future work. To handle these API calls, since
SymbolicString supports payload content process-
ing, when applicable to the concrete substrings, we allow
the APIs to operate on the concrete parts, while prevent-
ing them from using the symbolic substrings, which may
otherwise cause runtime errors. When the API operates
on a pure symbolic string with no concrete substrings, we
replace the API calls by creating new symbolic strings to
represent the results of the API calls (3 LOC per script
on average).
Obfuscation & Encryption. There are 13 cases with
complicated obfuscation and encryption on the payload,
where payload content processing is not feasible. Since
the output of these operations is completely random,

there is no constant pattern that can be extracted from
the obfuscated or encrypted payload. Defending against
obfuscation and encryption is an open question, which is
beyond the scope of signature-based defense.
Multi-threading. Handling multi-threading is an ad-
vanced topic in symbolic execution. Existing research
[37] explored the possibility by extending symbolic ex-
ecution to handle multi-threaded programs. Currently,
due to only 3 cases related to this situation, we plan to
address this issue in future work.
Bug in Scripts. Interestingly, during the testing, we
also discover 2 scripts with bugs that hang the execu-
tion when the script is generating a specific assembly
code that jumps to the shellcode. From this result, we
see that our approach is also useful for the purpose of
finding bugs in attack scripts.

In summary, the percentage of scripts that are auto-
matically handled is 92.88%. If the manually modified
scripts are included, the percentage reaches 96.90%.

5.2 Effectiveness Validation using Real-
world Attacks

To evaluate whether the automatically generated Snort
rules can effectively detect real attacks, we use Metas-
ploit attack scripts to attack 45 real-world vulnera-
ble applications. These applications are acquired from
exploit-db.com, a popular hacking website collect-
ing attack scripts and free vulnerable applications. In all,
there are 45 free vulnerable applications available in the
website, with 45 corresponding Metasploit scripts. They
include Java 7, Adobe Flash Player 10, Apache servers
2.0, Firefox 3.6, RealPlayer 11, multiple FTP servers
such as Dream FTP, ProFTPD, VLC player 1.1, IRC
servers and some less popular web-based programs.

We first use MetaSymploit to analyze the 45 attack
scripts and automatically generate Snort rules. Then we
set up two virtual machines, with one running Metasploit
to simulate the attacker and the other running the vulner-
able application as the vulnerable target. For each script,
we choose two different shellcodes to launch two real
attacks. To expose the entire attack flow, we allow the
attack to compromise the target, and use Snort IDS 2.9.2
with our generated rules to detect attack payloads. Note

76 22nd USENIX Security Symposium USENIX Association

that due to the limited available versions of the applica-
tions, we focus on the rules of the attack payloads that
target the application versions that we are able to obtain.

The initial results show that except the HTTP-based
ones, all attack payload packets with both two types of
shellcodes are correctly detected. Recall that our rules
are based on the constant patterns of the payload, vari-
ant parts such as shellcodes do not affect the detection.
But for Apache server attacks and Firefox attacks, our
rules fail to catch the attack packets because the order of
each HTTP header field is different from the one in our
rules. Since the order of the HTTP header fields is not
enforced by RFC definition, the extracted patterns from
the HTTP header cannot be simply put into the signature
in sequence. Therefore, we further improve our HTTP
parser to handle each header field separately, to enable
order-insensitive pattern matching. In the second round
of testing, the HTTP-based attacks are also correctly de-
tected.

Another interesting case is the Java 7 attack. In late
Aug 2012, two days after a zero-day vulnerability in Java
7 was disclosed (CVE 2012-4681), a Metasploit attack
script was distributed targeting this vulnerability [32]. At
that time, we immediately used MetaSymploit to ana-
lyze this attack script and automatically generate a Snort
rule based on the malicious jar payload composed by this
script, and tested it in our environment. Our rule success-
fully detected the jar payload. Admittedly, there might
be other ways different from the distributed Metasploit
script to exploit the vulnerability. Nevertheless, our rule
provides the first aid to the vulnerability without avail-
able security patch, to defend against attackers who di-
rectly use this widely-distributed script to launch attacks.

Apart from the effectiveness evaluation, we also use
our rules generated from the 45 attack scripts to monitor
normal network traffic, to investigate whether our rules
would raise false positives on benign packets. We run
the Snort with our rules in promiscuous mode to monitor
the traffic of two Windows machines (Vista & 7) and a
Ubuntu 12.04 machine. These machines are everyday-
use machines in the CS department (no personal data is
recorded). The monitoring is online for two months. No
false positive is raised on benign packets. Such result
is expected since our rules contain multiple specific pat-
terns that matches only the Metasploit attack payloads.
Appendix A shows a rule example for one of the 45
scripts.

5.3 Comparison with Official Snort Rules

To further assess the quality of the generated rules, we
compare the MetaSymploit rules (MRs) of the 45 at-
tack scripts with the recent Official Snort rules (ORs),

6 4

35

5 3
6 4

11

26

3

0
5

10
15
20
25
30
35
40

Same content
(byte pattern)

Same pcre
(regex pattern)

OR pcre
matching MR

content

No shared
pattern

Inconsistent
detection

results

MetaSymploit Rules (MRs)

Official Rules (ORs)

Figure 2: Pattern comparison between 53 MetaSymploit generated
rules and 50 official Snort rules for 22 Metasploit attack scripts.

released in Nov 20125. We use CVE number carried in
both attack scripts and ORs to match each other. The
result is surprising that only 22 attack scripts have cor-
responding ORs. The rest 23 are not even covered by
ORs. This reveals a serious issue that existing defense is
still quite insufficient compared to the fast spreading of
public attack resources.

For the 22 officially covered scripts, there are 53 MRs
and 50 ORs. In MetaSymploit, one script may have mul-
tiple rules detecting different payloads for different tar-
get versions. Whereas in the official rule set, one vulner-
ability may also have multiple rules detecting different
ways that exploit it. By comparing the patterns in both
rule sets, we summarize the result in Figure 2. We find
that 44 MRs share patterns with 21 ORs. Specifically,
6 MRs and 6 ORs share the same content byte pat-
terns. 4 MRs and 4 ORs share the same pcre regex pat-
terns. Notably, 35 MRs have specific content that are
matched with 11 ORs’ general pcre. This is because the
pcre regexes are generalized by security analysts based
on large volumes of samples, while the content bytes
(usually including vulnerable return addresses) are gen-
erated based on every attack payload of the scripts. An
example is shown in Appendix A. Although in this case,
the MR set is a subset of the OR one, we argue that as
our goal is to defend against specific attack scripts, MRs
give more insight of the attack payloads with more pre-
cise matching. Meanwhile, there are 5 MRs and 26 ORs
with no pattern shared. This is because some vulnera-
bilities can be exploited in different ways, and the ORs
have more patterns defined by analysts, while Metasploit
scripts usually choose one way to exploit one vulnerabil-
ity. Nevertheless, we still find that 2 scripts have 5 MRs
whose patterns are not seen in ORs, which complement
the OR set.

Besides, we also load the 50 ORs into Snort to test
whether they can detect attacks launched by the 22 at-
tack scripts. Interestingly, the result shows that only
17 scripts’ attack payloads are detected, while no alert

5snortrules-snapshot-2922.tar.gz on www.snort.org/snort-rules/

USENIX Association 22nd USENIX Security Symposium 77

is raised for the other 5 scripts. 2 scripts6 are missed
due to the lack of OR patterns as we mentioned above.
The other 3 scripts, which have 3 MRs, are supposed to
be detected by 3 corresponding ORs. After comparing
these rules, we find the 3 ORs have some deficiencies
that cause this inconsistent detection results. We list the
detailed information of the 3 scripts and the deficiencies
of the 3 ORs in Table 2. Note that some deficiencies
are actually caused by inaccurate use of Snort rule flags
such as the http uri, flow. We find them by compar-
ing these flags with the pattern context (e.g., Behaviors)
in our rules. We have reported these discoveries to the
official Snort team.

In sum, these results show that even the official Snort
rules written by security analysts are incomplete and tend
to be error-prone. MetaSymploit serves as a useful tool
to complement and augment the existing IDS signatures
by improving the completeness and the accuracy.

6 Discussion

Scenarios of using MetaSymploit signatures. As
shown in the comparison (35 MRs vs 11 ORs), due to
different pattern extracting mechanisms, ORs have less
rules with more general patterns, while MRs have more
rules with more specific patterns. It is possible that as
the number of attack scripts is increasing, more and more
signatures will be generated. If all signatures are loaded
into the IDS, this may slow down the matching speed.

However, we argue that unlike ORs are used for gen-
eral detection, MetaSymploit signatures should be used
in two typical scenarios, which do not require loading
all MRs in an IDS. First, as the goal of MetaSymploit
is to provide quick defense against newly distributed at-
tack scripts, the typical way of using our signatures is to
give first aid to the vulnerable application without avail-
able patches to prevent attackers especially script kid-
dies using the new scripts to launch attacks (e.g., the
Java 7 case). When the vulnerability is patched or the
application is upgraded, our signatures can be removed
from the IDS. Second, as the pattern contexts are embed-
ded with the signatures, security analysts only need to
deploy the signatures whose contexts are related to the
protected environment or the protected target version, to
avoid loading irrelevant signatures which may slow down
the matching speed of the IDS.
Limitations. MetaSymploit inherits the limitations of
classical symbolic execution. As we mentioned in Sec-
tion 5.1, our current prototype requires manual analysis
on handling complex symbolic loops. Recent approaches
propose to use bounded iteration [21], search-guiding
heuristics [40] and loop summary [22, 35] to address the

6adobe flash sps.rb, mozilla mchannel.rb

loop issue. In MetaSymploit, different loop cases of at-
tack scripts may require different techniques. For exam-
ple, bounded iteration can be applied to handle loops of
bruteforce attacks. Loop summaries can summarize the
post-loop effect on symbolic payload contents. Search-
guiding heuristics can help target payload-related loops
to avoid getting stuck in irrelevant loops.

Apart from loops, path explosion is a more general
issue related to performance and scalability. Too many
paths in an attack script may prolong the analysis and
delay the defense. In addition, it is possible that differ-
ent paths in a script finally lead to the same attack pay-
load output. Exploring these paths incurs extra efforts of
pruning redundant payloads. Several techniques such as
equivalent state tracking [9], state merging [26] and path
partitioning [31] have been proposed to mitigate the path
explosion issue. We plan to incorporate these techniques
into MetaSymploit to avoid exploring paths that would
compose redundant payload contents.

The limitations of constraint solvers may also affect
the effectiveness of path exploration. Currently, we use
Gecode/R [1] for solving integer/boolean constraints and
HAMPI [23] for solving string constraints. In case when
encountering complicated constraints (e.g., a non-linear
constraint), the solvers cannot decide which branch to
take. For the sake of completeness, we conservatively ex-
plore both branches, while marking the path constraints
as uncertain in the log, which require more investigation
by security analysts. Due to this fact, we regard our pro-
totype as an assistant tool to reduce the workload of ana-
lysts, so that they only need to focus on complicated ones
when facing large numbers of new attack scripts.

We envision possible attacks directly against Meta-
Symploit’s defense mechanism. As MetaSymploit rules
stick to the patterns in the distributed attack scripts, it
is possible that experienced attackers may modify the
distributed one to create new script variants without re-
leasing them, which may evade the detection of Meta-
Symploit rules. Besides, experienced attackers may
also try to exploit the limitation of symbolic execution
when developing new scripts, such as introducing com-
plex loops, non-linear constraints or even obfuscating the
script code. However, both cases are non-trivial. They
require advanced attack developing techniques, which
are usually time-consuming and slow down the speed of
developing and launching new attacks. In other words,
with MetaSymploit, we raise the bar of the skill level and
the time cost for developing and launching new attacks.

7 Related Work

Signature Generation. There has been a lot of work
on automatic signature generation for malware defense.
From the perspective of attacks, Autograph [24], Poly-

78 22nd USENIX Security Symposium USENIX Association

Metasploit Script Name CVE Failure Reason of Official Snort Rules Missing Metasploit Payloads Official Rule SID
badblue ext overflow.rb 2005-0595 The http uri flag restricts the pattern searching in one header field,

thus missing the Metasploit payload located in the following fields.
3816

sascam get.rb 2008-6898 The flow pattern is set to check packets sent to the client while our
pattern context shows the Metasploit payload is sent to the server.

16715

mozilla reduceright.rb 2011-2371 The content byte pattern is wrong since it includes two variant bytes,
which are randomly generated in the Metasploit payload.

19713

Table 2: The list of three Metasploit attack scripts which evade the detection from 3 Official Snort Rules

graph [29] and Hamsa [27] automatically generate worm
signatures by extracting invariant contents from the net-
work traffic of worms. Particularly, these approaches are
based on the observation that even polymorphic worms
have invariant contents that can be used as signature pat-
terns. In MetaSymploit, we have the same observation
when analyzing constant and variant payload contents
composed by attack scripts. On the other hand, these ap-
proaches require collecting large amounts of malicious
network traffic to identify invariant contents. However,
this process is usually time-consuming and cannot pro-
vide quick defense against new attacks. In contrast,
MetaSymploit does not need to collect any network traf-
fic but only attack scripts, thus largely reducing the time
of performing analysis and providing defense.

From the perspective of vulnerabilities, Vigilante [18],
ShieldGen [19] and Bouncer [17] analyze vulnerable ap-
plications and their execution traces to generate signa-
tures to block exploit inputs that can trigger the vul-
nerability. Brumley et al. [10, 11] also provide the
formal definition of vulnerability-based signatures and
propose constraint-solving-based techniques to gener-
ate such signatures. Elcano [13] and MACE [16] fur-
ther use protocol-level concolic exploration to generate
vulnerability-based signatures. Notably, program anal-
ysis techniques such as symbolic execution play an im-
portant role in these approaches as well as in MetaSym-
ploit. But unlike these approaches, MetaSymploit only
analyzes attack scripts without requiring the presence of
vulnerable applications, thus avoiding the cost of obtain-
ing various vulnerable applications or preparing various
testing environments.
Symbolic Execution. Symbolic execution has been ac-
tively applied for security purposes [36]. BitBlaze [38]
is a binary analysis platform based on symbolic execu-
tion. SAGE [21] uses dynamic symbolic execution to de-
tect vulnerabilities in x86 binaries. EXE [14] and AEG
[8] generate malicious inputs and exploits by symboli-
cally executing vulnerable applications. Moser et al. [28]
explore multiple execution paths for malware analysis.
Since our analysis target, attack script is quite differ-
ent from host-based binary level malware, the techniques
proposed in these approaches such as memory inspec-
tion, system call analysis are not adaptable in our case.

Symbolic execution for scripting languages is still

at early stage, due to the diversity of different kinds
of scripting languages and various purposes of applica-
tions. Most work focuses on the web-based scripting
languages, such as JavaScript [34], PHP [7, 41], and
Ruby on Rails [15] web frameworks. Since these ap-
proaches are specifically designed for testing web appli-
cations (e.g., finding XSS and SQL Injection vulnerabil-
ity), they are not applicable for analyzing general attack
scripts and attack frameworks that target various vulner-
able applications on different OS environments.

In particular, little work has been done for the sym-
bolic execution of general-purpose scripting languages,
such as Ruby and Python. PyStick [30] is an automated
testing tool with input generation and invariant detec-
tion for Python. It is different from our purpose of us-
ing symbolic execution for security analysis. Bruni et al.
[12] propose a library-based approach to develop sym-
bolic execution. However, it uses only the dynamic dis-
patching feature, which limits symbolic execution only
in primitive types. This limited functionality is insuffi-
cient for practical use.

8 Conclusion

Script-based attack frameworks have become an increas-
ing threat to computer security. In this paper, we have
presented MetaSymploit, the first system of automatic at-
tack script analysis and IDS signature generation. Meta-
Symploit leverages security-enhanced symbolic execu-
tion to analyze attack scripts. We have implemented a
prototype targeting the popular attack framework Metas-
ploit. The results have shown the effectiveness of Meta-
Symploit in real-world attacks, and also the practical use
in improving current IDS signatures.

9 Acknowledgements

We would like to thank the conference reviewers and
shepherds for their feedback in finalizing this paper.
This work is supported by the U.S. Army Research Of-
fice (ARO) under a MURI grant W911NF-09-1-0525,
and also supported in part by an NSA Science of Se-
curity Lablet grant at North Carolina State Univer-

USENIX Association 22nd USENIX Security Symposium 79

sity, NSF grants CCF-0845272, CCF-0915400, CNS-
0958235, CNS-1160603.

References
[1] Constraint programming in ruby. http://gecoder.rubyforge.org/.

[2] The exploit database. http://www.exploit-db.com.

[3] Metasploit. http://www.metasploit.com.

[4] Arkeia backup client type 77 overflow (win32).
http://www.metasploit.com/modules/exploit/windows/arkeia/type77,
visited in Jan 2013.

[5] Conficker worm using metasploit payload to spread.
http://blogs.mcafee.com/mcafee-labs/conficker-worm-using-
metasploit-payload-to-spread, visited in Jan 2013.

[6] Top vulnerability exploit tools. http://sectools.org/tag/sploits, vis-
ited in Jan 2013.

[7] ARTZI, S., KIE, A., DOLBY, J., ERNST, M. D., KIEZUN, A.,
TIP, F., DIG, D., AND PARADKAR, A. Finding Bugs In Dy-
namic Web Applications. In Proceedings of the 2008 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’08),
pp. 261–272.

[8] AVGERINOS, T., CHA, S. K., LIM, B., HAO, T., AND BRUM-
LEY, D. AEG: Automatic Exploit Generation. In Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS’11).

[9] BOONSTOPPEL, P., CADAR, C., AND ENGLER, D. RWset:
Attacking Path Explosion in Constraint-Based Test Generation.
In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS’08), pp. 351–366.

[10] BRUMLEY, D., NEWSOME, J., AND SONG, D. Towards Au-
tomatic Generation of Vulnerability-Based Signatures. In Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy
(S&P’06), pp. 2–16.

[11] BRUMLEY, D., WANG, H., JHA, S., AND SONG, D. Creating
Vulnerability Signatures Using Weakest Preconditions. In Pro-
ceedings of the 20th IEEE Computer Security Foundations Sym-
posium (CSF’07), pp. 311–325.

[12] BRUNI, ALESSANDRO DISNEY, T. A Peer Architecture for
Lightweight Symbolic Execution. Tech. rep., UC Santa Cruz,
2011.

[13] CABALLERO, J., LIANG, Z., POOSANKAM, P., AND SONG,
D. Towards Generating High Coverage Vulnerability-Based Sig-
natures with Protocol-Level Constraint-Guided Exploration. In
Proceedings of the 12th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID’09), pp. 161–181.

[14] CADAR, C., GANESH, V., AND PAWLOWSKI, P. EXE: Auto-
matically Generating Inputs of Deathh. In Proceedings of the
13th ACM Conference on Computer and Communications Secu-
rity (CCS’06), pp. 322 – 335.

[15] CHAUDHURI, A., AND FOSTER, J. S. Symbolic Security Anal-
ysis of Ruby-on-Rails Web Applications. In Proceedings of the
17th ACM Conference on Computer and Communications Secu-
rity (CCS’10), pp. 585–594.

[16] CHO, C., BABIC, D., AND POOSANKAM, P. MACE: Model-
inference-Assisted Concolic Exploration for Protocol and Vulner-
ability Discovery. In Proceedings of the 20th USENIX Security
Symposium (2011).

[17] COSTA, M., CASTRO, M., AND ZHOU, L. Bouncer: Secur-
ing Software by Blocking Bad Input. In Proceedings of twenty-
first ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’07), pp. 117–130.

[18] COSTA, M., CROWCROFT, J., AND CASTRO, M. Vigilante:
End-to-End Containment of Internet Worms. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles
(SOSP’05), pp. 133–147.

[19] CUI, W., PEINADO, M., WANG, H. J., AND LOCASTO, M. E.
ShieldGen: Automatic Data Patch Generation for Unknown Vul-
nerabilities with Informed Probing. Proceedings of the 2007
IEEE Symposium on Security and Privacy (S&P’07), 252–266.

[20] GODEFROID, P., AND KLARLUND, N. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI’05), pp. 213–223.

[21] GODEFROID, P., LEVIN, M. Y., AND BERKELEY, U. C. Au-
tomated Whitebox Fuzz Testing. In Proceedings of Network and
Distributed Systems Security (NDSS’08).

[22] GODEFROID, P., AND LUCHAUP, D. Automatic Partial Loop
Summarization in Dynamic Test Generation. In Proceedings of
the 2011 International Symposium on Software Testing and Anal-
ysis (ISSTA’11), pp. 23–33.

[23] KIEZUN, A., GANESH, V., GUO, P. J., HOOIMEIJER, P., AND
ERNST, M. D. HAMPI: A Solver for String Constraints. In Pro-
ceedings of the 18th International Symposium on Software Test-
ing and Analysis (ISSTA’09), pp. 105–116.

[24] KIM, H., AND KARP, B. Autograph: Toward Automated, Dis-
tributed Worm Signature Detection. In Proceedings of the 13th
USENIX Security Symposium (2004), pp. 271–286.

[25] KING, J. C. Symbolic execution and program testing. Commun.
ACM 19, 7 (1976), 385–394.

[26] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G.
Efficient State Merging in Symbolic Execution. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’12), pp. 193–204.

[27] LI, Z., SANGHI, M., CHAVEZ, B., CHEN, Y., AND KAO,
M. Hamsa: Fast Signature Generation for Zero-day Polymor-
phicWorms with Provable Attack Resilience. In Proceedings of
the 2006 IEEE Symposium on Security and Privacy (S&P’06),
pp. 32–47.

[28] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring Multiple
Execution Paths for Malware Analysis. In Proceedings of the
2007 IEEE Symposium on Security and Privacy (S&P’07), vol. 0,
pp. 231–245.

[29] NEWSOME, J., KARP, B., AND SONG, D. Polygraph: Automat-
ically Generating Signatures for Polymorphic Worms. In Pro-
ceedings of the 2005 IEEE Symposium on Security and Privacy
(S&P’05), pp. 226–241.

[30] NOTO-MONIZ, A. Software Agitation of a Dynamically Typed
Language. Tech. rep., Worcester Polytechnic Institute, 2012.

[31] QI, D., NGUYEN, H. D., AND ROYCHOUDHURY, A. Path Ex-
ploration based on Symbolic Output. In Proceedings of the 19th
ACM SIGSOFT Symposium on Foundations of Software Engi-
neering (FSE’11), pp. 278–288.

[32] RAGAN, S. Java zero-day added to blackhole exploit kit and
metasploit. http://www.securityweek.com/java-zero-day-added-
blackhole-exploit-kit-and-metasploit, visited in Aug 2012.

[33] RAMIREZ-SILVA, E., AND DACIER, M. Empirical Study of the
Impact of Metasploit-Related Attacks in 4 Years of Attack Traces.
In Proceedings of the 12th Asian Computing Science Conference
on Advances in Computer Science: Computer and Network Secu-
rity (ASIAN’07), pp. 198–211.

[34] SAXENA, P., AKHAWE, D., HANNA, S., MAO, F., MCCA-
MANT, S., AND SONG, D. A Symbolic Execution Framework
for JavaScript. In Proceedings of the 2010 IEEE Symposium on
Security and Privacy (S&P’10), pp. 513–528.

80 22nd USENIX Security Symposium USENIX Association

[35] SAXENA, P., POOSANKAM, P., MCCAMANT, S., AND SONG,
D. Loop-Extended Symbolic Execution on Binary Programs. In
Proceedings of the 18th International Symposium on Software
Testing and Analysis (ISSTA’09), pp. 225–236.

[36] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to
Ask). In Proceedings of the 2010 IEEE Symposium on Security
and Privacy (S&P’10), pp. 317–331.

[37] SEN, K., AND AGHA, G. CUTE and jCUTE: Concolic Unit
Testing and Explicit Path Model-Checking Tools. In Proceedings
of the 18th International Conference on Computer Aided Verifi-
cation (CAV’06), pp. 419–423.

[38] SONG, D., BRUMLEY, D., YIN, H., AND CABALLERO. Bit-
Blaze: A New Approach to Computer Security via Binary Anal-
ysis. In Proceedings of the 4th International Conference on In-
formation Systems Security (ICISS’08), pp. 1–25.

[39] SOPHOSLABS. Exploring the blackhole exploit kit.
http://nakedsecurity.sophos.com/exploring-the-blackhole-
exploit-kit, visited in Jan 2013.

[40] XIE, T., TILLMANN, N., DE HALLEUX, J., AND SCHULTE, W.
Fitness-Guided Path Exploration in Dynamic Symbolic Execu-
tion. In IEEE/IFIP International Conference on Dependable Sys-
tems & Networks (DSN’09), pp. 359–368.

[41] XIE, Y., AND AIKEN, A. Static Detection of Security Vul-
nerabilities in Scripting Languages. In Proceedings of the 15th
USENIX Security Symposium (2006), pp. 179–192.

Appendix A Example of Rule Comparison

1 def exploit
2 ...
3 trigger = ’/ldap://localhost/%3fA%3fA%3

fCCCCCCCCCC%3fC%3f%90’
4 # Sending payload
5 send_request_raw({
6 ’uri’ => ’/’ + rewrite_path() + trigger +
7 shellcode(),
8 ’version’ => ’1.0’,
9 }, 2)

10 ...
11 end

Listing 4: The code snippet from a Metasploit attack script
apache mod rewrite ldap.rb

alert tcp any any -> any 80 (
msg:"Metasploit apache_mod_rewrite_ldap,
Target:[Apache 1.3/2.0/2.2],
Behavior:[HTTP request with Vul-specific

bytes]";
content:"GET";
content:"/ldap|3A|//localhost/%3fA%3fA%3

fCCCCCCCCCC%3fC%3f%90";
content:"|20|HTTP/1.0|0D 0A|Host|3A 20|";
reference:cve,2006-3747;
sid:5000539; rev:0;)

Listing 5: One MetaSymploit Rule (MR) for an attack payload of
apache mod rewrite ldap.rb.

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (
msg:"WEB-MISC Apache mod_rewrite buffer

overflow attempt";
content:"GET";
content:"ldap|3A|";
pcre:"/ldap\x3A\x2F\x2F[ˆ\x0A]*(%3f|\x3F)[ˆ\

x0A]*(%3f|\x3F)[ˆ\x0A]*(%3f|\x3F)[ˆ\x0A
]*(%3f|\x3F)/smi";

reference:cve,2006-3747;
sid:11679; rev:5;)

Listing 6: One Official Snort Rule (OR) related to the Metasploit
attack script in Listing 4.

In Appendix A, we give a simple example to illustrate
the comparison between an official Snort rule contain-
ing general patterns with a MetaSymploit rule containing
specific patterns.

Listing 4 shows the code snippet of the
exploit method in the Metasploit attack script
apache mod rewrite ldap.rb. The script
launches the attack by sending an HTTP GET request
packet that contains a special URI byte string to trigger
the vulnerability. Here send request raw is a
Metasploit HTTP output API method that is symbol-
ically extended by MetaSymploit to dump the entire
payload packet.

Listing 5 is a MetaSymploit Rule (MR) based on the
attack payload composed by the script. It contains the
constant byte string patterns, especially the vulnerabil-
ity triggering string that can identify the specific payload
packet. Listing 6 is the corresponding Official Rule (OR)
based on CVE matching. It contains a regular expression
(regex) pattern generalized by security analysts based on
large amounts of samples.

According to the Snort rule manual, a rule can have
multiple content byte string patterns. By default,
given a packet, Snort searches these content patterns
in order. A rule can also have one pcre regex pattern.
Snort searches the entire packet for the pcre pattern.

In the example rules, the first content in both rules
share the same pattern “GET”. The second content
of the MR captures the triggering string, which includes
the second content of the OR “ldap|3A|” as a sub-
string. Furthermore, the second content of the MR is
also matched by the general pcre regex of the OR. In
addition, there is another content in the MR that cap-
tures the HTTP protocol version of the packet.

Although both rules can detect the attack payload of
this script, the MR has multiple specific patterns that
can precisely pinpoint the attacks launched by this script,
thus having very low false-positive rate compared to the
general OR. In practice, the MRs can help identify what
attack scripts are used by attackers, providing a way for
the defense side to profile and obtain more knowledge of
the attacker side.

USENIX Association 22nd USENIX Security Symposium 81

Towards Automatic Software Lineage Inference

Jiyong Jang, Maverick Woo, and David Brumley
{jiyongj, pooh, dbrumley}@cmu.edu

Carnegie Mellon University

Abstract
Software lineage refers to the evolutionary relationship
among a collection of software. The goal of software
lineage inference is to recover the lineage given a set of
program binaries. Software lineage can provide extremely
useful information in many security scenarios such as
malware triage and software vulnerability tracking.

In this paper, we systematically study software lineage
inference by exploring four fundamental questions not
addressed by prior work. First, how do we automatically
infer software lineage from program binaries? Second,
how do we measure the quality of lineage inference al-
gorithms? Third, how useful are existing approaches to
binary similarity analysis for inferring lineage in reality,
and how about in an idealized setting? Fourth, what are
the limitations that any software lineage inference algo-
rithm must cope with?

Towards these goals we build ILINE, a system for auto-
matic software lineage inference of program binaries, and
also IEVAL, a system for scientific assessment of lineage
quality. We evaluated ILINE on two types of lineage—
straight line and directed acyclic graph—with large-scale
real-world programs: 1,777 goodware spanning over a
combined 110 years of development history and 114 mal-
ware with known lineage collected by the DARPA Cyber
Genome program. We used IEVAL to study seven metrics
to assess the diverse properties of lineage. Our results
reveal that partial order mismatches and graph arc edit
distance often yield the most meaningful comparisons in
our experiments. Even without assuming any prior infor-
mation about the data sets, ILINE proved to be effective
in lineage inference—it achieves a mean accuracy of over
84% for goodware and over 72% for malware in our data
sets.

1 Introduction
Software evolves to adapt to changing needs, bug fixes,
and feature additions [28]. As such, software lineage—the
evolutionary relationship among a set of software—can
be a rich source of information for a number of security
questions. Indeed, the literature is replete with analyses
of known or manually recovered software lineages. For
example, software engineering researchers have analyzed

the histories of open source projects and the Linux kernel
to understand software evolution [14, 45] as well as its
effect on vulnerabilities in Firefox [33]. The security com-
munity has also studied malware evolution based upon the
observation that the majority of newly detected malware
are tweaked variants of well-known malware [2, 18, 20].
With over 1.1 million malware appearing daily [43], re-
searchers have exploited such evolutionary relationships
to identify new malware families [23, 31], create models
of provenance and lineage [9], and generate phylogeny
models based upon the notion of code similarity [22].

The wealth of existing research demonstrating the util-
ity of software lineage immediately raises the question—
“Can we infer software lineage automatically?” We fore-
see a large number of security-related applications once
this becomes feasible. In forensics, lineage can help de-
termine software provenance. For example, if we know
that a closed-source program pA is written by author X
and another program pB is derived from pA, then we may
deduce that the author of pB is likely to be related to X .
In malware triage [2, 18, 20], lineage can help malware
analysts understand trends over time and make informed
decisions about which malware to analyze first. This is
particularly important since the order in which the vari-
ants of a malware are captured does not necessarily mirror
its evolution. In software security, lineage can help track
vulnerabilities in software of which we do not have source
code. For example, if we know a vulnerability exists in
an earlier version of an application, then it may also exist
in applications that are derived from it. Such logic has
been fruitfully applied at the source level in our previous
work [19]. Indeed, these and related applications are im-
portant enough that the US Defense Advanced Research
Projects Agency (DARPA) is funding a $43-million Cyber
Genome program [6] to study them.

Having established that automatically and accurately
infer software lineage is an important open problem, let
us look at how to formalize it. Software lineage inference
is the task of inferring a temporal ordering and ances-
tor/descendant relationships among programs. We model
software lineage by a lineage graph:
Definition 1.1. A lineage graph G = (N,A) is a directed
acyclic graph (DAG) comprising a set of nodes N and a
set of arcs A. A node n ∈ N represents a program, and

82 22nd USENIX Security Symposium USENIX Association

Straight(Line(Lineage DAG(Lineage

Section Size
File Size

n-grams
Cyclomatic Complexity

S/D Instructions
S/D Mnemonics
S/D Normalized Mnemonics
S/D Multi-resolution

Features 12

Released Binaries
Malware

Contiguous Revisions
Released Versions

Datasets 4

Symmetric Distance
Weighted Symmetric Distance
Dice Coefficient
Jaccard Distance
Jaccard Containment

Set Distances 5

Inferred Root
Real Root

Root Revision 2

Inversions
Edit Distance to Monotonicity

Metrics 2

S/D Multi-resolution
Features 2

DAG Revisions
Malware

Datasets 2

Inferred Root
Real Root

Root Revision 2

No Timestamp
Pseudo Timestamp
Real Timestamp

Timestamp 3 Avg Distance to True LCA

Graph Arc Edit Distance
Partial Order

k-Cone

LCA Mismatches
Metrics 5

Figure 1: Design space in software lineage inference (S/D represents static/dynamic analysis-based features.)

an arc (x,y) ∈ A denotes that program y is a derivative of
program x. We say that x is a parent of y and y is a child
of x.

A root is a node that has no incoming arc and a leaf is
a node that has no outgoing arc. The set of ancestors of a
node n is the set of nodes that can reach n. Note that n is
an ancestor of itself. The set of common ancestors of x
and y is the intersection of the two sets of ancestors. The
set of lowest common ancestors (LCAs) of x and y is the
set of common ancestors of x and y that are not ancestors
of other common ancestors of x and y [4]. Notice that in
a tree each pair of nodes must have a unique LCA, but in
a DAG some pair of nodes can have multiple LCAs.

In this paper, we ask four basic research questions:
1. Can we automatically infer software lineage? Exist-
ing research focused on studying known software history
and lineage [14, 33, 45], not creating lineage. Creating
lineage is different from building a dendrogram based
upon similarity [22, 23, 31]. A dendrogram can be used
to identify families; however it does not provide any infor-
mation about a temporal ordering, e.g., root identification.

In order to infer a temporal ordering and evolution-
ary relationships among programs, we develop new algo-
rithms to automatically infer lineage of programs for two
types of lineage: straight line lineage (§4.1) and directed
acyclic graph (DAG) lineage (§4.2). In addition, we ex-
tend our approach for straight line lineage to k-straight
line lineage (§4.1.4). We build ILINE to systematically
evaluate the effectiveness of our lineage inference algo-
rithms using twelve software feature sets (§2), five dis-
tance measures between feature sets (§3), two policies on
the root identification (§4.1.1), and three policies on the
use of timestamps (§4.2.2).

Without any prior information about data sets, for
straight line linage, the mean accuracies of ILINE are
95.8% for goodware and 97.8% for malware. For DAG
lineage, the mean accuracies are 84.0% for goodware and
72.0% for malware.
2. What are good metrics? Existing research focused on
building a phylogenetic tree of malware [22, 23], but did
not provide quantitative metrics to scientifically measure

the quality of their output. Good metrics are necessary
to quantify how good our approach is with respect to the
ground truth. Good metrics also allow us to compare
different approaches. To this end, we build IEVAL to
assess our lineage inference algorithms using multiple
metrics, each of which represents a different perspective
of lineage.

IEVAL uses two metrics for straight line lineage (§5.1).
Given an inferred lineage graph G and the ground truth
G∗, the number of inversions measures how often we
make a mistake when answering the question “which one
of programs pi and p j comes first”. The edit distance
to monotonicity asks “how many nodes do we need to
remove in G so that the remaining nodes are in the sorted
order (and thus respect G∗)”.

IEVAL also utilizes five metrics to measure the accuracy
of DAG lineage (§5.2). An LCA mismatch is a generalized
version of an inversion because the LCA of two nodes
in a straight line is the earlier node. We also measure
the average pairwise distance between true LCA(s) and
derived LCA(s) in G∗. The partial order mismatches in
a DAG asks the same question as inversions in a straight
line. The graph arc edit distance for (labeled) graphs mea-
sures “what is the minimum number of arcs we need to
delete from G and G∗ to make both graphs equivalent”. A
k-Cone mismatch asks “how many nodes have the correct
set of descendants counting up to depth k”.

Among the above seven metrics, we recommend two
metrics—partial order mismatches and graph arc edit dis-
tance. In §5.3, we discuss how the metrics are related,
which metric is useful to measure which aspect of a lin-
eage graph, which metric is efficient to compute, and
which metric is deducible from other metrics.
3. How well are we doing now? We would like to un-
derstand the limits of our techniques even in ideal cases,
meaning we have (i) control over variables affecting the
compilation of programs, (ii) reliable feature extraction
techniques to abstract program binaries accurately and
precisely, and (iii) the ground truth with which we can
compare our results to measure accuracy and to spot error
cases. We discuss the effectiveness of different feature

USENIX Association 22nd USENIX Security Symposium 83

sets and distance measures on lineage inference in §8.
We argue that it is necessary to also systematically val-

idate a lineage inference technique with “goodware”, e.g.,
open source projects. Since malware is often surrepti-
tiously developed by adversaries, it is typically hard or
even impossible to obtain the ground truth. More funda-
mentally, we simply cannot hope to understand the evo-
lution of adversarial programs unless we first understand
the limits of our approach in our idealized setting.

We systematically evaluated ILINE with both good-
ware and malware that we have the ground truth on: 1,777
goodware spanning over a combined 110 years of devel-
opment history and 114 malware collected by the DARPA
Cyber Genome program.
4. What are the limitations? We investigate error cases
in G constructed by ILINE and highlight some of the
difficult cases where ILINE failed to recover the correct
evolutionary relationships. Since some of our experiments
are conducted on goodware with access to source code,
we are able to pinpoint challenging issues that must be ad-
dressed before we can improve the accuracy in software
lineage inference. We discuss such challenging issues
including reverting/refactoring, root identification, clus-
tering, and feature extraction in §9. This is important
because we may not be able to understand malware evo-
lution without understanding limits of our approach with
goodware.

2 Software Features for Lineage
In this study, we use three program analysis methods:
syntax-based analysis, static analysis, and dynamic analy-
sis. Given a set of program binaries P, various features
fi are extracted from each pi ∈ P to evaluate different
abstractions of program binaries. Source code or meta-
data such as comments, commit messages or debugging
information is not used as we are interested in results in
security scenarios where source code is typically not avail-
able, e.g., forensics, proprietary software, and malware.

2.1 Using Previous Observations
Previous work analyzed software release histories to un-
derstand a software evolution process. It has been often
observed that program size and complexity tend to in-
crease as new revisions are released [14, 28, 45]. This
observation also carries over to security scenarios, e.g.,
the complexity of malware is likely to grow as new vari-
ants appear [8]. We measured code section size, file size,
and code complexity to assess how useful these features
are in inferring lineage of program binaries.
• Section size: ILINE first identifies executable sections

in binary code, e.g., .text section, which contain exe-
cutable program code, and calculates the size.
• File size: Besides the section size, ILINE also calcu-

lates the file size, including code and data.

8b5dd485db750783c42c5b5e5dc383c42c5b5e5de9adf8ffff

(a) Byte sequence of program code
8b5dd485 5dd485db d485db75 85db7507 db750783
750783c4 0783c42c 83c42c5b c42c5b5e 2c5b5e5d
5b5e5dc3 5e5dc383 5dc383c4 c383c42c 5b5e5de9
5e5de91d 5de9adf8 e9adf8ff adf8ffff

(b) 4-grams
mov -0x2c(%ebp),%ebx;test %ebx,%ebx;jne 805e198
add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;ret
add $0x2c,%esp;pop %ebx;pop %esi;pop %ebp;jmp 805da50

(c) Disassembled instructions
mov mem,reg;test reg,reg;jne imm
add imm,reg;pop reg;pop reg;pop reg;ret
add imm,reg;pop reg;pop reg;pop reg;jmp imm

(d) Instructions mnemonics with operands type
mov mem,reg;test reg,reg;jcc imm
add imm,reg;pop reg;pop reg;pop reg;ret
add imm,reg;pop reg;pop reg;pop reg;jmp imm

(e) Normalized mnemonics with operands type

Figure 2: Example of feature extraction

• Cyclomatic complexity: Cyclomatic complexity [34]
is a common metric that indicates code complexity by
measuring the number of linearly independent paths.
From the control flow graph (CFG) of a program, the
complexity M is defined as M = E −N +2P where E is
the number of edges, N is the number of nodes, and P is
the number of connected components of the CFG.

2.2 Using Syntax-Based Feature
While syntax-based analysis may lack semantic under-
standing of a program, previous work has shown its ef-
fectiveness on classifying unpacked programs. Indeed,
n-gram analysis is widely adopted in software similarity
detection, e.g., [20, 22, 26, 40]. The benefit of syntax-
based analysis is that it is fast because it does not require
disassembling.

• n-grams: An n-gram is a consecutive subsequence of
length n in a sequence. From the identified executable
sections, ILINE extracts program code into a hexadeci-
mal sequence. Then, n-grams are obtained by sliding a
window of n bytes over it. For example, Figure 2b shows
4-grams extracted from Figure 2a.

2.3 Using Static Features
Existing work utilized semantically richer features by
first disassembling a binary. After reconstructing a con-
trol flow graph for each function, each basic block can
be considered as a feature [12]. In order to maximize
the probability of identifying similar programs, previous
work also normalized disassembly outputs by considering
instruction mnemonics without operands [23, 46] or in-
struction mnemonics with only the types of each operand
(such as memory, a register or an immediate value) [39].

In our experiments, we introduce an additional nor-
malization step of normalizing the instruction mnemonics
themselves. This was motivated by our observations when

84 22nd USENIX Security Symposium USENIX Association

we analyzed the error cases in the lineages constructed
using the above techniques. Our results indicate that this
normalization notably improves lineage inference quality.

We also evaluate binary abstraction methods in an ide-
alized setting in which we can deploy reliable feature
extraction techniques. The limitation with static analysis
comes from the difficulty of getting precise disassem-
bly outputs from program binaries [27, 30]. In order to
exclude the errors introduced at the feature extraction
step and focus on evaluating the performance of software
lineage inference algorithms, we also leverage assembly
generated using gcc -S (not source code itself) to ob-
tain basic blocks more accurately. Note that we use this
to simulate what the results would be with ideal disassem-
bling, which is in line with our goal of understanding the
limits of the selected approaches.
• Basic blocks comprising disassembly instructions:

ILINE disassembles a binary and identifies its basic blocks.
Each feature is a sequence of instructions in a basic block.
For example, in Figure 2c, each line is a series of instruc-
tions in a basic block; and each line is considered as an
individual feature. This feature set is semantically richer
than n-grams.
• Basic blocks comprising instruction mnemonics:

For each disassembled instruction, ILINE retains only its
mnemonic and the types of its operands (immediate, reg-
ister, and memory). For example, add $0x2c, %esp
is transformed into add imm, reg in Figure 2d. By
normalizing the operands, this feature set helps us miti-
gate errors from syntactical differences, e.g., changes in
offsets and jump target addresses, and register renaming.
• Basic blocks comprising normalized mnemonics:

ILINE also normalizes mnemonics. First, mnemonics for
all conditional jumps, e.g., je, jne and jg, are normal-
ized into jcc because the same branching condition can
be represented by flipped conditional jumps. For exam-
ple, program p1 uses cmp eax, 1; jz addr1 while
program p2 has cmp eax, 1; jnz addr2. Second,
ILINE removes the nop instruction.

2.4 Using Dynamic Features
Modern malware is often found in a packed binary for-
mat [15, 21, 32, 38] and it is often not easy to analyze such
packed/obfuscated programs with static analysis tools.
In order to mitigate such difficulties, dynamic analysis
has been proposed to monitor program executions and
changes made to a system at run time [1, 2, 13, 35]. The
idea of dynamic analysis is to run a program to make it
disclose its “behaviors”. Dynamic analysis on malware is
typically performed in controlled environments such as
virtual machines and isolated networks to prevent infec-
tions spreading to other machines [37].
• Instructions executed at run time: For malware

specifically, ILINE traces an execution using a binary in-

strumentation tool and collects a set of instruction traces.
Similar to static features, ILINE also generates additional
sets of features by normalizing operands and mnemonics.

2.5 Using Multi-Resolution Features
Besides considering each feature set individually, ILINE
utilizes multiple feature sets to benefit from normalized
and specific features. Specifically, ILINE first uses the
most normalized feature set to detect similar programs
and gradually employs less-normalized feature sets to
distinguish highly similar programs. This ensures that
less similar programs (e.g., major version changes) will
be connected only after more similar programs (e.g., only
changes of constant values) have been connected.

3 Distance Measures Between Feature Sets
To measure the distance between two programs p1 and
p2, ILINE uses the symmetric difference between their
feature sets, which captures both additions and deletions
made between p1 and p2. Let f1 and f2 denote the two
feature sets extracted from p1 and p2, respectively. The
symmetric distance between f1 and f2 is defined to be

SD(f1, f2) = | f1� f2|+ | f2� f1|, (1)

which denotes the cardinality of the set of features that are
in f1 or f2 but not both. The symmetric distance basically
measures the number of unique features in p1 and p2.

Distance metrics other than symmetric distance may
be used for lineage inference as well. For example, the
Dice coefficient distance DC(f1, f2) = 1− 2| f1∩ f2|

| f1|+| f2|
, the

Jaccard distance JD(f1, f2) = 1− | f1∩ f2|
| f1∪ f2|

, and the Jaccard

containment distance JC(f1, f2) = 1− | f1∩ f2|
min(| f1|,| f2|)

can all
be used to calculate the dissimilarity between two sets.

Besides the above four distance measures, which are all
symmetric, i.e., distance(f1, f2) = distance(f2, f1),
we have also evaluated an asymmetric distance measure
to determine the direction of derivation between p1 and
p2. We call it the weighted symmetric distance, denoted
WSD(f1, f2) = | f1� f2| × Cdel + | f2� f1| × Cadd where
Cdel and Cadd denote the cost for each deletion and each
addition, respectively. Note that WSD(f1, f2) = SD(f1, f2)
when Cdel = Cadd = 1.

Our hypothesis is that additions and deletions should
have different costs in a software evolution process, and
we should be able to infer the derivative direction be-
tween two programs more accurately using the weighted
symmetric distance. For example, in many open source
projects and malware, code size usually grows over
time [8, 45]. In other words, addition of new code is pre-
ferred to deletion of existing code. Differentiating Cdel
and Cadd can help us to decide a direction of derivation. In
this paper, we set Cdel = 2 and Cadd = 1. (We leave it as

USENIX Association 22nd USENIX Security Symposium 85

future work to investigate the effect of these values.) Sup-
pose program pi has feature set fi = {m1,m2,m3}, and
program p j contains feature set f j = {m1,m2,m4,m5}.
By introducing asymmetry, evolving from pi to p j has a
distance of 4 (deletion of m3 and addition of m4 and m5),
while the opposite direction has a distance of 5 (deletion
of m4 and m5 and addition of m3). Since pi → p j has a
smaller distance, we conclude that it is the more plausible
scenario.

For the rest of our paper, we use SD as a representative
distance metric when we explain our lineage inference
algorithms. We evaluated the effectiveness of all five dis-
tance measures on inferring lineage using SD as a baseline
(see §8). Regarding metric-based features, e.g., section
size, we measure the distance between two samples as the
difference of their metric values.

4 Software Lineage Inference
Our goal is to automatically infer software lineage of
program binaries. We build ILINE to systematically ex-
plore the design space illustrated in Figure 1 to understand
advantages and disadvantages of our algorithms for infer-
ring software lineage. We applied our algorithms to two
types of lineage: straight line lineage (§4.1) and directed
acyclic graph (DAG) lineage (§4.2). In particular, this is
motivated by the observation that there are two common
development models: serial/mainline development and
parallel development. In serial development, every devel-
oper makes a series of check-ins on a single branch; and
this forms straight line lineage. In parallel development,
several branches are created for different tasks and are
merged when needed, which results in DAG lineage.

4.1 Straight Line Lineage
The first scenario that we have investigated is 1-straight
line lineage, i.e., a program source tree that has no branch-
ing/merging history. This is a common development
history for smaller programs. We have also extended
our technique to handle multiple straight line lineages
(§4.1.4).

Software lineage inference in this setting is a problem
of determining a temporal ordering. Given N unlabeled
revisions of program p, the goal is to output label “1” for
the 1st revision, “2” for the 2nd revision, and so on. For
example, if we are given 100 revisions of program p and
we have no timestamp of the revisions (or 100 revisions
are randomly permuted), we want to rearrange them in
the correct order starting from the 1st revision p1 to the
100th revision p100.

4.1.1 Identifying the Root Revision

In order to identify the root/first revision that has no parent
in lineage, we explore two different choices: (i) inferring

the root/earliest revision, and (ii) using the real root revi-
sion from the ground truth.

ILINE picks the root revision based upon Lehman’s
observation [28]. The revision that has the minimum code
complexity (the 2nd software evolution law) and the min-
imum size (the 6th software evolution law) is selected
as the root revision. The hypothesis is that developers
are likely to add more code to previous revisions rather
than delete other developers’ code, which can increase
code complexity and/or code size. This is also reflected
in security scenarios, e.g., malware authors are also likely
to add more modules to make it look different to bypass
anti-virus detection, which leads to high code complex-
ity [8]. In addition, provenance information such as first
seen date [10] and tool-chain components [36] can be
leveraged to infer the root.

We also evaluate ILINE with the real root revision given
from the ground truth in case the inferred root revision
was not correct. By comparing the accuracy of the lin-
eage with the real root revision to the accuracy of the
lineage with the inferred root revision, we can assess the
importance of identifying the correct root revision.

4.1.2 Inferring Order

From the selected root revision, ILINE greedily picks the
closest revision in terms of the symmetric distance as the
next revision. Suppose we have three contiguous revi-
sions: p1, p2, and p3. One hypothesis is SD(p1, p2) <
SD(p1, p3), i.e., the symmetric distance between two adja-
cent revisions would be smaller. This hypothesis follows
logically from Lehman’s software evolution laws.

There may be cases where the symmetric distance be-
tween two different pairs are the same, i.e., a tie. Suppose
SD(p1, p2) = SD(p1, p3). Then both p2 and p3 become
candidates for the next revision of p1. Using normalized
features can cause more ties than using specific features
because of the information loss.

ILINE utilizes more specific features in order to break
ties more correctly (see §2.5). For example, if the symmet-
ric distances using normalized mnemonics are the same,
then the symmetric distances using instruction mnemon-
ics are used to break ties. ILINE gradually reduces nor-
malization strength to break ties.

4.1.3 Handling Outliers

As an optional step, ILINE handles outliers in our recov-
ered ordering, if any. Since ILINE constructs lineage
in a greedy way, if one revision is not selected mistak-
enly, the revision may not be selected until the very last
round. To see this, suppose we have 5 revisions p1, p2,
p3, p4, and p5. If ILINE falsely selects p3 as the next revi-
sion of p1 (p1 → p3) and SD(p3, p4)< SD(p3, p2), then
p4 will be chosen as the next revision (p1 → p3 → p4).
It is likely that SD(p4, p5) < SD(p4, p2) holds because

86 22nd USENIX Security Symposium USENIX Association

p4 and p5 are neighboring revisions, and then p5 will
be selected (p1 → p3 → p4 → p5). The probability
of selecting p2 is getting lower and lower if we have
more revisions. At last p2 is added as the last revision
(p1 → p3 → p4 → p5 → p2) and becomes an outlier.

In order to handle such outliers, ILINE monitors the
symmetric distance between every adjacent pair in the
constructed lineage G. Since the symmetric distance at
an outlier is the accumulation of changes from multiple
revisions, it would be much larger than the difference be-
tween two contiguous revisions. (See Figure 10 for a real
life example.) ILINE detects outliers by detecting peaks
among the symmetric distances between consecutive pairs
by means of a user-configurable threshold.

Once an outlier r has been identified, ILINE eliminates
it in two steps. First, ILINE locates the revision y that has
the minimum distance with r. Then, ILINE places r im-
mediately next to y, favoring the side with a gap that has a
larger symmetric distance. In our example, suppose p3 is
the closest revision to p2. ILINE will compare SD(p1, p3)
(before) with SD(p3, p4) (after) and then insert p2 into
the bigger of the two gaps. Therefore, in the case when
SD(p1, p3) is larger than SD(p3, p4), we will recover the
correct lineage, i.e., p1 → p2 → p3 → p4 → p5.

4.1.4 k-Straight Line Lineage

We consider k-straight line lineage where we have a mixed
data set of k different programs instead of a single pro-
gram, and each program has straight line lineage.

For k-straight line lineage, ILINE first performs clus-
tering on a given data set P to group the same (similar)
programs into the same cluster Pk ⊆ P. Programs are sim-
ilar if D(pi, p j)� t where D(·) means a distance measure-
ment between two programs and t is a distance threshold
to be considered as a group. After we isolate distinct
program groups between each other, ILINE identifies the
earliest revision p1

k and infers straight line lineage for each
program group Pk using the straight line lineage method.
We denote the r-th revision of the program k as pr

k. One
caveat with the use of clustering as a preprocessing step
is that more precise clustering may require reliable “com-
ponents” extraction from program binaries, which is out
of our scope.

Given a collection of programs and revisions, previ-
ous work shows that clustering can effectively separate
them [5, 18, 20, 46]. ILINE uses hierarchical clustering
because the number of variants k is not determined in ad-
vance. Other clustering methods like k-means clustering
require that k is set at the beginning. ILINE groups two
programs if JD(f1, f2)� t where t is a distance threshold
(0 � t � 1). In order to decide an appropriate distance
threshold t, we explore entire range of t and find the value
where the resulting number of clusters becomes stable
(see Figure 7 for an example).

4.2 Directed Acyclic Graph Lineage
The second scenario we studied is directed acyclic graph
(DAG) lineage. This generalizes straight line lineage to
include branching and merging histories. Branching and
merging are common in large scale software development
because branches allow developers to modify and test
code without affecting others.

In a lineage graph G, branching is represented by a
node with more than one outgoing arcs, i.e., a revision
with multiple children. Merging is denoted by a node
with more than one incoming arcs, i.e., a revision with
multiple parents.

4.2.1 Identifying the Root Revision

In order to identify the root revision in lineage, we explore
two different choices: (i) inferring the root/earliest revi-
sion and (ii) using the real root revision from the ground
truth as discussed in §4.1.1.

4.2.2 Building Spanning Tree Lineage

ILINE builds (directed) spanning tree lineage by greedy
selection. This step is similar to, but different from the
ordering recovery step of the straight line lineage method.
In order to recover an ordering, ILINE only allows the last
revision in the recovered lineage G to have an outgoing
arc so that the lineage graph becomes a straight line. For
DAG lineage, however, ILINE allows all revisions in the
recovered lineage G to have an outgoing arc so that a
revision can have multiple children.

For example, given three revisions p1, p2, and p3, if
p1 is selected as a root and SD(p1, p2)< SD(p1, p3), then
ILINE connects p1 and p2 (p1 → p2). If SD(p1, p3) <
SD(p2, p3) holds, p1 will have another child p3 and a
lineage graph looks like the following:

p1

p2 p3

We evaluate three different policies on the use of a
timestamp in DAG lineage: no timestamp, the pseudo
timestamp from the recovered straight line lineage, and
the real timestamp from the ground truth. Without a times-
tamp, the revision p j to be added to G is determined by
the minimum symmetric distance min{SD(pi, p j) : pi ∈
N̂, p j ∈ N̂c} where N̂ ⊆ N represents a set of nodes al-
ready inserted into G and N̂c denotes a complement of
N̂; and an arc (pi, p j) is added. However, with the use
of a timestamp, the revision p j ∈ N̂c to be inserted is de-
termined by the earliest timestamp and an arc is drawn
based upon the minimum symmetric distance. In other
words, we insert nodes in the order of timestamps.

4.2.3 Adding Non-Tree Arcs

While building (directed) spanning tree lineage, ILINE
identifies branching points by allowing the revisions pi ∈

USENIX Association 22nd USENIX Security Symposium 87

N̂ to have more than one outgoing arcs—revisions with
multiple children. In order to pinpoint merging points,
ILINE adds non-tree arcs also known as cross arcs to
spanning tree lineage.

For every non-root node pi, ILINE identifies a unique
feature set ui that does not come from its parent p j, i.e.,
ui = {x : x ∈ f i and x �∈ f j}. Then ILINE identifies possi-
ble parents pk ∈ N as follows:

i) if real/pseudo timestamps are given, pk with earlier
timestamps than the timestamp of pi

ii) for symmetric distance measures such as SD, DC, JD,
and JC, non-ancestors pk added to G before pi

iii) for the asymmetric distance measure WSD, non-
ancestors pk satisfying WSD(pk, pi)< WSD(pi, pk)

become possible parents. Among the identified possible
parents pk, if ui and f k extracted from pk have common
features, then ILINE adds a non-tree arc from pk to pi.
Consequently, pi becomes a merging point of p j and pk

and a lineage graph looks like the following:

p j pk

pi

After adding non-tree arcs, ILINE outputs DAG lineage
showing both branching and merging.

5 Software Lineage Metrics
We build IEVAL to scientifically measure the quality of
our constructed lineage with respect to the ground truth.

5.1 Straight Line Lineage
We use dates of commit histories and version numbers as
the ground truth of ordering G∗ = (N,A∗), and compare
the recovered ordering by ILINE G = (N,A) with the
ground truth to measure how close G is to G∗.

IEVAL measures the accuracy of the constructed lin-
eage graph G using two metrics: number of inversions
and edit distance to monotonicity (EDTM). An inversion
happens if ILINE gives a wrong ordering for a chosen pair
of revisions. The total number of inversions is the number
of wrong ordering for all

(|N|
2

)

pairs. The EDTM is the
minimum number of revisions that need to be removed to
make the remaining nodes in the lineage graph G in the
correct order. The longest increasing subsequence (LIS)
can be computed in G, which is the longest (not necessar-
ily contiguous) subsequence in the sorted order. Then the
EDTM is calculated by |N| − |LIS|, which depicts how
many nodes are out-of-place in G.

p1 p3 p2 p4 p5

(a) Lineage 1

p1 p3 p4 p5 p2

(b) Lineage 2

Figure 3: Inversions and edit distance to monotonicity

For example, we have 5 revisions of a program and
ILINE outputs lineage 1 in Figure 3a and lineage 2 in
Figure 3b. Lineage 1 has 1 inversion (a pair of p3 − p2)
and 1 EDTM (delete p2). Lineage 2 has 3 inversions
(p3 − p2, p4 − p2, and p5 − p2) and 1 EDTM (delete p2).
As shown in both cases, the number of inversions can be
different even when the EDTM is the same.

5.2 Directed Acyclic Graph Lineage
We evaluate the practical use of five metrics for measuring
the accuracy of the constructed DAG lineage: number of
LCA mismatches, average pairwise distance to true LCA,
partial order mismatches, graph arc edit distance, and
k-Cone mismatches.

p1 p2

p3

p4

p5

p6

p7

Figure 4: Lowest common ancestors

We define SLCA(x,y) to be the set of LCAs of x and y
because there can be multiple LCAs. For example, in Fig-
ure 4, SLCA(p4, p5) = {p2, p3}, while SLCA(p6, p7) =
{p4}. Given SLCA(x,y) in G and the true SLCA∗(x,y)
in G∗, we can evaluate the correct LCA score of (x,y)
L(SLCA(x,y), SLCA∗(x,y)) in the following four ways.

i) 1 point (correct) if SLCA(x,y) = SLCA∗(x,y)
ii) 1 point (correct) if SLCA(x,y)⊆ SLCA∗(x,y)

iii) 1 point (correct) if SLCA(x,y)⊇ SLCA∗(x,y)
iv) 1− JD(SLCA(x,y), SLCA∗(x,y)) point

Then the number of LCA mismatches is

|N ×N|− ∑
(x,y)∈N×N

L(SLCA(x,y), SLCA∗(x,y)).

The 1st policy is sound and complete, i.e., we only con-
sider an exact match of SLCA. However, even small errors
can lead to a large number of LCA mismatches. The 2nd
policy is sound, i.e., every node in SLCA is indeed a true
LCA (no false positive). Nonetheless, including any extra
node will result in a mismatch. The 3rd policy is com-
plete, i.e., SLCA must contain all true LCAs (no false
negative). However, missing any true LCA will result in
a mismatch. The 4th policy uses the Jaccard distance to
measure dissimilarity between SLCA and SLCA∗. In our
evaluation, ILINE followed the 4th policy since it allows
us to attain a more fine-grained measure.

We also measure the distance between the true LCA(s)
and reported LCA(s). For example, if ILINE falsely re-
ports p5 as an LCA of p6 and p7 in Figure 4, then the
pairwise distance to the true LCA is 2 (=distance between
p4 and p5). Formally, let D(u,v) represent the distance
between nodes u and v in the ground truth G∗. Given
SLCA(x,y) and SLCA∗(x,y), we define the pairwise dis-
tance to true LCA T (SLCA(x,y), SLCA∗(x,y)) to be

88 22nd USENIX Security Symposium USENIX Association

SPECIAL CASE ← ·· · · · · · · · · · · · · · → GENERAL CASE
Property measured

Straight Line DAG
Inversions PO SLCA Order/Topology
EDTM GAED Out-of-place nodes/arcs

k-Cone Descendants within depth k
Table 1: Relationships among metrics

∑
(l,l∗)∈SLCA(x,y)×SLCA∗(x,y)

D(l, l∗)
|SLCA(x,y)× SLCA∗(x,y)|

and the average pairwise distance to true LCA to be

∑
(x,y)∈N×N

T (SLCA(x,y), SLCA∗(x,y))
|N ×N|

.

A partial order (PO) of x and y is to identify which one
of x and y comes first: either x or y, or incomparable if they
are not each other’s ancestors. For example, in Figure 4,
the PO of p3 and p7 is p3, while the PO of p6 and p7 is
incomparable. The total number of PO mismatches is the
number of wrong ordering for all

(|N|
2

)

pairs.
A graph arc edit distance (GAED) measures how many

arcs need to be deleted from G and G∗ to make both G
and G∗ identical. For every node x, we calculate E(x) =
SD(Adj(x),Adj∗(x)) where Adj(x) and Adj∗(x) denotes
the adjacency list of x in G and G∗ respectively. Then
GAED becomes ∑x∈N E(x).

We define k-CONE(x) to be the set of descendants
within depth k from node x. For example, in Fig-
ure 4, 2-CONE of p1 is {p2, p3, p4, p5}. Then the given
k-CONE(x) in G and the true k-CONE∗(x) in G∗, we can
evaluate the correct k-CONE score of x R(k-CONE(x))
using four different ways of set comparisons: an exact
match, a subset match, a superset match, or the Jaccard in-
dex. In our evaluation, ILINE used the Jaccard index for a
more fine-grained measure. Then the number of k-CONE
mismatches is |N|−∑x∈N R(k-CONE(x)). With smaller k,
we can measure the accuracy of nearest descendants.

5.3 Relationships among Metrics
Table 1 shows the relationships among different metrics
and a property measured by each metric. A PO mismatch
is a special case of an LCA mismatch because when x and
y are in different branches, an LCA mismatch measures
the accuracy of SLCA while a PO mismatch just says two
nodes are incomparable. An inversion is also a special
case of an LCA mismatch because querying the LCA of x
and y in a straight line is the same as asking which one of
x and y comes first. Essentially, a PO mismatch in a DAG
is equal to an inversion in a straight line.

EDTM is a special case of GAED and an upper bound
of GAED in a straight line is GAED ≤ EDTM×6. One
out-of-place node can cause up to six arcs errors. For
example, p1 → p2 → p4 → p3 → p5 has 1 EDTM (delete

p3 or p4) and 6 GAED (delete p2 → p4, p4 → p3, and
p3 → p5 in G and p2 → p3, p3 → p4, and p4 → p5 in
G∗).

A k-Cone mismatch is a local metric to assess the cor-
rectness of nearest descendants of nodes while the other
six metrics are global metrics to evaluate the correctness
of the order of nodes and to count out-of-place nodes/arcs.

What are good metrics? Among the seven metrics, we
recommend two metrics—partial order mismatches and
graph arc edit distance. PO mismatches and GAED are
both desirable because they evaluate different properties
of lineage and are not deducible from each other.

To see this, observe that PO mismatches and SLCA
mismatches measure the same property of lineage and
have similar accuracy results in our evaluation. However,
PO mismatches are more efficient to compute than SLCA
mismatches; moreover, PO gives an answer for a more in-
tuitive question, “which one of these two programs comes
first”. Thus, PO mismatches are preferred. Average dis-
tance to true LCA is supplementary to SLCA mismatches
and so this metric is not necessary if we exclude SLCA
mismatches. The number of inversions and edit distance
to monotonicity can be respectively seen as special cases
of PO mismatches and GAED in the case of straight line
lineages. k-Cone mismatches can be extremely useful to
an analyst during manual analysis, but it can be difficult
to pick the right value of k automatically.

6 Implementation
ILINE is implemented using C (2.5 KLoC) and
IDAPython plugin (100 LoC). We use the IDA Pro disas-
sembler1 to disassemble program binaries and to identify
basic blocks. As discussed in §2.3, gcc -S output is
used to compensate the errors introduced at the disas-
sembling step. We utilize Cuckoo Sandbox2 to monitor
native functions, API calls and network activities of mal-
ware. On top of Cuckoo Sandbox, we use malwasm3 with
pintool4, which allows us to obtain more fine-grained in-
struction level of traces. Since some kinds of malicious
activities require “live” connections, we also employ IN-
etSim5 to simulate various network services, e.g., web,

1http://www.hex-rays.com/products/ida/index.shtml
2http://cuckoosandbox.org/
3http://code.google.com/p/malwasm/
4http://software.intel.com/en-us/articles/pintool
5http://www.inetsim.org/

USENIX Association 22nd USENIX Security Symposium 89

Extract
Features

Perform
Clustering

Construct
Lineage

[software] [k code bases] [lineage output]

Measure
Accuracy ground

truth

iLine iEval
Metric1

89.2%

89.3%

99.5%
100% 93.2%

Metric2

85.1%

[accuracy]

Figure 5: Software lineage inference overview

email, DNS, FTP, IRC, and so on. For example, Blaster-
Worm in our data set sent exploit packets and propagated
itself via TFTP only when there were (simulated) live
vulnerable hosts.

For the scalability reason, we use the feature hash-
ing technique [20, 44] to encode extracted features into
bit-vectors. For example, let bv1 and bv2 denote two
bit-vectors generated from f1 and f2 using feature hash-
ing. Then the symmetric distance in Equation 1 can be
calculated by:

SDbv(bv1,bv2) = S(bv1 ⊗bv2) (2)

where ⊗ denotes bitwise-XOR and S(·) means the number
of bits set to one.

7 Evaluation
As depicted in Figure 5, we systematically evaluated our
lineage inference algorithms using (i) ILINE to explore
all the design spaces described in Figure 1 with a variety
of data sets and (ii) IEVAL to measure the accuracy of our
outputs with respect to the ground truth.

7.1 Straight Line Lineage
7.1.1 Data sets

For straight line lineage experiments, we have collected
three different kinds of goodware data sets, e.g., con-
tiguous revisions, released versions, and actual release
binaries, and malware data sets.

i) Contiguous Revisions: Using a commit history
from a version control system, e.g., subversion and git,
we downloaded contiguous revisions of a program. The
time gap between two adjacent commits varies a lot, from
<10 minutes to more than a month. We excluded some
revisions that changed only comments because they did
not affect the resulting program binaries.

Programs # revisions First rev Last rev Period
memcached 124 2008-10-14 2012-02-02 3.3 yr

redis 158 2011-09-29 2012-03-28 0.5 yr
redislite 89 2011-06-02 2012-01-18 0.6 yr

Table 2: Data sets of contiguous revisions

In order to set up idealized experiment environments, we
compiled every revision with the same compiler and the
same compiling options. We excluded variations that can
come from the use of different compilers.

ii) Released Versions: We downloaded only released
versions of a program meant to be distributed to end users.
For example, subversion maintains them under the tags
folder. The difference with contiguous revisions is that
contiguous revisions may have program bugs (commit-
ted before testing) or experimental functionalities that
would be excluded in released versions. In other words,
released versions are more controlled data sets. We com-
piled source code with the same compiler and the same
compiling options for ideal settings.

Programs #
releases

First release Last release PeriodVer Date Ver Date
grep 19 2.0 1993-05-22 2.11 2012-03-02 18.8 yr
nano 114 0.7.4 2000-01-09 2.3.1 2011-05-10 11.3 yr
redis 48 1.0 2009-09-03 2.4.10 2012-03-30 2.6 yr

sendmail 38 8.10.0 2000-03-03 8.14.5 2011-05-15 11.2 yr
openssh 52 2.0.0 2000-05-02 5.9p1 2011-09-06 11.4 yr

Table 3: Data sets of released versions

iii) Actual Release Binaries: We collected binaries (not
source code) of released versions from rpm or deb pack-
age files.

Programs #
files

First release Last release PeriodVer Date Ver Date
grep 37 2.0-3 2009-08-02 2.11-3 2012-04-17 2.7 yr
nano 69 0.7.9-1 2000-01-24 2.2.6-1 2010-11-22 10.8 yr
redis 39 0.094-1 2009-05-06 2.4.9-1 2012-03-26 2.9 yr

sendmail 41 8.13.3-6 2005-03-12 8.14.4-2 2011-04-21 6.1 yr
openssh 75 3.9p1-2 2005-03-12 5.9p1-5 2012-04-02 7.1 yr

FileZilla 62 3.0.0 2007-09-13 3.5.3 2012-01-08 4.3 yr
p7zip 32 0.91 2004-08-21 9.20.1 2011-03-16 6.6 yr

Table 4: Data sets of actual release binaries

The difference is that we did not have any control over the
compiling process of the program, i.e., different programs
may be compiled with different versions of compilers
and/or optimization options. This data set is a represen-
tative of real-world scenarios where we do not have any
information about development environments.
iv) Malware: We used 84 samples with known lineage
collected by the Cyber Genome program. The data set
includes bots, worms, and Trojan horses and contains 7
clusters.
Cluster # samples Family Cluster # samples Family
MC1 10 KBot MC5 10 CleanRoom.B
MC2 17 BlasterWorm MC6 15 MiniPanzer.B
MC3 15 MiniPanzer.A MC7 10 CleanRoom.C
MC4 7 CleanRoom.A

Table 5: Data sets of malware

90 22nd USENIX Security Symposium USENIX Association

 200

 205

 210

 215

 220

 225

 230

 235

 240

 245

 250

 0 20 40 60 80 100 120
 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700
F

il
e

S
iz

e
(K

B
)

C
y
cl

o
m

at
ic

 C
o
m

p
le

x
it

y

Revision

File Size
Cyclomatic Complexity

(a) memcached

 2550

 2600

 2650

 2700

 2750

 2800

 2850

 0 20 40 60 80 100 120 140
 9000

 9200

 9400

 9600

 9800

 10000

 10200

 10400

F
il

e
S

iz
e

(K
B

)

C
y
cl

o
m

at
ic

 C
o
m

p
le

x
it

y

Revision

File Size
Cyclomatic Complexity

(b) redis

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0 10 20 30 40 50 60 70 80
 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

F
il

e
S

iz
e

(K
B

)

C
y
cl

o
m

at
ic

 C
o
m

p
le

x
it

y

Revision

File Size
Cyclomatic Complexity

(c) redislite

Figure 6: File size and complexity for contiguous revisions

7.1.2 Results

What selection of features provides the best lineage graph
with respect to the ground truth? We evaluated different
feature sets on diverse data sets.

i) Contiguous Revisions: In order to identify the first
revision of each program, code complexity and code size
of every revision were measured. As shown in Figure 6,
both file size and cyclomatic complexity generally in-
creased as new revisions were released. For these three
data sets, the first revisions were correctly identified by
selecting the revision that had the minimum file size and
cyclomatic complexity.
A lineage for each program was constructed as described
in §4.1. Although section/file size achieved high accu-
racies, e.g., 95.5%–99.5%, they are not reliable features
because many ties can decrease/increase the accuracies de-
pending on random guesses. n-grams over byte sequences
generally achieved better accuracies; however, 2-grams
(small size of n) were relatively unreliable features, e.g.,
6.3% inversion error in redis. In our experiments, n=4
bytes worked reasonably well for these three data sets.
The use of disassembly instructions had up to 5% in-
version error in redislite. Most errors came from
syntactical differences, e.g., changes in offsets and jump
target addresses. After normalizing operands, instruc-
tion mnemonics with operands types decreased the errors
substantially, e.g., from 5% to 0.4%. With additional
normalization, normalized instruction mnemonics with
operands types achieved the same or better accuracies.
Note that more normalized features can result in better or
worse accuracies because there may be more ties where
random guesses are involved.
In order to break ties, more specific features were used
in multi-resolution features. For example, all 10 tie cases
in memcached were correctly resolved by using more
specific features. This demonstrated the effectiveness of
using multi-resolution features for breaking ties.
ii) Released Versions:The first/root revisions were also

correctly identified by selecting the revision that had the
minimum code size. In some cases, simple feature sets,
e.g., section/file size, could achieve higher accuracies than
semantically rich feature sets (requiring more expensive

process), e.g., instruction sequences. For example, ILINE
with section size yielded 88.3% accuracy, while ILINE
with instructions achieved 77.8% accuracy in grep. This,
however, was improved to 100% with normalization. Like
the experiments on contiguous revisions, 2-grams per-
formed worse in the experiments on released versions,
e.g., 18.9% accuracy in sendmail. Among various fea-
ture sets, multi-resolution features outperformed the other
feature sets, e.g., 99.3%–100%.
iii) Actual Release Binaries: The first/root revisions for
nano and openssh were correctly identified by select-
ing the revision that had the minimum code size. For the
other five data sets, we performed the experiments both
with the wrong inferred root and with the correct root
given from the ground truth.
Overall accuracy of the constructed lineage was fairly
high across all the data sets even though we did not control
the variables of the compiling process, e.g., 83.3%–99.8%
accuracy with the correct root. One possible explanation
is that closer revisions (developed around the same time)
might be compiled with the same version of compiler
(available around the same time), which can make neigh-
boring revisions look related to each other at the binary
code level.
It was confirmed that lineage inference can be improved
with the knowledge of the correct root. For example,
ILINE picked a wrong revision as the first revision in
FileZilla, which resulted in 51.6% accuracy; in con-
trast, the accuracy increased to 99.8% with the correct
root revision.
iv) Malware: The first/root samples for all seven clus-
ters were correctly identified by selecting the sample that
had the minimum code size. Section size achieved high
accuracies, e.g., 93.3–100%, which showed new variants
were likely to add more code to previous malware. File
size was not a good feature to infer a lineage of MC2
because all samples in MC2 had the same file size. The
multi-resolution feature yielded 94.9–100% accuracy.
Dynamic instrumentations at the instruction level enabled
us to catch minor updates between two adjacent vari-
ants. For example, subsequent BlasterWorm samples
add more checks for virtual environments to hide its ma-
licious activities if it is being monitored, e.g., examin-

USENIX Association 22nd USENIX Security Symposium 91

 1

 10

 100

 0 0.1 0.2 0.3 0.4 0.5

N
u
m

b
er

 o
f

C
lu

st
er

s

Distance Threshold

3 sets of programs
2 sets of programs

Figure 7: Clustering mixed data set of 2 and 3 programs

ing user names (sandbox, vmware, honey), running pro-
cesses (VBoxService.exe, joeboxserver.exe), and current
file names (C:\sample.exe). Dynamic feature sets yielded
worse accuracy in MC1, MC2, MC3, MC5, and MC6
while achieving the same accuracy in MC4 and better ac-
curacy in MC7. One main reason of the differences in
accuracy is that dynamic analysis followed a specific ex-
ecution path depending on the context. For example, in
MC2, some variants exited immediately when they de-
tected a VirtualBox service process, and produced limited
execution traces.
v) k-Straight Line Lineage: We evaluated ILINE on

mixed data sets including k different programs. For
2-straight line lineage, we mixed memcached and
redislite in that both programs have the same func-
tionality and similar code section sizes. Figure 7 shows
the resulting number of clusters with various distance
threshold values. From 0.2 to 0.5 distance threshold, the
resulting number of clusters was 2. This means ILINE
can first perform clustering to divide the data set into two
groups, then build a straight line lineage for each group.
The resulting number of clusters of the mixed data set of
3 programs including memcached, redislite, and
redis became stabilized to 3 from 0.2 to 0.5 distance
threshold, which means they were successfully clustered
for the subsequent straight line lineage building process.
We have also evaluated ILINE on three mixed malware
data sets, each of which is a combination of different
clusters in Table 5: {MC2+MC5}, {MC4+MC6}, and
{MC2+MC3+MC7}. For each mixed data set, ILINE also
clustered malware samples correctly for the subsequent
straight line lineage inference. We discuss inferring lin-
eage on incorrect clusters in §9.

7.2 Directed Acyclic Graph Lineage
7.2.1 Data sets

For DAG lineage experiments, we also evaluated ILINE
on both goodware and malware.

i) Goodware: We have collected 10 data sets for di-
rected acyclic graph lineage experiments from github6.
We used github because we know when a project is forked
from a network graph showing the development history
as a graph including branching and merging.

6https://github.com/

We downloaded DAG revisions that had multiple times of
branching and merging histories, and compiled with the
same compilers and optimization options.

Programs # revisions First rev Last rev Period
http-parser 55 2010-11-05 2012-07-27 1.7 yr

libgit2 61 2012-06-25 2012-07-17 0.1 yr
redis 98 2010-04-29 2010-06-04 0.1 yr

redislite 97 2011-04-19 2011-06-12 0.1 yr
shell-fm 107 2008-10-01 2012-06-26 3.7 yr

stud 73 2011-06-09 2012-06-01 1.0 yr
tig 58 2006-06-06 2007-06-19 1.0 yr
uzbl 73 2011-08-07 2012-07-01 0.9 yr

webdis 96 2011-01-01 2012-07-20 1.6 yr
yajl 62 2010-07-21 2011-12-19 1.4 yr

Table 6: Goodware data sets for DAG lineage

ii) Malware: We used two malware families with
known DAG lineage collected by the Cyber Genome pro-
gram. They contain 30 samples in total.

Cluster # samples Family
MC8 21 WormBot
MC9 9 MinBot

Table 7: Malware data sets for DAG lineage

7.2.2 Results

We set two policies for DAG lineage experiments: the
use of timestamp (none/pseudo/real) and the use of the
real root (none/real). The real timestamp implies the real
root so that we explored 3× 2− 1 = 5 different setups.
We used multi-resolution feature sets for DAG lineage
experiments because multi-resolution feature sets attained
the best accuracy in constructing straight line lineage.

i) Goodware: Without having any prior knowledge,
ILINE achieved 71.5%–94.1% PO accuracies. By using
the real root revision, the accuracies increased to 71.5%–
96.1%. For example, in case of tig, ILINE gained about
20% increase in the accuracy.
With pseudo timestamps, accuracies were worse even
with the real root revisions for most of data sets, e.g.,
64.0%–90.9% (see §8). By using the real timestamps,
ILINE achieved higher accuracies of 84.1%–96.7%. This
means that the recovered DAG lineages were very close
to the true DAG lineages.
ii) Malware: ILINE achieved 68.6%–75.0% accuracies

without any prior knowledge. Using the correct times-
tamps, the accuracies increased notably to 86.2%–91.7%.
While we obtained the real timestamps from the ground
truth in our experiments, we can also leverage first seen
date of malware, e.g., Symantec’s Worldwide Intelligence
Network Environment [10].
With dynamic features, ILINE achieved 59.0%–75.0% ac-
curacies without any prior knowledge, and 68.6%–80.6%
accuracies with real timestamps, which is a bit lower than
the accuracies based upon static features.

92 22nd USENIX Security Symposium USENIX Association

7.3 Performance
Given N binaries with their features already extracted,
the complexity of constructing lineage is O(N2) due to
the computation of the

(|N|
2

)

pairwise distances. To give
concrete values, we measured the time to construct lin-
eage with multi-resolution features, SD, and 32 KB of
bit-vectors on a Linux 3.2.0 machine with a 3.40 GHz i7
CPU utilizing a single core. Depending on the size of the
data sets, it took 0.002–1.431s for straight line lineage and
0.005–0.385s for DAG lineage with the help of feature
hashing. On average, this translates to 146 samples/s and
180 samples/s for straight line lineage and DAG lineage,
respectively. As a comparison, our BitShred malware
clustering system [20], which represents the state of the
art at the time of its publication in 2011, can process
257 samples per second using a single core on the same
machine. Since the running times of malware cluster-
ing and lineage inference are both dominated by distance
comparisons, and since ILINE needs to resolve ties us-
ing multi-resolution features whereas BitShred needs not,
we conclude that our current implementation of ILINE is
competitive in terms of performance.

8 Discussion & Findings
Features. File/section size features yielded 94.6–95.5%
mean accuracy in straight line lineage on goodware. Such
high accuracy supports Lehman’s laws of software evolu-
tion, e.g., continuing growth. However, size is not a reli-
able feature to infer malware lineage where malware au-
thors can obfuscate a feature, e.g., samples with the same
file size in MC2. As simple syntactic features, 4/8/16-
grams achieved 95.3–96.3% mean accuracy in straight
line lineage on goodware, whereas 2-grams achieved only
82.4% mean accuracy. This is because 2-grams are not
distinctive enough to differentiate between samples and
cause too many ties. Basic blocks as semantic features
achieved 94.0–95.6% mean accuracy in straight line lin-
eage on goodware. This slightly lower accuracy when
compared to n-grams was due to ties. Multi-resolution fea-
tures performed best, e.g., it achieved 95.8–98.4% mean
accuracy in straight line lineage on goodware. This is due
to its use of both syntactic and semantic features.

Distance Metrics. Our evaluation indicates that our lin-
eage inference algorithms perform similarly regardless
of the distance metrics except for the Jaccard contain-
ment (JC) distance. JC turns out to be inappropriate for
lineage inference because it cannot capture evolution-
ary changes effectively. Suppose there are three contigu-
ous revisions p1, p2, and p3; and p2 adds 10 lines of
code to p1 and p3 adds 10 lines of code to p2. Then,
JC(p1, p2) = JC(p1, p3) = JC(p2, p3) = 0 because one re-
vision is a subset of another revision. Such ties result

p22 p23 p29 p30 p35 p36

p40 p41 p42 p43

(a) Ground truth

p22 p23 p29 p30 p35 p36

p40 p41 p42 p43

(b) Constructed lineage with the use of pseudo timestamps

Figure 8: Error caused by pseudo timestamps in uzbl

 0

 5000

 10000

 15000

 20000

 25000

01/01/00 01/01/04 01/01/08

A
cc

u
m

u
la

te
d

S
y
m

m
et

ri
c

D
is

ta
n
ce

Date

0.7.40.8.00.9.0

1.0.01.1.0

1.2.0
1.3.0

2.0.0 2.1.0
2.2.0 2.3.0

Figure 9: Development history of nano

in low accuracy. For example, JC yielded 74.5% mean
accuracy, whereas SD yielded 84.0% mean accuracy in
DAG lineage on goodware.

Pseudo Timestamp. ILINE computes pseudo times-
tamps by first building a straight line lineage and then
use the recovered ordering as timestamps. Since ILINE
achieved fairly high accuracy in straight line lineage, at
first we expected this approach to do well in DAG lin-
eage. To our initial surprise, ILINE with pseudo times-
tamps actually performed worse. In retrospect, we ob-
served that since each branch had been developed sep-
arately, it is challenging to determine the precise order-
ing between samples from different branches. For ex-
ample, Figure 8 shows the partial ground truth and the
constructed lineage by ILINE for uzbl with pseudo
timestamps. Although ILINE without pseudo times-
tamps successfully recovered the ground truth lineage,
the use of pseudo timestamps resulted in poor perfor-
mance. The recovered ordering, i.e., pseudo timestamps
were p22, p40, p41, p42, p43, p23, p29, p30, p35, p36. Due to
the imprecise timestamps, the derivative relationships in
the constructed lineage were not accurate.

Revision History vs. Release Date. Correct software
lineage inference on a revision history may not corre-
spond with software release date lineage. For example,
Figure 9 shows the accumulated symmetric distance be-
tween two neighboring releases where a development
branch of nano-1.3 and a stable branch of nano-1.2
are developed in parallel. ILINE infers software lineage
consistent with a revision history.

USENIX Association 22nd USENIX Security Symposium 93

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

S
y

m
m

et
ri

c
D

is
ta

n
ce

Order

Symmetric Distance
outlier

Figure 10: An outlier in memcached

Threats to Validity. Our malware experiments were
performed on a relatively small data set because of diffi-
culties in obtaining the ground truth. Although it is hard
to indicate a representative of modern malware due to its
surreptitious nature, we evaluated our methods on com-
mon malware categories such as bots, worms, and Trojan
horses. To the best of our knowledge, we are the first to
take a systematic approach towards software lineage infer-
ence to provide scientific evidence instead of speculative
remarks.

9 Limitations
Reverting/Refactoring. Regression of code is a chal-
lenging problem in software lineage inference. A revision
adding new functionalities is sometimes followed by sta-
bilizing phases including bug fixes. Bug fixes might be
done by reverting to the previous revision, i.e., undoing
the modifications of the code.

Some revisions can become outliers because of ILINE’s
greedy construction and reverting/refactoring issues.
In §4.1.3, we propose a technique to detect and process
outliers by looking for peaks of the distance between
two contiguous revisions. For example, ILINE had 70
inversions and 1 EDTM for the contiguous revisions of
memcached. The error came from the 53rd revision that
was incorrectly located at the end of the lineage. Figure 10
shows the symmetric distance between two adjacent revi-
sions in the recovered lineage before we process outliers.
The outlier caused an exceptional peak of the symmetric
distance at the rightmost of the Figure 10. ILINE iden-
tified such possible outliers by looking for peaks, then
generated the perfect lineage of memcached after han-
dling the outlier.

There can also be false positives among detected out-
liers, i.e., a peak is identified even revisions are in the
correct order. For example, a peak can be identified be-
tween two contiguous revisions when there is a huge
update like major version changes. However, such false
positives do not affect overall accuracy of ILINE because
the original (correct) position will be chosen again when
minimizing the overall distance.

Although our technique improves lineage inference, it
may not be able to resolve every case. Unless we design a

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500

A
cc

u
m

u
la

te
d

S
y
m

m
et

ri
c

D
is

ta
n
ce

Order

nano
memcached

redislite

redis

grep

openssh

sendmail

Figure 11: Recovered ordering of mixed data set

precise model describing the developers’ reverting/refac-
toring activity, no reasonable algorithm may be able to
recover the same lineage as the ground truth. Rather, the
constructed lineage can be considered as a more practi-
cal/pragmatic representation of the truth.

Root Identification. It is a challenging problem to iden-
tify the correct roots of data sets where we do not have
any knowledge about the compilation process. ILINE suc-
cessfully identified the correct roots based upon code size
and complexity in all data sets except for some data sets
of actual release binaries. This shows that the Lehman’s
laws of software evolution are generally applicable to root
identification, but with a caveat. For example, with actual
release binaries data sets, ILINE achieved 77.8% mean
accuracy with the inferred roots. The accuracy increased
to 91.8% with the knowledge of the correct first revision.

In order to improve lineage inference, we can lever-
age “first seen” date of malware, e.g., Symantec’s World-
wide Intelligence Network Environment [10] or tool-
chain provenance such as compilers and compilation op-
tions [36].

Clustering. Clustering may not be able to group pro-
gram accurately due to noise or algorithmic limitations. In
order to simulate cases where clustering failed, we mixed
binaries from seven programs including memcached,
redis, redislite, grep, nano, sendmail, and
openssh into one set and ran our lineage inference algo-
rithm on it. As shown in Figure 11, revisions from each
program group located next to each other in the recovered
order (each program is marked in a different color). This
shows ILINE can identify close relationships within the
same program group even with high noise in a data set.
There are multiple intra-program gaps and inter-program
gaps. Relatively big intra-program gaps corresponded to
major version changes of a program where the Jaccard
distances were 0.28–0.66. The Jaccard distances at the
inter-program gaps were much higher, e.g., 0.9–0.95. This
means we can separate the mixed data set into different
program groups based on the inter-program gaps.

94 22nd USENIX Security Symposium USENIX Association

Feature Extraction. Although ILINE achieved an over-
all 95.8% mean accuracy in straight line lineage of good-
ware, ILINE achieved only 77.8% mean accuracy with
actual released binaries. In order to improve lineage infer-
ence, future work may choose to leverage better features.
For example, we may use recovered high-level abstraction
of program binaries [41], or we may detect similar code
that was compiled with different compilers and optimiza-
tion options [24].

10 Related Work
While previous research focuses on studying known soft-
ware lineage or development history, our focus is on de-
signing algorithms to create lineage and evaluating met-
rics to assess the quality of constructed lineage.

Belady and Lehman studied software evolution of IBM
OS/360 [3], and Lehman and Ramil formulated eight
laws describing software evolution process [28]. Xie et al.
analyzed histories of open source projects in order to ver-
ify Lehman’s laws of software evolution [45], and God-
frey and Tu investigated the Linux kernel to understand a
software evolution process in open source development
systems [14]. Shihab et al. evaluated the effects of branch-
ing in software development on software quality with
Windows Vista and Windows 7 [42]. Kim et al. studied
the history of code clones to evaluate the effectiveness
of refactoring on software improvement with respect to
clones [25].

Massacci et al. studied the effect of software evolution,
e.g., patching and releasing new versions, on vulnerabil-
ities in Firefox [33], and Jang et al. proposed a method
to track known vulnerabilities in modern OS distribu-
tions [19]. Edwards and Chen statistically verified that
an increase of security issues identified by a source code
analyzer in a new release may indicate an increase of
exploitable bugs in a release [11]. Davies et al. proposed
a signature-based matching of a binary against a known
library repository to identify library version information,
which can be potentially used for security vulnerabilities
scans [7].

Gupta et al. studied malware metadata collected by an
anti-virus vendor to describe evolutionary relationships
among malware [16]. Dumitras and Neamtiu studied
malware evolution to find new variants of well-known
malware [9]. Karim et al. generated phylogeny models
based upon code similarity to understand how new mal-
ware related to previously seen malware [22]. Khoo and
Lio investigated FakeAV-DO and Skyhoo malware fami-
lies using phylogenetic methods to understand statistical
relationships and to identify families [23]. Ma et al. stud-
ied diversity of exploits used by notorious worms and
constructed dendrograms to identify families and found
non-trivial code sharing among different families [31].
Lindorfer et al. investigated the malware evolution process

by comparing subsequent versions of malware samples
that were collected by exploiting embedded auto-update
functionality [29]. Hayes et al. pointed out the necessity
of systematic evaluation in malware phylogeny systems
and proposed two models to artificially generate refer-
ence sets of samples: mutation-based model and feature
accretion-based model [17].

11 Conclusion
In this paper, we proposed new algorithms to infer soft-
ware lineage of program binaries for two types of lineage:
straight line lineage and directed acyclic graph (DAG)
lineage. We built ILINE to systematically explore the
entire design space depicted in Figure 1 for software lin-
eage inference and performed over 2,000 different experi-
ments on large scale real-world programs—1,777 good-
ware spanning over a combined 110 years of development
history and 114 malware with known lineage. We also
built IEVAL to scientifically measure lineage quality with
respect to the ground truth. Using IEVAL, we evaluated
seven different metrics to assess diverse properties of lin-
eage, and recommended two metrics—partial order mis-
matches and graph arc edit distance. We showed ILINE
effectively extracted evolutionary relationships among
program binaries with over 84% mean accuracy for good-
ware and over 72% for malware.

12 Acknowledgment
We would like to thank our shepherd Fabian Monrose
for his support in finalizing this paper. We also would
like to thank the anonymous reviewers for their insightful
comments. This material is based upon work supported by
Lockheed Martin and DARPA under the Cyber Genome
Project grant FA975010C0170. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of Lockheed Martin or DARPA.

References
[1] M. Bailey, J. Oberheide, J. Andersen, F. J. Z. Morley Mao, and

J. Nazario. Automated classification and analysis of internet
malware. In International Symposium on Recent Advances in
Intrusion Detection, September 2007.

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda. Scalable, behavior-based malware clustering. In Network
and Distributed System Security Symposium, 2009.

[3] L. A. Belady and M. M. Lehman. A model of large program
development. IBM Systems Journal, 15(3):225–252, 1976.

[4] M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and
P. Sumazin. Lowest common ancestors in trees and directed
acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

[5] zynamics BinDiff. http://www.zynamics.com/
bindiff.html. Page checked 5/23/2013.

[6] DARPA-BAA-10-36, Cyber Genome Program. https://www.
fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-10-36/
listing.html. Page checked 5/23/2013.

USENIX Association 22nd USENIX Security Symposium 95

[7] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle. Software
bertillonage: finding the provenance of an entity. In Working
Conference on Mining Software Repositories, New York, New
York, USA, 2011.

[8] F. de la Cuadra. The geneology of malware. Network Security,
2007(4):17–20, 2007.

[9] T. Dumitras and I. Neamtiu. Experimental challenges in cyber
security: a story of provenance and lineage for malware. In Cyber
Security Experimentation and Test, 2011.

[10] T. Dumitras and D. Shou. Toward a standard benchmark for
computer security research: the worldwide intelligence network
environment (WINE). In Building Analysis Datasets and Gather-
ing Experience Returns for Security, 2011.

[11] N. Edwards and L. Chen. An historical examination of open
source releases and their vulnerabilities. In ACM Conference on
Computer and Communications Security, 2012.

[12] H. Flake. Structural comparison of executable objects. In IEEE
Conference on Detection of Intrusions, Malware, and Vulnerability
Assessment, 2004.

[13] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan.
Synthesizing Near-Optimal Malware Specifications from Suspi-
cious Behaviors. In IEEE Symposium on Security and Privacy,
2010.

[14] M. W. Godfrey and Q. Tu. Evolution in open source software: A
case study. In International Conference on Software Maintenance,
2000.

[15] F. Guo, P. Ferrie, and T.-C. Chiueh. A study of the packer problem
and its solutions. In International Symposium on Recent Advances
in Intrusion Detection, 2008.

[16] A. Gupta, P. Kuppili, A. Akella, and P. Barford. An empirical
study of malware evolution. In International Communication
Systems and Networks and Workshops, 2009.

[17] M. Hayes, A. Walenstein, and A. Lakhotia. Evaluation of malware
phylogeny modelling systems using automated variant generation.
Journal in Computer Virology, 5(4):335–343, July 2008.

[18] X. Hu, T. Chiueh, and K. G. Shin. Large-scale malware indexing
using function call graphs. In ACM Conference on Computer and
Communications Security, 2009.

[19] J. Jang, A. Agrawal, and D. Brumley. ReDeBug: finding un-
patched code clones in entire os distributions. In IEEE Symposium
on Security and Privacy, 2012.

[20] J. Jang, D. Brumley, and S. Venkataraman. BitShred: feature
hashing malware for scalable triage and semantic analysis. In
ACM Conference on Computer and Communications Security,
2011.

[21] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code
extractor for packed executables. In ACM Workshop on Rapid
Malcode, 2007.

[22] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida. Malware
phylogeny generation using permutations of code. Journal in
Computer Virology, 1:13–23, 2005.

[23] W. M. Khoo and P. Lio. Unity in diversity: Phylogenetic-inspired
techniques for reverse engineering and detection of malware fami-
lies. In SysSec Workshop, 2011.

[24] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A
search engine for binary code. In Working Conference on Mining
Software Repositories, 2013.

[25] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical
study of code clone genealogies. In European software engineer-
ing conference - Foundations of software engineering, 2005.

[26] J. Z. Kolter and M. A. Maloof. Learning to detect and classify
malicious executables in the wild. Journal of Machine Learning
Research, 7:2721–2744, 2006.

[27] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disas-

sembly of obfuscated binaries. In USENIX Security Symposium,
2004.

[28] M. M. Lehman and J. F. Ramil. Rules and tools for software evo-
lution planning and management. Annals of Software Engineering,
11(1):15–44, 2001.

[29] M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and
S. Zanero. Lines of malicious code: insights into the malicious
software industry. In Annual Computer Security Applications
Conference, 2012.

[30] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In ACM Conference on Computer
and Communications Security, 2003.

[31] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker.
Finding diversity in remote code injection exploits. In ACM SIG-
COMM on Internet Measurement, 2006.

[32] L. Martignoni, M. Christodorescu, and S. Jha. OmniUnpack: fast,
generic, and safe unpacking of malware. In Annual Computer
Security Applications Conference, 2007.

[33] F. Massacci, S. Neuhaus, and V. H. Nguyen. After-life vulnera-
bilities: a study on firefox evolution, its vulnerabilities, and fixes.
In International Conference on Engineering Secure Software and
Systems, 2011.

[34] T. J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308–320, 1976.

[35] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis
of malware behavior using machine learning. Journal of Computer
Security, 19(4):639–668, 2011.

[36] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the toolchain
provenance of binary code. In International Symposium on Soft-
ware Testing and Analysis, 2011.

[37] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. V. Steen. Prudent Practices for
Designing Malware Experiments: Status Quo and Outlook. In
IEEE Symposium on Security and Privacy, 2012.

[38] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. PolyUn-
pack: automating the hidden-code extraction of unpack-executing
malware. In Computer Security Applications Conference, Decem-
ber 2006.

[39] A. Sæ bjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su.
Detecting code clones in binary executables. In International
Symposium on Software Testing and Analysis, 2009.

[40] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: Local
algorithms for document fingerprinting. In ACM SIGMOD/PODS
Conference, 2003.

[41] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley. Native x86
decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. In USENIX Security Symposium,
2013.

[42] E. Shihab, C. Bird, and T. Zimmermann. The effect of branch-
ing strategies on software quality. In ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
2012.

[43] Symantec. Symantec internet security threat report, vol-
ume 17. http://www.symantec.com/threatreport/,
2012. Page checked 5/23/2013.

[44] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. At-
tenberg. Feature hashing for large scale multitask learning. In
International Conference on Machine Learning, 2009.

[45] G. Xie, J. Chen, and I. Neamtiu. Towards a better understanding of
software evolution: An empirical study on open source software.
In IEEE International Conference on Software Maintenance, 2009.

[46] Y. Ye, T. Li, Y. Chen, and Q. Jiang. Automatic malware catego-
rization using cluster ensemble. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010.

96 22nd USENIX Security Symposium USENIX Association

A Appendix
A.1 Straight Line Lineage

Mean accuracy with the inferred root Mean accuracy with the real root
Distance Metric Features Inversion Accuracy ED Inversion Accuracy ED

SD

Multi

95.8% 8.6 98.4% 6.0
WSD 95.4% 9.0 98.1% 6.7
DC 93.7% 9.7 97.1% 8.4
JD 93.7% 9.7 97.1% 8.4
JC 93.0% 12.2 97.1% 9.1

Table 8: Mean accuracy for straight line lineage on goodware

Mean accuracy with the inferred root (=real root)
Distance Metric Features Inversion Accuracy ED

SD

Static
Multi

97.8% 0.9
WSD 94.2% 1.3
DC 98.2% 0.9
JD 98.2% 0.9
JC 84.3% 3.1
SD

Dynamic
Multi

86.7% 2.6
WSD 80.0% 2.9
DC 85.5% 2.9
JD 85.5% 2.9
JC 70.9% 4.1

Table 9: Mean accuracy for straight line lineage on malware

A.2 DAG Lineage

Mean accuracy with no prior information Mean accuracy with real timestamp
Distance Metric Features PO Accuracy GAED PO Accuracy GAED

SD

Multi

84.0% 52.4 91.1% 20.3
WSD 82.6% 57.3 90.0% 23.0
DC 83.8% 56.1 91.1% 20.0
JD 83.8% 56.1 91.1% 20.0
JC 74.5% 90.0 90.6% 35.0

Table 10: Mean accuracy for DAG lineage on goodware

Mean accuracy with no prior information Mean accuracy with real timestamp
Distance Metric Features PO Accuracy GAED PO Accuracy GAED

SD

Static
Multi

69.5% 8.5 87.0% 6.0
WSD 72.0% 8.5 90.2% 5.5
DC 69.5% 8.5 87.0% 6.0
JD 69.5% 8.5 87.0% 6.0
JC 50.8% 19.5 86.6% 9.5
SD

Dynamic
Multi

61.4% 17.0 70.3% 13.0
WSD 62.2% 17.0 76.4% 12.5
DC 59.8% 19.0 72.8% 12.5
JD 59.8% 19.0 72.8% 12.5
JC 55.3% 17.5 72.8% 12.5

Table 11: Mean accuracy for DAG lineage on malware

USENIX Association 22nd USENIX Security Symposium 97

Securing Embedded User Interfaces: Android and Beyond

Franziska Roesner and Tadayoshi Kohno
University of Washington

Abstract
Web and smartphone applications commonly embed

third-party user interfaces like advertisements and so-
cial media widgets. However, this capability comes with
security implications, both for the embedded interfaces
and the host page or application. While browsers have
evolved over time to address many of these issues, mo-
bile systems like Android — which do not yet support
true cross-application interface embedding — present an
opportunity to redesign support for secure embedded
user interfaces from scratch. In this paper, we explore
the requirements for a system to support secure embed-
ded user interfaces by systematically analyzing existing
systems like browsers, smartphones, and research sys-
tems. We describe our experience modifying Android to
support secure interface embedding and evaluate our im-
plementation using case studies that rely on embedded
interfaces, such as advertisement libraries, Facebook so-
cial plugins (e.g., the “Like” button), and access control
gadgets. We provide concrete techniques and reflect on
lessons learned for secure embedded user interfaces.

1 Introduction
Modern Web and smartphone applications commonly
embed third-party content within their own interfaces.
Websites embed iframes containing advertisements, so-
cial media widgets (e.g., Facebook’s “Like” or Twitter’s
“tweet” button), Google search results, or maps. Smart-
phone applications include third-party libraries that dis-
play advertisements or provide billing functionality.

Including third-party content comes with potential se-
curity implications, both for the embedded content and
the host application. For example, a malicious host may
attempt to eavesdrop on input intended for embedded
content or forge a user’s intent to interact with it, either
by tricking the user (e.g., by clickjacking) or by program-
matically issuing input events. On the other hand, a ma-
licious embedded principal may, for example, attempt to
take over a larger display area than expected.

The Web security model has evolved over time to ad-
dress these and other threats. For example, the same-
origin policy prevents embedded content from directly
accessing or manipulating the parent page, and vice
versa. As recently as 2010, browsers have added the
sandbox attribute for iframes [1], allowing websites to

prevent embedded content from running scripts or redi-
recting the top-level page. However, other attacks —
like clickjacking — remain a serious concern. Malicious
websites frequently mount “likejacking” attacks [24] on
the Facebook “Like” button, in which they trick users
into sharing the host page on their Facebook profiles. If
Facebook suspects a button of being part of such an at-
tack, it asks the user to confirm any action in an addi-
tional popup dialog [7] — in other words, Facebook falls
back on a non-embedded interface to compensate for the
insecurity of embedded interfaces.

While numerous research efforts have attempted to
close the remaining security gaps with respect to inter-
face embedding on the Web [11, 25, 29], they struggle
with maintaining backwards compatibility and are bur-
dened with the complexity of the existing Web model.
We argue that Android, which to date offers no cross-
application embedding, offers a compelling opportunity
to redesign secure embedded interfaces from scratch.

Today, applications on Android and other mobile op-
erating systems cannot embed interfaces from another
principal; rather, they include third-party libraries that
run in the host application’s context and provide cus-
tom user interface elements (such as advertisements). On
the one hand, these libraries can thus abuse the permis-
sions of or otherwise take advantage of their host appli-
cations. On the other hand, interface elements provided
by these libraries are vulnerable to manipulation by the
host application. For example, Android applications can
programmatically click on embedded ads in an attempt
to increase their advertising revenue [18]. This lack of
security also precludes desirable functionality from the
Android ecosystem. For example, the social plugins that
Facebook provides on the Web (e.g., the “Like” button or
comments widget) are not available on Android.

Previous research efforts for Android [17, 23] have fo-
cused only on one interface embedding scenario: adver-
tising. As a result, these systems, while valuable, do not
provide complete or generalizable solutions for interface
embedding. For example, to our knowledge, no existing
Android-based solution prevents a host application from
eavesdropping on input to an embedded interface.

In this paper, we explore what it takes to support se-
cure embedded UIs on Android. We systematically an-
alyze existing systems, including browsers, with respect

1

98 22nd USENIX Security Symposium USENIX Association

to whether and how they provide a set of security proper-
ties. We view this analysis and the framework we use
for it as a contribution in its own right. Informed by
this analysis, we describe our experiences modifying the
Android framework to support cross-principal interface
embedding in a way that meets our security goals. We
evaluate our implementation using case studies that rely
on embedded interfaces, including: (1) advertisement li-
braries that run in a separate process from the embedding
application, (2) Facebook social plugins, to date avail-
able only on the Web, and (3) access control gadgets [19]
that allow applications to access sensitive resources (like
geolocation) only in response to real user input.

Through our implementation experience, we consoli-
date and evaluate approaches from prior work. We find
that some techniques can be simplified in practice —
such as an approach for maintaining invariants in the UI
layout tree [18] — but that we face additional practical
challenges, like propagating layout changes across pro-
cesses. We discover that an embedded element’s size is
an important factor in preventing clickjacking, as well
as that we can apply prior work on access control gad-
gets [19] in novel ways to improve interaction flexibility
beyond the browser model. We discuss these and other
challenges and lessons in more detail in Section 8, which
benefits from the context of the preceding sections.

Today’s system developers wishing to support secure
embedded user interfaces have no systematic set of tech-
niques or criteria upon which they can draw. Short
of simply adopting the Web model by directly extend-
ing an existing browser — which may be undesirable for
many reasons, including the need to maintain backwards
compatibility with the existing Web ecosystem and pro-
gramming model — system developers must (1) reverse-
engineer existing techniques used by browsers, and (2)
evaluate and integrate research solutions that address re-
maining issues. In addition to presenting the first se-
cure interface embedding solution for Android, this pa-
per provides a concrete, comprehensive, and system-
independent set of criteria and techniques for supporting
secure embedded user interfaces.

2 Motivation and Background

To motivate the need for secure embedded user inter-
faces, we describe (1) the functionality enabled by em-
bedded applications and interfaces, and (2) the security
concerns associated with this embedding. We argue that
interface embedding often increases the usability of a
particular interaction — embedded content is shown in
context, and users can interact with multiple principals
in one view — but that security concerns associated with
cross-principal UI embedding lead to designs that are
more disruptive to the user experience (e.g., prompts).

2.1 Functionality

Third-Party Applications. Web and smartphone appli-
cations often embed or redirect to user interfaces from
other sources. Common use cases include third-party
advertisements and social sharing widgets (e.g., Face-
book’s “Like” button or comment feed, Google’s “+1”
button, or a Twitter feed). Other examples of embed-
dable content include search boxes and maps.

On the Web, content embedding is done using HTML
tags like iframe or object. On smartphone oper-
ating systems like iOS and Android, however, applica-
tions cannot directly embed UI from other applications
but rather do one of two things: (1) launch another appli-
cation’s full-screen view (via an Android Intent or an iOS
RemoteViewController [2]) or (2) include a library that
provides embeddable UI elements in the application’s
own process. The former is generally used for sharing
actions (e.g., sending an email) and the latter is generally
used for embedded advertisements and billing.

System UI. Security-sensitive actions often elicit system
interfaces, usually in the form of prompts. For exam-
ple, Windows users are shown a User Account Control
dialog [14] when an application requires elevation to ad-
ministrative privileges, and iOS and browser users must
respond to a permission dialog when an application at-
tempts to access a sensitive resource (e.g., geolocation).

Because prompts result in a disruptive user experience,
the research community has explored using embedded
system interfaces to improve the usability of security-
sensitive interactions like resource access. In particu-
lar, a recent paper [19] describes access control gadgets
(ACGs), embeddable UI elements that — with user in-
teraction — grant applications access to various system
resources, including the camera, the clipboard, the GPS,
etc. For example, an application might embed a loca-
tion ACG, which is provided by the system and dis-
plays a recognizable location icon; when the user clicks
the ACG, the embedding application receives the current
GPS coordinates. As we describe below, ACGs cannot
be introduced into most of today’s systems without sig-
nificant changes to those systems.

2.2 Threat Model and Security Concerns

We consider user interfaces composed of elements
from different, potentially mutually distrusting principals
(e.g., a host application and an embedded advertisement
or an embedded ACG). Host principals may attempt to
manipulate interface elements embedded from another
principal, and embedded principals may attempt to ma-
nipulate those of their host. We assume that the system
itself is trustworthy and uncompromised.

We observe that while Web and smartphone applica-
tions rely heavily on third-party content and services, the
associated third-party user interface is not always actu-

2

USENIX Association 22nd USENIX Security Symposium 99

ally embedded inside of the client application. For exam-
ple, websites redirect users to PayPal’s full-screen page,
OAuth authorization dialogs appear in pop-up or redi-
rect windows, and Web users who click on a Facebook
“Like” button that is suspected of being part of a click-
jacking attack will see an additional pop-up confirmation
dialog. We observe two main security-related reasons for
the choice not to embed or not to be embedded.

One reason is concern about phishing. If users become
accustomed to seeing embedded third-party login or pay-
ment forms, they may become desensitized to their ex-
istence. Further, because users cannot easily determine
the origin (or presence) of embedded content, malicious
applications may try to trick users into entering sensi-
tive information into spoofed embedded forms (a form
of phishing). Thus, legitimate security-sensitive forms
are often shown in their own tab or window.

Our goal in this paper is not to address such phishing
attacks, but rather to evaluate and implement methods
for securely embedding one legitimate (i.e., not spoofed)
application within another. (While extensions of existing
approaches, such as SiteKeys, may help mitigate embed-
ded phishing attacks, these approaches do have limita-
tions [21] and are orthogonal to the goals of this paper.1)

More importantly — and the subject of this paper —
even legitimate embedded interfaces may be subject to a
wide range of attacks, or may present a threat to the ap-
plication or page that embeds them. In particular, draw-
ing in part on [18], embedded interfaces or their parents
may be subject to:
Display forgery attacks, in which the parent applica-
tion modifies the child element (e.g., to display a false
payment value), or vice versa.
Size manipulation attacks, in which the parent appli-
cation violates the child element’s size requirements or
expectations (e.g., to secretly take photos by hiding the
camera preview [26]), or the child element sets it own
size inappropriately (e.g., to display a full-screen ad).
Input forgery attacks, in which the parent application
delivers forged user input to a child element (e.g., to pro-
grammatically click on an advertisement to increase ad
revenue), or vice versa.
Clickjacking attacks, in which the parent application
forces or tricks the user into clicking on an embedded
element [11] using visual tricks (partially obscuring the
child element or making it transparent) or via timing-
based attacks (popping up the child element just as the
user is about to click in a predictable place).
Focus stealing attacks, in which the parent application
steals the input focus from an embedded element, cap-
turing input intended for it, or vice versa.

1We also note that phished or spoofed interfaces are little threat if
they do not accept private user input — for example, clicking on a fake
ACG will not grant any permissions to the embedding application.

Ancestor redirection attacks, in which a child element
redirects an ancestor (e.g., the top-level) application or
page to a target of its choice, without user consent.
Denial-of-service attacks, in which the parent applica-
tion prevents user input from reaching a child element
(e.g., to prevent a user from clicking “Cancel” on an au-
thorization dialog), or vice versa.
Data privacy attacks, in which the parent or child ex-
tract content displayed in the other.
Eavesdropping attacks, in which the parent application
eavesdrops on user input intended for a child element
(e.g., a sensitive search query), or vice versa.

2.3 Security Goals

Motivated by the above challenges and building on recent
work [18], we now describe the security goals that we
apply in our analysis and implementation. Where noted,
we describe additional goals not discussed by prior work.

1. Display Integrity. One principal cannot alter the con-
tent or appearance of another’s interface element, ei-
ther by direct pixel manipulation or by element size
manipulation. This property prevents display forgery
and size manipulation attacks.

2. Input Integrity. One principal cannot programmati-
cally interact with another’s interface element. This
property prevents input forgery attacks.

3. Intent Integrity. First, an interface element can im-
plement (or request that the system enforce) protec-
tion against clickjacking attacks. Second, one princi-
pal cannot prevent intended user interactions with an-
other’s interface element (denial-of-service). Finally,
based on our implementation experience (Section 5),
we add two additional requirements not discussed in
previous work: an embedded interface element can-
not redirect an ancestor’s view without user consent,
and no interface element can steal focus from another
interface element belonging to a different principal.

4. Data Isolation. One principal cannot extract content
displayed in, nor eavesdrop on user input intended
for, another’s interface element. This property pre-
vents data privacy and eavesdropping attacks.

5. UI-to-API Links. APIs can verify that they were
called by a particular principal or interface element.

These properties assume that principals can be reliably
distinguished and isolated, either by process separation,
run-time validation (e.g., of the same-origin policy), or
compile-time validation (e.g., using static analysis).

3 The Case for Secure UIs in Android
While Section 2 considered UI embedding in general,
we now specifically make the case for secure embedded
UIs in Android. The fact that an Android application
cannot embed another application’s interface results in a

3

100 22nd USENIX Security Symposium USENIX Association

fundamental trust assumption built into the Android UI
toolkit. In particular, every UI element trusts its parent
and its children, who each have unrestricted access to the
element’s APIs. Vulnerabilities arise when this trust as-
sumption is violated, e.g., because an embedded element
is provided by a third-party library.

We now introduce several case studies illustrating that
embedded user interface scenarios in stock Android are
often either insecure or impossible. We will return to
these case studies in Section 6 and reevaluate them in the
context of our implementation.

Advertising. In stock Android, applications wishing to
embed third-party advertisements must include an ad li-
brary, such as AdMob or Mobclix, which runs in the em-
bedding application’s process. These libraries provide a
custom UI element (an AdView) that the embedding ap-
plication instantiates and embeds. As has been discussed
extensively in prior work [17, 23], the library model for
third-party advertisements comes with a number of se-
curity and privacy concerns. For example, the host ap-
plication must trust the advertising library not to abuse
the host’s permissions or otherwise exploit a buggy host
application. Additionally, ad libraries ask their host ap-
plications to request permissions (such as location and
Internet access) on their behalf; applications that request
permissions not clearly relevant to their stated purpose
can desensitize users to permission warnings [8].

Prior work [18] has also identified and experimen-
tally demonstrated threats to the AdView. Parent appli-
cations can mount a programmatic clickfraud attack in
which they programmatically click on embedded ads to
increase their advertising revenue. Similarly, parent ap-
plications can mount clickjacking attacks by, for exam-
ple, covering the AdView with another UI element that
does not accept (and thus lets pass through) input events.

WebViews. One of the built-in UI elements provided by
Android is the WebView, which can load local HTML
content or an arbitrary URL from the Internet. Though
WebViews appear conceptually similar to iframes, they
do not provide many of the same security properties.
In particular, WebViews — and more importantly, the
contained webpage — can be completely manipulated by
the containing application, which can mount attacks in-
cluding programmatic clicking, clickjacking, and input
eavesdropping [13]. Thus, for example, if an Android
application embeds a WebView that loads a login page,
that application can eavesdrop on the user’s password as
he or she enters it into the WebView.

Facebook Social Plugins. On the Web, Facebook pro-
vides a set of social plugins [6] to third-party web de-
velopers. These plugins include the “Like” button, a
comments widget, and a feed of friends’ activities on
the embedding page (e.g., which articles they liked or

shared). These social plugins are generally implemented
as iframes and thus isolated from the embedding page.

While Facebook also supplies an SDK for smart-
phones (iOS and Android), this library — like all li-
braries, it runs in the host application’s process — does
not provide embeddable plugins like those found on the
Web. A possible reason for this omission is that Face-
book’s SDK for Android cannot prevent, for example,
applications from programmatically clicking on an em-
bedded “Like” button or extracting private information
from a recommendations plugin. Although developers
can manually implement a social plugin using a Web-
View, this implementation suffers from the security con-
cerns described above. Thus, though embeddable social
plugins on mobile may be desirable to Facebook, they
cannot be achieved securely on stock Android.

Access Control Gadgets. Finally, recent work [19] has
proposed access control gadgets (ACGs), secure em-
bedded UI elements that are used to capture a user’s
permission-granting intent (e.g., to grant an application
access to the user’s current location). Authentically cap-
turing a user’s intent relies on a set of UI-level secu-
rity properties including clickjacking protection, display
isolation, and user intent protection. As we describe in
this paper, fundamental modifications to Android are re-
quired to enable secure embedded elements like ACGs.

4 Analysis of UI Embedding Systems
To assess the spectrum of solutions and to inform our
implementation choices, we now step back and ana-
lyze prior Web and Android based solutions for cross-
application embedded interfaces with respect to the set of
security properties described in Section 2.3. This analy-
sis is summarized in Figure 1.

4.1 Browsers

Browsers support third-party embedding by allowing
web pages to include iframes from different domains.
Like all pages, iframes are isolated from their parent
pages based on the same-origin policy [27], and browsers
do not allow pages from different origins to capture or
generate input for each other.

However, an iframe’s parent has full control of its size,
layout, and style, including the ability to make it trans-
parent or overlay it with other content. These capabili-
ties enable clickjacking attacks. While there are various
“framebusting” techniques that allow a sensitive page to
prevent itself from being framed in an attempt to prevent
such attacks, these techniques are not foolproof [20].
More importantly, framebusting is a technique to prevent
embedding, not one that supports secure embedding.

Additionally, while an iframe cannot read the URL(s)
of its ancestor(s), it can change the top-level URL, redi-
recting the page without user consent. Newer version of

4

USENIX Association 22nd USENIX Security Symposium 101

Category Security Requirement Browsers Android AdDroid [17] AdSplit [23] RFK [18]

Display Integrity Prevents direct modification � � � � �*
Prevents size manipulation � � � � �*

Input Integrity Prevents programmatic input � � � � �*

Intent Integrity Clickjacking protection � � � � �
Prevents input denial-of-service � � � � �*
Prevents focus stealing � � � � �
Prevents ancestor redirection � � � � �

Data Isolation Prevents access to display � � � � �*
Prevents input eavesdropping � � � � �*

UI-to-API Links APIs can verify caller � � � � �*

Figure 1: Analysis of Existing Systems. This table summarizes, to the best of our knowledge, the UI-level security properties
(first defined in prior work [18] and expanded here) achieved by existing systems. Figure 2 similarly analyzes our implementation.
* Checkmarks annotated with an asterisk require static analysis or hypothetical (not prototyped) changes to the Android framework.

some browsers allow parent pages to protect themselves
by using the sandbox attribute for iframes; thus, we’ve
indicated that the Web prevents such attacks in Figure 1.
However, we observe that it may be desirable to allow
user actions to override such a restriction, and we de-
scribe how to achieve such a policy in later sections.

Research browsers and browser operating systems
(e.g., Gazelle [29] and IBOS [25]) provide similar em-
bedded UI security properties as traditional browsers,
and thus we omit them from Figure 1. Gazelle partially
addresses clickjacking by allowing only opaque cross-
origin overlays, but this policy is not backwards com-
patible. Furthermore, malicious parent pages can still
obscure embedded content by partially overlaying addi-
tional content on top of sensitive iframes. We discuss
additional work considering clickjacking in Section 9.

4.2 Android

Two recent research efforts [17, 23] propose privilege
separation to address security concerns with Android’s
advertising model (under which third-party ad libraries
run in the context of the host application). AdDroid’s
approach [17] introduces a system advertising service
that returns advertisements to the AdDroid userspace li-
brary, which displays them in a new user interface ele-
ment called an AdView. While this approach success-
fully removes untrusted ad libraries from applications, it
does not provide any additional UI-level security proper-
ties for the embedded AdView beyond what is provided
by stock Android (see Figure 1). For example, it does not
prevent the host application from engaging in clickfraud
by programmatically clicking on ads.

AdSplit [23], on the other hand, fully separates ad-
vertisements into distinct Android applications (one for
each host application). AdSplit achieves the visual em-
bedding of the ad’s UI into the application’s UI by over-
laying the host application, with a transparent region for

the ad, on top of the ad application. It prevents program-
matic clickfraud attacks by authenticating user input us-
ing Quire [3]. As summarized in Figure 1, AdSplit meets
the majority of security requirements for embedded UIs.
Indeed, the requirements it meets are sufficient for em-
bedded advertisements. Because it does not meet all of
the requirements, however — most importantly, it does
not prevent input eavesdropping — AdSplit would not be
well-suited as a generalized solution for embedded UIs.

Finally, the prototype implementation described
in [18] to meet that work’s goals (upon which we build)
also contains weaknesses. In particular, the isolation and
identification of different principals (“trust groups” in
the terminology of that paper) is insecure, undermining
all of the security properties. Rather than truly support-
ing one Android application embedding UI from another
application, it merely separates interfaces defined in the
main application from those defined in included libraries.
This separation relies on Java package names, static code
analysis, and hypothetical changes to the Android frame-
work (e.g., changing Android’s Java classloader to en-
able package sealing) that have not been implemented or
verified in practice.

5 Implementation Experience: LayerCake

We now explore what it takes to support secure embed-
ded UIs, under the definitions from Section 2.3, in the
Android framework. As no existing Android-based so-
lutions meet these goals, we view this implementation
as an opportunity to consider secure embedding from
scratch. While we adapt techniques from prior work, we
find that previously published guidelines are not always
directly applicable. For example, we found that we could
simplify a prior approach [18] when overlaying cross-
application content, but that we faced additional practical
challenges, such as the need to propagate layout changes

5

102 22nd USENIX Security Symposium USENIX Association

Category Security Requirement LayerCake (Section Number) Approach

Display Integrity Prevents direct modification � (5.3) Embedded elements in isolated, overlaid windows.
Prevents size manipulation � (5.6) User notifications on size conflicts.

Input Integrity Prevents programmatic input � (5.3) Embedded elements in isolated, overlaid windows.

Intent Integrity Clickjacking protection � (5.7) No input delivered if view/window not fully visible.
Prevents input denial-of-service � (5.3) Embedded windows attached to system root.

Data Isolation Prevents access to display � (5.3) Embedded elements in isolated, overlaid windows.
Prevents input eavesdropping � (5.3) Embedded windows attached to system root.
Prevents focus stealing � (5.4) Focus changes only in response to real user clicks.
Prevents ancestor redirection � (5.8) Prompts and (6.2) redirection ACG.

UI-to-API Links APIs can verify caller � (5.2) Elements from different principals run in separate
calling processes (identifiable by package name).

Figure 2: Techniques for Secure Embedded UI. This table summarizes how LayerCake (our modified version of Android 4.2)
achieves each of the desired security properties for embedded user interface elements.

and handle multiple levels of nesting. We further discuss
these and other challenges and lessons in Section 8.

We thus created LayerCake, a modified version of the
Android framework that supports cross-application em-
bedding via changes to the ActivityManager, the Win-
dowManager, and input dispatching. We added or modi-
fied 2400 lines of source code across 50 files in Android
4.2 (Jelly Bean). Figure 2 summarizes the implementa-
tion choices that achieve our desired security properties.

5.1 Android Background

Android user interfaces are focused around Activities,
which present the user with a particular view (or screen)
of an application. An application generally consists of
multiple Activities (e.g., settings, comments, and news-
feed Activities), each of which defines an interface con-
sisting of built-in or custom UI elements (called Views).

Android’s ActivityManager keeps only one Activity in
the foreground at a time. An application cannot embed
an Activity from another application, and two applica-
tions cannot run side-by-side. While Android does pro-
vide support for ActivityGroups (deprecated in favor of
Fragments) to improve UI code reuse within an appli-
cation, these mechanisms do not provide true Activity
embedding and are not applicable across application and
process boundaries. The goal of our exploration is to al-
low one application to embed an Activity from another
application (running in that other application’s process).

Each running Android application is associated with
one or more windows, each of which serves as the root
of an interface layout tree consisting of application-
specified Views. Android’s WindowManager isolates
these windows from each other — e.g., an application
cannot access the status bar’s window (shown at the top
of the screen) — and appropriately dispatches user input.
Our implementation relies on these isolation properties.

While only one Activity can be in the foreground, mul-
tiple applications/processes may have visible windows.

Figure 3: Sample Application. This restaurant review ap-
plication embeds two third-party Activities, an advertisement
and a map. The map Activity further embeds an access control
gadget (ACG) for location access.

For example, the status bar runs in the system process,
and the window of one application may be visible be-
low the (partially) transparent window of another. As an
example of the latter, AdSplit [23] achieves visual em-
bedding by taking advantage of an application’s ability
to make portions of its UI transparent. However, recall
from Section 4 and Figure 1 that this approach is insuffi-
cient for generalized embedded UI security.

5.2 Supporting Embedded Activities

LayerCake introduces a new View into Android’s user
interface toolkit (Java package android.view) called
EmbeddedActivityView. It allows an application
developer to embed another application’s Activity within
her application’s interface by specifying in the parame-
ters of the EmbeddedActivityView the package and class

6

USENIX Association 22nd USENIX Security Symposium 103

Figure 4: Window Management. This figure shows the Win-
dow/View tree for the Activities in Figure 3. Embedded Activ-
ities are not embedded in the View tree (circles) of their par-
ent, but rather within a separate window. The WindowMan-
ager keeps track of a window (grey squares) for each Activity
and visually overlays an embedded window on top of the cor-
responding EmbeddedActivityView in the parent Activity.

names of the desired embedded Activity. Figure 3 shows
a sample application that embeds several Activities.

We extended Android’s ActivityManager (Java) to
support embedded Activities, which are launched when
an EmbeddedActivityView is created and displayed. Un-
like ordinary Activities, embedded Activities are not part
of the ActivityManager’s task stack or history list, but
rather share the fate of their parent Activity. Crucially,
this means that an embedded Activity’s lifecycle is linked
to that of its parent: when the parent is paused, resumed,
or destroyed, so are all of its embedded children.

An Activity may embed multiple other Activities,
which themselves may embed one or more Activities
(multiple nesting). Each embedded Activity is started as
a new instance, so multiple copies of the same Activity
are independent (although they run in the same applica-
tion, allowing changes to the application’s global state to
persist across different Activity instances).

5.3 Managing Windows

Properly displaying embedded Activities required mod-
ifications to the Android WindowManager (Java). One
option for achieving embedded UI layouts is to liter-
ally nest them — that is, to add the embedded Activ-
ity’s Views (UI elements) as children in the parent Ac-
tivity’s UI tree. However, this design would allow the
parent Activity to mount input eavesdropping and denial-
of-service attacks on the child Activity. Thus, follow-
ing the interface layout tree invariants described in prior
work [18], we do not literally nest the interface elements
of embedded Activities inside the parent Activity. In-
stead, an embedded Activity is displayed in a new win-
dow, overlaid on top of the window to which it is attached
(i.e., the window of the parent Activity). This overlay

Figure 5: Panning for Software Keyboard. The restaurant
review application (from Figure 3), including its overlaid em-
bedded windows, must be panned upward to make room for the
software keyboard underneath the in-focus text box.

achieves the same visual effect as literal embedding but
prevents input manipulation attacks. Figure 4 shows an
example of the interface layout trees associated with the
Activities in the sample application in Figure 3. We note
that we were able to simplify the proposed approach [18],
which we found to be overly general (see Section 8).

By placing embedded Activities into their own win-
dows instead of into the parent’s window, we also inherit
the security properties provided by the isolation already
enforced by the WindowManager. In particular, this iso-
lation prevents a parent Activity from modifying or ac-
cessing the display of its child Activity (or vice versa).

The relative position and size of an overlaid window
are specified by the embedding application in the layout
parameters of the EmbeddedActivityView and are hon-
ored by the WindowManager. (Note that the specified
size may violate size bounds requested by the embedded
Activity, as we discuss in Section 5.6.)

The layout parameters of an embedded Activity’s win-
dow must remain consistent with those of the associ-
ated EmbeddedActivityView, a practical challenge not
described in prior work. For example, when the user re-
orients the phone into landscape mode, the parent Activ-
ity will adjust its UI. Similarly, when the soft keyboard
is shown, Android may pan the Activity’s UI upwards
in order to avoid covering the in-focus text box with the
keyboard (Figure 5). In both cases, the embedded Activ-
ity’s windows must be relocated appropriately. To sup-
port these dynamic layout changes, the EmbeddedActiv-
ityView reports its layout changes to the WindowMan-
ager, which applies them to the associated window.

Finally, since LayerCake supports multiple levels of
embedding, it must appropriately display windows mul-
tiple levels down (e.g., grandchildren of the top-level Ac-

7

104 22nd USENIX Security Symposium USENIX Association

Figure 6: Cropping Further Nested Activities. If a grand-
child (ActivityC) of the top-level Activity (ActivityA) is placed
or scrolled partly out of the visible area of its immediate parent
(ActivityB), it must be cropped accordingly.

tivity). For example, suppose ActivityA embeds Activ-
ityB which embeds ActivityC. If the EmbeddedActivi-
tyView (inside ActivityB) that corresponds to ActivityC
is not fully visible — e.g., because it is scrolled halfway
out of ActivityB’s visible area — then the window corre-
sponding to ActivityC must be cropped accordingly (Fig-
ure 6). This cropping is necessary because ActivityC is
not literally nested within ActivityB, but rather overlaid
on top of it, as discussed above.

5.4 Handling Focus

Both the parent and any embedded Activities must prop-
erly receive user input. While touch events are dis-
patched correctly even in the presence of visually over-
lapping windows, stock Android grants focus for key
events only to the top-level window. As a result, only
the window with the highest Z-order in an application
with embedded Activities will ever receive key events.
We thus modified Android to switch focus between win-
dows belonging to the parent or any embedded Activities
within an application, regardless of Z-order.

In particular, we changed the input dispatcher (C++) to
deliver touch events to the WindowManager in advance
of delivering them to the resolved target. When the user
touches an unfocused window belonging to or embedded
by the active application, the WindowManager redirects
focus. Windows that might receive the redirected focus
include that of the parent Activity, the window of any em-
bedded Activity, or an attached window from the same
process (e.g., the settings context menu, which Android
displays in a new window). Switching focus only in re-
sponse to user input (rather than an application’s request)
prevents a parent or child window from stealing focus to
eavesdrop on input intended for another principal.

5.5 Supporting Cross-Principal APIs

To support desired functionality, embedded UI elements
and their parents must communicate. For example, an
application embedding an ad may wish to communicate
keywords to the ad provider, or a system-defined location
button (ACG) may wish to pass the current location to
the parent application in response to a user click. To en-

Figure 7: Size Conflict Notification. If the AdMobWrapper
application specifies a minimum size that the RestaurantRe-
viewActivity does not honor when it embeds the advertisement,
a system notification is displayed to the user. Clicking on the
notification displays a full-screen advertisement Activity.

able flexible communication between embedded Activi-
ties and their parents, we leverage the Android Interface
Definition Language (AIDL), which lets Android appli-
cations define interfaces for interprocess communication.
We thus define the following programming model.

Each embeddable Activity defines two AIDL in-
terfaces, one that it (the child) will implement, and
one that the parent application must implement. For
example, the advertisement (child) may implement a
setKeywords() method, and the ad’s parent appli-
cation may be asked to implement an onAdLoaded()
method to be notified that an ad has been success-
fully loaded. When an application wishes to em-
bed a third-party Activity, it must keep copies of
the relevant interface files in its own source files
(as is standard with AIDL), and it must implement
registerChildBinder(). This function allows
the child Activity, once started, to make a cross-process
call registering itself with the parent.

We note that this connection is set up automatically
only between parents and immediate children, as doing
so for siblings or farther removed ancestors may leak in-
formation about the UIs embedded by another principal.

5.6 Handling Size Conflicts

Recall from Section 5.3 that the WindowManager honors
the parent application’s size specification for an Embed-
dedActivityView. This policy prevents a child element
from taking over the display (a threat discussed further
in the context of ancestor redirection below). However,
we also wish to prevent size manipulation by the parent.

We observe that it is only of concern if an embedded
Activity is given a smaller size than requested, since it
need not scale its contents to fill its (possibly too large)
containing window. Thus, we modified the Activity de-
scriptors to include only an optional minimum height and
width (specified in density-independent pixels).

Prior work [18] describes different size conflict poli-
cies based on whether the embedded element is trusted
or untrusted by the system. If it is trusted (e.g., a system-
defined ACG), its own size request should be honored;
if it is untrusted (e.g., an ad that requests a size filling

8

USENIX Association 22nd USENIX Security Symposium 105

the entire screen), the parent’s size specification is hon-
ored. However, we observe that a malicious parent can
mimic the effect of making a child element too small us-
ing other techniques, such as scrolling it almost entirely
off-screen — and that doing so maliciously is indistin-
guishable from legitimate possible scroll placements. We
thus further consider the failure to meet minimum size
requirements in the context of clickjacking (Section 5.7).

Thus, since enforcing a minimum size for trusted em-
bedded elements does provide additional security prop-
erties in practice, we use the same policy no matter
whether mis-sized elements are trusted or untrusted by
the system. That is, the WindowManager honors the size
specifications of the parent Activity. If these values are
smaller than the embedded Activity’s request, a status
bar notification is shown to the user (Figure 7). Similar
to a browser’s popup blocker, the user can click this noti-
fication to open a full-screen (non-embedded) version of
the Activity whose minimum size was not met.

5.7 Support for Clickjacking Prevention

In a clickjacking attack [11], a malicious application
forces or tricks a user into interacting with an inter-
face, generally by hiding important contextual informa-
tion from the user. For instance, a malicious application
might make a sensitive UI element transparent or very
small, obscure it with another element that allows input
to pass through it, or scroll important context off-screen
(e.g., the preview associated with a camera button).

To prevent such attacks, an interface may wish to dis-
card user input if the target is not fully visible. Since it
may leak information about the embedding application to
let an element query its own visibility, LayerCake allows
embedded Activities to request that the Android frame-
work simply not deliver user input events if the Activity
is:
1. Covered (fully or partly) by another window. This

request is already supported by stock Android via
setFilterTouchesWhenObscured().

2. Not the minimum requested size. A parent application
may not honor a child’s size request (see Section 5.6).

3. Not fully visible due to window placement. An em-
bedded Activity’s current effective window may be
cropped due to scrolling.

Note that an embedded Activity need not be concerned
about a malicious parent making it transparent, because
stock Android already does not deliver input to invisi-
ble windows. Similarly, an Activity need not be con-
cerned about malicious visibility changes to UI elements
within its own window, since process separation ensures
that the parent cannot manipulate these elements. To pre-
vent timing-based attacks, these criteria should be met
for some minimum duration [11] before input is deliv-
ered, a check that we leave to future work.

We emphasize that embedded iframes on the Web to-
day can neither discover if all of these criteria are met —
due to the same-origin policy, they cannot know if the
parent page has styled them to be invisible or covered
them with other content — nor request that the browser
discard input under these conditions.

5.8 Preventing Ancestor Redirection

Android applications use Intents to launch Activities ei-
ther in their own execution context (e.g., to switch to
a Settings Activity) or in another application (e.g., to
launch a browser pointed at a specified URL). In re-
sponse to a startActivity(intent) system call,
Android launches a new top-level full-screen Activity.
Recall that allowing an embedded element to redirect the
ancestor UI without user consent is a security concern.

We thus make two changes to the Android frame-
work. First, we introduce an additional flag for
Intents that starts the resulting Activity inside the
window of the embedded Activity that started it.
Thus, for example, if an embedded music player
wishes to switch from its MusicSelection Activity
to its NowPlaying Activity without breaking out of
its embedded window, it can do so by specifying
Intent.FLAG ACTIVITY EMBEDDED. (If the music
player is not embedded, this flag is simply ignored.)

Second, we introduce a prompt shown to users when
an embedded Activity attempts to launch another Activ-
ity full-screen (i.e., not using the flag described above).
This may happen either because it is a legacy applica-
tion unaware of the flag, or for legitimate reasons (e.g., a
user’s click on an embedded advertisement opens a new
browser window). However, studies have shown that
prompting users is disruptive and ineffective [16]; in Sec-
tion 6.2 we discuss an access control gadget (ACG) that
allows embedded applications to launch full-screen In-
tents in response to user clicks without requiring that the
system prompt the user.

6 Case Studies
We now return to the case studies introduced in Section 3
and describe how LayerCake supports these and other
scenarios. Figure 8 shows that implementation complex-
ity is low, especially for parent applications.

6.1 Geolocation ACG

To support user-driven access for geolocation, we imple-
mented a geolocation access control gadget (ACG) in the
spirit of prior work [19]. We added a LocationAcg
Activity to Android’s SystemUI (which runs in the sys-
tem process and provides the status bar, the recent appli-
cations list, and more). This Activity, which other ap-
plications can embed, simply displays a location button
(see Figure 3).

9

106 22nd USENIX Security Symposium USENIX Association

Lines of Java Parent Lines of Java
Geolocation ACG 111 14
Redirection Intent ACG 75 23
Secure WebView 133 13
Advertisement 562 37
FacebookWrapper 576 30

Figure 8: Implementation Complexity. Lines of code for
(1) the embedded Activity and (2) the parent’s implementation
of the AIDL interface. We omit legacy applications because
they required no modifications and expose no parent interfaces.
Implementation complexity is low, especially for embedders.

Following a user click, the SystemUI application, not
the parent application, accesses Android’s location APIs.
To then receive the current location, the parent appli-
cation must implement the locationAvailable()
method defined in the parent AIDL interface provided by
the LocationAcg’s developers (us).

Security Discussion. LayerCake provides the security
properties required to enable ACGs. In particular, the
parent application of a LocationAcg cannot trick the user
into clicking on the gadget, manipulate the gadget’s look,
or programmatically click on it.

We emphasize again that this ACG provides location
information to the parent application only when the user
wishes to share that information; a well-behaving par-
ent application will not need location permissions. In a
system like Android, where applications can request lo-
cation permissions in their manifest, it is an open ques-
tion how to incentivize developers to use the correspond-
ing ACG instead of requesting that permission. Prior
work [19] has suggested incentives including increased
scrutiny at app store review time of applications request-
ing sensitive permissions.

6.2 Redirection Intent ACG

In Section 5.8, we introduced a system prompt when an
embedded Activity attempts to start a full-screen Activ-
ity. However, prompts are known to be disruptive and of-
ten ignored, especially following a user action intended
to cause the effect about which the prompt warns [31].
For example, a user who clicks on an embedded ad in
stock Android today expects it to open the ad’s target in
a new (non-embedded) browser window. Following the
philosophy of user-driven access control [19], we thus
allow embedded Activities to start top-level Activities
without a prompt if startActivity() is called in
response to a user’s click.

To verify that the user has actually issued the click,
we take advantage of our system’s support for ACGs
and implement an ACG for top-level redirection. This
RedirectAcg Activity again belongs to Android’s
SystemUI application. It consists primarily of an Im-
ageView that may be filled with an arbitrary Bitmap, al-

lowing the embedder to completely specify its look. An
embedded Activity that embeds such an ACG (two levels
of embedding) thus uses the cross-process API provided
by the RedirectAcg to (1) provide a Bitmap specifying
the look, and (2) specify an Intent to be supplied to the
startActivity() system call when the user clicks
on the RedirectAcg (i.e., the ImageView’s onClick()
method is fired).

Security Discussion. The UI-level security proper-
ties provided by LayerCake ensure that the Redirec-
tAcg’s onClick() method is fired only in response
to real user clicks. In other words, the embedding ap-
plication cannot circumvent the user intent requirement
for launching a top-level Activity by programmatically
clicking on the RedirectAcg or by tricking the user into
clicking on it.

Unlike the LocationAcg, however, the embedding ap-
plication is permitted to fully control the look of the
RedirectAcg. This design retains backwards compati-
bility with the stock Android experience and relies on
the assumption that a user’s click on anything within an
embedded Activity indicates the user’s intent to interact
with that application. However, alternate designs might
choose to restrict the degree to which the redirecting ap-
plication can customize the RedirectAcg’s interface. For
example, the system could place a visual “full-screen”
or “redirect” indicator on top of the application-provided
Bitmap, or it could simply support a stand-alone “full-
screen” ACG that applications wishing to open a new
top-level view must display without customization.

Note that developers are incentivized to use the Redi-
rectAcg because otherwise attempts to launch top-level
Activities will result in a disruptive prompt (Section 5.8).

6.3 Secure WebView

We implemented a SecureWebView that addresses secu-
rity concerns surrounding Android WebViews [12, 13].
The SecureWebView is an Activity in a new built-in ap-
plication (WebViewApp) that consists solely of an ordi-
nary WebView (inside a FrameLayout) that fills the Ac-
tivity’s whole UI. Thus, when another Activity embeds a
SecureWebView, the internal WebView takes on the di-
mensions of the associated EmbeddedActivityView.

The SecureWebView Activity exposes a safe subset
(see below) of the underlying WebView’s APIs to its
embedding process. The current version of LayerCake
exposes only a subset of these APIs for demonstra-
tion purposes. A complete implementation will need to
properly (de)serialize all complex data structures (e.g.,
SslCertificate) across process boundaries.

Security Discussion. Separating out the Android Web-
View into another process — that of the WebViewApp —
provides important missing security properties. It is no
longer possible to eavesdrop on input to the embedded

10

USENIX Association 22nd USENIX Security Symposium 107

webpage, to extract content or programmatically issue
input, or to manipulate the size, location, or transparency
of the WebView to mount clickjacking attacks.

While the SecureWebView wraps the existing Web-
View APIs, it should avoid exposing certain sensitive
APIs, such as those that mimic user input (e.g., scrolling
via pageUp()) or that directly extract content from the
WebView (e.g., screenshot via capturePicture()).
Note, however, that APIs which redirect the SecureWeb-
View to another URL are permitted, as the parent appli-
cation could simply open a new SecureWebView instead.

Ideally, Android would replace the WebView with
the SecureWebView, but this change would not be
backwards compatible and may conflict with the goals
of some developers in using WebViews. Thus, we
observe that using a SecureWebView also benefits
the embedding application: if it exposes an API
to the webpage via an ordinary WebView (using
addJavascriptInterface()), a malicious page
could use this to manipulate the host application. Pro-
cess separation protects the host application from such
an attack, and since the WebViewApp has only the
INTERNET permission, the attack’s effect is limited.
Additionally, WebView cookies are not shared across
processes; the SecureWebView allows applications to
reuse (but not access) existing cookies, possibly provid-
ing a smoother user experience.

6.4 Advertisements

Recall that stock Android applications embedding third-
party advertisements include an ad library that runs in the
host application’s process and provides an AdView ele-
ment. Our modifications separate the AdView out into its
own process (see the advertisement in Figure 3). To do
this, we create a wrapper application for the AdMob ad-
vertising library [10]. The wrapper application exposes
an embeddable Activity (called EmbeddedAd) that in-
stantiates an AdMob AdView with the specified param-
eters. This Activity exposes all of AdMob’s own APIs
across the process boundary, allowing the embedding ap-
plication to specify parameters for the ad.

Security Discussion. Moving ads into their own process
(one process per ad library) addresses a number of the
concerns raised in Section 3. In particular, an ad library
can no longer abuse a parent application’s permissions
or exploit a buggy parent application. Furthermore, the
permissions needed by an ad library, such as Internet and
location permissions, must no longer be requested by the
parent application (unless it needs these permissions for
other purposes).

Note that all ads from a given ad library — even if
embedded by different applications — run in the same
process, allowing that ad application to leverage input
from different embedders. For example, if one appli-

cation provides the user’s age and another provides the
user’s gender, the ad application can better target ads in
all parent applications, without revealing additional in-
formation to applications that did not already have it.
(However, we note that some users may prefer that ad
applications not aggregate this information.)

LayerCake goes beyond process separation, providing
UI-level security absent in most prior systems (except
AdSplit [23]). Most importantly, the parent can no longer
mount programmatic click fraud attacks.

6.5 Facebook Social Plugins

We can now support embedded Facebook social wid-
gets in a secure manner. We achieve this by creating a
Facebook wrapper application that exposes Activities for
various Facebook social widgets (e.g., a Comments Ac-
tivity and a Like Activity — see Figure 9). Each Activ-
ity displays a WebView populated with locally-generated
HTML that references the Facebook JavaScript SDK to
generate the appropriate plugin (as done ordinarily by
web pages and as specified by Facebook [6]).

Security Discussion. LayerCake supports functional-
ity that is impossible to achieve securely in stock An-
droid and may be desirable to Facebook. This func-
tionality was previously available only on the Web, due
to the relative security of embedded iframes (though
clickjacking, or “likejacking”, remains a problem on the
Web). Our implementation protects the social widgets
both by separating them into a different process (pre-
venting data extraction, among others), and by enforcing
other UI-level security properties (preventing clickjack-
ing and programmatic clicking).

We observe that a malicious application might attempt
to mimic the FacebookWrapper application by populat-
ing a local WebView with the HTML for a social plugin.
To prevent this attack, we recommend that the Facebook-
Wrapper application include a secret token in the HTML
it generates (and that Facebook’s backend verify it), sim-
ilar in approach to CSRF protections on the Web.

6.6 Legacy Applications

The applications discussed so far needed wrapper appli-
cations because the wrapped functionality was not previ-
ously available in a stand-alone fashion. However, this
need is not fundamental — any legacy Android applica-
tion (i.e., one that targets older versions of the Android
SDK) can be embedded using the same techniques.

To demonstrate this, we created an application that
embeds both the existing Pandora application and the ex-
isting Amazon application. To do so, we needed to dis-
cover the names of the corresponding Activities in the ex-
isting applications. This information is easy to discover
from Android’s standard log, which prints information
about Intent targets when they are launched. Figure 10

11

108 22nd USENIX Security Symposium USENIX Association

Figure 9: Facebook Social Plugins. This example blog appli-
cation embeds both a Facebook “Like” button and a comments
feed, both running in our FacebookWrapper application.

shows a screenshot of the resulting application.

Security Discussion. As in previous case studies, the
embedded Activities are isolated from the parent. Thus,
they cannot access sensitive information in or manipulate
the UI or APIs in the parent application, or vice versa.

Legacy applications naturally do not use the new
FLAG ACTIVITY EMBEDDED flag when launching in-
ternal Activities. While updated versions of Pandora and
Amazon could use this flag to redirect within an embed-
ded window, the experience with unmodified legacy ap-
plications is likely to be disruptive. Thus, a possible pol-
icy (perhaps subject to a user preference setting) for such
applications is to internally modify all Activity launches
to use the new flag, never allowing these applications to
break out of their embedded windows.

Embedding arbitrary applications that were not in-
tended by their developers to be embedded also raises
the question of embedding permissions. Some Activi-
ties may wish never to be embedded, or to be embedded
only by authorized parents. Future modifications to Lay-
erCake should support such permissions.

7 Performance Evaluation
We evaluate the performance impact of our changes to
Android by measuring the time it takes to start an appli-
cation, i.e., the delay between a startActivity()
system call and the onCreate() call for the last em-
bedded Activity (or the parent Activity, if none are em-
bedded). As shown in the top of Figure 11, applications
with embedded Activities take longer to fully start. The
reason for this is that the parent Activity’s layout must
be created (in its onCreate()) before child Activi-
ties can be identified. Thus, an application with multiple
nested Activities (e.g., RestaurantReviewer) requires lin-
early more time than an application with only one level

Figure 10: Embedded Pandora and Amazon Apps. Legacy
applications can also be embedded, raising policy questions
regarding top-level intents and embedding permissions.

of nesting (e.g., FacebookDemo or Listen&Shop). We
note that the parent Activity’s own load time is unaf-
fected by the presence of embedded content (e.g., the
FacebookDemo Activity starts in 160 ms, even though
the embedded Facebook components require 300 ms).
Prior work [15] has argued that the time to display first
content is more important than full load time.

We also measure input event dispatch time (e.g., the
time it takes for Android to deliver a touch event to an
application). Specifically, we evaluate the impact of dis-
patching input events first to the WindowManager, al-
lowing it to redirect focus if appropriate (Section 5.4).
The bottom of Figure 11 shows that involving the Win-
dowManager in dispatch has a negligible performance
impact over stock Android; changing focus has a greater
impact, but it is not noticeable by the user, and focus
change events are likely rare.

We can also report anecdotally that the effect of em-
bedding on the performance of our case study applica-
tions was unnoticeable, except that the panning of em-
bedded windows (for the software keyboard) appears to
lag slightly. This case could likely be optimized by
batching cross-process relayout messages.

Finally, supporting embedded Activities may result in
more applications running on a device at once, poten-
tially impacting memory usage and battery life. The
practical impact of this issue depends on the embed-
ding behavior of real applications — for example, per-
haps most applications will include ads from a small set
of ad libraries, limiting the number of applications run in
practice.

8 Discussion
Whereas existing systems — particularly browsers —
have evolved security measures for embedded user in-
terfaces over time, this paper has taken a principled ap-

12

USENIX Association 22nd USENIX Security Symposium 109

Load time (10 trial average)
Application No Embedding With Embedding

RestaurantReviewer 163.1 ms 532.6 ms
FacebookDemo 157.5 ms 304.9 ms
Listen&Shop 159.6 ms 303.3 ms

Scenario Event Dispatch Time (10 trial average)

Stock Android 1.9 ms
No focus change 2.1 ms
Focus change 3.6 ms

Figure 11: Performance. The top table shows the time it takes
for the onCreate() method of all included Activities to be
called. We note that the time to load the parent Activity remains
the same whether or not it uses embedding, so the time for the
parent to begin displaying native content is unaffected. The
bottom table shows that the effect of intercepting input events
in the WindowManager for possible focus changes is minor.

proach to defining a set of necessary security properties
and building a system with full-fledged support for em-
bedding interfaces based on these properties.

8.1 Lessons for Embedded Interfaces

From this process, we provide a set of techniques for
systems that wish to support secure cross-application UI
embedding. Figure 2 outlines the security properties pro-
vided by LayerCake and summarizes the implementation
techniques used to achieve each property. While prior
works [18, 19] have stated the need for many (though not
all) of these properties, they have not provided detailed
guidelines for implementation. We hope this work, in
which we bring techniques from prior work together into
a practical implementation, will serve that purpose.

Our implementation experience challenges several
previous assumptions or choices. These lessons include:

User-driven ancestor redirection. Embedded applica-
tions should not be able to redirect an ancestor applica-
tion/page without user consent. We argue that a reason-
able tradeoff between security and usability is to prompt
users only if the redirection attempt does not follow a
user click (indicating the user’s intent to interact with the
embedded content). While newer browsers prevent em-
bedded iframes from redirecting the top-level page pro-
grammatically, they do not allow user actions (e.g., click-
ing on a link with target top) or other mechanisms to
override this restriction. In our case studies, we saw that
this type of click-enabled redirection can be useful and
expected (e.g., when a user clicks on an embedded ad, he
or she likely expects to see full-screen content about the
advertised product or service). In our system, we were
able to apply ACGs in a novel way to capture a user’s
redirection intent (Section 6.2).

Size manipulation as a subset of clickjacking. We ini-

tially considered size manipulation (by the parent of an
embedded interface element) to be a stand-alone threat.
A solution that we considered is to treat elements that
are trusted or untrusted by the system differently (e.g.,
an access control gadget is trusted while an advertise-
ment is not), letting the system enforce the minimum
requested size for trusted elements. However, this so-
lution provides no additional security, since a malicious
parent can use other techniques to obscure the sensitive
element (e.g., partially covering it or scrolling it partly
off-screen). Thus, we consider size manipulation as a
subset of clickjacking. We suggest that sufficient size be
considered an additional criterion (in addition to tradi-
tional clickjacking prevention criteria like complete visi-
bility [11, 19]) for the enabling of a sensitive UI element.

Simplification of secure UI layout tree. Prior work [18]
proposes invariants for the interface layout tree that en-
sure a trusted path to every node and describes how to
transform an invalid layout tree into a valid one. Our im-
plementation experience shows this solution to be overly
general. Embedded elements need not be attached to the
layout tree in arbitrary locations; rather, they can always
attach to the (system-controlled) root node and overlaid
appropriately by the WindowManager (or equivalent).
That is, the layout trees of separate principals need never
be interleaved, but rather visually overlaid on top of each
other, requiring no complex tree manipulations. Simpli-
fying this approach is likely to make it easier and less
error-prone for system developers to support secure em-
bedded UI.

8.2 New Capabilities

We step back and consider the capabilities enabled by
our implementation. In particular, the following sce-
narios were fundamentally impossible to support before
our modifications to Android; LayerCake provides ad-
ditional security properties and capabilities even beyond
the Web, as we detail here.

Isolated Embedded UI. Most fundamentally, LayerCake
allows Android applications to securely embed UI run-
ning in another process. Conceptually, this aligns the An-
droid application model with the Web model, in which
embedded cross-principal content is common. Espe-
cially as Android expands to larger devices like tablets,
users and application developers will benefit from the
ability to securely view and show content from multiple
sources in one view.

Secure WebViews. It is particularly important that Web-
Views containing sensitive content run in their own pro-
cess. While an Android WebView seems at first glance
to be similar to an iframe, it does not provide the se-
curity properties to which developers are accustomed on
the Web (as discussed in this paper and identified in prior

13

110 22nd USENIX Security Symposium USENIX Association

work [12, 13]). LayerCake matches and indeed exceeds
the security of iframes — in particular, a SecureWebView
can request that the system not deliver user input to it
when it is not fully visible or sufficiently large, thereby
preventing clickjacking attacks that persist on the Web.

Access Control Gadgets. Prior work [19] introduced
ACGs for user-driven access control of sensitive re-
sources like the camera or location, but that work does
not provide concrete guidelines for how the necessary
UI-level security properties should be implemented. This
paper provides these details, and we hope that they will
guide system developers to include ACGs in their sys-
tems. We particularly recommend that browser vendors
consider ACGs in their discussions of how to allow users
to grant websites access to sensitive resources [28].

8.3 Additional Issues

Finally, we discuss several issues unaddressed by Layer-
Cake that must be considered in future work.

First is the issue of application dependencies, that
is, how to handle the case when an application em-
beds an Activity from another application that is not in-
stalled. Possibilities include automatically bundling and
installing dependencies (as also proposed by the authors
of AdSplit [23]), giving the user the option of installing
the missing application, or simply failing silently. This
issue led the authors of AdDroid [17] to decide against
running ads in their own process, but we argue that the
security concerns of not doing so outweigh this issue.
The concern that users might uninstall or replace ad ap-
plications to avoid seeing ads could be addressed by giv-
ing parent applications feedback when a requested em-
bedded Activity cannot be displayed; applications rely-
ing on ads could then display an error message if the
required ad library is not available. Updates and dif-
ferences in library versions required by apps could be
handled by Android by supporting multiple installed ver-
sions or simply by the ad libraries themselves.

Second is the issue of principal identification: a user
cannot easily determine the source of an embedded inter-
face (or even whether anything is embedded). This con-
cern mirrors the Web today, where an iframe’s presence
or source cannot be easily determined, and we consider
this to be an important orthogonal problem.

9 Related Work
Finally, we consider additional related work not dis-
cussed inline.

In Section 4 and Figure 1, we explored existing im-
plementations of embedded cross-application user inter-
faces [5, 17, 18, 23]. These systems have differing goals
and employ a variety of techniques, but none fully meets
the security requirements defined in [18] and expanded
here. In particular, none of these approaches can, without

modification, support security-sensitive embedded user
interfaces like ACGs [19]. The original ACG imple-
mentation built on interface-level security properties pro-
vided by the Gazelle browser operating system [29].

Others have explored the problem of clickjacking in
more depth. One study [20] found that most framebust-
ing techniques are circumventable, making them ineffec-
tive for preventing clickjacking. Other work [11] pro-
vides a comprehensive study of clickjacking attacks and
defenses, presenting a solution (InContext) that relies on
the browser to verify the visual context of sensitive UI
elements. LayerCake could be extended to support In-
Context for additional clickjacking protection.

Our implementation relies on security properties pro-
vided by the Android WindowManager. Window system
security has been explored previously by projects such
as Trusted X [4] (an implementation of the X Window
System [9] based on the Compartmented Mode Worksta-
tion requirements [30]) and the EROS Trusted Window
System [22]. We extend this work by leveraging a se-
cure window system to support secure cross-application
UI embedding.

10 Conclusion
We have systematically considered the security require-
ments for embedded user interfaces, analyzing exist-
ing systems — including browsers, smartphones, and re-
search systems — with respect to these requirements.
While browsers have evolved to address many (though
not all) of these requirements over time, Android-based
implementations have not supported secure embedded
interfaces. We thus created LayerCake, a modified
version of the Android framework that supports cross-
principal embedded interfaces in a way that meets our
security goals. The resulting capabilities enable several
important scenarios, including advertisement libraries,
Facebook social plugins, and access control gadgets.
Based on our exploration and implementation experi-
ence, we provide a concrete set of criteria and techniques
that has to date been missing for system developers wish-
ing to support secure interface embedding.

This paper, along with any updates, will be available
at https://layercake.cs.washington.edu/.

11 Acknowledgements
We thank Roxana Geambasu, Alex Moshchuk, Bryan
Parno, Helen Wang, and the anonymous reviewers for
their valuable feedback on earlier versions. This work
is supported in part by the National Science Founda-
tion (Grant CNS-0846065 and a Graduate Research Fel-
lowship under Grant DGE-0718124), by the Defense
Advanced Research Projects Agency (under contract
FA8750-12-2-0107), and by a Microsoft Research PhD
Fellowship.

14

USENIX Association 22nd USENIX Security Symposium 111

References
[1] BARTH, A. Security in Depth: HTML5’s @sand-

box, 2010. http://blog.chromium.org/2010/05/
security-in-depth-html5s-sandbox.html.

[2] BEGEMANN, O. Remote View Controllers in iOS 6, Oct.
2012. http://oleb.net/blog/2012/02/what-ios-
should-learn-from-android-and-windows-8/.

[3] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In 20th USENIX Security Symposium (2011).

[4] EPSTEIN, J., MCHUGH, J., AND PASCALE, R. Evolution of a
Trusted B3 Window System Prototype. In IEEE Symposium on
Security and Privacy (1992).

[5] ETTRICH, M., AND TAYLOR, O. XEmbed Protocol Specifi-
cation, 2002. http://standards.freedesktop.org/
xembed-spec/xembed-spec-latest.html.

[6] FACEBOOK. Social Plugins. https://developers.
facebook.com/docs/plugins/.

[7] FACEBOOK. Like button requires confirm step, 2012.
https://developers.facebook.com/bugs/
412902132095994/.

[8] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android permissions: user attention, com-
prehension, and behavior. In 8th Symposium on Usable Privacy
and Security (2012).

[9] GETTYS, J., AND PACKARD, K. The X Window System. ACM
Transactions on Graphics 5 (1986), 79–109.

[10] GOOGLE. AdMob Ads SDK. https://developers.
google.com/mobile-ads-sdk/.

[11] HUANG, L.-S., MOSHCHUK, A., WANG, H. J., SCHECHTER,
S., AND JACKSON, C. Clickjacking: Attacks and Defenses. In
21st USENIX Security Symposium (2012).

[12] LUO, T., HAO, H., DU, W., WANG, Y., AND YIN, H. Attacks
on WebView in the Android system. In 27th Annual Computer
Security Applications Conference (2011).

[13] LUO, T., JIN, X., ANANTHANARAYANAN, A., AND DU, W.
Touchjacking Attacks on Web in Android, iOS, and Windows
Phone. In 5th International Symposium on Foundations and
Practice of Security (2012).

[14] MICROSOFT. User Account Control. microsoft.com/en-
us/library/windows/desktop/aa511445.aspx.

[15] MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D.,
AND LEVY, H. M. SpyProxy: Execution-Based Detection of
Malicious Web Content. In 16th USENIX Security Symposium
(2007).

[16] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows
Users Follow the Principle of Least Privilege?: Investigating User
Account Control Practices. In Symposium on Usable Privacy and
Security (2010).

[17] PEARCE, P., FELT, A. P., NUNEZ, G., AND WAGNER, D. Ad-
Droid: Privilege Separation for Applications and Advertisers in
Android. In ACM Symposium on Information, Computer and
Communications Security (AsiaCCS) (2012).

[18] ROESNER, F., FOGARTY, J., AND KOHNO, T. User Interface-
Toolkit Mechanisms for Securing Interface Elements. In 25th
ACM Symposium on User Interface Software and Technology
(2012).

[19] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-Driven Access Control:
Rethinking Permission Granting in Modern Operating Systems.
In IEEE Symposium on Security and Privacy (2012).

[20] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND JACKSON,
C. Busting Frame Busting: A Study of Clickjacking Vulnerabili-
ties on Popular Sites. In IEEE Workshop on Web 2.0 Security and
Privacy (2010).

[21] SCHECHTER, S., DHAMIJA, R., OZMENT, A., AND FISCHER,
I. The Emperor’s New Security Indicators. In IEEE Symposium
on Security and Privacy (2007).

[22] SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZ-
MADIA, D. Design of the EROS Trusted Window System. In 13th
USENIX Security Symposium (2004).

[23] SHEKHAR, S., DIETZ, M., AND WALLACH, D. S. AdSplit:
Separating Smartphone Advertising from Applications. In 21st
USENIX Security Symposium (2012).

[24] SOPHOS LABS. Facebook Worm: Likejacking, 2010.
http://nakedsecurity.sophos.com/2010/05/
31/facebook-likejacking-worm/.

[25] TANG, S., MAI, H., AND KING, S. T. Trust and Protection in
the Illinois Browser Operating System. In USENIX Symposium
on Operating Systems Design and Implementation (2010).

[26] TEMPLEMAN, R., RAHMAN, Z., CRANDALL, D. J., AND KA-
PADIA, A. Placeraider: Virtual theft in physical spaces with
smartphones. CoRR abs/1209.5982 (2012).

[27] W3C. Same Origin Policy. http://www.w3.org/
Security/wiki/Same_Origin_Policy.

[28] W3C. Device API Working Group, 2011. http://www.w3.
org/2009/dap/.

[29] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,
CHOUDHURY, P., AND VENTER, H. The Multi-Principal OS
Construction of the Gazelle Web Browser. In 18th USENIX Se-
curity Symposium (2009).

[30] WOODWARD, J. P. L. Security Requirements for System High
and Compartmented Mode Workstations. Tech. Rep. MTR 9992,
Revision 1 (also published by the Defense Intelligence Agency as
DDS-2600-5502-87), The MITRE Corporation, Nov. 1987.

[31] YEE, K.-P. Aligning Security and Usability. IEEE Security and
Privacy 2(5) (Sept. 2004), 48–55.

15

USENIX Association 22nd USENIX Security Symposium 113

Automatic Mediation of Privacy-Sensitive
Resource Access in Smartphone Applications

Benjamin Livshits and Jaeyeon Jung
Microsoft Research

Abstract
Mobile app development best practices suggest that
developers obtain opt-in consent from users prior
to accessing potentially sensitive information on the
phone. We study challenges that mobile application
developers have with meeting such requirements,
and highlight the promise of using new automated,
static analysis-based solutions that identify and in-
sert missing prompts in order to guard otherwise
unprotected resource accesses. We find evidence
that third-party libraries, incorporated by develop-
ers across the mobile industry, may access privacy-
sensitive resources without seeking consent or even
against the user’s choice. Based on insights from real
examples, we develop the theoretical underpinning
of the problem of mediating resource accesses in mo-
bile applications. We design and implement a graph-
theoretic algorithm to place mediation prompts that
protect every resource access, while avoiding repeti-
tive prompting and prompting in background tasks
or third-party libraries.
We demonstrate the viability of our approach by

analyzing 100 apps, averaging 7.3 MB in size and
consisting of dozens of DLLs. Our approach scales
well: once an app is represented in the form of a
graph, the remaining static analysis takes under a
second on average. Overall, our strategy succeeds in
about 95% of all unique cases.

1 Introduction

Privacy on smartphones is far from being a theo-
retical issue: a popular iOS application, Path, had
been found to upload the entire address book of an
iPhone user by default; similarly, a number of high-
profile incidents [1–3] show negative consequences
for mobile applications that surreptitiously collected
privacy-sensitive information about users without
explicit consent. Furthermore, a recent survey of 714

cell phone users shows that 30% of the respondents
had uninstalled an application because they discov-
ered that the application in question was collecting
personal information they did not wish to share [20].

Runtime consent dialogs (sometimes called run-
time permission prompts) are commonly used by
mobile applications to obtain a user’s explicit con-
sent prior to accessing privacy-sensitive data. How-
ever, mobile operating systems differ in terms of
their approach to raising these consent dialogs.
iOS implements OS-level consent dialogs which are
raised when accessing GPS location, contacts stored
on the phone, as well as a few other key resources.
These dialog boxes are far from being “no-ops” for
the user: A recent study of hundreds of iPhone users
shows that 85% of them exercised this control to
deny at least one application from accessing location
data [13]. However, in the absence of OS-level sup-
port, application developers can individually imple-
ment opt-in consent dialogs for enhancing the overall
privacy for end-users.

This paper focuses on a number of technical chal-
lenges that arise when mobile application developers
determine the right place to insert runtime prompts
within an application. First, minimizing the runtime
frequency of consent dialogs is important, as repet-
itive prompts tend to habituate users to blindly ac-
cept the terms [7]. However, to protect user privacy,
every single attempt to access sensitive information
should be guarded with a prompt. Second, apps
should provide just-in-time prompts in order for it
to make sense to the user within the application con-
text. If prompts are placed early, e.g., at install time,
users may forget about granted permissions, leading
to unpleasant surprises because of data access per-
formed by the app, especially when it runs in the
background [21].

The aim of this paper is to formalize the prob-
lem of placing runtime consent dialogs within a mo-

114 22nd USENIX Security Symposium USENIX Association

bile application, and to propose a solution for au-
tomatic and correct prompt placement. We try to
both 1) find missing prompts and 2) propose a valid
prompt placement when prompts are missing.

1.1 Analysis Design Philosophy

While it is possible to use dynamic analysis to ob-
serve missing prompts at runtime, this approach is
fraught with significant challenges. The traditional
challenge is low path coverage, which can be allevi-
ated with path exploration techniques such as sym-
bolic execution, but never completely fixed. Other,
more technical, challenges related to running UI-
based mobile apps automatically also remain.
Because we aim to provide a technique that would

err on the side of safety, we do not believe runtime
analysis is suitable. To this end, we propose a new
scalable static analysis algorithm to automatically
find places for inserting prompts if they are miss-
ing. Our solution scales well with application size
and does not require any changes to the underlying
operating system.
Given the inherent nature of static analysis tech-

niques and the complexity of both the applications
and the execution environment, our tool may pro-
duce false positives. However, at the worst, these
false positives will result in double-prompts that oc-
cur at most once per application. We believe this
to be a considerable improvement over the current
error-prone practice of manual prompt placement.
Our approach in this paper may not be fully sound
due to issues such as reflection (see Section 4); how-
ever, our goal is be as sound as possible. Our evalua-
tion in Section 6 does not reveal any false negatives.
Finally, note that our target is benign, but poten-

tially buggy non-obfuscated apps. If the app writer
tries to either obfuscate their code or take advan-
tage of features that are not treated conservatively
(such as reflection) to hide control flow, the preci-
sion and soundness of our analysis will suffer. Luck-
ily, the presence of obfuscation is relatively easy to
detect [22].

1.2 Contributions

Our contributions are three-fold:

• Using a set of .NET WP (Windows Phone) ap-
plications, we study how existing applications
implement resource access prompts. We note
that some advertising libraries access location
data without a prompt.

• We propose a two-prong static analysis algo-
rithm for correct resource access prompt place-

ment. We first attempt to use a fast, dominator-
based placement technique. If that fails, we re-
sort to a slower but more exhaustive backward
search.

• We evaluate our approach to both locating
missing prompts and placing them when they
are missing on 100 apps. Overall, our two-
prong strategy of dominator-based and back-
ward placement succeeds in about 95% of all
unique cases. Our analyses run in seconds, mak-
ing it possible to run them as part of the app
submission process.

Our analysis reveals that some application develop-
ers fail to show the proper set of prompts, showing
the difficulty and ineffectiveness of manual place-
ment. Frequently, the issue that exacerbates this
situation is that resource access takes place within
third-party libraries shipped as bytecode, making
them more difficult to reason about largely placing
them outside developer’s control.

1.3 Paper Organization

The rest of this paper is organized as follows. We
discuss case studies of real applications and chal-
lenges associated with proper prompt placement in
Section 2. We then formulate the problem and pro-
vide much of the insight for our proposed solution
in Section 3. We discuss the implementation of the
algorithms in Section 4. Results from an experi-
mental study are described in Section 5 and further
discussed in Section 6. We summarize related work
in Section 7 and conclude in Section 8.

2 Background

We first provide three motivating case studies in Sec-
tion 2.1 and then provide intuition for the complex-
ity of the problem in Section 2.2.

2.1 Motivating Case Studies

We begin by discussing several interesting real-world
examples, which illustrate how existing WP apps
mediate access to location data. One of the ways
in which the WP SDK exposes location access API
to applications is through the GeoCoordinateWatcher

class in the System.Device.Location namespace.
Prompts are created with a call to MessageBox.Show,
with the text of the prompt provided by the devel-
oper.
Figure 1 shows screen-shots of three applica-

tions — AroundMe, Burger King (inoffiziell), Lumi-
aClock — immediately before these applications in-

USENIX Association 22nd USENIX Security Symposium 115

(a) AroundMe (b) Burger King (c) LumiaClock

Figure 1: Screen-shots of three examined applications.
The first two applications display a location prompt prior
to invoking location APIs. The third application never
shows a location prompt; the screen-shot was captured
when we detected the first time that a location API was
invoked by the application.

App Resource
accesses

APIs used Libraries

AroundMe 2 TryStart,
get Position

AroundMe.dll

Burger King 5 Start,
get Position

BurgerKing.dll,
GART.dll

LumiaClock 2 Start,
get Position

SOMAWP7.dll

Figure 2: Location accesses found in three apps.

voke location access API. We picked these three apps
from the WP Store, filtering for apps that use GPS
location data. Each application consists of a set of
DLLs and resources. We have disassembled the ap-
plications and inspected the code to find instances
of location API invocations. Figure 2 shows (1) the
number of location access points observed in each
of the three applications; (2) which location API is
used; and (3) which libraries call the location API.

As shown in Figure 2, location access happens
both in application code and in third-party libraries.
For instance, GART.dll is a library that provides aug-
mented reality features and SOMAWP7.dll is a library
that provides advertising to WP applications. Not
surprisingly, the use of location data by third-party
libraries complicates access mediation, as third-
party libraries often come as a black box to appli-
cation developers. The following in-depth analysis
illustrates the issue.

Case 1 (proper protection): Location accesses
are contained only in the application code and prop-
erly mediated by a runtime consent dialog. The code
snippet in Figure 3(a) is from the AroundMe applica-
tion. As shown in the code below, this application

public static bool AroundMe.App.CheckOptin() {
if (((Option)Enum.Parse(typeof(Option),Config.GetSetting
(SettingConstants.UseMyLocation),true))==Option.Yes) {
return GetCurrentCoordinates();

}
if (MessageBox.Show("This app needs ...",

"Use location data?",
MessageBoxButton.OKCancel)==MessageBoxResult.OK) {
Config.UpdateSetting(new KeyValuePair<string,string>
(SettingConstants.UseMyLocation,Option.Yes.ToString()));
return GetCurrentCoordinates();

}
...

}

(a) Illustration for Case 1

public BurgerKing.View.MapPage() {
this.InitializeComponent();
base.DataContext = new MapViewModel();
this.BuildApplicationBar();
if (AppSettings.Current.UseLocationService){
this.watcher = new GeoCoordinateWatcher();

}
..
}

protected virtual void GART.Controls.ARDisplay.
OnLocationEnabledChanged(

DependencyPropertyChangedEventArgs e)
{
if (this.servicesRunning) {
if (this.LocationEnabled) {
this.StartLocation();

}
else {
this.StopLocation();

}
}

}

(b) Illustration for Case 2

public SomaAd()
{
...
this._locationUseOK = true;

...
if (this._locationUseOK) {
this.watcher = new GeoCoordinateWatcher
(GeoPositionAccuracy.Default);

this.watcher.MovementThreshold = 20.0;
this.watcher.StatusChanged += new EventHandler
<GeoPositionStatusChangedEventArgs>(
this.watcher_StatusChanged);

this.watcher.Start();
}

}

(c) Illustration for Case 3

Figure 3: Illustrative cases for Section 2.1.

invokes GetCurrentCoordinates() only after the user
clicks the OK button as shown in Figure 1.

Case 2 (partial protection): Location accesses
are spread across application and third-party code
and only accesses by application code are pro-
tected by runtime consent dialog. The code snip-
pet in Figure 3(b) is from the BurgerKing applica-
tion. The consent dialog shown in Figure 1 only af-
fects AppSettings.Current.UserLocationService and
leaves GART.Controls.ARDisplay.StartLocation() un-
protected. Using network packet inspection, we con-

116 22nd USENIX Security Symposium USENIX Association

while(P){

l1 = getLocation();

}
(a) original

prompt();

while(P){

l1 = getLocation();

}
(b) static prompt

while(P){

if(not-yet-prompted-for-location){

prompt();

}

l1 = getLocation();

}
(c) dynamic check

Figure 4: Resource access in a loop.

firmed that the application accesses and transmits
location using the GART component even when the
Cancel button is clicked.

Case 3 (no protection): Location accesses are
only present in third-party code and the applica-
tion provides no consent dialogs. The following code
snippet is from the LumiaClock application. The
application has no location features. Although the
third-party code SomaAd exposes a flag to protect lo-
cation access, the application appears unaware of it.
Moreover, the SomaAd component enables the flag,
locationUseOK by default, as shown in Figure 3(c).

Summary: In summary, the case studies above
demonstrate that properly protecting location access
is challenging because multiple components, includ-
ing third-party libraries, are involved in accessing
sensitive resources. The current practice often fails
in providing adequate privacy protection, as some
applications do not honor the user’s choice (as shown
in case 2) or do not obtain the user’s consent prior
to acquiring privacy-sensitive information.

2.2 Challenges

Next, we dive into the properties that we want to en-
sure, while deciding where to place missing prompts
via static analysis. Näıvely, one might suspect that
prompt placement is a fairly trivial task, reducing to
(1) finding resource access points and (2) inserting
prompts right in front of them. In reality, situation
is considerably more complex. In this section, we
systematically investigate the challenges we need to
overcome in order to provide a satisfactory solution.

1) Avoiding double-prompts: We need to avoid
prompting the user for access to resource R more
than once on a given execution path. This is a harder

problem that it might initially seem; indeed, con-
sider the following code:

if(P) l1 = getLocation();

l2 = getLocation();

There are two location access points and two ways
to avoid duplicate prompts. One is to introduce
a boolean flag to keep track of whether we have
prompted for the location already:

flag = true;

if(P){

prompt();

flag = true;

l1 = getLocation();

}

if(!flag){

prompt();

l2 = getLocation();

}

The disadvantage of this approach is that it requires
introducing extra runtime instrumentation to per-
form this sort of bookkeeping. A fully static ap-
proach involves rewriting the original code by “fold-
ing” the second prompt into the if:

if(P){

prompt();

l1 = getLocation();

l2 = getLocation();

}else{

prompt();

l2 = getLocation();

}

This approach has the advantage of not having to in-
troduce extra bookkeeping code. The disadvantage
is replication of the existing code across the branches
of the if, which leads to extra code growth.
The problem of double-prompts can be exacer-

bated. Figure 4a illustrates the challenge of placing
a prompt within a loop. Placing the prompt before
the loop as in Figure 4b is not valid if the loop never
executes. Placing the prompt within the loop body
will lead to execution on every iteration. However, a
simple dynamic check will ensure that the location
prompt is not shown more than once (Figure 4c).

2) Sticky prompts: Applications frequently make
user-granted permissions persistent and avoid dupli-
cate prompts, by saving the prompt status to the
app’s isolated storage, as illustrated in Figure 5.
Here the challenge comes in both recognizing ex-
isting “sticky” prompts in app code and in making
inserted prompts sticky, as discussed in Section 4.3.

3) Avoiding weaker prompts: Suppose there are
two resources r1, r2 such that r2 is less sensitive
than r1. If an app has already prompted the user for

USENIX Association 22nd USENIX Security Symposium 117

access to r1, it should avoid prompting the user for
access to resource r2. For instance, if an app already
has requested access to fine-grained location, there
is no need to prompt for access to coarse-grained lo-
cation. Note that in the current version of the WP
operating system, there is no difference in capabili-
ties between fine- and coarse-grained locations; both
require the ID CAP LOCATION capability in the app
manifest. However, in the future more fine-grained
capabilities subsuming one another may evolve, as
they have on Android. Moreover, it is still possible
and perhaps even desirable to distinguish between
fine- and coarse-grained locations when prompting
at runtime, even though they are treated the same
at installation time.

4) Avoiding prompts in background tasks:
WP apps provide non-interactive background tasks.
These are often used for polling remote servers and
other tasks that do not require access to the user’s
screen beyond, perhaps, a live tile of the app. We
cannot raise dialog boxes within background tasks.
To properly determine where the prompts should be
located, we should compute the call graph and deter-
mine what foreground code precedes the code within
background tasks.

5) Avoiding prompts in libraries: Given that li-
braries are often shipped in the form of bytecode and
are updated separately from the rest of the applica-
tions, we choose to avoid placing prompts in library
code. This approach allows developers to examine
prompt placement within their own code, and to al-
leviate the need to keep custom-modified versions
of third-party libraries such as SOMAWP7.dll, which
can make error reporting, debugging, and sharing
libraries across apps a challenge.

if (MessageBox.Show(

"This app needs to know your location

in order to find locations

around you, can it use your location data?

note: you can change the settings later

through the settings menu",

"Use location data? ", 1) == 1)

{

Config.UpdateSetting(

new KeyValuePair<string, string>(

SettingConstants.UseMyLocation,

Option.Yes.ToString()));

return

GetCurrentCoordinates();

}

Figure 5: Sticky location prompt.

3 Overview

A recent spate of research efforts is centered around
detecting undesirable information flows, i.e. sensi-
tive data like contacts leaving the phone, usually
via the network (e.g., [9, 10]). Reasoning about
these kinds of leaks involves understanding inter-
procedural data flow within the app and perhaps
even across different apps. Data flow analysis of this
kind is a known difficult problem which, despite a
great deal of work on both the static and runtime
sides has not yet found widespread practical deploy-
ment [24].

In the context of mobile apps, there is another
aspect further complicating this problem. Even if
there is in fact a perfect mechanism for precisely
and efficiently tracking inter-procedural data flow,
a viable policy is hard to come by. Indeed, how
does a tool automatically distinguish between a Yelp
app that shares GPS location information with a
back-end server to obtain restaurant listings from
(a potentially malicious) flashlight app that obtains
the same GPS information and shares it with an
ad server? Constructing a robust policy is not triv-
ial. Our paper rather focuses on providing a method
for assisting application developers in checking their
apps against the currently accepted practice of ob-
taining consent prior to accessing potentially sensi-
tive user data on the phone and in fixing problems
before submitting apps to a marketplace. Note that
our work in this paper is in the control flow, not
data flow space; we want to reason about whether
the acquisition points for sensitive content are well-
protected. In this section we first formulate the
problem of prompt placement and then discuss some
approaches for computing a valid placement.

3.1 Graph Representation

As is typical in static analysis, it is helpful to rep-
resent the program in the form of a graph, to ab-
stract away many unnecessary features of the origi-
nal source or bytecode representation.

Since our goal is to reason about prompts “guard-
ing” resource access points, we choose a represen-
tation similar to a control-flow graph. Because
both prompts and resource accesses take the form
of method calls, we find it convenient to augment
the traditional notion of basic blocks to treat call
sites specially. We use the term enhanced basic block
to emphasize the difference in construction. An en-
hanced basic block is different from a basic block in
that only the first and last of its instructions can be
(method) calls. Consequently, call instructions exist

118 22nd USENIX Security Symposium USENIX Association

in a block of their own. (First and last instructions
can also be jumps, just as in the case of regular basic
blocks.)
Our representations also need to be inter-

procedural: we need to be able to handle prompts
that are located outside of the method in which the
resource access takes place. This is especially neces-
sary given that WP apps are written in .NET, where
methods generally tend to be small. We therefore
augment the control glow graph with call and return
edges denoted as C below.

Definition 1 A resource access prompt place-
ment problem is defined as follows. Let P =
〈N,A,B,E,C,L〉 be a tuple with the following com-
ponents:

• N : set of enhanced basic blocks in the pro-
gram consisting of a sequence of instructions
N = n1, n2, . . . nk. For simplicity, we as-
sume that graph G has unique entry and exit
nodes Nentry, Nexit ∈ N .

• A ⊂ N : set of resource access points;

• B ⊂ N : set of enhanced basic blocks located
within background tasks and (third-party) li-
braries; we assume that Nentry and Nexit are
outside background tasks and libraries;

• E: intra-procedural control flow edges;

• C: inter-procedural call and return edges.

• L = 〈R,∧〉: the semi-lattice of access permis-
sions with meet operator ∧1.

Intuitively, this representation is an expanded inter-
procedural control flow graph G = 〈N,E ∪ C〉.

3.2 Valid Placement

Based on the challenges described in Section 2.2, we
proceed to formulate what it means to have a valid
placement of resource access prompts.

Definition 2 We say that placement P ⊂ N is a
valid placement for a prompt placement problem P =
〈N,A,B,E,C,L〉 if the following conditions hold for
every runtime execution of the app:

• Safe: Every access to resource r ∈ R is preceded
by a prompt check for r.

• Visible: No prompt is located within a back-
ground task or a library.

1We assume that in the general case it is possible for per-
missions to subsume one another, like in the case of fine- and
coarse-grained GPS locations, giving rise to a partial order,
although we currently do not strictly need this kind of support
in our implementation.

Check if access is
adequately protected

Dominator-based
strategy successful?

Try backward
placement strategyno no

Figure 6: Analysis steps.

• Frugal: Prompt for r ∈ R is never invoked
unless it is either followed by a call to get(r)
or an exception occurs2.

• Not-repetitive: Prompt for permission r2 ∈
R is never invoked if permissions for r1 ∈ R
have already been granted and r2 � r1 (that
is, r1 is at least as or more permissive than r2).

3.3 Solution Outline

We provide intuition for our solution in the remain-
ing sections; Section 4 gives the actual algorithms.
Figure 6 shows the overall flow of our analysis. Given
a graph with well-identified resource access points,
a safe placement is relatively easy to come up with.
The main obstacle is the fact that we cannot always
put prompts right before accesses, because some-
times accesses are within background tasks or, more
frequently, in libraries (violating the visible require-
ment).

Intuitively, we can start with resource access
points A and move the prompts up until we are
outside of background tasks. The downside of this
approach is a possibility of moving these prompts
too far (to the beginning of the app in the most
extreme case), which would violate the frugal re-
quirement. This gives rise to a notion of a prompt
being needed at a particular point, for which we use
the term anticipating, common in compiler litera-
ture [4]. By way of example, for the code snippet in
Figure 7, location access is anticipating before line 3,
but it is not anticipating before the if on line 2, be-
cause of the else branch. So placing the prompt on
line 1 leads to unnecessary prompting, violating the
requirement of being frugal .

1.

2. if(P){

3. var l = getLocation();

4. } else {

5. x++;

6. }

Figure 7: Conditional location access.

2Note that this notion of frugality is optimized for runtime
savings, not necessarily savings in terms of code size.

USENIX Association 22nd USENIX Security Symposium 119

1

4

53

2

entry

exit

1

4 52

3

entry

exit

Figure 8: Graph (left) and its dominator tree (right).
Node 5 is a resource access node within a library.

Definition 3 We say that basic block B ∈ N is r-
anticipating if every path from B to Nexit passes
through a resource access of type r.

Intuitively, placing prompts for resource accesses of
type r at r-anticipating nodes is necessary because
these nodes are guaranteed to require them eventu-
ally; in other words, these placements will be frugal .

Finally, the discussion so far has not considered
the case of prompts granting permissions of differ-
ent “strength”, resulting in potentially unnecessary
prompts. This suggests that the notion of being an-
ticipating should be defined not globally, but with
respect to a particular kind of resource, taking into
account the lattice of resource access permissions.

Dominator-based Approach: Using the notion
of dominators in the graph [4] we can abstract away
unnecessary details. Recall that we say that node
d ∈ N dominates node n ∈ N if every path from
Nentry → n passes through d. Dominator rela-
tionships induce a dominator tree over the set of
nodes N . An example of such a dominator tree for
a graph in Figure 8a is shown in Figure 8b.

By this definition, dominator-based placement is
an easy way to“block”access to a particular resource
access. The most immediate approach is to place
prompts on the nodes dominating the resource ac-
cess node.

Of course, since we want a placement as close as
possible to the access point, we will prefer the im-
mediate dominator of the resource access node. By
definition, we will have a safe placement, because
∀ a ∈ A, every path from Nentry → a must pass
through idom(a), the immediate dominator of a.
This simple approach suffers from two problems:

• Background and library nodes can invalidate
immediate dominator-based placement. To deal
with the issue of visibility, we can shift the
prompts up in the dominator tree.

• Immediate dominator-based placement can vi-
olate the frugal condition. Indeed, consider the
location access at line 3 in Figure 7. Its im-
mediate dominator is the if(P) node. However,
this node is not location-anticipating, because
the else branch is not accessing the location.

A viable approach is therefore to start at the re-
source access node and walk up the dominator tree
until we encounter a node that is not in the back-
ground or a library. We are guaranteed to encounter
such a node eventually, because sooner or later we
will encounter Nentry, which is a foreground non-
library node by Definition 1.
For the graph in Figure 8, node 5 is a library node.

Nodes 1 and Nentry are in the cover for node 5.
Node 1 is the immediate cover of 5. Our approach,
therefore, will choose node 1 for a prompt protect-
ing node 5, but, unfortunately, this placement will
violate the frugality condition.

Backward Placement: Sometimes dominator-
based placement will backtrack“too far”in the graph
to become unnecessary — in other words, not fru-
gal . In these cases, we propose an alternative strat-
egy called backward placement, which often avoids
this problem. Backward placement explores the pre-
decessors of the resource access node and find an
individual separate place for a prompt for each of
them. For node 5 in Figure 8, both predecessors 2
and 4 present valid placement opportunities, which
are also frugal. Frequently, the backward placement
approach will yield a valid placement. The concern
with this strategy is two-fold:

• This approach may not scale well, as it involves
an exponential graph search. While this is true
in general, in practice we frequently find a valid
placement within several nodes, as detailed in
Section 5.

• More prompts will be created compared to the
dominator-based approach. (Indeed, in our Fig-
ure 8 example, we inserted two nodes instead of
one.) More inserted prompts may increase the
size of the rewritten app and may also make
manual validation of placement results more
challenging and time-consuming.

Unlike dominator-based placement, there is a possi-
bility of passing through prompt placement nodes
multiple times at runtime. To see this, consider
adding a backward edge from 3 → 1 in Figure 8.

120 22nd USENIX Security Symposium USENIX Association

1: function InsertPrompt(G, a, ant , idom)
2: if ¬HasPrompt(G, a.Type, a) then
3: // Try dominator-based first
4: P lacement ← ∅
5: success ← InsertPrompt-D(G, a, ant , idom)
6: if ¬ success then
7: // Try backward placement next
8: P lacement ← ∅
9: InsertPrompt-B(G, a, ant)
10: end if
11: end if
12: end function
13:
14: //Dominator-based placement
15: function InsertPrompt-D(G, a, ant , idom)
16: n ← a
17: while n �= Nentry do
18: if IsAnticipating(n, a.Type, ant) ∧
19: n �∈ G.Background ∧ n �∈ G.Libraries
20: then
21: Placement ← Placement ∪ {n}
22: return true
23: else
24: n ← idom(n) � Proceed to the immediate dominator
25: end if
26: end while
27: return false
28: end function
29:
30: //Backward search placement
31: function InsertPrompt-B(G, a, ant)
32: Occurs-check(a) � Prevent infinite recursion
33: if ¬IsReachable(a) ∨ (IsAnticipating(a, a.Type, ant)
34: ∧ a �∈ G.Background ∧ a �∈ G.Libraries)
35: then
36: Placement ← Placement ∪ {a}
37: return true
38: else
39: for all p ∈ G.predecessors(a) do � Predecessors
40: success ← InsertPrompt-B(G, p, ant)
41: if ¬success then
42: return false � One of the predecessors failed
43: end if
44: end for
45: return true � All predecessors succeeded
46: end if
47: end function
48:
49: //Helper function to check if n is anticipating for r ∈ R
50: function IsAnticipating(n, r, ant)
51: r′ ← ant(n) � Computed prompt type at n
52: return r � r′ � True if r′ is more permissive
53: end function

Figure 9: Insertion of resource access prompts. G is the
graph; a is the access node; ant : N → 2R is the antic-
ipating lookup map computed as specified in Figure 10,
and, finally, idom is the immediate dominator relation.

This edge does not affect the dominator tree or
dominator-based placement. If we place prompts at
nodes 2 and 4 for resource access at node 5, there is
a possibility of encountering the prompt at node 2
multiple times as we go through the loop 1 → 2 → 3.
This kind of double-prompting violates the not-
repetitive condition in Definition 2. A simple way
to address this is to record user consent in app’s iso-
lated storage for both the current runtime session
and future app invocations, as shown in Section 4.3.

Semi-lattice L 2R, the power set of R
Top � ∅
Initial value init(n) ∅

Transfer func. TF (n)

{

add r to set if n is an access
for r ∈ R

identity otherwise

Meet operator ∧(x, y) union x ∪ y
Direction backward

Figure 10: Dataflow analysis formulation for comput-
ing anticipating nodes: ∀n ∈ N , we compute the set of
resource types that node n is anticipating.

3.4 Placement Algorithm

In our evaluation section, we will examine the trade-
offs between the dominator-based and backward
placement strategies. To summarize, this is an out-
line of our placement approach:

1. For every r ∈ R and every node n ∈ N , compute
its r-anticipating value Ar(n).

2. Merge values by meeting them in the semi-
lattice L = 〈R,∧〉 for all resource types:

A(n) =
∧

r∈R

Ar(n)

3. For every resource access a of type r, use a back-
ward search to find if it is adequately covered
by existing prompts of type r′ such that r � r′.

4. If not, proceed to insert a prompt of type A(n)
using either a dominator-based or a backward
placement strategy.

Anticipating values can be calculated using a simple
data-flow computation, in the style of the Dragon
book [4]. A formulation of this analysis is shown
in Figure 10 in the form of a table traditional for
succinctly representing data-flow problems. The ad-
vantage of such a formulation is that it runs in lin-
ear time, given a lattice of finite height (and size),
and that most compiler frameworks already provide
a data-flow framework into which this kind of anal-
ysis can be “dropped”.
There is some flexibility when it comes to the last

step. Indeed, we can choose to use a dominator-
based, or a backward placement strategy, or some
combination. In our implementation, we try the
dominator strategy first to see if it yields a valid
placement and, failing that, resort to the backward
strategy. This hybrid approach is shown in the
function InsertPrompt in Figure 9. Note that if
placement is successful, the outcome is stored in the
Placement ⊂ N set.
InsertPrompt-B has an occurs-check on line 32

to avoid the possibility of infinite recursion for

USENIX Association 22nd USENIX Security Symposium 121

1: //Checks for existing prompts
2: function HasPrompt(G, r, a)
3: Occurs-check(a) � Prevent infinite recursion
4: if a ∈ G.Prompts then
5: r′ ← a.Type
6: adequate ← (r � r′) � Existing prompt at least as

permissive as needed?
7: if adequate then
8: return true � Check if adequately protected
9: end if
10: end if
11:
12: //Explore all predecessors in turn
13: for all p ∈ G.predecessors(a) do
14: success ← HasPrompt(G, r, p)
15: if ¬success then
16: return false � One of the predecessors failed
17: end if
18: end for
19: return true � All predecessors succeeded
20: end function

Figure 11: Checking for resource access prompts. G is
the graph; r is the resource type; a is the access node.

graphs with loops, which are encountered in the pro-
cess of backward exploration. If the current node is
not reachable from non-library code as indicated by
IsReachable, we return true. We discuss the chal-
lenges of fast backward computation in Section 4.2.

3.5 Checking For Existing Prompts

Note that before we choose to insert prompts we
need to make sure they are in fact missing as shown
on line 2 of Figure 9. Doing so requires a backward
search, as shown in Figure 11. Note that in prac-
tice, HasPrompts frequently returns false, failing
quickly without exploring the entire set of predeces-
sors. Section 4.2 demonstrates how this search can
be made faster.

1: function CreatePlacement(G, ant , idom)
2: for all a ∈ G.Accesses do
3: success ← InsertPrompt(G, a, ant , idom)
4: if ¬ success then
5: return false
6: else
7: for all p ∈ Placement do
8: Prompts ← Prompts ∪ 〈p, ant(a)〉
9: end for
10: end if
11: end for
12:
13: // All clear: proceed with the placement
14: for all 〈n, t〉 ∈ Prompts do
15: InsertAtNode(n, t)
16: end for
17: return true
18: end function

Figure 12: Putting it all together: creating an overall
prompt placement for graph G.

3.6 Proof Sketch

The algorithm that pulls everything together to cre-
ate a placement is shown in Figure 12. We first check
that whether there is indeed a valid placement for all
resource accesses. Once this is ensured, we proceed
to modify the underlying graph by inserting prompts
at appropriate places. Note that prompt insertion is
only attempted if they are in fact missing, as en-
sured by the check on line 2 of Figure 9. The details
of runtime instrumentation are given in Section 4.3.
The structure of the algorithm allows us to reason
about the resulting placement.

Theorem 1 The placement of prompts above is in
fact valid if the placement routine CreatePlace-
ment returns true.

Proof sketch: It is easier to consider each correct-
ness property in turn. We will refer to code lines in
Figure 9 unless indicated otherwise.

Safe: We need to ensure that every access a to
resource r is preceded by a prompt check for r.
The call to InsertPrompt must have returned
true for resource access a. This is because either
the dominator-based or backward strategy was suc-
cessful. If the dominator-based strategy succeeded,
there was a non-background, non-library node dom-
inating a which is also anticipating for a.Type. The
check on line 18 maintains this invariant. If the
dominator-based strategy failed and the backward
strategy succeeded, this is because every path from a
to Nentry has encountered a placement point which
satisfied the check on line 33, providing adequate
protection for the access at a.

Visible: No prompt is placed within a background
task or library code. This is true by construction
because of checks on lines 19 and 34.

Frugal: Placement only occurs at anticipating
nodes because of checks on lines 18 and 33.

Not-repetitive: Prompt for r2 ∈ R is never in-
voked if permissions for r1 have already been granted
and r2 � r1. This property is maintained by a com-
bination of three steps: (1) merging in Step 2 on the
overall algorithm, (2) check on line 52 and (3) the
runtime “sticky” treatment of prompts that avoids
double-prompting for the same resource type further
explained in Section 4.3.

4 Implementation Details

Our current implementation of the static analysis
described in this paper involves dealing with a vari-
ety of practical details, some of which are fairly com-
mon in bytecode-based static analysis tools, whereas

122 22nd USENIX Security Symposium USENIX Association

others are quite specific to our setting of WP apps
written in .NET.
A significant part of the implementation involves

building a graph on which to perform our analysis.
Intra-procedurally, we parse the .NET bytecode to
construct basic blocks; we terminate them at method
calls to simplify analysis. For call graph construc-
tion, we use a simple class hierarchy analysis (CHA)
to resolve virtual calls within the program. We also
construct a dominator tree as part of graph construc-
tion, as we need it later. In many cases, the resulting
graphs have enough precision for our analysis.

4.1 Reflection & Analysis Challenges

WP applications are distributed as XAP files, which
are archives consisting of code in the form of byte-
code DLLs, resources such as images and XAML,
and the app manifest, which specifies requested ca-
pabilities, etc. Unsurprisingly, various reflective con-
structs found in WP apps create challenges for our
analysis. While we outline some of the details of
our solutions below, constructing precise static call
graphs for mobile apps remains an ongoing chal-
lenge, and require further research.
Analysis imprecision usually does not stem from

the underlying call graph construction approach,
which could be alleviated through pointer analysis,
which generally provides sufficient precision for call
graph construction, but in challenges specific to com-
plex WP apps, as discussed below.

Event handlers: The code below illustrates some
complications posed by event handlers.

static void Main(string[] args) {

AppDomain.CurrentDomain.ProcessExit +=

new EventHandler(OnProcessExit);

}

// library code

static void OnProcessExit(object sender, EventArgs e) {

// location access

var watcher =

new System.Device.Location.GeoCoordinateWatcher();

var pos = watcher.Position;

}

By default, method OnProcessExit does not have any
predecessors in the call graph. At runtime, it may
in fact be called from a variety of places, which is
not easy to model as part of call graph construction.
However, it may not be called before the event han-
dler is registered in method Main. Our solution is to
augment the call graph construction code to create
a special invocation edge from the registration site
to OnProcessExit. The analysis will then be able
to place the prompt right before the registration in

method Main, which makes a significant difference in
our ability to find successful placements.

Actions and asynchronous wrappers: Another
similar form of delayed execution in WP apps is ac-
tions (System.Action) and its asynchronous cousin
System.AsyncCallback, which are effectively wrap-
pers around delegates registered for later execution.
We deal with actions in a way that is similar to event
handlers.

XAML: A particular difficulty for analysis stems
from the use of declarative UIs specified in XAML,
an XML-like language that combines an easy-to-
read UI specification with“hooks” into code. XAML
is compiled into special resources that are em-
bedded into an app’s DLLs. When the method
InitializeComponent() is called on the class speci-
fied in XAML, it proceeds to register events that are
specified declaratively, as shown in a XAML snippet
below:

1 <phone:PhoneApplicationPage.ApplicationBar>
2 <shell:ApplicationBar IsVisible="True">
3 <shell:ApplicationBar.MenuItems>
4 <shell:ApplicationBarMenuItem Text="Settings"
5 Click="SettingsClick" />
6 </shell:ApplicationBar.MenuItems>
7 </shell:ApplicationBar>
8 </phone:PhoneApplicationPage.ApplicationBar>

Event handler SettingsClick should be properly reg-
istered so that it can later be invoked.
Alas, some aspects of declarative app specification

defy static analysis. A typical example is navigation
between an app’s pages.

1 base.NavigationService.
2 Navigate(new Uri(
3 "/VenueByGeo.xaml?mc=" + this.strMenuCode +
4 "&t=" + this.strToken,
5 UriKind.RelativeOrAbsolute));

Statically, we do not know which page will be nav-
igated to, and, consequently, which OnNavigatedTo

event handler will be called. To avoid polluting the
call graph, we only link up page navigation when
the destination is a string constant. Unfortunately,
this approach is unsound. A more robust technique
would be to integrate a string analysis [8, 19, 33] into
our implementation.

Summary: Reflective coding constructs are the
Achilles heel of static analysis. While this is true as
it applies to applications written in .NET and Java,
this is especially so given the declarative program-
ming style often used in WP apps, where code is
“glued together” with declarative specification. Sev-
eral approaches to handling reflection have been pro-
posed and used in the literature [6, 18, 26, 28, 35].
Alas, all of them require a certain degree of cus-
tomization to the problem and APIs at hand. Addi-
tionally, reflection analysis tends to be intertwined

USENIX Association 22nd USENIX Security Symposium 123

with a heavyweight analysis such as a points-to. We
instead opt for a lightweight analysis that pattern-
matches for the easily-to-resolve case, potentially in-
troducing unsoundness. We evaluate the effects of
this treatment in Section 6.

[SomaAd..ctor() @ 0134) bg // resource access
[SomaAd..ctor() @ 0120) bg
[SomaAd..ctor() @ 0118) bg
[SomaAd..ctor() @ 0000) bg
[SomaAdViewer.StartAds() @ 00a6) bg
[SomaAdViewer.StartAds() @ 009e) bg
[SomaAdViewer.StartAds() @ 0000) bg
[CollectHome.g_AdFailed(object, ...) @ 00f7) fg
[CollectHome.g_AdFailed(object, ...) @ 0052) fg
[CollectHome.g_AdFailed(object, ...) @ 000a) fg
[CollectHome.g_AdFailed(object, ...) @ 0000) fg
[CollectHome.g_AdFailed(object, ...) @ 0040) fg
[CollectHome.g_AdFailed(object, ...) @ 0030) fg
[CollectHome.g_AdFailed(object, ...) @ 0008) fg

[CollectHome.g_AdFailed(object, ...) @ 004a) fg
[CollectHome.g_AdFailed(object, ...) @ 00df) fg
[CollectHome.g_AdFailed(object, ...) @ 006c) fg
[CollectHome.g_AdFailed(object, ...) @ 0066) fg

Figure 13: A backward exploration tree of depth 20.
Method names and signatures are abbreviated for
brevity. bg and fg stands for background/library vs.
foreground/non-library methods, respectively.

4.2 Fast Backward Placement

Recall from Section 3 that our approach resorts to
a search for both checking if a resource access is
already protected with a prompt and for inserting
prompts if the dominator-based strategy fails. In
implementing backward search, we need to be con-
cerned with preventing infinite recursion (the occurs-
check from Section 3). There is also the possibility of
exponential path explosion, which is quite real given
that we we are dealing with graphs that typically
have tens of thousands of nodes. It is therefore im-
perative to design an efficient exploration strategy.
Our approach for both checking for prompts and

inserting them relies on first building a spanning tree
rooted at the access node, computed using a depth-
first search. Figure 13 gives an example of such a
tree. The tree allows us to classify underlying graph
edges as ether forward, backward, or cross edges.
Further analysis is performed on the tree as a se-
ries of downward passes, implemented as recursive
procedures, starting at the resource access and ex-
ploring the predecessors3. In summary, we perform
three recursive passes over the spanning tree. Each
pass computes a boolean value for each of the vis-
ited nodes to represent the checking or placement

3To avoid stack overflow issues stemming from deep trees,
once the tree has been constructed, we make sure that the size
is below a fixed threshold (set to 250 for our experiments).

status; values are maintained across the passes in a
map called υ.
The advantage of this multi-pass approach is its

simplicity and guaranteed runtime complexity. We
start with all spanning tree nodes as unvisited and
then perform three recursive traversals of the tree,
as shown in Figure 14 and described below. In our
implementation, we reuse the same spanning tree for
the prompt checking and placement analysis stages.
This approach is linear in the size of the graph, and
is generally quite fast, even when there are hundreds
of nodes reachable from a resource access.

1. Traverse: For each non-library non-
background node, declare it as a valid
placement point and set υ[n] to true4. For
other nodes, if all their children have their υ
as true, set υ[n] to true; otherwise, set υ[n] to
false.

2. Patch-up: Traverse the tree considering cross-
edges originating at the current node. If all
cross-edges emanating from nodes have valid
placements (υ value is true), set υ[n] to true.

3. Collect: Propagate (newly) true values up to
the root: set υ[n] to true if the υ value is true for
all of n’s children.

The final result is computed by running all three
steps in order and examining the result at the root
of the spanning tree.

4.3 Runtime Considerations

While much of the focus of this paper is on statically
locating placement points, choosing the right kind of
runtime instrumentation presents some interesting
challenges. We need to ensure that we are not go-
ing to induce double-prompting, as discussed in Sec-
tion 3. To do so, we maintain a “sticky” app-global
setting value in the app’s isolated storage, as illus-
trated by the following example for the fine-grained
GPS location resource type:

1 var setting = IsolatedStorageSettings.
2 get_ApplicationSettings().
3 get_Item("UserLocationSettings");
4 if (setting == null){
5 int result = MessageBox.Show(
6 "Is it okay to access your fine-grained GPS location?",
7 "Allow "+Assembly.GetExecutingAssembly().FullName()+
8 " to access and use your location.",
9 1);

10 {
11 settings.set_Item("UserLocationSettings",
12 (result == 1) ? "Y" : "N");

4Note that to maximize backward placement opportuni-
ties, for all unreachable nodes, we set υ[n] to true, as shown
in Figure 9. This is because the presence of dead code should
not prevent prompt placement.

124 22nd USENIX Security Symposium USENIX Association

1: function Traverse(n)
2: for all c ∈ children(n) do
3: Traverse(c)
4: end for
5: υ[n] ← true
6: if n �∈ G.Background ∧ n �∈

G.Libraries return
7:
8: for all c ∈ children(n) do
9: if ¬υ[c] then
10: υ[n] ← false
11: return
12: end if
13: end for
14: end function
15:

1: function PatchUp(n)
2: if ¬υ[n] then
3: crossEdges← CrossEdges(n)
4: if |crossEdges| > 0 then
5: υ[n] ← true
6: for all 〈n′ → n〉 ∈ crossEdges do
7: if ¬υ[n′] then
8: υ[n] ← false
9: break
10: end if
11: end for
12: end if
13:
14: for all c ∈ children(n) do
15: PatchUp(c)
16: end for
17: end if
18: end function

1: function Collect(n)
2: for all c ∈ children(n) do
3: if ¬υ[c] then
4: υ[n] ← false
5: return
6: end if
7: end for
8:
9: υ[n] ← true
10: end function

Step 1: Traverse Step 2: Patch-up Step 3: Collect

Figure 14: Three-stage backward placement algorithm explained in Section 4.2.

13 }
14 }else{
15 if(setting.ToString().Equals("Y")){
16 // proceed with the prompt
17 }
18 }

Because the prompt remains sticky application-wide
and persists across application invocations, even if
we conservatively insert an extra prompt, we will
only show it at most once per app.

5 Evaluation

We have analyzed 100 WP 7 apps from the WP
Store to collect our results. To make the analysis
more meaningful, we have selected only apps with
LOCATION and NETWORKING capabilities. Such apps
constitute about a fifth of a larger set of about 2,000,
from which we drew our 100 app sample. The
goal of our evaluation is to understand how fre-
quently prompts are omitted and to attempt to in-
sert prompts in a fully automatic manner.

Characterizing the input: We first present some
aggregate statistics of the analysis results in Fig-
ure 15. WP applications are quite substantial in size,
constituting about 3,528 methods on average. This
is in part because they rely (and therefore recursively
include within their call graph) large libraries, some
of which are part of the operating system SDK, and
others are included .NET libraries. The average size
for our apps is 7.3 MB; many consist of dozens of
DLLs.

We discovered that the libraries shown
in the inlined figure are included most fre-
quently. These libraries provide advertising
functionality, and many request location data.

Component Count

SOMAWP7 42
NetDragon.PandaReader 13
EchoEchoBackgroundAgent 10
Utilities 10
BMSApp 10
MobFox.Ads.LocationAware 8
XIMAD Ad Client 7
EchoEcho 5
DirectRemote 5
DCMetroApp 5

About 7% of
all methods are
contained in back-
ground tasks or
libraries, which
presents a signif-
icant challenge
for prompt place-
ment. Out of
these, most are in
fact in third-party libraries. Recall that we do not
want to place prompts in libraries. To recognize
third-party libraries in our experiments, we used a
list of 100 common advertising libraries, identified by
the DLL in which they are contained; these include
Microsoft.Advertising.Mobile.dll, AdRotator.dll,
MobFox.Ads.LocationAware.dll, FlurryWP7SDK.dll,
Inneractive.Nokia.Ad.dll, MoAds.dll, adMob7.dll,
Photobucket.Ads.dll and many others. Our analysis
is parameterized with respect to this list. Frame-
works such as these may access GPS location deep
within library code, making prompt placement
analysis particularly difficult.

Our analysis represents each application as 13,330
nodes on average. Out of these, about 12% are con-
sidered to be anticipating by our analysis. In other
words, about 88% of nodes are not eligible prompt
placement points.

The last section of Figure 15 describes the re-
source accesses found in these 100 applications.

Location 95.15%
Contacts 4.41%
Calendar 0.44%

Across all apps, there
are 227 resource accesses we
analyze. Overall, apps have
an average of 2.27 resource
accesses, with a maximum
of 9 for one of the apps. The figure shown inline
in this paragraph shows how frequent individual

USENIX Association 22nd USENIX Security Symposium 125

apps analyzed 100

processed methods 352,816
background/library methods 26,033
library methods 25,898

nodes 1,333,056
anticipating 171,253

accesses 227
accesses in background/library methods 78

Figure 15: Apps analyzed: summary of input statistics.

succeeded 202
failed 19

succeeded unique 143
failed unique 7

dominator-based succeeded 150
näıve 143

backward succeeded 56
regular 150

dead code 2,094
backward placements (40,270, 56)

depth exceeded 15

Figure 16: Prompt placement: summary of results of
applying analysis to 100 apps.

resource types are. We find that the majority of
sensitive resource accesses are to GPS location
data, with occasional accesses to user contacts and
calendar.

Inserting prompts: Figure 16 provides statis-
tics describing the prompt placement process. Over-
all, our two-prong strategy of dominator-based and
backward placement succeeds in about 91% of all
cases. However, it is important to observe that many
cases, including challenging resource accesses deep
in library code, are shared by many applications.
To avoid double-counting, we show the number of
unique placement attempts that have succeeded and
failed. Considering these numbers of unique ac-
cesses, we are able to successfully place prompts

Average Max #

app loading 1,779 24,585 100
call graph construction 18,152 147,287 100
placement graph construction 15,103 293,480 100
anticipating computation 158 3826 86

finding missing prompts 123 649 100

prompt insertion, per app 942 70,228 103
dominator-based, per access 0.05 1 221
backward, per access 1,366 49,277 71

Figure 17: Timing, in ms. All measurements are per
app, unless stated otherwise.

in 95% of cases (143 out of 150), a higher success
percentage. Several other lessons can be drawn from
the rest of the table:

• When dominator-based placement succeeds, it
is usually immediate (95% of all dominator-
based successes are näıve successes).

• Backward placement is helpful for cases where
dominator-based placement fails. However,
some of these cases are still too hard, leading
to 7 unique failures.

Timing: Figure 17 provides a summary of tim-
ing information for our analysis. For each mea-
surement, we provide the average timing across 100
apps, the maximum observed time and the num-
ber of observations. Each measurement in given
in ms. Overall, the most time goes into initial pro-
cessing of the application, which involves reading
it from disk, constructing a representation of the
app’s assemblies in memory (1.7 seconds on aver-
age), traversing it to create a call graph and control
flow graphs (CFGs) (18 seconds on average), dom-
inator calculation, and reachability calculation, re-
sulting in a graph suitable for analysis. Computing
anticipating nodes only takes 158 ms on average.
Finding missing prompts takes about 123 ms on

average, in part because many instructions need to
be examined in search of existing prompts. Prompt
insertion, on average, is fast, only about .9 seconds
per application. Dominance-based placement is vir-
tually instantaneous. Backward placement is slower,
at 1.3 seconds per resource access, raising the aver-
age. Based on these performance numbers, we are
optimistic that prompt insertion can be done entirely
automatically over a large number of applications.

6 Discussion

We have selected static analysis as a method of
choice to avoid code coverage issues inherent with
runtime analysis and for analysis speed (end-to-end
processing is several minutes per app). In this sec-
tion we discuss some of the limitations of our current
static analysis approach. There are two potential
sources of errors in our analysis. Our analysis may
classify a resource access as unprotected whereas it
is properly protected with runtime prompts; we call
these cases false positives. By the same token, our
analysis may classify a resource access as protected
whereas in fact at runtime there are no preceding
prompts that protect the resource access; we call
these cases false negatives.

Manual inspection: We examined a subset of ap-
plications to manually check for these errors. The

126 22nd USENIX Security Symposium USENIX Association

verification process includes running these applica-
tions in the emulator to collect network packets and
to collect API calls invoked by each application at
runtime. We manually exercise as much functional-
ity of each application as possible. If the application
presented a runtime prompt, we inspected the text
of the message and clicked through each “allow” (to
use my location) and “don’t allow” button to deter-
mine how the choice affects application behavior.
Once the runtime inspection was complete, we ex-

amined network packets and invoked API lists, cor-
relating them with the app’s disassembled code to
verify the observed behavior. Although this verifica-
tion process is thorough, it requires significant man-
ual efforts, thus limiting the number of cases that can
be examined. Next, we discuss findings from 10 ap-
plications. These apps contain 27 resource access
points, among which 21 are classified as unprotected
by our analysis.

6.1 False Negatives

Our manual analysis found no false negatives. On
a close examination of each of the 27 resource ac-
cesses, we find 10 accesses that are not protected.
Our analysis correctly identifies all of these accesses
as unprotected and finds proper placements.
These unprotected accesses are found in third-

party libraries included across 5 apps. Interest-
ingly, in an effort to maximize revenue, one app
embeds two advertising related third-party libraries
(SOMAWP7.dll and AdRotatorXNA.dll) and both con-
tain unprotected location accesses. Two placements
are made via dominator-based placement; the other
eight through backward placement. Backward place-
ments result in 40 inserted prompts in application
code, which upon casual examination appear to be
correct. We find these results promising, as users
express increasing concern about data sharing with
third parties [21], and our analysis properly detects
and fixes such unprotected accesses.

6.2 False Positives

Eleven out of 21 accesses flagged as unprotected turn
out to be properly protected. Although the number
of false positives is somewhat high, with manual in-
spection, we found the following reasons for them:

Sticky location prompt: Seven false positives are
due to our analysis’s inability to analyze sticky lo-
cation prompts, as shown in Figure 5. Three cases
are similar to the example in Figure 18(a). The rest
are caused by one application that uses the location
flag to enable or disable the button that allows the

private void mapLocaitons() {
if (this.avisAppUnitService.UseLocationsMapping) {

this.watcher=null;
GeoCoordinateWatcher watcher=new GeoCoordinateWatcher
(GeoPositionAccuracy.Default){MovementThreshold = 20.0};

this.watcher = watcher;
...
this.watcher.Start();

}
}

(a) Sticky prompt example #1: This app
saves the result of the prompt response in
Athis.avisAppUnitService.UseLocationsMapping.

public MapPage() {
this.InitializeComponent();
base.DataContext = new MapViewModel();
this.BuildApplicationBar();
if (AppSettings.Current.UseLocationService) {

this.watcher = new GeoCoordinateWatcher();
}
((ApplicationBarIconButton)base.ApplicationBar.Buttons[0]).
IsEnabled = AppSettings.Current.UseLocationService;

((ApplicationBarIconButton)base.ApplicationBar.Buttons[2]).
IsEnabled = AppSettings.Current.UseLocationService;
this.UpdatePushpinsBackground();

}

(b) Sticky prompt example #2: This app disables page
navigation based on the location access depending on
AppSettings.Current.UseLocationService.

Figure 18: Sticky prompt examples.

user to navigate to the page (that invokes location
access) as shown in Figure 18(b). WP apps can use
several different storage mechanisms; we are looking
into ways to detect them statically.

Consent dialog implementation: Two false pos-
itives are due to the limitation of identifying exist-
ing prompts. Both result from a single app that
implements a custom consent dialog page instead
of MessageBox(), as shown in Figure 19. We are
looking into ways to parse a blocking page with
buttons to detect such custom-made consent dialog
pages, although this is obviously a difficult problem.
However, such cases are not common and we find
that five out of six applications that show prompts
employ MessageBox(), as expected.

Async calls and XAML files: Two false positives
are due to limitations of call graph construction.
Figure 20(a) shows an expanded example of the
case discussed in Section 4.1. Applications may
use multiple types of EventHandlers to be called
asynchronously. In our current implementation, we
parse EventHandlers and add links when handlers
are registered. However, the current implementa-
tion fails when multiple delegates and EventHandlers
are used in a tricky way, as shown in Figure 20(b).
We are investigating ways to extend our call graph
construction to support these cases.

USENIX Association 22nd USENIX Security Symposium 127

(a) App page with loca-
tion access.

(b) Prompt (consent di-
alog).

Figure 19: False positive due to a custom prompt: A
prompt is customized as a separate WP UI page.

6.3 Effect of False Positives

Like most practical static analysis tools, our analysis
is potentially vulnerable to false positives, primarily
because of program representation challenges. Un-
like most static analysis tools for bug detection, our
analysis is two-phase: if it detects that a resource
access is not adequately protected, it tries to pro-
pose a placement of prompts that would protect it.
Our analysis errs on the safe side, introducing false
positives and not false negatives.
False positives, however, may lead to double-

prompting, since our analysis will inject a prompt
to protect already protected resource accesses. Be-
cause our inserted prompts are sticky, our approach
introduces at most one extra runtime prompt per
app during the entire app’s lifecycle, which we be-
lieve will not lead to prompt fatigue. Nonetheless,
double-prompting can trigger confusion in end-users
and therefore should be minimized. Our experience
with the ten test applications shows that in all cases,
resource accesses get triggered quickly, with several
clicks, so runtime checking of this kind is unlikely
to require excessive effort. If desired, runtime test-
ing by the developer or App Store maintainers can
accompany our analysis to detect and eliminate po-
tential double-prompting.

7 Related Work

The requirement of protecting privacy-sensitive re-
source accesses with runtime prompts or consent di-
alogs has only recently been introduced to mobile
applications. To our knowledge, no previous work
has investigated static analysis approaches to detect

private void GPS_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e) {

...
else if (MessageBox.Show("Sharing this info allows us to

find theaters and events near you.We won’t share
this information.", "Allow BookMyShow to access and
use your location.",MessageBoxButton.OKCancel)==
MessageBoxResult.OK) {
...
base.NavigationService.Navigate(

new Uri("/VenueByGeo.xaml?mc="
+ this.strMenuCode + "&t=" + this.strToken,
UriKind.RelativeOrAbsolute));

}
...

}

(a) Complex CFG #1: Function Navigate() internally
calls BMSApp.VenueByGeo.OnNavigatedTo() as defined in
VenueByGeo.xaml.

public static bool GetCurrentLocation() {
...
Observable.FromEvent
<GeoPositionStatusChangedEventArgs>
(delegate

(EventHandler<GeoPositionStatusChangedEventArgs> ev){
GeoCoordinateWatcher.StatusChanged += ev;

}, delegate (EventHandler
<GeoPositionStatusChangedEventArgs> ev) {

GeoCoordinateWatcher.StatusChanged -= ev;
}).Where<IEvent
<GeoPositionStatusChangedEventArgs>>
(delegate ... args){

if (args.EventArgs.Status != GeoPositionStatus.Ready)
{

return (args.EventArgs.Status ==
GeoPositionStatus.Disabled);

}
return true;

}).Take<IEvent<GeoPositionStatusChangedEventArgs>>(1).
Subscribe<IEvent<GeoPositionStatusChangedEventArgs>>
(delegate
(IEvent<GeoPositionStatusChangedEventArgs> args) {
if (args.EventArgs.Status == GeoPositionStatus.Ready)
{

RaiseCurrentLocationAvailable(
new CurrentLocationAvailableEventArgs(

GeoCoordinateWatcher.Position.Location));
}

...
}

(b) Complex CFG #2: This code generates a compiler-
generated function <GetCurrentLocation>b 3 in
Eventful.Helpers.LocationHelper, which is called within
GetCurrentLocation(), as defined in VenueByGeo.xaml.

Figure 20: Complex CFG cases.

unprotected resource accesses in mobile application
binaries. This section discusses previous research
in three related areas: automatic hook placement,
graph-based analysis for information security, and
user studies of consent dialogs.

Automatic hook placement: A number of previ-
ous studies examine the issues of protecting security-
sensitive operations with authorization hooks (e.g.,
checking permissions for file operations). Ganapa-
thy et al. [14] use a static program analysis over the
Linux kernel source code to identify previously un-
specified sensitive operations and find the right set

128 22nd USENIX Security Symposium USENIX Association

of hooks that need to protect them. AutoISES by
Tan et al. [34] is designed for the similar goal as [14]
but the ways that AutoISES infers access to sensi-
tive data structure are different from [14]. Muthuku-
maran et al. [27] focus on server code such as the
X server and postgresql and use their insight con-
cerning object access patterns in order to identify
sensitive operations that require authorization.
In comparison to these efforts, our work begins

with a set of known APIs that access sensitive re-
sources. Such a set is easy to mine from developer
documentation for most mobile operating systems.
In particular, our work focuses on algorithms to find
placements that meet the four important conditions
specific to user prompts on mobile devices, whereas
the previous work concentrates of placement being
safe [14, 34] or safe and not-repetitive [27].

Graph-based analysis: Program dependence
graphs are used for analyzing information security
of programs in several projects [16, 17, 32]. Program
dependence graphs include both data dependen-
cies and control dependencies whereas the dataflow
graphs that we use in this work typically contain
just data dependencies. Hammer et al. [15] con-
sider the enforcement of declassification [30] using
program dependence graphs. Recent efforts focus
on automating security-critical decisions for appli-
cation developers [31, 36]. The use of a security type
system for enforcing correctness is another case of co-
operating with the developer to achieve better code
quality and correctness guarantees [29]. Livshits and
Chong [25] address the problem of sanitizer place-
ment through static analysis and partially inspire
our work on consent dialog placement. In our work,
we use a backwards traversal to find the closest
valid node to insert a missing prompt. Au et al. [5]
use a similar backward reachability analysis over a
call graph constructed from the Android framework.
However, their goal is to create a mapping between
API calls and permission checks and therefore their
analysis need not consider the four conditions.

Mobile user privacy and consent dialogs: Sev-
eral recent studies have investigated the effectiveness
of existing consent dialogs used on mobile devices at
informing users about which privacy-sensitive data
can be accessed by apps. Felt et al. [12] show that
only 17% of study participants paid attention to the
permissions when installing Android applications.
This finding may indicate that placing consent di-
alogs at install time (far removed from when the data
is actually being accessed) renders these dialogs in-
effective. On the contrary, a study by Fisher et al.
focus on iPhone users’ responses to runtime consent
dialogs to location access and shows that 85% of

study participants actually denied location requests
for at least one app on their phone [13].

Although orthogonal to our work, previous stud-
ies have explored ways to improve the presentation
of consent dialogs in mobile devices. Lin et al. mea-
sure users’ “expectations” of apps’ access to phone
resources [23]. By highlighting unexpected behav-
iors in the Android permissions interface, the au-
thors show that the new permission interface is more
easily understood and efficient than the existing one.
Felt et al. propose a framework for requesting per-
missions on smartphones [11]. Findings of these
studies can inform a better usable privacy design of a
consent dialog, which our analysis can automatically
insert in mobile apps.

8 Conclusions

In this paper, we have explored the problem of miss-
ing prompts that should guard sensitive resource ac-
cesses. Our core contribution is a graph-theoretic
algorithm for placing such prompts automatically.
The approach balances the execution speed and few
prompts inserted via dominator-based placement
with a comprehensive nature of a more exhaustive
backward analysis.

Overall, our two-prong strategy of dominator-
based and backward placement succeeds in
about 95% of all unique cases. Our approach is
highly scalable; once the application has been
represented in the form of a graph, analysis usually
takes under a second on average.

References

[1] Pandora discloses privacy-related US inquiry into phone
apps. http://www.nytimes.com/2011/04/05/technology/
05pandora.html, April 2011.

[2] Daily report: Social app makes off with address
books. http://bits.blogs.nytimes.com/2012/02/08/daily-
report-social-app-makes-off-with-address-books/, Febru-
ary 2012.

[3] LinkedIn’s iOS app collects and transmits names,
emails and notes from your calendar, in plain text.
http://thenextweb.com/insider/2012/06/06/linkedins-ios-
app-collects-and-sends-names-emails-and-meeting-notes-
from-your-calendar-back-in-plain-text/, June 2012.

[4] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2007.

[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: an-
alyzing the android permission specification. In ACM CCS,
2012.

[6] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini.
Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders. In Software Engineer-
ing (ICSE), 2011 33rd International Conference on, pages
241–250, 2011.

USENIX Association 22nd USENIX Security Symposium 129

[7] R. Böhme and S. Köpsell. Trained to accept?: a field exper-
iment on consent dialogs. In Proceedings of CHI, 2010.

[8] A. S. Christensen, A. Møller, and M. Schwartzbach. Precise
analysis of string expressions. In International Conference
on Static analysis, 2003.

[9] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: De-
tecting privacy leaks in iOS applications. In Proceedings
of the Annual Network and Distributed System Security
Symposium, Feb. 2011.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the Usenix Conference on Oper-
ating Systems Design and Implementation, 2010.

[11] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wag-
ner. How to ask for permission. In Proceedings of HotSec,
2012.

[12] A. P. Felt, E. Hay, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention, compre-
hension, and behavior. In Proceedings of SOUPS, 2012.

[13] D. Fisher, L. Dorner, and D. Wagner. Short paper: location
privacy: user behavior in the field. In Proceedings of SPSM,
2012.

[14] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement
of authorization hooks in the linux security modules frame-
work. In ACM CCS, 2005.

[15] C. Hammer, J. Krinke, and F. Nodes. Intransitive noninter-
ference in dependence graphs. In 2nd International Sympo-
sium on Leveraging Application of Formal Methods, Veri-
fication and Validation, Nov. 2006.

[16] C. Hammer, J. Krinke, and G. Snelting. Information flow
control for java based on path conditions in dependence
graphs. In IEEE International Symposium on Secure Soft-
ware Engineering, Mar. 2006.

[17] C. Hammer and G. Snelting. Flow-sensitive, context-
sensitive, and object-sensitive information flow control based
on program dependence graphs. International Journal of
Information Security, 8(6):399–422, Dec. 2009.

[18] M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind. Fast
online pointer analysis. ACM Trans. Program. Lang. Syst.,
29(2), 2007.

[19] P. Hooimeijer and M. Veanes. An evaluation of automata al-
gorithms for string analysis. In Verification, Model Check-
ing, and Abstract Interpretation, pages 248–262. Springer,
2011.

[20] P. Internet. Privacy and data management on mo-
bile devices. http://pewinternet.org/Reports/2012/Mobile-
Privacy.aspx, September 2012.

[21] J. Jung, S. Han, and D. Wetherall. Short paper: Enhancing
mobile application permissions with runtime feedback and
constraints. In Proceedings of SPSM, 2012.

[22] S. Kaplan, B. Livshits, B. Zorn, C. Seifert, and
C. Curtsinger. ”nofus: Automatically detecting” +
string.fromcharcode(32) + ”obfuscated ”.tolowercase() +
”javascript code”. Technical Report MSR-TR-2011-57, Mi-
crosoft Research, May 2011.

[23] J. Lin, S. Amini, J. Hong, N. Sadeh, J. Lindqvist, and
J. Zhang. Expectation and purpose: Understanding users’
mental models of mobile app privacy through crowdsourcing.
In Proceedings of UbiComp 2012, 2012.

[24] B. Livshits. Dynamic taint tracking in managed runtimes.
Technical Report MSR-TR-2012-114, Microsoft Research,
2012.

[25] B. Livshits and S. Chong. Towards fully automatic place-
ment of security sanitizers and declassifiers. In Proceedings
of the Sympolisium on Principles of Programming Lan-
guages (POPL), Jan. 2013.

[26] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis
for Java. In Asian Symposium on Programming Languages
and Systems, Nov. 2005.

[27] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leverag-
ing ”choice” to automate authorization hook placement. In
ACM CCS, 2012.

[28] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis
of the dynamic behavior of javascript programs. In ACM
Sigplan Notices, volume 45, pages 1–12. ACM, 2010.

[29] W. Robertson and G. Vigna. Static enforcement of Web
application integrity through strong typing. In Proceedings
of the Usenix Security Symposium, Aug. 2009.

[30] A. Sabelfeld and D. Sands. Dimensions and principles of de-
classification. In Proceedings of the 18th IEEE Computer
Security Foundations Workshop, pages 255–269. IEEE
Computer Society, June 2005.

[31] M. Samuel, P. Saxena, and D. Song. Context-sensitive auto-
sanitization in web templating languages using type quali-
fiers. In Proceedings of the Conference on Computer and
Communications Security, Oct. 2011.

[32] B. Scholz, C. Zhang, and C. Cifuentes. User-input depen-
dence analysis via graph reachability. Technical Report 2008-
171, Sun Microsystems Labs, 2008.

[33] D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khur-
shid. Abstracting symbolic execution with string anal-
ysis. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION, 2007.
TAICPART-MUTATION 2007, pages 13–22, 2007.

[34] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises:
Automatically inferring security specification and detecting
violations. In USENIX Security Symposium, 2008.

[35] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ: effective taint analysis of Web applications. In
Proceedings of the Conference on Programming Language
Design and Implementation, 2009.

[36] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin,
and D. Song. A systematic analysis of XSS sanitization in
Web application frameworks. In Proceedings of the Euro-
pean Symposium on Research in Computer Security, Sept.
2011.

USENIX Association 22nd USENIX Security Symposium 131

Flexible and Fine-Grained Mandatory Access Control on Android
for Diverse Security and Privacy Policies

Sven Bugiel∗
bugiel@cs.uni-saarland.de

Saarland University, Germany

Stephan Heuser
stephan.heuser@sit.fraunhofer.de

Fraunhofer SIT, Germany
Ahmad-Reza Sadeghi

ahmad.sadeghi@trust.cased.de
Technische Universität Darmstadt / CASED, Germany

Abstract

In this paper we tackle the challenge of providing
a generic security architecture for the Android OS
that can serve as a flexible and effective ecosystem
to instantiate different security solutions. In con-
trast to prior work our security architecture, termed
FlaskDroid, provides mandatory access control si-
multaneously on both Android’s middleware and
kernel layers. The alignment of policy enforcement
on these two layers is non-trivial due to their com-
pletely different semantics. We present an efficient
policy language (inspired by SELinux) tailored to
the specifics of Android’s middleware semantics. We
show the flexibility of our architecture by policy-
driven instantiations of selected security models such
as the existing work Saint as well as a new privacy-
protecting, user-defined and fine-grained per-app ac-
cess control model. Other possible instantiations
include phone booth mode, or dual persona phone. Fi-
nally we evaluate our implementation on SE Android
4.0.4 illustrating its efficiency and effectiveness.

1 Introduction

Mobile devices such as smartphones and tablets have
become very convenient companions in our daily lives
and, not surprisingly, also appealing to be used for
working purposes. On the down side, the increased
complexity of these devices as well as the increasing
amount of sensitive information (private or corporate)
stored and processed on them, from user’s location
data to credentials for online banking and enterprise
VPN, raise many security and privacy concerns. To-
day the most popular and widespread smartphone
operating system is Google’s Android [4].

∗Author was affiliated with Technische Universität Darm-
stadt/CASED at the time this work was conducted.

Android’s vulnerabilities. Android has been
shown to be vulnerable to a number of different
attacks such as malicious apps and libraries that mis-
use their privileges [57, 40, 25] or even utilize root-
exploits [55, 40] to extract security and privacy sen-
sitive information; taking advantage of unprotected
interfaces [14, 12, 53, 32] and files [49]; confused
deputy attacks [16]; and collusion attacks [46, 34].

Solutions. On the other hand, Android’s open-
source nature has made it very appealing to academic
and industrial security research. Various extensions
to Android’s access control framework have been
proposed to address particular problem sets such as
protection of the users’ privacy [19, 28, 15, 52, 7, 30];
application centric security such as Saint enabling
developers to protect their application interfaces [39];
establishing isolated domains (usage of the phone
in private and corporate context) [9]; mitigation of
collusion attacks [8], and extending Android’s Linux
kernel with Mandatory Access Control [48].

Observations. Analyzing the large body of litera-
ture on Android security and privacy one can make
the following observations: First, almost all proposals
for security extensions to Android constitute manda-
tory access control (MAC) mechanisms that are tai-
lored to the specific semantics of the addressed prob-
lem, for instance, establishing a fine-grained access
control to user’s private data or protecting the plat-
form integrity. Moreover, these solutions fall short
with regards to an important aspect, namely, that
protection mechanisms operate only at a specific
system abstraction layer, i.e., either at the middle-
ware (and/or application) layer, or at the kernel-layer.
Thus, they omit the peculiarity of the Android OS
design that each of its two software layers (middle-
ware and kernel) is important within its respective
semantics for the desired overall security and privacy.

132 22nd USENIX Security Symposium USENIX Association

Only few solutions consider both layers [8, 9], but
they support only a very static policy and lack the
required flexibility to instantiate different security
and privacy models.

The second observation concerns the distinguishing
characteristic of application development for mobile
platforms such as Android: The underlying oper-
ating systems provide app developers with clearly
defined programming interfaces (APIs) to system
resources and functionality – from network access
over personal data like SMS/contacts to the onboard
sensors. This clear API-oriented system design and
convergence of functionality into designated service
providers [54, 36] is well-suited for realizing a security
architecture that enables fine-grained access control
to the resources exposed by the API. As such, mobile
systems in general and Android in particular provide
better opportunities to more efficiently establish a
higher security standard than possible on current
commodity PC platforms [31].

Challenges and Our Goal. Based on the obser-
vations mentioned above, we aim to address the fol-
lowing challenges in this paper: 1) Can we design a
generic and practical mandatory access control ar-
chitecture for Android-based mobile devices, that
operates on both kernel and middleware layer, and
is flexible enough to instantiate various security and
privacy protecting models just by configuring security
policies? More concretely, we want to create a generic
security architecture which supports the instantia-
tion of already existing proposals such as Saint [39]
or privacy-enhanced system components [58], or even
new use-cases such as a phone booth mode. 2) To
what extent would the API-oriented design of An-
droid allow us to minimize the complexity of the
desired policy? Note that policy complexity is an
often criticized drawback of generic MAC solutions
like SELinux [33] on desktop systems [54].

Our Contribution. In this paper, we present the
design and implementation of a security architec-
ture for the Android OS that addresses the above
mentioned challenges. Our design is inspired by the
concepts of the Flask architecture [50]: a modular
design that decouples policy enforcement from the
security policy itself, and thus provides a generic
architecture where multiple and dynamic security
policies can be supported by the system. In particu-
lar, our contributions are:

1. System-wide security framework. We present an
Android security framework that operates on both
the middleware and kernel layer. It addresses many

problems of the stock Android permission framework
and of related solutions which target either the mid-
dleware or the kernel layer. We base our implemen-
tation on SE Android [48], which has already been
partially merged into the official Android source-code
by Google1.

2. Security policy and type enforcement at mid-
dleware layer. We extended Android’s middleware
layer with type enforcement and present our policy
language, which is specifically designed for the rich
semantics at this layer. The alignment of middleware
and kernel layer policies in a system-wide security
framework is non-trivial, particularly due to the dif-
ferent semantics of both layers.

3. Use-cases. We show how our security framework
can instantiate selected use-cases. The first one is an
attack-specific related work, the well-known applica-
tion centric security solution Saint [39]. The second
one is a privacy protecting solution that uses fine-
grained and user-defined access control to personal
data. We also mention other useful security models
that can be instantiated with FlaskDroid.

4. Efficiency and effectiveness. We successfully eval-
uate the efficiency and effectiveness of our solution
by testing it against a testbed of known attacks and
by deriving a basic system policy which allows for
the instantiation of further use-cases.

2 Background

In this section, we first present a short overview of
the standard Android software stack, focusing on the
relevant security and access control mechanisms in
place. Afterwards, we elaborate on the SE Android
Mandatory Access Control (MAC) implementation.

2.1 Android Software Stack
Android is an open-source software stack tailored to
mobile devices, such as smartphones and tablets. It is
based on a modified Linux kernel responsible for basic
operating system services (e.g. memory management,
file system support and network access).

Furthermore, Android consists of an application
framework implementing (most of) the Android API.
System Services and libraries, such as the radio inter-
face layer, are implemented in C/C++. Higher-level
services, such as System settings, the Location- and
Audiomanager, are implemented in Java. Together,
these components comprise the middleware layer.

1http://www.osnews.com/story/26477/Android_4_2_
alpha_contains_SELinux

USENIX Association 22nd USENIX Security Symposium 133

Android applications (apps) are implemented in
Java and may contain native code. They are posi-
tioned at the top of the software stack (application
layer) and use kernel and middleware Services. An-
droid ships with standard apps completing the im-
plementation of the Android API, such as a Contacts
(database) Provider. The user can install additional
apps from, for example, the Google Play store.

Android apps consist of certain components: Acti-
vities (user interfaces), Services (non user-interactive
tasks), ContentProviders (SQL-like databases), and
Broadcast Receivers (mailboxes for broadcast mes-
sages). Apps can communicate with each other on
multiple layers: 1) Standard Linux Inter-Process
Communication (IPC) using, e.g., domain sockets;
2) Internet sockets; 3) Inter-Component Commu-
nication (ICC) [21], a term abstractly describing a
lightweight IPC mechanism between app components,
called Binder. Furthermore, predefined actions (e.g.,
starting an Activity) can be triggered using an Intent,
a unicast or broadcast message sent by an application
and delivered using the Android ICC mechanism.

2.2 Security Mechanisms
Sandboxing. Android uses the Linux discretionary
access control (DAC) mechanism for application sand-
boxing by assigning each app a unique user identifier
(UID) during installation2. Every process belonging
to the app is executed in the context of this UID,
which determines access to low level resources (e.g.
app-private files). Low-level IPC (e.g. using domain
sockets) is also controlled using Linux DAC.
Permissions. Access control is applied to ICC us-
ing Permissions [21]: Labels assigned to apps at
install-time after being presented to and accepted
by the user. These labels are checked by reference
monitors at middleware- and application level when
security-critical APIs are accessed. In addition to
Android’s default permissions, app developers can
define their own permissions to protect their applica-
tions’ interfaces. However, it should be noted that
the permission model is not mandatory access control
(MAC), since callees must discretely deploy or define
the required permission check and, moreover, permis-
sions can be freely delegated (e.g., URI permissions).

Permissions are also used to restrict access to some
low level resources, such as the world read-/writeable
external storage area (e.g. a MicroSD card) or net-
work access. These permissions are mapped to Linux
group identifiers (GIDs) assigned to an app’s UID

2Developers may use the same UID (Shared UID, SUID)
for their own apps. These apps will share the same sandbox.

during installation and checked by reference monitors
in the Linux kernel at runtime.

2.3 SELinux
Security Enhanced Linux (SELinux) [33] is an instan-
tiation of the Flask security architecture [50] and
implements a policy-driven mandatory access control
(MAC) framework for the Linux kernel. In SELinux,
policy decision making is decoupled from the policy
enforcement logic. Various access control enforce-
ment points for low-level resources, such as files, IPC,
or memory protection enforce policy decisions re-
quested from a security server in the kernel. This
security server manages the policy rules and contains
the access decision logic. To maintain the security
server (e.g., reload the policy), SELinux provides a
number of userspace tools.
Access Control Model. SELinux supports differ-
ent access control models such as Role-Based Access
Control and Multilevel Security. However, Type En-
forcement is the primary mechanism: each object
(e.g., files, IPC) and subject (i.e., processes) is labeled
with a security context containing a type attribute
that determines the access rights of the object/sub-
ject. By default, all access is denied and must be
explicitly granted through policy rules—allow rules
in SELinux terminology. Using the notation intro-
duced in [26], each rule is of the form

allow TSub TObj ∶ CObj OC

where TSub is a set of subject types, TObj is a set of
object types, CObj is a set of object classes, and OC

is a set of operations. The object classes determine
which kind of objects this rule relates to and the
operations contain specific functions supported by
the object classes. If a subject whose type is in TSub

wants to perform an operation that is in OC on an
object whose class is in CObj and whose type is in
TObj , this action is allowed. Otherwise, if no such
rule exists, access is denied.
Dynamic policies. SELinux supports to some ex-
tent dynamic policies based on boolean flags which
affect conditional policy decisions at runtime. These
booleans and conditions have to be defined prior
to policy deployment and new booleans/conditions
can not be added after the policy has been loaded
without recompiling and reloading the entire policy.
The simplest example for such dynamic policies are
booleans to switch between “enforcing mode” (i.e.,
access denials are enforced) and “permissive mode”
(i.e., access denials are not enforced).
Userspace Object Managers. A powerful feature
of SELinux is that its access control architecture can

134 22nd USENIX Security Symposium USENIX Association

be extended to security-relevant userspace daemons
and services, which manage data (objects) indepen-
dently from the kernel. Thus, such daemons and
services are referred to as Userspace Object Managers
(USOMs). They are responsible for assigning security
contexts to the objects they manage, querying the
SELinux security server for access control decisions,
and enforcing these decisions. A prominent example
for such USOMs on Linux systems is GConf [13].

2.4 SE Android

SE Android [48] prototypes SELinux for Android’s
Linux kernel and aims to demonstrate the value of
SELinux in defending against various root exploits
and application vulnerabilities. Specifically, it con-
fines system Services and apps in different kernelspace
security domains even isolating apps from one an-
other by the use of the Multi-Level Security (MLS)
feature of SELinux. To this end, the SE Android
developers started writing an Android-specific policy
from scratch. In addition, SE Android provides a
few key security extensions tailored for the Android
OS. For instance, it labels application processes with
SELinux-specific security contexts which are later
used in type enforcement. Moreover, since (in the
majority of cases) it is a priori unknown during policy
writing which apps will be installed on the system
later, SE Android employs a mechanism to derive the
security context of an app at install-time. Based on
criteria, such as the requested permissions, apps are
assigned a security type. This mapping from appli-
cation meta-information to security types is defined
in the SE Android policy.

Additionally, SE Android provides limited support
for MAC policy enforcement at the Android middle-
ware layer (MMAC) and we explain these particular
features in Section 7.2 and provide a comparison to
our FlaskDroid architecture.

3 Requirements Analysis for Android
Security Architectures

3.1 Adversary Model

We consider a strong adversary with the goal to get
access to sensitive data as well as to compromise
system or third-party apps. Thus, we consider an
adversary that is able to launch software attacks on
different layers of the Android software stack.

3.1.1 Middleware Layer

Recently, different attacks operating at Android’s
middleware layer have been reported:
Overprivileged 3rd party apps and libraries
threatening user privacy by adopting questionable
privacy practices (e.g. WhatsApp [6] or Path [23]).
Moreover, advertisement libraries, frequently in-
cluded in 3rd party apps have been shown to exploit
the permissions of their host app to collect informa-
tion about the user [25].
Malicious 3rd party apps [22] leverage dangerous
permissions to cause financial harm to the user (e.g.,
sending premium SMS) and exfiltrate user-private
information [57, 40].
Confused deputy attacks concern malicious apps,
which leverage unprotected interfaces of benign sys-
tem [20, 41] and 3rd party [16, 56] apps (denoted
deputies) to escalate their privileges.
Collusion attacks concern malicious apps that col-
lude using covert or overt channels [8, 34] in order to
gain a permission set which has not been approved
by the user (e.g. the Soundcomber attack [46]).
Sensory malware leverages the information from
onboard sensors, like accelerometer data, to derive
privacy sensitive information, like user input [53, 12].

3.1.2 Root Exploits

Besides attacks at Android’s middleware layer, vari-
ous privilege escalation attacks on lower layers of the
Android software stack have been reported [55, 40]
which grant the attacker root (i.e., administrative)
privileges and can be used to bypass the Android per-
mission framework. For instance, he can bypass the
ContactsProvider permission checks by accessing the
contacts database file directly. Moreover, processes
on Android executing with root privileges inherit all
available permissions at middleware layer.

It should be noted that attacks targeting vulner-
abilities of the Linux kernel are out of scope of this
paper, since SE Android is a building block in our
architecture (see Section 4) and as part of the kernel
it is susceptible to kernel exploits.

3.2 Requirements
Based on our adversary model we derive the neces-
sary requirements for an efficient and flexible access
control architecture for mobile devices, focusing on
the Android OS.
Access Control on Multiple Layers. Manda-
tory access control solutions at kernel level, such
as SE Android [48] or Tomoyo [27], help to defend
against or to constrain privilege escalation attacks on

USENIX Association 22nd USENIX Security Symposium 135

the lower-levels of the OS [48]. However, kernel level
MAC provides insufficient protection against security
flaws in the middleware and application layers, and
lacks the necessary high-level semantics to enable a
fine-grained filtering at those layers [48, 47]. Access
control solutions at middleware level [28, 15, 39, 9, 8]
are able to address these shortcomings of kernel level
MAC, but are, on the other hand, susceptible to
low-level privilege escalation attacks.

Thus, a first requirement is to provide simultaneous
MAC defenses at the two layers. Ideally, these two
layers can be dynamically synchronized at run-time
over mutual interfaces. At least, the kernel MAC is
able to preserve security invariants, i.e., it enforces
that any access to sensitive resources/functionality
is always first mediated by the middleware MAC.
Multiple stakeholders policies. Mobile systems
involve multiple stakeholders, such as the end-user,
the device manufacturer, app developers, or other
3rd parties (e.g., the end-user’s employer). These
stakeholders also store sensitive data on the device.
Related work [39, 9] has proposed special purpose
solutions to address the security requirements and
specific problems of these parties. Naturally, the
assets of different stakeholders are subject to different
security requirements, which are not always aligned
and might conflict. Thus, one objective for a generic
MAC framework that requires handling policies of
multiple stakeholders is to support (basic) policy
reconciliation mechanisms [43, 35].
Context-awareness. The security requirements of
different stakeholders may depend on the current
context of the device. Thus, our architecture shall
provide support for context-aware security policies.
Support for different Use-Cases. Our architec-
ture shall serve as a basis for different security so-
lutions applicable in a variety of use cases. For in-
stance, by modifying the underlying policy our solu-
tion should be able to support different use cases (as
shown in Section 5), such as the selective and fine-
grained protection of app interfaces [39] or privacy-
enhanced system Services and ContentProviders.

4 FlaskDroid Architecture

In this section, we provide an overview of our
FlaskDroid architecture, elaborate in more detail
on particular design decisions, and present the policy
language employed in our system. Due to space con-
straints, we focus on the most important aspects and
refer to our technical report [11] for more detailed
information.

Services
(Location, Telephony)

ContentProviders
(Contacts, SMS,…)

API
API

Hook
Hook

API access

SE Android
Resource

(Filesystem,…)

API
Hook

Low-Level MAC queries

User-space
Kernel space

SysCall

Context Providers

FlaskDroid component Modified component SE Android module

Policy Database

User System Apps

User-Space
Security Server

App
Policy

App

Rules
update

MAC
queries

Package Manager

User Policy
App

Standard Android

Update boolean flags
Geolocation

Network state
…

Set active
context Feedback

Figure 1: FlaskDroid Architecture

4.1 Overview

The high-level idea of FlaskDroid is inspired by the
Flask security architecture [50], where various Object
Managers at middleware and kernel-level are respon-
sible for assigning security contexts to their objects.
Objects can be, for instance, kernel resources such as
Files or IPC and middleware resources such as Service
interfaces, Intents, or ContentProvider data. On access
to these objects by subjects (i.e., apps) to perform a
particular operation, the managers enforce an access
control decision that they request from a security
server at their respective layer. Thus, our approach
implements a userspace security server. Access con-
trol in FlaskDroid is implemented, as in SE Android
(cf. Section 2), as type enforcement. However, in con-
trast to SE Android we extend our policy language
with new features that are tailored to the Android
middleware semantics (cf. Section 4.3). Moreover, to
enable more dynamic policies, the policy checks in
FlaskDroid depend also on the System State, which
determines the actual security context of the objects
and subjects at runtime.

Each security server is also responsible for the pol-
icy management for multiple stakeholders such as
app developers, end-user, or 3rd parties. A particular
feature is that the policies on the two layers are syn-
chronized at runtime, e.g., a change in enforcement
in the middleware, must be supported/reflected at
kernel-level. Thus, by decoupling the policy man-
agement and decision making from the enforcement
points and consolidating the both layers, the goal
of FlaskDroid’s design is to provide fine-grained and
highly flexible access control over operations on both
middleware and kernel-level.

136 22nd USENIX Security Symposium USENIX Association

4.2 Architecture Components
Figure 1 provides an overview of our architecture. In
the following, we will explain the individual compo-
nents that comprise the FlaskDroid architecture.

4.2.1 SE Android Module

At the kernel-level, we employ stock SE Android [48]
as a building block primarily for the following pur-
poses: First, it is essential for hardening the Linux
kernel [48] thereby preventing malicious apps from
(easily) escalating their privileges by exploiting vul-
nerabilities in privileged (system) services. Even
when an attack, usually with the intent of gaining
root user privileges, is successful, SE Android can con-
strain the file-system privileges of the app by restrict-
ing the privileges of the root account itself. Second,
it complements the policy enforcement at the mid-
dleware level by preventing apps from bypassing the
middleware enforcement points (in Flask terminology
defined as Userspace Object Managers (USOMs)), for
example, accessing the contacts database file directly
instead of going through the ContactsProvider app.
Dynamic policies. Using the dynamic policy sup-
port of SELinux (cf. Section 2.3) it is possible to
reconfigure the access control rules at runtime de-
pending on the current system state. Our Userspace
Security Server (cf. Section 4.2.2) is hereby the trusted
user space agent that controls the SELinux dynamic
policies and can map system states and contexts to
SELinux boolean variables (cf. Section 4.3). To this
end, SE Android provides user space support (in
particular android.os.SELinux).

4.2.2 Userspace Security Server

In our architecture, the Userspace Security Server is
the central policy decision point for all userspace
access control decisions, while the SE Android ker-
nelspace security server is responsible for all ker-
nelspace policy decisions. This approach provides
a clear separation of security issues between the
userspace and the kernelspace components. Further-
more, it enables at middleware level the use of a more
dynamic policy schema (different from the more static
SELinux policy language) which takes advantage of
the rich semantics (e.g., contextual information) at
that layer. Access control is implemented as type
enforcement based on (1) the subject type (usually
the type associated with the calling app), (2) the
object type (e.g., contacts_email or the type associ-
ated with the callee app UID), (3) the object class
(e.g., contacts_data or Intent), and (4) the operation
on the object (e.g. query). The Userspace Security

Server (USSS) is implemented as part of the Android
system server (com.android.server) and comprises
3741 lines of Java code. It exposes an interface to
the USOMs for requesting access control decisions
over ICC (cf. Figure 1).

4.2.3 Userspace Object Managers

In FlaskDroid, middleware services and apps act
as Userspace Object Managers (USOMs) for their re-
spective objects. These services and apps can be
distinguished into system components and 3rd party
components. The former, i.e., pre-installed services
and apps, inevitably have to be USOMs to achieve
the desired system security and privacy, while the
latter can use interfaces provided by the Userspace
Security Server to optionally act as USOMs.

Table 4 in Appendix B provides an overview of
exemplary system USOMs in FlaskDroid and shows
some typical operations each object manager controls.
Currently, the USOMs implemented in FlaskDroid
comprise 136 policy enforcement points. In the fol-
lowing, we explain how we instrumented selected
components as Userspace Object Managers.
PackageManagerService is responsible for
(un)installation of application packages. Further-
more, it is responsible for finding a preferred
component for doing a task at runtime. For instance,
if an app sends an Intent to display a PDF, the
PackageManagerService looks for a preferred Activity
able to perform the task.

As a Userspace Object Manager, we extend the Pack-
ageManagerService to assign consolidated middleware-
and kernel-level app types to all apps during instal-
lation using criteria defined in the policy (cf. Sec-
tion 4.3). This is motivated by the fact that at the
time a policy is written, one cannot predict which
3rd party apps will be installed in the future. Pre-
installed apps are labeled during the phone’s boot
cycle based on the same criteria. More explicitly,
we assign app types to the (shared) UIDs of apps,
since (shared) UIDs are the smallest identifiable unit
for application sandboxes. In addition, pre-defined
UIDs in the system are reserved for particular system
components3 and we map these UIDs to pre-defined
types (e.g., aid_root_t or aid_audio_t). Further-
more, we extend the logic for finding a preferred
component to only consider apps which are allowed
by the policy to perform the requested task.
ActivityManagerService is responsible for man-
aging the stack of Activities of different apps, Activity
life-cycle management, as well as providing the Intent

3These pre-defined UIDs on Android 4.0.4 are found in
system/core/include/private/android_filesystem_config.h

USENIX Association 22nd USENIX Security Symposium 137

broadcast system. As a USOM, the ActivityManager-
Service is responsible for labeling Activity and Intent
objects and enforcing access control on them. Acti-
vities are labeled according to the apps they belong
to, i.e., the UID of the application process that cre-
ated the Activity. Subsequently, access control on
the Activity objects is enforced in the ActivityStack
subsystem of the ActivityManagerService. During op-
erations that manipulate Activities, such as moving
Activities to the foreground/background or destroying
them, the ActivityStack queries the USSS in order to
verify that the particular operations are permitted
to proceed depending on the subject type (i.e., the
calling app) and object type (i.e., the app owning
the Activity being modified).

Similar to apps, Intents are labeled based on avail-
able meta-information, such as the action and cate-
gory string or the sender app (cf. Section 4.3.1). To
apply access control to Broadcast Intents, we followed
a design pattern as proposed in [39, 9]. We modi-
fied the ActivityManagerService to filter out receivers
which are not allowed to receive Intents of the pre-
viously assigned type (e.g., to prevent apps of lower
security clearance from receiving Broadcasts by an
app of a higher security clearance).
Content Providers are the primary means for apps
to share data. This data can be accessed over a
well-defined, SQL-like interface. As Userspace Object
Managers, ContentProviders are responsible for assign-
ing labels to the data entries they manage during
insertion/creation of data and for performing access
control on update, query, or deletion of entries. Two
approaches for access control are supported: 1) at
the API level by controlling access to the provider as
a whole or 2) integrating it into the storage back-end
(e.g., SQLite database) for more fine-grained per-data
access control.

For approach 2), we implemented a design pattern
for SQLite-based ContentProviders. Upon insertion
or update of entries, we verify that the subject type
of the calling app is permitted to perform this opera-
tion on the particular object type. To filter queries
to the database we create one SQL View for each
subject type and redirect the query of each calling
app to the respective View for its type. Each View
implements a filtering of data based on an access con-
trol table managed by the USSS which represents the
access control matrix for subject/object types. This
approach is well-suited for any SQLite-based Con-
tentProvider and scales well to multiple stakeholders
by using nested Views.
Service components of an app provide a particular
functionality to other (possibly remote) components,
which access the Service interface via ICC. To instan-

tiate a Service as a Userspace Object Manager, we add
access control checks when a (remote) component
connects to the Service and on each call to Service
functions exposed by the Service API. The developer
of the Service can set the types of the service and its
functions by adding type-tags to their definitions.

Service interfaces are exposed as Binder IPC ob-
jects that are generated based on an interface spec-
ification described in the Android Interface Defini-
tion Language (AIDL). We extended the lexer and
parser of Android’s AIDL tool to recognize (developer-
defined) type tags on Service interfaces and function
declarations. The AIDL code generator was extended
to automatically insert policy checks for these types
in the auto-generated Service code. Since the AIDL
tool is used during build of the system as well as
part of the SDK for app development, this solution
applies to both system Services and 3rd party app
Services in the same way.

4.2.4 Context Providers

A context is an abstract term that represents the
current security requirements of the device. It can
be derived from different criteria, such as physical
criteria (e.g., the location of the device) or the state
of apps and the system (e.g., the app being currently
shown on the screen). To allow for flexible control
of contexts and their definitions, our design employs
Context Providers. These providers come in form of
plugins to our Userspace Security Server (see Figure 1)
and can be arbitrarily complex (e.g., use machine
learning) and leverage available information such as
the network state or geolocation of the device to
determine which contexts apply. Context Providers
register Listener threads in the system to detect con-
text changes similar to the approach taken in [15].
Each Context Provider is responsible for a distinct
set of contexts, which it activates/deactivates in the
USSS. Decoupling the context monitoring and defini-
tion from our policy provides that context definitions
do not affect our policy language except for very sim-
ple declarations (as we will show in Section 4.3.1).

Moreover, the USSS provides feedback to Context
Providers about the performed access control deci-
sions. This is particularly useful when instantiating
security models like [8, 15] in which access control
decisions depend on previous decisions.

4.3 Policy
4.3.1 Policy Language and Extensions

We extend SELinux’s policy semantics for type en-
forcement (cf. Section 2.3) with new default classes

138 22nd USENIX Security Symposium USENIX Association

Listing 1: Assigning types to apps and Intents
1 defaultAppType untrustedApp_t;
2 defaultIntentType untrustedIntent_t;
3

4 appType app_telephony_t {
Package:package_name=com.android.phone; };

5

6 intentType intentLaunchHome_t {
7 Action:action_string=android.intent.action.MAIN;
8 Categories:category=android.intent.category.HOME;};

and constructs for expressing policies on both mid-
dleware and kernel-level. A recapitulation of the
SELinux policy language is out of scope of this paper
and we focus here on our extensions.
New default classes. Similar to classes at the
kernel-level, like file or socket, we introduce new
default classes and their corresponding operations
to represent common objects at middleware level,
such as Activity, Service, ContentProvider, and Intent.
Operations for these classes are, for example, query
a ContentProvider or receive an Intent.
Application and Intent Types. A further exten-
sion is the possibility to define criteria by which ap-
plications and Intents are labeled with a security type
(cf. Listing 1). The criteria for apps can be, for in-
stance, the application package name, the requested
permissions or the developer signature. Criteria for
assigning a type to Intent objects can be the Intent
action string, category or receiving component. If no
criteria matched, a default type is assigned to apps
(line 1) and Intents (line 2), respectively.
Context definitions and awareness. We extend
the policy language with an option to declare con-
texts to enable context-aware policies. Each declared
context can be either activated or deactivated by a
dedicated Context Provider (cf. Section 4.2).

To actually enable context-aware policies, we in-
troduce in our policy language switchBoolean state-
ments which map contexts to booleans, which in
turn provide dynamic policies. Listing 2 presents
the definition of booleans and switchBoolean state-
ments. For instance, the switchBoolean statement in
lines 4-9 defines that as soon as the context phone-
Booth_con is active, the boolean phoneBooth_b has
to be set to true. As soon as the phoneBooth_con
context is deactivated, the phoneBooth_b boolean
should be reset to its initial value (line 6). To map
contexts to the kernel-level, we introduce kbool defi-
nitions (line 2), which point to a boolean at kernel
level instead of adding a new boolean at middleware
level. Changes to such kernel-mapped boolean values
by switchBoolean statements trigger a call to the
SELinux kernel module to update the corresponding

Listing 2: Linking booleans with contexts
1 bool phoneBooth_b = false;
2 kbool allowIPTablesExec_b = true;
3

4 switchBoolean {
5 context=phoneBooth_con;
6 auto_reverse=true;
7 phoneBooth_b=true;};

SELinux boolean.

4.3.2 Support for Multiple Stakeholders

A particular requirement for the design of FlaskDroid
is the protection of interests of different stakeholders.
This requires that policy decisions consider the poli-
cies of all involved stakeholders. These policies can
be pre-installed (i.e., system policy), delivered with
apps (i.e., app developer policies), or configured by
the user (e.g., User Policy App in Figure 1).

In FlaskDroid, 3rd party app developers may op-
tionally ship app-specific policies with their applica-
tion packages and additionally choose to instrument
their app components as Userspace Object Managers
for their own data objects. FlaskDroid provides the
necessary interfaces to query the Userspace Security
Server for policy decisions as part of the SDK. These
decisions are based on the app-specific 3rd party
policy, which defines custom appType statements to
label subjects (e.g., other apps) and declares app-
specific object types. To register app-specific policies,
the PackageManagerService is instrumented such that
it extracts policy files during app installation and
injects them into the USSS.

A particular challenge when supporting multiple
stakeholders is the reconciliation of the various stake-
holders’ policies. Different strategies for reconcili-
ation are possible [43, 35] and generally supported
by our architecture, based on namespaces and glob-
al/local type definitions. For instance, as discussed
in [43], all-allow (i.e., all stakeholder policies must
allow access), any-allow (i.e., only one stakeholder
policy must allow access), priority (i.e., higher ranked
stakeholder policies override lower ranked ones), or
consensus (i.e., at least one stakeholder policy allows
and none denies or vice versa). However, choosing
the right strategy strongly depends on the use-case.
For example, on a pure business smartphone without
a user-private domain, the system (i.e., company) pol-
icy always has the highest priority, while on a private
device a consensus strategy may be preferable.

We opted for a consensus approach, in which the
system policy check is mandatory and must always
consent for an operation to succeed.

USENIX Association 22nd USENIX Security Symposium 139

5 Use-cases / Instantiations

In the following we will show how FlaskDroid can
instantiate certain privacy and security protecting
use-cases. More use-cases and concrete examples are
provided in our technical report [11].

5.1 Privacy Enhanced System Ser-
vices and Content Providers

System Services and ContentProviders are an integral
part of the Android application framework. Promi-
nent Services are, for instance, the LocationManager
or the Audio Services and prominent ContentProviders
are the contacts app and SMS/MMS app. By default,
Android enforces permission checks on access to the
interfaces of these Services and Providers.
Problem description: The default permissions are
non-revocable and too coarse-grained and protect
access only to the entire Service/Provider but not to
specific functions or data. Thus, the user cannot
control in a fine-grained fashion which sensitive data
can be accessed how, when and by whom. Apps such
as Facebook and WhatsApp have access to the entire
contacts database although only a subset of the data
(i.e., email addresses, phone numbers and names)
is required for their correct functioning. On the
other hand, recent attacks demonstrated how even
presumably privacy-unrelated and thus unprotected
data (e.g. accelerometer readings) can be misused
against user’s security and privacy [53, 12].
Solution: Our modified AIDL tool automatically
generates policy checks for each Service interface and
function in the system. We tagged selected query
functions of the system AudioService, LocationMana-
ger, and SensorManager with specific security contexts
(e.g., fineGrainedLocation_t as object_type, location-
Service_c as object_class, and getLastKnownLocation
as operation) to achieve fine-grained access control
on this information. Our policy states that calling
functions of this object type is prohibited while the
phone is in a security sensitive state. Thus, retrieving
accelerometer information or recording audio is not
possible when, e.g., the virtual keyboard/PIN pad is
in the foreground or a phone call is in progress.

In Section 4.2.3 we explained how ContentProvi-
ders (e.g. the ContactsProvider) can act as User-
space Object Managers. As an example, users can
refine the system policy to further restrict access to
their contacts’ data. A user can, for instance, grant
the Facebook app read access to their “friends” and
“family” contacts’ email addresses and names, while
prohibiting it from reading their postal addresses and
any data of other groups such as “work”.

5.2 App Developer Policies (Saint)
Ongtang et al. present in [39] an access control frame-
work, called Saint, that allows app developers to ship
their apps with policies that regulate access to their
apps’ components.
Problem description: The concrete example used
to illustrate this mechanism consists of a shopping
app whose developer wants to restrict the interaction
with other 3rd party apps to only specific payment,
password vault, or service apps. For instance, the
developer specifies that that the password vault app
must be at least version 1.2 or that a personal ledger
app must not hold the Internet permission.

The policy rules for the runtime enforcement of
Saint on Inter-Component communication (ICC) are
defined as the tuple (Source, Destination, Conditions,
State). Source defines the source app component
of the ICC and optional parameters for an Intent
object (e.g., action string). Destination describes
similarly the destination app component of the ICC.
Conditions are optional conjunctional conditions (e.g.,
permissions or signature key of the destination app)
and State describes the system state (e.g., geolocation
or bluetooth adapter state).
Solution: Instantiating Saint’s runtime access con-
trol on FlaskDroid is achieved by mapping Saint’s
parameters to the type enforcement implemented by
FlaskDroid. Thus, Source, Destination, and Condi-
tions are combined into security types for the subject
(i.e., source app) and object (i.e., destination app
or Intent object). For instance, a specific type is
assigned to an app with a particular signature and
permission. If this app is source in the Saint policy,
it is used as subject type in FlaskDroid policy rules;
and if it is used as destination, it is used as object
type. The object class and operation are directly de-
rived from the destination app. The system state can
be directly expressed by booleans and switchBoolean
statements in the policy and an according Context
Provider. Appendix A provides a concrete policy
example for the instantiation of the above shopping
app example.

6 Evaluation and Discussion

In this section we evaluate and discuss our archi-
tecture in terms of policy design, effectiveness, and
performance overhead.

6.1 Policy
To evaluate our FlaskDroid architecture, we derived
a basic policy that covers the pre-installed system

140 22nd USENIX Security Symposium USENIX Association

USOMs that we introduced in Section 4.2.3.
Policy Assessment. For FlaskDroid we are for now
foremost interested in generating a basic policy to es-
timate the access control complexity that is inherent
to our design, i.e., the number of new types, classes,
and rules required for the system Userspace Object
Managers. This basic policy is intended to lay the
foundation for the development of a good policy, i.e.,
a policy that covers safety, completeness, and effec-
tiveness properties. However, the development of a
security policy that fulfills these properties is a highly
complex process. For instance, on SELinux enabled
systems the policies were incrementally developed
and improved after the SELinux module had been
introduced, even inducing research on verification of
these properties [24]. A similar development can be
currently observed for the SE Android policies which
are written from scratch [48] and we envision induc-
ing a similar research on development and verification
of FlaskDroid policies.
Basic Policy Generation. To generate our basic
policy, we opted for an approach that follows the
concepts of TOMOYO Linux’ learning phase4 and
other semi-automatic methods [42]. The underlying
idea is to derive policy rules directly from observed
application behavior. To generate a log of system
application behavior, we leveraged FlaskDroid’s au-
dit mode, where policy checks are logged but not
enforced. Under the assumption, that the system
contained in this auditing phase only trusted apps,
this trace can be used to derive policy rules.

To achieve a high coverage of app functionality
and thus log all required access rights, we opted for
testing with human user trials for the following rea-
sons: First, automated testing has been shown to
exhibit a potentially very low code coverage [24] and,
second, Android’s extremely event-driven and concur-
rent execution model complicates static analysis of
the Android system [56, 24]. However, in the future,
static analysis based (or aided) generation of access
control rules is more preferable in order to cover also
corner-cases of applications’ control-flows.

The users’ task was to thoroughly use the pre-
installed system apps by performing various every-
day tasks (e.g., maintaining contacts, writing SMS,
browsing the Internet, or using location-based ser-
vices). To analyze interaction between apps, a par-
ticular focus of the user tasks was to leverage inter-
app functionality like sharing data (e.g., copying
notes from a website into an SMS). For testing, the
users were handed out Galaxy Nexus devices running
FlaskDroid with a No-allow-rule policy. This is a

4http://tomoyo.sourceforge.jp/2.2/learning.html.en

manually crafted policy containing only the required
subject/object types, classes and operations for the
USOMs in our architecture, but no allow rules. The
devices were also pre-configured with test accounts
(e.g., EMail) and test data (e.g., fake contacts).

Using the logged access control checks from these
trials, we derived 109 access control rules required
for the correct operation of the system components
(as observed during testing), which we learned to be
partially operationally dependent on each other. Our
pre-installed middleware policy contained 111 types
and 18 classes for a fine-granular access control to
the major system Services and ContentProviders (e.g.,
ContactsProvider, LocationManager, PackageManager-
Service, or SensorManager). These rules (together
with the above stated type and object definitions)
constitute our basic policy. Although SELinux poli-
cies cannot be directly compared to our policy, since
they target desktop operating systems, the difference
in policy complexity (which is in the order of several
magnitudes [11]) underlines that the design of mobile
operating systems facilitates a clearer mandatory ac-
cess control architecture (e.g., separation of duties).
This profits an easier policy design (as supported by
the experiences from [54, 36]).

3rd Party Policies. The derived basic policy can
act as the basis on top of which additional user, 3rd

party, and use-case specific policies can be deployed
(cf. Section 5). In particular, we are currently work-
ing on extending the basic policy with types, classes
and allow rules for popular apps, such as Whats-
App or Facebook, which we further evaluated w.r.t.
user’s privacy protection (cf. Section 6.2). A par-
ticular challenge is to derive policies which on the
one hand protect the user’s privacy but on the other
hand preserve the intended functionality of the apps.
Since the user privacy protection strongly depends
on the subjective security objectives of the user, this
approach requires further investigation on how the
user can be involved in the policy configuration [58].

However, as discussed in Sections 3 and 4.2.2, mul-
tiple policies by different stakeholders with poten-
tially conflicting security objectives require a recon-
ciliation strategy. Devising a general strategy appli-
cable to all use-cases and satisfying all stakeholders
is very difficult, but use-case specific strategies are
feasible [44, 29]. In our implementation, we opted for
a consensus approach, which we successfully applied
during implementation of our use-cases (cf. Section 5).
We explained further strategies in Section 4.3.2.

USENIX Association 22nd USENIX Security Symposium 141

Attack Test
Root Exploit mempodroid Exploit
App executed by root Synthetic Test App
Over-privileged and Known malware
Information-Stealing Synthetic Test App
Apps WhatsApp v2.8.4313

Facebook v1.9.1
Sensory Malware Synthetic Test App [53, 12, 46]
Confused Deputy Synthetic Test App
Collusion Attack Synthetic Test Apps [46]

Table 1: List of attacks considered in our testbed

6.2 Effectiveness

We decided to evaluate the effectiveness of FlaskDroid
based on empirical testing using the security models
presented in Section 5 as well as a testbed of known
malware retrieved from [55, 3] and synthetic attacks
(cf. Table 1). Alternative approaches like static
analysis [18] would benefit our evaluation but are
out of scope of this paper and will be addressed
separately in future work.
Root exploits. SE Android successfully mitigates
the effect of the mempodroid attack. While the ex-
ploit still succeeds in elevating its process to root
privileges, the process is still constrained by the un-
derlying SE Android policy to the limited privileges
granted to the root user [48].
Malicious apps executed by root. While SE An-
droid constrains the file-system privileges of an app
process executed with root UID, this process still
inherits all Permissions at middleware level. In
FlaskDroid, the privileges of apps running with this
omnipotent UID are restricted to the ones granted
by the system policy to root (cf. aid_root_t in Sec-
tion 4.2.3). During our user tests, we had to define
only one allow rule for the aid_root_t type on the
middleware layer, which is not surprising, since usu-
ally Android system or third-party apps are not exe-
cuted by the root user. Thus, a malicious app gaining
root privileges despite SE Android, e.g., using the
mempodroid exploit [48], is in FlaskDroid restricted
at both kernel and middleware level.
Over-privileged and information stealing
apps. We verified the effectiveness of FlaskDroid
against over-privileged apps using a) a synthetic test
app which uses its permissions to access the Contacts-
Provider, the LocationManager and the SensorManager
as 3rd party apps would do; b) malware such as An-
droid.Loozfon [2] and Android.Enesoluty [1] which
steal user private information; and c) unmodified
apps from Google Play, including the popular Whats-
App messenger and Facebook apps. In all cases, a
corresponding policy on FlaskDroid successfully and

gracefully prevented the apps and malware from ac-
cessing privacy critical information from sources such
as the ContactsProvider or LocationManager.
Sensory malware. To mitigate sensory malware
like TapLogger [53] and TouchLogger [12], we de-
ployed a context-aware FlaskDroid policy which
causes the SensorManager USOM to filter acceler-
ation sensor information delivered to registered Sen-
sorListeners while the on-screen keyboard is active.
Similarly, a second policy prevents the SoundComber
attack [46] by denying any access to the audio record
functionality implemented in the MediaRecorderClient
USOM while a call is in progress.
Confused deputy and collusion attacks. At-
tacks targeting confused deputies in system compo-
nents (e.g. SettingsAppWidgetProvider [41]) are
addressed by fine-grained access control rules on ICC.
Our policy restricts which app types may send (broad-
cast) Intents reserved for system apps.

Collusion attacks are in general more challeng-
ing to handle, especially when covert channels are
used for communication. Similar to the mitigation
of confused deputies, a FlaskDroid policy was used
to prohibit ICC between colluding apps based on
specifically assigned app types. However, to address
collusion attacks efficiently, more flexible policies
are required. We already discussed in Section 4.2.4
a possible approach to instantiate XManDroid [8]
based on our Context Providers and we elaborate in
the subsequent Section 6.3 on particular challenges
for improving the mitigation of collusion attacks.

6.3 Open Challenges and TCB
Information flows within apps. Like any other
access control system, e.g., SELinux, exceptions for
which enforcement falls short concern attacks which
are licit within the policy rules. Such shortcomings
may lead to unwanted information leakage. A partic-
ular challenge for addressing this problem and control-
ling access and separation (non-interference) of secu-
rity relevant information are information flows within
apps. Access control frameworks like FlaskDroid
usually operate at the granularity of application in-
puts/outputs but do not cover the information flow
within apps. For Android security, this control can
be crucial when considering attacks such as collusion
attacks and confused deputy attacks. Specifically for
Android, taint tracking based approaches [19, 28, 45]
and extensions to Android’s IPC mechanism [17] have
been proposed. To which extend these approaches
could augment the coverage and hence effectiveness
of FlaskDroid has to be explored in future work.
User-centric and scalable policies. While

142 22nd USENIX Security Symposium USENIX Association

FlaskDroid is a sophisticated access control frame-
work for enforcing security policies and is already now
valuable in specific scenarios with fixed policies like
business phones or locked-down devices [11], a partic-
ular challenge of the forthcoming policy engineering
are user-centric and scalable policies for off-the-shelf
end-user devices. Although expert-knowledge can be
used to engineer policies for the static components
of the system, similar to common SELinux-enabled
distributions like Fedora, an orthogonal, open re-
search problem is how to efficiently determine the
individual end-users’ security and privacy require-
ments and how to map these requirements scalable
to FlaskDroid policy rules w.r.t. the plethora of differ-
ent apps available. To this end, we started exploring
approaches to provide the end-user with tools that
abstract the underlying policies [10]. Furthermore,
the policy-based classification of apps at install-time
applied in FlaskDroid could in the future be aug-
mented by different or novel techniques from related
fields, e.g., role-mining for RBAC systems [51], to
assist the end-user in his decision processes.
Trusted Computing Base. Moreover, while
SE Android as part of the kernel is susceptible to
kernel-exploits, our middleware extensions might be
compromised by attacks against the process in which
they execute. Currently our SecurityServer executes
within the scope of the rather large Android system
server process. Separating the SecurityServer as a
distinct system process with a smaller attack sur-
face (smaller TCB) can be efficiently accomplished,
since there is no strong functional inter-dependency
between the system server and FlaskDroid’s Security-
Server.

6.4 Performance Overhead
Middleware layer. We evaluated the performance
overhead of our architecture based on the No-allow-
rule policy and the basic policy presented in Sec-
tion 6.1 using a Samsung Galaxy Nexus device run-
ning FlaskDroid. Table 2 presents the mean execu-
tion time µ and standard deviation σ for performing
a policy check at the middleware layer in both pol-
icy configurations (measured in µs) as well as the
average memory consumption (measured in MB) of
the process in which our Userspace Security Server
executes (i.e., the system server). Mean execution
time and standard deviation are the amortized values
for both cached and non-cached policy decisions.

In comparison to permission checks on a vanilla
Android 4.0.4 both the imposed runtime and memory
overhead are acceptable. The high standard devia-
tion is explained by varying system loads, however,

µ (in µs) σ (in µs) memory (in
MB)

FlaskDroid
No-allow-rule 329.505 780.563 15.673
Basic policy 452.916 4887.24 16.184
Vanilla Android 4.0.4
Permission check 330.800 8291.805 15.985

Table 2: Runtime and memory overhead

µ (in ms) σ (in ms)
FlaskDroid (Basic policy) 0.452 4.887
XManDroid [8] (Amortized) 0.532 2.150
TrustDroid [9] 0.170 1.910

Table 3: Performance comparison to related works

Figure 2 presents the cumulative frequency distribu-
tion for our policy checks. The shaded area represents
the 99.33% confidence interval for our basic policy
with a maximum overhead of 2ms.

In comparison to closest related work [8, 9] (cf. Sec-
tion 7), FlaskDroid achieves a very similar perfor-
mance. Table 3 provides an overview of the aver-
age performance overhead of the different solutions.
TrustDroid [9] profits from the very static policies
it enforces, while FlaskDroid slightly outperforms
XManDroid [8]. However, it is hard to provide a
completely fair comparison, since both TrustDroid
and XManDroid are based on Android 2.2 and thus
have a different baseline measurement. Both [8, 9]
report a baseline of approximately 0.18ms for the de-
fault permission check, which differs from the 0.33ms
we observed in Android 4.0.4 (cf. Table 2).
Kernel layer. The impact of SE Android on An-
droid system performance has been evaluated previ-
ously by its developers [48]. Since we only minimally
add/modify the default SE Android policy to cater
for our use-cases (e.g., new booleans), the negligible
performance overhead presented in [48] still applies
to our current implementation.

7 Related Work

7.1 Mandatory Access Control
The most prominent MAC solution is SELinux [33]
and we elaborated on it in detail in our Background
and Requirements Sections 2 and 3. Specifically for
mobile platforms, related work [54, 36] has investi-
gated the placement of SELinux enforcement hooks
in the operating system and user-space services on
OpenMoko [36] and the LiMo (Linux Mobile) plat-
form [54]. Our approach follows along these ideas
but for the Android middleware.

USENIX Association 22nd USENIX Security Symposium 143

Figure 2: CDF of the performance overhead. Shaded
area represents the 99.33 confidence interval for
checks with Basic policy.

Also TOMOYO Linux [27], a path-based MAC
framework, has been leveraged in Android security
extensions [8][9]. Although TOMOYO supports more
easily policy updates at runtime and does not require
extended file system attributes, SELinux is more
sophisticated, supports richer policies, and covers
more object classes [5].

However, as we state in Section 3, low-level MAC
alone is insufficient. In this paper we show how to
extend the SE Android security architecture into the
Android middleware layer for policy enforcement.

7.2 SE Android MMAC
The SE Android project was recently extended by
different mechanisms for mandatory access control at
Android’s middleware layer [47], denoted as MMAC:
Permission revocation is a simple mechanism to
dynamically revoke permissions by augmenting the
default Android permission check with a policy driven
check. When necessary, this additional check over-
rules and negates the result of the default check.

However, this permission revocation is in almost
all cases unexpected for app developers, which rely
on the fact that if their app has been installed, it
has been granted all requested permissions. Thus,
developers very often omit error handling code for
permission denials and hence unexpectedly revoking
permissions easily leads to application crashes.

In FlaskDroid, policy enforcement also effectively
revokes permissions. However, we use USOMs which
integrate the policy enforcement into the compo-
nents which manage the security and privacy sensitive
data. Thus, our USOMs apply enforcement mecha-
nisms that are graceful, i.e., they do not cause unex-
pected behavior that can cause application crashes.
Related work (cf. Section 7.3) introduced some of
these graceful enforcement mechanisms, e.g., filter-
ing table rows and columns from ContentProvider

responses [58, 15, 28, 8, 9].
Intent MAC protects with a white-listing enforce-
ment the delivery of Intents to Activities, Broadcast
Receivers, and Services. Technically, this approach
is similar to prior work like [58, 8, 9]. The white-
listing is based on attributes of the Intent objects
(e.g., the value of the action string) and the security
type assigned to the Intent sender and receiver apps.

In FlaskDroid, we apply a very similar mechanism
by assigning Intent objects a security type, which we
use for type enforcement on Intents. While we ac-
knowledge, that access control on Intents is important
for the overall coverage of the access control, Intent
MAC alone is insufficient for policy enforcement on
inter-app communications. A complete system has
to consider also other middleware communications
channels, such as Remote Procedure Calls (RPC)
to Service components and to ContentProviders. By
instrumenting these components as USOMs and by
extending the AIDL compiler (cf. Section 4.2) to
insert policy enforcement points, we address these
channels in FlaskDroid and provide a non-trivial
complementary access control to Intent MAC.
Install-time MAC performs, similar to Kirin [20],
an install-time check of new apps and denies installa-
tion when an app requests a defined combination of
permissions. The adverse permission combinations
are defined in the SE Android policy.

While FlaskDroid does not provide an install-time
MAC, we consider this mechanism orthogonal to
the access control that FlaskDroid already provides
and further argue that it could be easily integrated
into existing mechanisms of FlaskDroid (e.g., by ex-
tending the install-time labeling of new apps with a
blacklist-based rejection of prohibited app types).

7.3 Android Security Extensions
In the recent years, a number of security extensions
to the Android OS have been proposed.

Different approaches [38, 37, 15, 39] add manda-
tory access control mechanisms to Android, tailored
for specific problem sets such as providing a DRM
mechanism (Porscha [38]), providing the user with
the means to selectively choose the permissions and
runtime constraints each app has (APEX [37] and
CRePE [15]), or fine-grained, context-aware access
control to enable developers to install policies to pro-
tect the interfaces of their apps (Saint [39]). Essen-
tially all these solutions extend Android with MAC
at the middleware layer. The explicit design goal of
our architecture was to provide an ecosystem that
is flexible enough to instantiate those related works
based on policies (as demonstrated in Section 5 at

144 22nd USENIX Security Symposium USENIX Association

the example of Saint) and additionally providing the
benefit of a consolidated kernel-level MAC.

The pioneering framework TaintDroid [19] in-
troduced the tracking of tainted data from sensi-
ble sources on Android and successfully detected
unauthorized information leakage. The subsequent
AppFence architecture [28] extended TaintDroid with
checks that not only detect but also prevent such
unauthorized leakage. However, both TaintDroid
and AppFence do not provide a generic access con-
trol framework. Nevertheless, future work could in-
vestigate their applicability in our architecture, e.g.,
propagating the security context of data objects. The
general feasibility of such “context propagation” has
been shown in the MOSES [45] architecture.

Inlined Reference Monitors (IRM) [52, 7, 30] place
policy enforcement code for access control directly in
3rd party apps instead of relying on a system centric
solution. An unsolved problem of inlined monitoring
in contrast to a system-centric solution is that the
reference monitor and the potentially malicious code
share the same sandbox and that the monitor is not
more privileged than the malicious code and thus
prone to compromise.

The closest related work to FlaskDroid with respect
to a two layer access control are the XManDroid [8]
and TrustDroid [9] architectures. Both leverage TO-
MOYO Linux as kernel-level MAC to establish a sep-
arate security domain for business apps [9], or to mit-
igate collusion attacks via kernel-level resources [8].
Although they cover MAC enforcement at both mid-
dleware and kernel level, both systems support only
a very static policy tailored to their specific purposes
and do not support the instantiation of different use-
cases. In contrast, FlaskDroid can instantiate the
XManDroid and TrustDroid security models by ad-
justing policies. For instance, different security types
for business and private apps could be assigned at
installation time, and boolean flags can be used to
dynamically prevent two apps from communicating
if this would form a collusion attack.

8 Conclusion

In this paper, we present the design and implementa-
tion of FlaskDroid, a policy-driven generic two-layer
MAC framework on Android-based platforms. We
introduce our efficient policy language that is tai-
lored for Android’s middleware semantics. We show
the flexibility of our architecture by policy-driven
instantiations of selected security models, including
related work (Saint) and privacy-enhanced system
components. We demonstrate the applicability of
our design by prototyping it on Android 4.0.4. Our

evaluation shows that the clear API-oriented design
of Android benefits the effective and efficient im-
plementation of a generic mandatory access control
framework like FlaskDroid.

Availability

The source code for FlaskDroid is available online at
http://www.flaskdroid.org.

References
[1] Android.Enesoluty | Symantec. http://www.symantec.

com/security_response/writeup.jsp?docid=2012-
082005-5451-99.

[2] Android.Loozfon | Symantec. http://www.symantec.
com/security_response/writeup.jsp?docid=2012-
082005-5451-99.

[3] Contagio Mobile. http://contagiominidump.blogspot.
de/.

[4] Gartner Says Worldwide Mobile Phone Sales Declined
1.7 Percent in 2012. http://www.gartner.com/newsroom/
id/2335616.

[5] TOMOYO Linux Wiki: How is TOMOYO Linux dif-
ferent from SELinux and AppArmor? http://tomoyo.
sourceforge.jp/wiki-e/?WhatIs#comparison.

[6] WhatsApp reads your phone contacts and is breaking
privacy laws. http://www.digitaltrends.com/mobile/
whatsapp-breaks-privacy-laws/.

[7] Backes, M., Gerling, S., Hammer, C., and von Styp-
Rekowsky, P. Appguard - enforcing user requirements
on android apps. In 19th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (2013), Springer-Verlag.

[8] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T.,
Sadeghi, A.-R., and Shastry, B. Towards taming
privilege-escalation attacks on android. In NDSS (2012),
The Internet Society.

[9] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S.,
Sadeghi, A.-R., and Shastry, B. Practical and
lightweight domain isolation on android. In 1st ACM
CCS Workshop on Security and Privacy in Mobile De-
vices (SPSM) (2011), ACM.

[10] Bugiel, S., Heuser, S., and Sadeghi, A.-R. myTunes:
Semantically Linked and User-Centric Fine-Grained Pri-
vacy Control on Android. Tech. Rep. TUD-CS-2012-0226,
Center for Advanced Security Research Darmstadt, Nov.
2012.

[11] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Towards a
Framework for Android Security Modules: Extending SE
Android Type Enforcement to Android Middleware. Tech.
Rep. TUD-CS-2012-0231, Center for Advanced Security
Research Darmstadt, December 2012.

[12] Cai, L., and Chen, H. Touchlogger: inferring keystrokes
on touch screen from smartphone motion. In 6th USENIX
conference on Hot topics in security (HotSec) (2011),
USENIX Association.

[13] Carter, J. Using gconf as an example of how to create
an userspace object manager, 2007.

USENIX Association 22nd USENIX Security Symposium 145

[14] Chin, E., Felt, A. P., Greenwood, K., and Wag-
ner, D. Analyzing inter-application communication in
Android. In MobiSys (2011), ACM.

[15] Conti, M., Nguyen, V. T. N., and Crispo, B. CRePE:
Context-related policy enforcement for Android. In 13th
Information Security Conference (ISC) (2010), Springer-
Verlag.

[16] Davi, L., Dmitrienko, A., Sadeghi, A.-R., and
Winandy, M. Privilege escalation attacks on Android.
In 13th Information Security Conference (ISC) (2010),
Springer-Verlag.

[17] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and
Wallach, D. S. Quire: Lightweight provenance for
smartphone operating systems. In USENIX Security
(2011), USENIX Association.

[18] Edwards, A., Jaeger, T., and Zhang, X. Runtime
verification of authorization hook placement for the Linux
security modules framework. In CCS (2002), ACM.

[19] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung,
J., McDaniel, P., and Sheth, A. N. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI (2010), USENIX
Association.

[20] Enck, W., Ongtang, M., and McDaniel, P. On
lightweight mobile phone application certification. In
CCS (2009), ACM.

[21] Enck, W., Ongtang, M., and McDaniel, P. Under-
standing Android security. IEEE Security and Privacy
Magazine 7 (2009), 50–57.

[22] F-Secure Labs. Mobile Threat Report: Q3 2012, 2012.
[23] Federal Trade Commission. Path social networking

app settles FTC charges it deceived consumers and im-
properly collected personal information from users’ mobile
address books. http://www.ftc.gov/opa/2013/02/path.
shtm, Jan. 2013.

[24] Gilbert, P., Chun, B.-G., Cox, L. P., and Jung, J.
Vision: automated security validation of mobile apps at
app markets. In 2nd international workshop on Mobile
cloud computing and services (MCS) (2011), ACM.

[25] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
Unsafe exposure analysis of mobile in-app advertisements.
In WiSec (2012), ACM.

[26] Guttman, J. D., Herzog, A. L., Ramsdell, J. D., and
Skorupka, C. W. Verifying information flow goals in
security-enhanced linux. Journal on Computer Security
13, 1 (Jan. 2005), 115–134.

[27] Harada, T., Horie, T., and Tanaka, K. Task Oriented
Management Obviates Your Onus on Linux. In Linux
Conference (2004).

[28] Hornyack, P., Han, S., Jung, J., Schechter, S., and
Wetherall, D. These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious
applications. In CCS (2011), ACM.

[29] Hu, H., Ahn, G.-J., and Kulkarni, K. Detecting and
resolving firewall policy anomalies. IEEE Transactions on
Dependable and Secure Computing 9, 3 (2012), 318–331.

[30] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel,
A., Reddy, N., Foster, J. S., and Millstein, T. Dr.
Android and Mr. Hide: Fine-grained security policies on
unmodified Android. In 2nd ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM) (2012),
ACM.

[31] Kostiainen, K., Reshetova, E., Ekberg, J.-E., and
Asokan, N. Old, new, borrowed, blue – a perspective on
the evolution of mobile platform security architectures.
In CODASPY (2011), ACM.

[32] Lineberry, A., Richardson, D. L., and Wyatt, T.
These aren’t the permissions you’re looking for. BlackHat
USA 2010. http://dtors.files.wordpress.com/2010/
08/blackhat-2010-slides.pdf, 2010.

[33] Loscocco, P., and Smalley, S. Integrating flexible
support for security policies into the Linux operating
system. In FREENIX Track: USENIX Annual Technical
Conference (2001), USENIX Association.

[34] Marforio, C., Ritzdorf, H., Francillon, A., and
Capkun, S. Analysis of the communication between col-
luding applications on modern smartphones. In ACSAC
(2012), ACM.

[35] McDaniel, P., and Prakash, A. Methods and limita-
tions of security policy reconciliation. In S&P (2002),
IEEE Computer Society.

[36] Muthukumaran, D., Schiffman, J., Hassan, M.,
Sawani, A., Rao, V., and Jaeger, T. Protecting the
integrity of trusted applications in mobile phone systems.
Security and Communication Networks 4, 6 (2011), 633–
650.

[37] Nauman, M., Khan, S., and Zhang, X. Apex: Ex-
tending Android permission model and enforcement with
user-defined runtime constraints. In ASIA CCS (2010),
ACM.

[38] Ongtang, M., Butler, K., and McDaniel, P. Porscha:
Policy oriented secure content handling in Android. In
ACSAC (2010), ACM.

[39] Ongtang, M., McLaughlin, S., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric security
in Android. In ACSAC (2009), IEEE Computer Society.

[40] Porter Felt, A., Finifter, M., Chin, E., Hanna, S.,
and Wagner, D. A survey of mobile malware in the
wild. In 1st ACM workshop on Security and privacy in
smartphones and mobile devices (SPSM) (2011), ACM.

[41] Porter Felt, A., Wang, H., Moshchuk, A., Hanna,
S., and Chin, E. Permission re-delegation: Attacks
and defenses. In USENIX Security (2011), USENIX
Association.

[42] Provos, N. Improving host security with system call
policies. In USENIX Security (2003), USENIX Associa-
tion.

[43] Rao, V., and Jaeger, T. Dynamic mandatory access
control for multiple stakeholders. In SACMAT (2009),
ACM.

[44] Reeder, R. W., Bauer, L., Cranor, L. F., Reiter,
M. K., and Vaniea, K. More than skin deep: measuring
effects of the underlying model on access-control system
usability. In International Conference on Human Factors
in Computing Systems (CHI) (2011), ACM.

[45] Russello, G., Conti, M., Crispo, B., and Fernandes,
E. MOSES: supporting operation modes on smartphones.
In SACMAT (2012), ACM.

[46] Schlegel, R., Zhang, K., Zhou, X., Intwala, M.,
Kapadia, A., and Wang, X. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
NDSS (2011), The Internet Society.

[47] Smalley, S. Middleware MAC for android. http://
kernsec.org/files/LSS2012-MiddlewareMAC.pdf, Aug.
2012.

146 22nd USENIX Security Symposium USENIX Association

[48] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In NDSS
(2013), The Internet Society.

[49] Smith, C. Privacy flaw in skype android app
exposed. http://www.t3.com/news/privacy-flaw-in-
skype-android-app-exposed/.

[50] Spencer, R., Smalley, S., Loscocco, P., Hibler, M.,
Andersen, D., and Lepreau, J. The Flask security
architecture: System support for diverse security policies.
In USENIX Security (1999), USENIX Association.

[51] Vaidya, J., Atluri, V., and Warner, J. RoleMiner:
mining roles using subset enumeration. In CCS (2006),
ACM.

[52] Xu, R., Saïdi, H., and Anderson, R. Aurasium: Prac-
tical policy enforcement for android applications. In
USENIX Security (2012), USENIX Association.

[53] Xu, Z., Bai, K., and Zhu, S. Taplogger: inferring
user inputs on smartphone touchscreens using on-board
motion sensors. In WiSec (2012), ACM.

[54] Zhang, X., Seifert, J.-P., and Acıiçmez, O. SEIP:
simple and efficient integrity protection for open mobile
platforms. In International conference on Information
and communications security (ICICS) (2010), Springer-
Verlag.

[55] Zhou, Y., and Jiang, X. Dissecting android malware:
Characterization and evolution. In S&P (2012), IEEE
Computer Society.

[56] Zhou, Y., and Jiang, X. Detecting passive content leaks
and pollution in android applications. In NDSS (2013),
The Internet Society.

[57] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey,
You, Get Off of My Market: Detecting Malicious Apps
in Official and Alternative Android Markets. In NDSS
(2012), The Internet Society.

[58] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W.
Taming information-stealing smartphone applications (on
android). In TRUST (2011), Springer-Verlag.

A Concrete Instantiation of Saint
policies with FlaskDroid

Listing 3 shows an instantiation of the developer pol-
icy in [39] on FlaskDroid. This policy is deployed by
the shopping app and thus self_t refers to the shop-
ping app. We define types app_trustedPayApp_t,
app_trustedPayApp_t, app_noInternetPerm_t
(lines 1-3 and lines 8-16) for the specific apps
the shopping app is allowed to interact with
and describe some of the allowed interactions by
means of Intent types intent_actionPay_t and
intent_recordExpense_t (lines 5-6 and lines
18-24). Afterwards, we declare access control rules
that reflect the policy described in [39] (lines 26-28).
For instance, the rule in line 26 defines that the
shopping app is allowed to send an Intent with
action string ACTION_PAY only to an app with type
app_trustedPayApp_t (line 20), which in turn is
only assigned to apps with the developer signature
308201... (line 9).

Listing 3: Policy deployed by the shopping app, show-
ing an instantiation of the Saint [39] runtime policy
example.
1 type app_trustedPayApp_t;
2 type app_trustedPWVault_t;
3 type app_noInternetPerm_t;
4

5 type intent_actionPay_t;
6 type intent_recordExpense_t;
7

8 appType app_trustedPayApp_t {
9 Developer:signature=308201...; };

10

11 appType app_trustedPWVault_t {
12 Package:package_name=com.secure.passwordvault;
13 Package:min_version=1.2; };
14

15 appType app_noInternetPerm_t {
16 Package:permission=~android.permission.INTERNET; };
17

18 intentType intent_actionPay_t {
19 Action:action_string=ACTION_PAY;
20 Components:receiver_type=app_trustedPayApp_t; };
21

22 intentType intent_recordExpense_t {
23 Action:action_string=RECORD_EXPENSE;
24 Components:receiver_type=app_noInternetPerm_t; };
25

26 allow self_t intent_actionPay_t: intent_c { send };
27 allow self_t app_trustedPWVault_t: any { any };
28 allow self_t intent_recordExpense_t: intent_c { send };

B Userspace Object Managers

USOM Example operations
Service USOMs

PackageManagerService getPackageInfo findPre-
ferredActivity getInstalledAp-
plications installPackage

ActivityManagerService startActivity moveTask gran-
tURIPermission sendBroadcast
registerBroadcastReceiver

AudioService setStreamVolume setVibrate-
Setting

PowerManagerService acquireWakeLock isScreenOn
reboot preventScreenOn

SensorManager getSensorList getDefaultSensor
LocationManagerService requestLocationUpdates

addProximityAlert getLast-
KnownLocation

SMSManager copyMessageToIcc deleteMes-
sageFromIcc sendTextMessage

TelephonyManager getCellLocation getDeviceId
getCellLocation

ContentProvider USOMs
ContactsProvider2 query insert update delete

writeAccess readAccess
MMSSMSProvider query insert update delete
TelephonyProvider query insert update delete
SettingsProvider query insert update delete

Table 4: Exemplary System USOMs

USENIX Association 22nd USENIX Security Symposium 147

Proactively Accountable Anonymous Messaging in Verdict

Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford

Yale University

Abstract

Among anonymity systems, DC-nets have long held at-

traction for their resistance to traffic analysis attacks, but

practical implementations remain vulnerable to internal

disruption or “jamming” attacks, which require time-

consuming detection procedures to resolve. We present

Verdict, the first practical anonymous group communi-

cation system built using proactively verifiable DC-nets:

participants use public-key cryptography to construct

DC-net ciphertexts, and use zero-knowledge proofs of

knowledge to detect and exclude misbehavior before dis-

ruption. We compare three alternative constructions for

verifiable DC-nets: one using bilinear maps and two

based on simpler ElGamal encryption. While verifiable

DC-nets incur higher computational overheads due to the

public-key cryptography involved, our experiments sug-

gest that Verdict is practical for anonymous group mes-

saging or microblogging applications, supporting groups

of 100 clients at 1 second per round or 1000 clients at

10 seconds per round. Furthermore, we show how exist-

ing symmetric-key DC-nets can “fall back” to a verifiable

DC-net to quickly identify misbehavior, speeding up pre-

vious detections schemes by two orders of magnitude.

1 Introduction

A right to anonymity is fundamental to democratic cul-

ture, freedom of speech [3, 46], peaceful resistance

to repression [39], and protecting minority rights [45].

Anonymizing relay tools, such as Tor [18], offer practi-

cal and scalable anonymous communication but are vul-

nerable to traffic analysis attacks [4, 34, 38] feasible for

powerful adversaries, such as ISPs in authoritarian states.

Dining cryptographers networks [13] (DC-nets)

promise security even against traffic analysis attacks,

and recent systems such as Herbivore [24, 44] and Dis-

sent [14, 52] have improved the scalability of DC-net-

style systems. However, these systems are still vulner-

able to internal disruption attacks in which a misbehav-

ing member anonymously “jams” communication, either

completely or selectively. Dissent includes a retrospec-

tive blame procedure that can eventually exclude disrup-

tors, but at high cost: tracing a disruptor in a 1,000-

member group takes over 60 minutes [52], and the pro-

tocol makes no communication progress until it restarts

“from scratch.” An adversary who infiltrates such a

group with f colluding members can “sacrifice” them

one at a time to disrupt all communication for f con-

tiguous hours at any time—long enough time to cause a

communications blackout before or during an important

mass protest, for example.

Verdict, a novel but practical group anonymity sys-

tem, thwarts such disruptions while maintaining DC-

nets’ resistance to traffic analysis. At Verdict’s core lies

a verifiable DC-net primitive, derived from theoretical

work proposed and formalized by Golle and Juels [25],

which requires participating nodes to prove proactively

the well-formedness of messages they send. The first

working system we are aware of to implement verifiable

DC-nets, Verdict supports three alternative schemes for

comparison: a pairing scheme using bilinear maps simi-

lar to the Golle-Juels approach, and two schemes based

on ElGamal encryption in conventional integer or ellip-

tic curve groups. Verdict incorporates this verifiable core

into a client/server architecture like Dissent’s [52], to

achieve scalability and robustness to client churn. As

in Dissent, Verdict maintains security as long as at least

one of the participating servers is honest, and participants

need not know or guess which servers are honest.

Due to their reliance on public-key cryptography, ver-

ifiable DC-nets incur higher computation overheads than

traditional DC-nets, which primarily use symmetric-key

cryptography (e.g., AES). We expect this CPU cost to

be acceptable in applications where messages are usually

short (e.g., chat or microblogging), where costs are dom-

inated by network delays, or in groups with relatively

open or antagonistic membership where disruption risks

may be high. Under realistic conditions, we find that

Verdict can support groups of 100 users while maintain-

1

148 22nd USENIX Security Symposium USENIX Association

ing 1-second messaging latencies, or 1000-user groups

with 10-second latencies. In a trace-driven evaluation

of full-system performance for a microblogging applica-

tion, Verdict is able to keep up with symmetric-key DC-

nets in groups of up to 250 active users.

In contrast with the above “purist” approach, which

uses expensive public-key cryptography to construct all

DC-net ciphertexts, Verdict also implements and evalu-

ates a hybrid approach that uses symmetric-key DC-nets

for data communication when not under disruption at-

tack, but leverages verifiable DC-nets to enable the sys-

tem to respond much more quickly and inexpensively

to disruption attacks. Dissent uses a verifiable shuf-

fle [36] to broadcast an accusation anonymously; this

shuffle dominates the cost of identifying disruptors. By

replacing this verifiable shuffle with a verifiable DC-nets

round, Verdict preserves the disruption-free performance

of symmetric-key DC-nets, but reduces the time to iden-

tify a disruptor in a 1000-node group by two orders of

magnitude, from 20 minutes to 26 seconds.

This paper’s primary contributions are:

• the first working implementation and experimental

evaluation of verifiable DC-nets in a practical anony-

mous communication system,

• two novel verifiable DC-nets constructions using stan-

dard modular integer and elliptic curve groups, offer-

ing an order of magnitude lower computational cost

than the original pairing approach [25],

• a hybrid system design that preserves performance

of symmetric-key DC-nets, while reducing disruption

resolution costs by two orders of magnitude, and

• experimental evidence suggesting that verifiable DC-

nets may be practical for realistic applications, such as

anonymous microblogging.

Section 2 introduces DC-nets and the disruption prob-

lem. Section 3 outlines Verdict’s architecture and adver-

sary model, and Sections 4 and 5 describe its messaging

protocol and cryptographic schemes. Section 6 presents

application scenarios and evaluation results, Section 7

describes related work, and Section 8 concludes.

2 Background and Motivation

This section first introduces the basic DC-nets concept

and known generalizations, then motivates the need for

proactive accountability.

2.1 Anonymity with Strong Adversaries

To make the need for traffic-analysis-resistant anonymity

systems more concrete, consider a political journalist

who obtains some important secret government docu-

ments (e.g., the Pentagon Papers) from a confidential

source. If the journalist publishes these documents un-

der her own name, the journalist might risk prosecution

Figure 1: The basic DC-nets algorithm

or interrogation, and she might be pressured to reveal the

source of the documents.

To reduce such risks, a number of political journalists

could form a Verdict communication group. Any partic-

ipating journalist may then anonymously broadcast the

documents to the entire group of journalists, such that

no member of the group can determine which journal-

ist sent the documents. With Verdict, even if a govern-

ment agency plants agents within the group of journalists

and observes all network traffic during a protocol run, the

agency remains unable to learn the source of the leak.

Existing systems such as Tor, which are practical

and scalable but vulnerable to known traffic analysis at-

tacks [16, 18, 32], cannot guarantee security in this con-

text. For example, if a US journalist posts a leak to a US

website, via a Tor connection whose entry and exit relays

are in Europe, then an eavesdropper capable of moni-

toring transatlantic links [31] can de-anonymize the user

via traffic analysis [18, 35]. Prior anonymity systems at-

tempting to offer resistance to traffic analysis, discussed

in Section 7, suffer from poor performance or vulnera-

bility to active denial-of-service attacks.

2.2 DC-nets Overview

DC-nets [13] provide anonymous broadcast within a

group of participants, who communicate lock-step in a

series of rounds. In a given round, each group member

contributes an equal length ciphertext that, when com-

bined with all other members’ ciphertexts, reveals one or

more cleartext messages. All group members know that

each message was sent by some group member—but do

not know which member sent each message.

In its simplest form, illustrated in Figure 1, we assume

one group member wishes to broadcast a 1-bit message

anonymously. To do so, every pair of members flips a

coin, secretly agreeing on the random outcome of that

coin flip. An N-member group thus flips N(N − 1)/2

coins in total, of which each member observes the out-

come of N − 1 coins. Each member then XORs to-

gether the values of the N − 1 coins she observes, ad-

ditionally the member who wishes to broadcast the 1-bit

2

USENIX Association 22nd USENIX Security Symposium 149

message XORs in the value of that message, to produce

that member’s DC-nets ciphertext. Each group member

then broadcasts her 1-bit ciphertext to the other mem-

bers. Finally, each member collects and XORs all N

members’ ciphertexts together. Since the value of each

shared coin is XORed into exactly two members’ cipher-

texts, all the coins cancel out, leaving only the anony-

mous message, while provably revealing no information

about which group member sent the message.

2.3 Practical Generalizations

As a standard generalization of DC-nets to communicate

L-bit messages, all members in principle simply run L in-

stances of the protocol in parallel. Each pair of members

flips and agrees upon L shared coins, and each member

XORs together the L-bit strings she observes with her

optional L-bit anonymous message to produce L-bit ci-

phertexts, which XOR together to reveal the L-bit mes-

sage. For efficiency, in practice each pair of group mem-

bers forms a cryptographic shared secret—via Diffie-

Hellman key agreement, for example—then group mem-

bers use a cryptographic pseudo-random number gener-

ator (PRNG) to produce the L-bit strings.

As a complementary generalization, we can use any

finite alphabet or group in place of coins or bits, as long

as we have: (a) a suitable combining operator analogous

to XOR, (b) a way to encode messages in the chosen al-

phabet, and (c) a way to generate complementary pairs

of one-time pads in the alphabet that cancel under the

chosen combining operator. For example, the alphabet

might be 8-bit bytes, the combining operator might be

addition modulo 256, and from each pairwise shared se-

cret, one member of the pair generates bytes B1, . . . ,Bk

from a PRNG, while the other member generates corre-

sponding two’s complement bytes −B1, . . . ,−Bk.

2.4 Disruption and Verifiable DC-nets

A key weakness of DC-nets is that a single malicious in-

sider can easily block all communication. An attacker

who transmits arbitrary bits—instead of the XORed ci-

phertext that the protocol prescribes—unilaterally and

anonymously jams all DC-net communication.

In many online venues such as blogs, chat rooms, and

social networks, some users may have legitimate needs

for strong anonymity—protest organizers residing in an

authoritarian state, for example—while other antagonis-

tic users (e.g., secret police infiltrators) may attempt to

block communication if they cannot de-anonymize “un-

approved” senders. Even in a system like Dissent that

can eventually trace and exclude disruptors, an adver-

sary with multiple colluding dishonest group members

may still be able to slow or halt communication for long

enough to ruin the service’s usability for honest partici-

pants. Further, if the group’s membership is open enough

to allow new disruptive members to join more quickly

than the tracing process operates, then these infiltrators

may be able to shut down communication permanently.

Verifiable DC-nets [25] leverage algebraic groups,

such as elliptic curve groups, as the DC-nets alphabet.

Using such groups allows for disruption resistance, by

enabling members to prove the correctness of their ci-

phertexts’ construction without compromising the se-

crecy of the shared pseudo-random seeds. Using a hybrid

approach that combines a traditional DC-net with a veri-

fiable DC-net, Verdict can achieve the messaging latency

of a traditional XOR-based DC-net while providing the

strong disruption-resistance of verifiable DC-nets.

3 Verdict Architecture Overview

In this section, we describe the individual components of

Verdict and how they combine to form the overall anony-

mous communication system.

3.1 Deployment and Adversary Model

Verdict builds on Dissent [51, 52] and uses the multi-

provider cloud model illustrated in Figure 2 (a) to

achieve scalability and resilience to ordinary node

and link failures. In this model, a communication

group consists of mostly unreliable clients, and a few

servers we assume to be highly available and well-

provisioned. Servers in a group should be administered

independently—each furnished by a different anonymity

provider, for example—to limit risk of all servers be-

ing compromised and colluding against the clients. The

servers may be geographically or topologically close,

however—possibly even hosted in the same data center,

in locked cages physically and administratively accessi-

ble only to separate, independent authorities.

Clients directly communicate, at a minimum, with a

single upstream server, while each server communicates

with all other servers. This topology, shown in Fig-

ure 2 (b), reduces the communication and computation

burden on the clients, and enables the system to make

progress regardless of client churn. In particular, clients

need not know which other clients are online at the time

they submit their DC-net ciphertexts to their upstream

server; clients only assume that all servers are online.

To ensure anonymity, clients need not assume that any

particular server is trustworthy—a client need not even

trust its immediately upstream server. Instead, clients

trust only that there exists at least one one honest

server, an assumption previously dubbed anytrust [51,

52], as a trust analog to anycast communication.

Verdict, like Dissent, achieves security under the

anytrust assumption through the DC-nets key-sharing

model shown in Figure 2 (c). Each client shares a se-

cret with every server, rendering client ciphertexts in-

decipherable without the cooperation of all servers, and

3

150 22nd USENIX Security Symposium USENIX Association

(a) Multi-provider cloud model [52] (b) Communication topology (c) DC-nets secret sharing

Figure 2: Verdict/Dissent deployment model, physical communication topology, and DC-nets secret sharing

hence protecting a client’s anonymity even if its immedi-

ately upstream server is malicious. Each client ultimately

obtains an anonymity set consisting of the set of all hon-

est clients, provided that the anytrust assumption holds,

and provided the message contents themselves do not in

some way reveal the sender’s identity.

A malicious server might refuse to service honest

clients, but such refusal does not compromise clients’

anonymity—victims can simply switch to a different

server. Although not yet supported in our Verdict pro-

totype, Section 4.6 discusses how one might use thresh-

old secret sharing to tolerate server failures, at the cost of

requiring that we assume multiple servers are honest.

3.2 Security Goals

Verdict’s goal is to offer anonymity and disruption resis-

tance in the face of a strong adversary who can poten-

tially monitor all network links, modify packets as they

traverse the network, and compromise a potentially large

fraction of a group’s participating members. We say that

a participant is honest if it follows the protocol exactly

and does not collude with or leak secret information to

other nodes. A participant is dishonest otherwise. Dis-

honest nodes can exhibit Byzantine behavior—they can

be arbitrarily incorrect and can even just “go silent.”

The system is designed to provide anonymity among

the set of honest participants, who remain online and un-

compromised throughout an interaction period, and who

do not compromise their identity via the content of the

messages they send. We define this set of honest and

online participants as the anonymity set for a protocol

run. If a group contains many colluding dishonest par-

ticipants, Verdict can anonymize the honest participants

only among the remaining subset of honest members:

in the worst case of a group containing only one hon-

est member, for example, Verdict operates but can offer

that member no meaningful anonymity.

Similarly, Verdict does not prevent long-term inter-

section attacks [28] against otherwise-honest participants

who repeatedly come and go during an interaction pe-

riod, leaking information to an adversary who can corre-

late online status with linkable anonymous posts. Rea-

soning about anonymity sets generally requires making

inherently untestable assumptions about how many group

members may be dishonest or unreliable, but Verdict at

least does not assume that the honest participants know

which other participants are honest and reliable.

Finally, Verdict’s disruption-resistant design addresses

internal disruption attacks by misbehaving anonymous

participants, a problem specific to anonymous commu-

nication tools and particularly DC-nets. Like any dis-

tributed system, Verdict may be vulnerable to more gen-

eral network-level Denial-of-Service (DoS) attacks as

well, particularly against the servers that are critical to

the system’s availability and performance. Such attacks

are important in practice, but not specific to anonymous

communication systems. This paper thus does not ad-

dress general DoS attacks since well-known defenses ap-

ply, such as server provisioning, selective traffic block-

ing, and proof-of-life or proof-of-work challenges.

4 Protocol Design

Verdict consists of two major components: the messag-

ing protocol, and the cryptographic primitive clients and

servers use to construct their ciphertexts. This section de-

scribes the Verdict messaging protocols, and the follow-

ing section describes the cryptographic constructions.

4.1 Core Verdict Protocol

Figure 3 summarizes the steps comprising a normal-case

run of the Verdict protocol. This protocol represents a

direct adaptation of the DC-nets scheme (Section 2.2) to

the two-level communication topology illustrated in Fig-

ure 2 (b), and to the client/server secret-sharing graph in

Figure 2 (c). As in Dissent, Verdict’s anonymity guar-

antee relies on Chaum’s original security analysis [13],

in which an honest node’s anonymity set consists of the

set of honest nodes that remain connected in the secret-

sharing graph after removing links to dishonest nodes.

Since each client shares a secret with every server, and

we assume that there exists at least one honest server, this

honest server forms a “hub” connecting all honest nodes.

This anonymity property holds regardless of physical

communication topology, which is why the clients need

not trust their immediately upstream server.

The ciphertext- and proof-generation processes as-

sume that communication in the DC-net is broken up into

time slots (akin to TDMA), such that only one client—

4

USENIX Association 22nd USENIX Security Symposium 151

1. Client Ciphertext Generation. Each client i gen-

erates a client ciphertext, and submits this cipher-

text to client i’s upstream server. If client i is the

anonymous owner of the current slot, the client com-

putes and submits a slot owner ciphertext using her

pseudonym secret key and her plaintext message m.

2. Client Set Sharing. After receiving valid client

ciphertexts from its currently connected downstream

clients, each server j broadcasts to all servers its set

C j of collected client ciphertexts.

3. Server Ciphertext Generation. After receiving

client ciphertext sets from all servers, each server j

computes C =
⋃

k Ck, the set of client ciphertexts col-

lected by all servers. Server j then uses C to compute

a server ciphertext corresponding to the set of submit-

ted client ciphertexts. Server j broadcasts this server

ciphertext to all other servers.

4. Plaintext Reveal. After receiving a server cipher-

text from every other server, each server j combines

the |C| client ciphertexts and M server ciphertexts to

reveal the plaintext message m. Server j signs m and

broadcasts its signature σ j to all servers.

5. Plaintext Sharing. After receiving valid signa-

tures from all servers, server j sends the plaintext

message m and the M signatures σ1, . . . ,σM (one from

each server) to its downstream clients.

6. Client Verification. Upon receiving the plaintext

m and M valid signatures from its upstream server,

client i accepts the plaintext message and considers

the messaging round to have completed successfully.

All messages sent over the network include a session

nonce and are signed with the sender’s long-term

well-known (non-anonymous) signing key.

Figure 3: Core Verdict messaging protocol

the slot’s owner—is allowed to send an anonymous mes-

sage in each time slot. The owner of a slot is the client

who holds the private key corresponding to a pseudonym

public key assigned to the slot. To maintain the slot

owner’s anonymity, no one must know which client owns

which transmission slot. Section 4.3 below describes the

assignment of pseudonym keys to transmission slots.

Figure 4 shows an example DC-net transmission

schedule with three slots, owned by pseudonyms A, B,

and C. Each slot owner can transmit one message per

messaging round, and the slot ordering in the schedule

remains the same for the duration of the Verdict session.

4.2 Verifiable Ciphertexts in Verdict

While Verdict’s anonymity derives from the same prin-

ciples as Dissent’s, the key difference is in the “alpha-

Figure 4: Example DC-net transmission schedule, where

anonymous authors A, B, and C transmit in each round.

bet” with which Verdict generates DC-net ciphertexts,

and in the way Verdict combines and checks those ci-

phertexts. Dissent uses a symmetric-key cryptographic

pseudo-random number generators (PRNG) to generate

shared secrets, and uses bitwise XOR to combine them

and later to reveal the plaintext message. While efficient,

the symmetric-key approach offers no way to check that

any node’s ciphertext was generated correctly until the fi-

nal cleartext messages are revealed. If any node corrupts

a protocol round by sending an incorrect ciphertext, Dis-

sent can eventually identify that node only via a complex

retroactive blame procedure.

Verdict, in contrast, divides messages into chunks

small enough to be encoded into elements of algebraic

groups, such as Schnorr [42] or elliptic curve groups,

to which known proof-of-knowledge techniques apply.

Section 5 later outlines three particular ciphertext gen-

eration schemes that Verdict implements, although Ver-

dict’s architecture and protocol design is agnostic to the

specific scheme. These schemes may be considered anal-

ogous to “pluggable” ciphersuites in SSL/TLS.

Thus, any Verdict ciphertext is generated on behalf of

the holder of some particular pseudonym keypair. While

the details of a ciphertext correctness proof depend on

the particular scheme, all such proofs have the general

form of an “either/or” knowledge proof, of the type sys-

tematized by Camenisch and Stadler [11]. In particular,

a ciphertext correctness proof attests that either:

• the ciphertext is an encryption of any message, and the

producer of the ciphertext holds the private part of the

pseudonym key for this slot, OR

• the ciphertext is an encryption of a null cover message,

which, when combined with other cover ciphertexts

and exactly one actual encrypted message ciphertext,

will combine to reveal the encrypted message.

Only the pseudonym key owner can produce a correct-

ness proof for an arbitrary message following the first al-

ternative above, while any node can generate an “honest”

cover ciphertext—and the proof by construction reveals

no information about which alternative the proof gener-

ator followed. We leave discussion of further details of

this process to Section 5, but merely note that such “ei-

ther/or” proofs are pervasive and well-understood in the

cryptographic theory community.

5

152 22nd USENIX Security Symposium USENIX Association

In Verdict, each client computes and attaches a crypto-

graphic correctness proof to each ciphertext it sends to its

upstream server, and each server in turn attaches a cor-

rectness proof to the server-side ciphertext it generates

in Phase 3 of each round (Figure 3). In principle, there-

fore, each server can immediately verify the correctness

of any client’s or other server’s ciphertext it receives, be-

fore “accepting” it and combining it with the other ci-

phertexts for that protocol round. As in Dissent, Verdict

achieves resilience to client churn by (optionally) requir-

ing clients to submit their ciphertexts before a certain

“deadline” in each messaging round. We describe this

technique in Section 4.5.

While Verdict nodes can in principle verify the cor-

rectness of any received ciphertext immediately, actually

doing so has performance costs. These costs lead to de-

sign tradeoffs between “eager” and “lazy” verification,

both of which we implement and evaluate later in Sec-

tion 6. Lazy verification enables the critical servers to

avoid significant computation costs during rounds that

are not disrupted, at the expense of making a round’s out-

put unusable if it is disrupted. Even if a lazily-verified

round is disrupted, however, the fact that Verdict nodes

always generate and transmit signed ciphertext correct-

ness proofs greatly simplifies and shortens the retroactive

blame process with respect to Dissent.

Verdict currently treats server-side failures of all

types, including invalid server ciphertexts, as “major

events” requiring administrative action, and simply halts

the protocol with an alert until such action is taken. Sec-

tion 4.6 later discusses approaches to make Verdict re-

silient against server-side failures, but we leave imple-

menting and evaluating such mechanisms to future work.

Such server-side failures affect only availability, how-

ever; anonymity remains protected as long as at least one

(not necessarily online) server remains uncompromised.

4.3 Scheduling Pseudonym Keys

To assign ownership of transmission slots to clients in

such a way that no one knows which client owns which

slot, Verdict applies an architectural idea from Dis-

sent [52]. At the start of a Verdict session, each of the

N clients secretly submits a slot owner pseudonym key

to a verifiable shuffle protocol [36] run by the servers.

The public output of the shuffle is the N pseudonym keys

in permuted order—such that no one knows which node

submitted which pseudonym key other than their own.

Verdict participants then use each of these N pseudonym

keys to initialize N concurrent instances of the core Ver-

dict DC-net with each instance becoming a slot in a ver-

ifiable DC-net transmission schedule.

Scheduling Policy Not every client will necessarily

want to transmit an anonymous message in every mes-

saging round. In addition, clients may want to transmit

messages of different lengths. To make Verdict more ef-

ficient in these cases, Verdict allows clients to request a

change in the length of their messaging slot (e.g., so that

a client can send a long message in a single messaging

round) and to temporarily “close” their transmission slot

(if a client does not expect to send a message for several

rounds). Clients issue these requests by prepending a few

bits of control data to the anonymous message they send

in their transmission slot.

4.4 Hybrid XOR/Verifiable DC-Nets

While the verifiable DC-net design above may be needed

in scenarios in which disruptions are frequent, the public-

key cryptography involved imposes a much higher com-

putational cost than traditional XOR-based DC-nets. To

offer better performance in groups with fewer or less fre-

quent disruptions, Verdict has a “hybrid” mode of opera-

tion that uses the fast XOR-based DC-net when there are

no active disruptors in the group, and reverts to a verifi-

able DC-net in the presence of an active disruptor. This

hybrid Verdict DC-net marries the relatively low com-

putational cost of the XOR-based DC-net with the low

accountability cost of the verifiable DC-net.

To set up a hybrid DC-net session, all protocol partici-

pants first participate in a pseudonym signing key shuffle,

as described above in Section 4.3. At the conclusion of

the shuffle, all nodes initialize two DC-net slots for each

of the N clients: one traditional Dissent-style DC-net,

and one verifiable Verdict DC-net.

When the group is not being disrupted, clients trans-

mit in their Dissent DC-net slot, allowing nodes to take

advantage of the speed of Dissent’s XOR-based DC-net.

When nodes detect the corruption of a message in the

Dissent DC-net, the client whose message was corrupted

reverts to transmitting in its verifiable DC-net slot. This

client can use the verifiable slot to transmit anonymously

the “accusation” necessary to identify the disruptor in the

Dissent accusation process [52, Section 3.9]. The Verdict

DC-net replaces the expensive verifiable shuffle neces-

sary for nodes to exchange the accusation information in

Dissent. In this way, Verdict offers the normal-case ef-

ficiency of XOR-based DC-nets while greatly reducing

the cost of tracing and excluding disruptors.

4.5 Client Churn

In realistic deployments clients may go offline at any

time, and this problem becomes severe in large groups

of unreliable clients exhibiting constant churn. To pre-

vent slow or unresponsive clients from disrupting com-

munication, the servers need not wait in Phase 2 for

all downstream clients to submit ciphertexts. Instead,

servers can wait for a fixed threshold of t ≤ N clients

to submit ciphertexts, or for some fixed time interval τ .

Servers might also use some more complicated window

6

USENIX Association 22nd USENIX Security Symposium 153

closure policy, as in Dissent [52]: e.g., wait for a thresh-

old of clients and then an additional time period before

proceeding. The participants must agree on a window

closure policy before the protocol run begins.

There is an inherent tradeoff between anonymity and

the system’s ability to cope with unresponsive clients. If

the servers close the ciphertext submission window too

aggressively, honest but slow clients might be unable to

submit their ciphertexts in time, reducing the anonymity

of clients who do manage to submit messages. In con-

trast, if the servers wait until every client has submitted

a ciphertext, a single faulty client could prevent protocol

progress indefinitely. Optimal policy choices depend on

the security requirements of the application at hand.

4.6 Limitations and Future Enhancements

This section outlines some of Verdict’s current limita-

tions, deployment issues, and areas for future work.

Group Evolution Verdict’s architecture assumes that,

at the start of the protocol, group members agree to

a “roster” of protocol participants—essentially a list of

public keys defining the group’s membership. The cur-

rent prototype simplistically assumes that this group ros-

ter is a static list, and that the session nonce is a hash

of a file containing this roster and other group policy in-

formation. This design trivially ensures that all nodes

participating in a given group (uniquely identified by its

session nonce) agree upon the same roster and policy.

Changing the group roster or policy in the current pro-

totype requires forming a new group, but we are explor-

ing approaches to group management which would allow

for on-the-fly membership changes. For now, we simply

note that Verdict’s security properties critically depend

on group membership policy decisions, which affect how

quickly adversarial participants can infiltrate a group. We

consider group management policy to be orthogonal to

this paper’s communication mechanisms.

Sybil Attacks If it is too easy to join a group, dishon-

est participants might flood the group with Sybil identi-

ties [19], giving an anonymous slot owner the impression

that she has more anonymity than she actually does. The

current “static group” design shifts the Sybil attack pre-

vention problem to whomever formulates the group ros-

ter. Dynamic group management schemes could leverage

existing Sybil prevention techniques [47, 53, 54], but we

do not consider such approaches herein.

Membership Concealment Verdict considers the

group roster, containing the public keys of all partici-

pants, to be public information: concealing participation

in the protocol is an orthogonal security goal that Verdict

currently does not address. We are exploring the use

of anonymous authentication techniques [22, 29, 41] to

enable Verdict clients to “sign on” and prove member-

ship in the group without revealing to the Verdict servers

(or to the adversary) which specific group members are

online at any given time. Further, we expect that Ver-

dict’s design could be composed with other techniques to

achieve membership concealment [33, 49], but we leave

such enhancements to future work.

Unresponsive Servers Verdict currently assumes that

the servers supporting a group are well-provisioned and

highly reliable, and the system simply ceases communi-

cation progress in the face of any server’s failure. Any

fault-masking mechanism would be problematic, in fact,

in the face of Verdict’s assumption that only one server

might be honest: if that one honest server goes offline

and the protocol continues without it, then the remaining

dishonest servers could collude against all honest users.

If we assume that there are h > 1 honest servers,

however, a currently unimplemented variation of Verdict

could allow progress if as many as h− 1 servers are un-

responsive. Before the protocol run, every server uses

a publicly verifiable secret sharing scheme [43], to dis-

tribute shares of its per-session secret key. The scheme

is configured such that any quorum of M − h+ 1 shares

is sufficient to reconstruct the secret. Thus, at least one

honest server must remain online and contribute a share

for a secret to be reconstructed. (Golle and Juels [25] also

use a secret-sharing scheme, but they rely on a trusted

third-party to generate and distribute the shares.)

If a server becomes unresponsive, the remaining on-

line servers can broadcast their shares of the unrespon-

sive server’s secret key. Once a quorum of servers broad-

casts these shares, the remaining online servers will be

able to reconstruct the unresponsive server’s private key.

Thereafter, each server can simulate the unresponsive

server’s messages for the rest of the protocol session.

Blame Recovery The current Verdict prototype can

detect server misbehavior, but it does not yet have a

mechanism by which the remaining servers can collec-

tively form a new group “roster” with the misbehaving

nodes removed. We expect off-the-shelf Byzantine Fault

Tolerance algorithms [12] to be applicable to this group

evolution problem. Using BFT to achieve agreement,

however, requires a stronger security assumption: in a

group with f dishonest servers, there must be at least

3 f + 1 total servers. We sketch a possible BFT-based

group evolution approach here.

The BFT cluster’s shared state in this case is the group

“roster,” containing the session nonce and a list of all ac-

tive Verdict clients and servers, identified by their public

keys. The two operations in this BFT system are:

• EVOLVE GROUP(nonce, node index, proof), a

request to remove a dishonest node (identified by

node index) from the group roster. BFT servers

7

154 22nd USENIX Security Symposium USENIX Association

remove the dishonest node from the group if the proof

is valid, yielding the new group roster.

• GET GROUP(), which returns current the group roster.

If, at some point during the Verdict session, a Ver-

dict node concludes that the protocol has failed due to

the dishonesty of node d, this honest node makes an

EVOLVE GROUP request to the BFT cluster and waits for

a response. The honest BFT servers will agree on a

new group roster with the dishonest node d removed

and the Verdict servers will begin a new instance of the

Verdict protocol with the new group roster. Clients use

GET GROUP to learn the new group roster.

5 Verifiable DC-net Constructions

The Verdict architecture relies on a verifiable DC-net

primitive that has many possible implementations. In this

section, we first describe the general interface that each

of the cryptographic constructions must implement—

which could be described as a “Verdict ciphersuite

API”—then we describe the three specific experimental

schemes that Verdict currently implements.

All three schemes are founded on standard, well-

understood cryptographic techniques that have been for-

mally developed and rigorously analyzed in prior work.

As with most practical, complex distributed systems with

many components, however, we cannot realistically offer

a rigorous proof that these cryptographic tools “fit to-

gether” correctly to form a perfectly secure overall sys-

tem. (This is true even of SSL/TLS and its ciphersuites,

which have received far more cryptographic scrutiny

than Verdict but in which flaws are still found regularly.)

We also make no claim that any of the current schemes

are “the right” ones or achieve any particular ideal; we

merely offer them as contrasting points in a large design

space. To lend some informal credibility to their secu-

rity, we note that our pairing-based scheme is closely

modeled on the verifiable DC-nets scheme that Golle and

Juels already developed formally [25], and the extended

version of this paper [15] sketches a security argument

for the third and most computationally efficient scheme.

5.1 Verifiable DC-net Primitive API

The core cryptographic primitive consists of a set of six

methods. Each of these six methods takes a list of proto-

col session parameters (e.g., group roster, session nonce,

slot owner’s public key) as an implicit argument:

• Cover Create: Given a client session secret key, return

a valid client ciphertext representing “cover traffic,”

which do not contain actual messages.

• Owner Create: Given a client session secret key, the

slot owner’s pseudonym secret key, and a plaintext

message m to be transmitted anonymously, return a

valid owner ciphertext that encodes message m.

• Client Verify: Given a client public key and a client

ciphertext, return a boolean flag indicating whether the

client ciphertext is valid.

• Server Create: Given a server private key and a set of

client ciphertexts, return a valid server ciphertext.

• Server Verify: Given a server public key, a set of valid

client ciphertexts, and a server ciphertext, return a flag

indicating whether the server ciphertext is valid.

• Reveal: Combine N client ciphertexts and M server

ciphertexts, returning the plaintext message m.

However these methods are implemented, they must

obey the following security properties, stated informally:

• Completeness: An honest verifier always accepts a

ciphertext generated by an honest client or server.

• Soundness: With overwhelming probability an hon-

est verifier rejects an incorrect ciphertext, such as an

owner ciphertext formed without knowledge of the

owner’s pseudonym secret key.

• Zero-knowledge: A verifier learns nothing about a ci-

phertext besides the fact that it is correctly formed.

• Integrity: Combining N valid client ciphertexts,

including one ciphertext from the anonymous slot

owner, and M valid server ciphertexts, reveals the slot

owner’s plaintext message.

• Anonymity: A verifier cannot distinguish a client ci-

phertext from the anonymous slot owner’s ciphertext.

The extended version of this paper [15] offers a game-

based definition of anonymity.

In practice, each of our current implementations of

this verifiable DC-nets primitive achieve these security

properties in the random-oracle model [5] using non-

interactive zero-knowledge proofs [26].

5.2 ElGamal-Style Construction

The first scheme builds on the ElGamal public-key cryp-

tosystem [20]. In ElGamal, a public/private keypair has

the form �B,b�= �gb,b�,1 and plaintexts and ciphertexts

are elements of an algebraic group G.2 We refer to this

as the “ElGamal-style” construction because its use of an

ephemeral public key and encryption by multiplication

structurally resembles the ElGamal cryptosystem. Our

construction does not exhibit the malleability of textbook

ElGamal encryption, however, because a proof of knowl-

edge of the secret ephemeral public key is attached to

every ciphertext element.

Client Ciphertext Construction Given a list of server

public keys �B1, . . . ,BM�, a client constructs a ciphertext

1 We do not require that a trusted third party generate participants’

keypairs, but we do require participants to prove knowledge of their

secret key at the start of a protocol session, for reasons described in the

extended version of this paper [15].
2 Throughout, unless otherwise noted, group elements are members

of a finite cyclic group G in which the Decision Diffie-Hellman (DDH)

problem [6] is assumed computationally infeasible, and g is a public

generator of G.

8

USENIX Association 22nd USENIX Security Symposium 155

by selecting an ephemeral public key Ri = gri at random

and computing the ciphertext element:

Ci = m
(

ΠM
j=1B j

)ri

If the client is the slot owner, the client sets m to its secret

message, otherwise the client sets m = 1.

To satisfy the security properties described in Sec-

tion 5.1, the client must somehow prove that the ci-

phertext tuple �Ri,Ci� was generated correctly. We

adopt the technique of Golle and Juels [25] and use

a non-interactive proof-of-knowledge of discrete loga-

rithms [11] to prove that the ciphertext has the correct

form. If the slot owner’s pseudonym public key is Y ,

the client’s ephemeral public key is Ri, and the client’s

ciphertext element is Ci, the client generates a proof:

PoK{ri,y :
(

Ri = gri ∧Ci = (ΠM
j=1B j)

ri
)

∨Y = gy}

In words: the sender demonstrates that either it knows

the discrete logarithm ri of the ephemeral public key Ri,

and the ciphertext is the product of all server public keys

raised to the exponent ri; or the sender knows the slot

owner’s secret pseudonym key y, in which case the slot

owner can set Ci to a value of her choosing. The extended

version of this paper [15] details how to construct and

verify this type of non-interactive zero-knowledge proof.

Note that a dishonest slot owner can set Ci to a mali-

ciously constructed value (e.g., Ci = 1). The only effect

of such an “attack” is that the slot owner compromises

her own anonymity. Since a dishonest slot owner can

always compromise her own anonymity (e.g., by pub-

lishing her secret keys), a dishonest slot owner achieves

nothing by setting Ci maliciously.

The tuple �Ri,Ci,PoK� serves as the client’s cipher-

text. As explained in Section 4.1, all participants sign

the messages they exchange for accountability.

Server Ciphertext Construction Given a server pub-

lic key B j = gb j and a list of ephemeral client public keys

�R1, . . . ,RN�, server j generates its server ciphertext as:

S j =
(

ΠN
i=1Ri

)−b j

The server proves the validity of its ciphertext by creating

a non-interactive proof of knowledge that it knows its

secret private key b j and that its ciphertext element S j

is the product of the ephemeral client keys raised to the

exponent −b j:

PoK{b j : B j = gb j ∧S j = (ΠN
i=1Ri)

−b j}

Message Reveal To reveal the plaintext message, a

participant computes the product of N client ciphertext

elements and M server ciphertext elements:

m =
(

ΠN
i=1Ci

)(

ΠM
j=1S j

)

Each factor grib j , where ri is client i’s ephemeral secret

key and b j is server j’s secret key, is included exactly

twice in the above product—once with a positive sign in

the client ciphertexts and once with a negative sign in the

server ciphertexts. These values therefore cancel, leaving

only the plaintext m.

Drawbacks Since the clients must use a new

ephemeral public key for each ciphertext element, send-

ing a plaintext message that is L group elements in length

requires each client to generate and transmit L ephemeral

public keys. The proof of knowledge for this construc-

tion is L+O(1) group elements long, so a message of L

group elements expands to 3L+O(1) elements.

5.3 Pairing-Based Construction

A major drawback of the ElGamal construction is that,

due to the need for ephemeral keys, every ciphertext is

three times as long as the plaintext it encodes. Golle

and Juels [25] use bilinear maps to eliminate the need for

ephemeral keys. Our pairing-based construction adopts

elements of their technique, while avoiding their reliance

on a trusted third party, a secret-sharing scheme, and a

probabilistic transmission scheduling algorithm.

A symmetric bilinear map ê maps two elements of

a group G1 into a target group G2—ê : G1 × G1 →
G2. A bilinear map has the property that: ê(aP,bQ) =

ê(P,Q)
ab.3 To be useful, the map must also be non-

degenerate (if P is a generator of G1, ê(P,P) is a gen-

erator of G2) and efficiently computable [8]. We assume

that the decision bilinear Diffie-Hellman assumption [7]

holds in G1.4

Since pairing allows a single pair of public keys to

generate a sequence of shared secrets, clients need not

generate ephemeral public keys for each ciphertext ele-

ment they send. This optimization leads to shorter ci-

phertexts and shorter correctness proofs.

Client Ciphertext Construction For a set of server

public keys �B1, . . . ,BM�, a public nonce τ ∈ G1 com-

puted using a hash function, and a client public key

Ai = gai , a pairing-based client ciphertext has the form:

Ci = mê(ΠM
j=1B j,τ)ai

As before, if the client is not the slot owner, the client sets

m= 1. Each client can produce a proof of the correctness

of its ciphertext by executing a proof of knowledge simi-

lar to one used in the ElGamal-style construction above:

PoK{ai,y : (Ai = gai ∧Ci = ê(ΠM
j=1B j,τ)ai)∨Y = gy}

While the ElGamal-style scheme requires 3L+O(1)

group elements to encode L elements of plaintext, a

3 Since G1 is usually an elliptic curve group, the generator of G1

is written as P (an elliptic curve point) and the repeated group opera-

tion is written as aP instead of ga. We will use the latter notation for

consistency with the rest of this section.
4 Note that the decision Diffie-Hellman problem is easy in G1, since

given g,ga,gb,gc ∈ G1, a DDH tuple will always satisfy ê(ga,gb
) =

ê(g,gc
) if c = ab mod q.

9

156 22nd USENIX Security Symposium USENIX Association

pairing-based ciphertext requires only L+O(1) group el-

ements to encode an L-element plaintext.

Server Ciphertext Construction Using a server pub-

lic key B j = gb j , a public round nonce τ , and client public

keys �A1, . . . ,AN�, a server ciphertext has the form:

S j = ê(ΠN
i=1Ai,τ)−b j

The server proof of correctness is then:

PoK{b j : B j = gb j ∧S j = ê(ΠN
i=1Ai,τ)−b j}

Message Reveal To reveal the plaintext, the servers

take the product of all client and server ciphertexts:

m = (ΠN
i=1Ci)(ΠM

j=1S j)

Drawbacks The main downside of this construction is

the relatively high computational cost of the pairing oper-

ation. Computing the pairing operation on two elements

of G1 can take an order of magnitude longer than a nor-

mal elliptic curve point addition in a group of similar se-

curity level, as Section 6.2 below will show.

5.4 Hashing-Generator Construction

Our hashing-generator construction pursues a “best of

both worlds” combination of the ElGamal-style and

pairing-based constructions. This construction has

short ciphertexts, like the pairing-based construction,

but avoids the computational cost of the pairing-based

scheme by using conventional integer or elliptic curve

groups. To achieve both of these desired properties, the

hashing-generator construction adds some protocol com-

plexity, in the form of a session set-up phase.

Set-up Phase In the set-up phase, each client i es-

tablishes a Diffie-Hellman shared secret ri j with every

server j using their respective public keys gai and gb j by

computing ri j =KDF(gaib j) using a key derivation func-

tion KDF. Clients publish commitments to these shared

secrets Ri j = ĝri j using another public generator ĝ.

The hashing-generator construction requires a process

by which participants compute a sequence of generators

g1, . . . ,gL of the group G, such that no participant knows

the discrete logarithm of any of these generators with

respect to any other generator. In other words, no one

knows an x such that gx
i = g j, for any i, j pair. In prac-

tice, participants compute this sequence of generators by

hashing a series of strings, (e.g., the round nonce con-

catenated with “1”, “2”, “3”, . . .), to choose the set of

generating group elements.

At the end of the set-up phase, every client i can

produce a sequence of shared secrets with each server

j using their shared secret ri j and the L generators:

g
ri j

1 , . . . ,g
ri j

L . In the ℓth message exchange round, all par-

ticipants use generator gℓ as their common generator.

Client Ciphertext Construction To use the hashing-

generator scheme to create a ciphertext, the client uses its

shared secrets ri1, . . . ,riM with the servers, and generator

gℓ for the given protocol round to produce a ciphertext:

Ci = mg
(∑M

j=1 ri j)

ℓ

As before, m = 1 if the sender is not the slot owner.

To prove the validity of a ciphertext element, the client

executes the following proof of knowledge, where Y is

the slot owner’s pseudonym public key, ri =∑M
j=1 ri j, and

Ri j is the commitment to the secret shared between client

i and server j:

PoK{ri,y : ((ΠM
j=1Ri j) = ĝri ∧Ci = g

ri

ℓ)∨Y = gy}

Server Ciphertext Construction Server j’s ciphertext

for the ℓth message exchange round is similar to the

client ciphertext, except with negated exponents:

S j = g
(−∑N

i=1 ri j)

ℓ

The server proves correctness of a ciphertext by execut-

ing a proof of knowledge, where r j = ∑N
i=1 ri j:

PoK{r j : (ΠN
i=1Ri j) = ĝr j ∧S j = g

−r j

ℓ }

Message Reveal The product of the client and server

ciphertexts reveals the slot owner’s plaintext message m:

m = (ΠN
i=1Ci)(ΠM

j=1S j)

Failed Session Set-up A dishonest client i might try

to disrupt the protocol by publishing a corrupted com-

mitment R′
i j that disagrees with server j’s commitment

Ri j to the shared secret ri j = KDF(gaib j). If the commit-

ments disagree, the honest server can prove its innocence

by broadcasting the Diffie-Hellman secret ρi j = gaib j

along with a proof that it correctly computed the Diffie-

Hellman secret using its public key B j and the client’s

public key Ai.

PoK{b j : ρi j = A
b j

i ∧B j = gb j}

If the server is dishonest, the client can produce a simi-

lar proof of innocence. Any user can verify this proof,

and then use gaib j to recreate the correct commitment

Ri j. Once the verifier has the correct commitment Ri j,

the verifier can confirm either that the client in question

published an invalid commitment or that the server in

question dishonestly accused the client.

Since the session set-up between client i and server

j will only fail if either i or j is dishonest, there is no

security risk to publishing the shared secret gaib j after a

failed set-up—the dishonest client (or server) could have

shared this secret with the adversary anyway.

Long Messages The client and server ciphertext con-

structions described above allow the slot owner to trans-

mit a plaintext message m that is at most one group el-

ement in length in each run of the protocol. To encode

10

USENIX Association 22nd USENIX Security Symposium 157

longer plaintexts efficiently, participants use a modified

proof-of-knowledge construction that proves the validity

of L ciphertext elements (Ci,1 through Ci,L) at once:

PoK{ri,y : ((ΠM
j=1Ri j = ĝri)∧ (∧L

ℓ=1Ci,ℓ = g
ri

ℓ))∨Y = gy}

Servers can use a similarly modified proof of knowledge.

This modified knowledge proof is surprisingly compact:

the length of the proof is constant in L, since the length

of the proof is linear in the number of proof variables

(here, the only variables are ri and y). The total length of

the tuple ��Ci,PoK� using this proof is L+O(1).

Lazy Proof Verification In the basic protocol, every

server verifies the validity proof on every client cipher-

text in every protocol round. To avoid these expensive

verification operations, servers can use lazy proof veri-

fication: servers check the validity of the client proofs

only if they detect, at the end of a protocol run, that the

anonymous slot owner’s message was corrupted. For rea-

sons discussed in the extended version of this paper [15],

lazy proof verification is possible only using the pairing-

based or hashing-generator ciphertext constructions.

Security Analysis Since the hashing-generator

scheme is the most performant variant, we sketch an

informal security proof for the hashing-generator proof

construction in the extended version of this paper [15].

6 Evaluation

This section describes our Verdict prototype implemen-

tation and summarizes the results of our evaluations.

6.1 Implementation

We implemented the Verdict protocol in C++ using the

Qt framework as an extension to the existing Dissent pro-

totype [52]. Our implementation uses OpenSSL 1.0.1 for

standard elliptic curve groups, Crypto++ 5.6.1 for big in-

teger groups, and the Stanford Pairing-Based Cryptogra-

phy (PBC) 0.5.12 library for pairings [48]. Unless other-

wise noted, the evaluations use 1024-bit integer groups,

the 256-bit NIST P-256 elliptic curve group [37], and

a pairing group in which G1 is an elliptic curve over a

512-bit field (using PBC’s “Type A” parameters) [30].

We collected the macrobenchmark and end-to-end eval-

uation results on the DeterLab [17] testbed.

The source code for our implementation is available at

https://github.com/DeDiS/Dissent.

6.2 Microbenchmarks

To compare the pure computational costs of the differ-

ent DC-net schemes, Figure 5 shows ciphertext gener-

ation and verification throughput measured at a variety

of block sizes, running on a workstation with a 3.2 GHz

Intel Xeon W3565 processor. These experiments involve

no network activity, and are single-threaded, thus they do

not reflect any speedup that parallelization might offer.

Figure 5: Ciphertext generation and verification through-

put for the three verifiable DC-net variants and the XOR-

based scheme.

The hashing-generator construction, which is the

fastest scheme tested, encrypts 20 KB of client plaintext

per second. The slowest, paring-based construction en-

crypts around 3 KB per second. The fastest verifiable

scheme is still over an order of magnitude slower than

the traditional (unverifiable) XOR-based scheme, which

encrypts 600 KB of plaintext per second. The hashing-

generator scheme performs best because it needs no pair-

ing operations and requires fewer group exponentiations

than the ElGamal construction.

Figure 5 shows that ciphertext verification is slightly

faster than ciphertext generation. This is because gener-

ating the ciphertext and zero-knowledge proof requires

more group exponentiations than proof verification does.

The three constructions also vary in the size of ci-

phertexts they generate (Figure 6). While the pairing-

based scheme and the hashing-generator schemes en-

crypt length L plaintexts as ciphertexts of length L +

O(1), the ElGamal-style scheme encrypts length L

plaintexts as length 3L + O(1) ciphertexts. As dis-

cussed in Section 5.2, for every plaintext message ele-

ment encrypted, ElGamal-style ciphertexts must include

an ephemeral public key and an additional proof-of-

knowledge group element. Since the hashing-generator

scheme is the fastest and avoids the ElGamal scheme’s

ciphertext expansion, subsequent experiments use the

hashing-generator scheme unless otherwise noted.

6.3 Accountability Cost

Figure 7 presents three graphs: (a) the time it takes to set

up a transmission schedule via a verifiable shuffle, prior

to DC-net communication, (b) the time required to exe-

cute a single DC-net protocol round in each scheme, and

(c) the time required to identify a disruptor. The graphs

compare four protocol variants: Dissent, Verdict, Verdict

11

158 22nd USENIX Security Symposium USENIX Association

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000

T
im

e
 i
n
 s

e
c
o
n
d
s

Session Setup (Shuffle)

 10 100 1000

Number of clients

DC-net Messaging Round

Dissent Dissent+Verdict Verdict Verdict (lazy)

 10 100 1000

Identify Disruptor

Figure 7: Time required to initialize a session, perform one messaging round, and to identify a disruptor.

Figure 6: Ciphertext expansion factor (overhead) using

the integer ElGamal-style, pairing-based, and hashing-

generator protocol variants.

with lazy proof verification, and the Dissent+Verdict hy-

brid DC-net. We ran this experiment on DeterLab using

8 servers and 128 clients. To scale beyond 128 clients,

we ran multiple client processes on each client machine.

Session setup time measures the time from session start

to just before the first DC-net messaging round.

The one-time session setup time for Verdict is longer

than for Dissent because the verifiable shuffle imple-

mentation Dissent uses is heavily optimized for shuffling

DSA signing keys. Shuffling Verdict public keys, which

are drawn from different group types, requires using a

less-optimized version of the verifiable shuffle. We do

not believe this cost is fundamental to the Verdict ap-

proach, and in any case these setup costs are typically

amortized over many DC-net rounds.

The Dissent+Verdict hybrid DC-net is just as fast as

Dissent in the normal case, since Dissent and the hy-

brid DC-net run exactly the same code if there is no ac-

tive disruptor in the group. Network latency comprises

the majority of the time for a messaging round when

using the Dissent and the hybrid Dissent+Verdict DC-

nets—messaging rounds take between 0.6 and 1.4 sec-

onds to complete in network sizes of 8 to 1,024 clients.

In contrast, Verdict becomes computationally limited at

64 clients, taking approximately 2.5 seconds per round.

Verdict (lazy) improves upon this by becoming compu-

tationally limited at 256 clients, requiring approximately

3 seconds per messaging round.

Verdict incurs the lowest accountability (blame) cost

of the four schemes. Verdict’s verifiable DC-net checks

the validity of each client ciphertext before processing it

further, so the time-to-blame in Verdict is equal to the

cost of verifying the validity proofs on N client cipher-

texts. “Verdict (lazy)” uses the lazy proof verification

technique described in Section 5.4—servers verify the

client proofs of correctness only if they detect a disrup-

tion. Lazy proof verification delays the verification op-

eration to the end of a messaging phase, so the time-to-

blame is slightly higher than in pure Verdict.

Dissent, which has the highest time-to-blame, has an

accountability process that requires the anonymous client

whose message was corrupted to submit an “accusation”

message to a lengthy verifiable shuffle protocol, in which

all members participate. This verifiable shuffle is the rea-

son that Dissent takes the longest to identify a disruptor.

The hybrid Dissent+Verdict DC-net (Section 4.4) avoids

Dissent’s extra verifiable shuffle by falling back instead

to a verifiable DC-net to resolve disruptions.

As Figure 7 shows, the messaging round time in the

hybrid Dissent+Verdict DC-net is as fast as in Dissent,

but the hybrid scheme reduces Dissent’s time to detect

misbehavior by roughly two orders of magnitude.

6.4 Anonymous Microblogging

Verdict’s ability to tolerate many dishonest nodes makes

it potentially attractive for anonymous microblogging in

groups of hundreds of nodes. In Twitter, messages have a

maximum length of 140 bytes, which means that a single

tweet can fit into a few 256-bit elliptic curve group ele-

ments. Twitter users can also tolerate messaging latency

12

USENIX Association 22nd USENIX Security Symposium 159

 0
 10
 20
 30
 40
 50
 60

 40 72 136 264 520 1032

T
w

e
e
ts

/m
in

u
te

Active Twitter users

No anonymity
Dissent
Dissent+Verdict
Verifiable Mix Cascade

Verdict: Hashing
Verdict: Pairing
Verdict: ElGamal

Figure 8: Rate at which various anonymity schemes pro-

cess tweets, for varying numbers of active users.

of tens of seconds or even a few minutes, which would

be unacceptable for interactive web browsing.

This experiment evaluates the suitability of Verdict for

small-scale anonymous microblogging applications, giv-

ing users anonymity among hundreds of nodes, e.g., for

students microblogging on a university campus. To test

Verdict in this scenario, we recorded 5,000 Twitter users’

activity for one-hour and then took subsets of this trace:

the smallest subset contained only the Tweets of the 40

most active users, and the largest subset contained the

Tweets of the 1,032 most active users. We replayed each

of these traces through Dissent and through Verdict, us-

ing each of the three ciphertext constructions.

We ran our experiment on DeterLab [17], on a test

topology consisting of eight servers connected to a 100

Mbps LAN with 10 ms of server-to-server latency, and

with each set of clients connecting to their upstream

server over a shared 100 Mbps link with 50 ms of latency.

Scarcity of testbed resources limited the number of avail-

able delay links, but our experiment attempts to approxi-

mate a wide-area deployment model in which clients are

geographically dispersed and bandwidth-limited.

Figure 8 shows the Tweet-rate latency induced by the

different anonymity systems relative to the baseline (no

anonymity) as the number of active users (and hence, the

anonymity set size) in the trace increases. Both Dissent

and the Dissent+Verdict hybrid systems can keep pace

with the baseline in a 1,000-node network—the largest

network size feasible on our testbed. The pure Verdict

variants could not keep pace with the baseline in a 1,000-

node network, while hashing-generator variant of Verdict

runs almost as quickly as the baseline in an anonymity

set size of 264. These results suggest that Verdict might

realistically support proactively accountable anonymity

for microblogging groups of up to hundreds of nodes.

Figure 8 also compares Verdict to a mix-net cascade

(a set of mix servers) in which each mix server uses a

Neff proof-of-knowledge [36] to demonstrate that it has

performed the mixing operation properly. Like Verdict,

this sort of mix cascade forms a traffic-analysis-resistant

anonymity system, so it might be used as an alternative

to Verdict for anonymous messaging. Our evaluation re-

sults demonstrate that the hashing-generator variant of

Verdict outperforms the mix cascade at all network sizes

and that the Tweet throughput of the Dissent+Verdict hy-

brid is more than 6× greater than the throughput of the

mix cascade at a network size of 564 participants.

6.5 Anonymous Web Browsing

Dissent demonstrated that accountable DC-nets are fast

enough to support anonymous interactive Web browsing

in local-area network deployments [52]. We now evalu-

ate whether Verdict is similarly usable in a web brows-

ing scenario. Our experiment simulates a group of nodes

connected to a single WLAN network. This configura-

tion emulates, for example, a group of users in an Inter-

net café browsing the Internet anonymously.

In our simulation on DeterLab [17], 8 servers and 24

clients communicate over a network of 24 Mbps links

with 20 ms node-to-node latency. To simulate a Web

browsing session, we recorded the sequence of requests

and responses that a browser makes to download home

page content (HTML, CSS files, images, etc.) from the

Alexa “Top 100” Web pages [2]. We then replayed this

trace with the client using one of four anonymity over-

lays: no anonymity, the Dissent DC-net, the Verdict-

only DC-net, and the Dissent+Verdict hybrid DC-net.

The simulated client sends the upstream (request) traf-

fic through the anonymity network and servers broadcast

the downstream (response) traffic to all nodes.

Figure 9 charts the time required to download all home

page content using the four different network configura-

tions. The median Web page took one second to load

with no anonymity, fewer than 10 seconds over Dissent,

and around 30 seconds using Verdict only (Figure 10).

Notably, the hybrid Dissent+Verdict scheme exhibits per-

formance nearly identical to that of Dissent alone, since it

it falls back to the slower verifiable Verdict DC-net only

when there is active disruption. The Verdict-only DC-net

is much slower than Dissent because every node must

generate a computationally expensive zero-knowledge

proof in every messaging round.

These experiments show that Verdict adds no overhead

to Dissent’s XOR-based DC-net in the absence of disrup-

tion. In addition, these experiments illustrate the flexi-

bility of verifiable DC-nets, which can be used either as

a “workhorse” for anonymous communication or more

selectively in combination with traditional XOR-based

DC-nets; we suspect that other interesting applications

will be discovered in the future.

13

160 22nd USENIX Security Symposium USENIX Association

Figure 9: Time required to download home page context

for Alexa “Top 100” Web sites (with linear trend lines).

Figure 10: CDF of time required to download home page

context for Alexa “Top 100” Web sites.

7 Related Work

Chaum recognized the risk of anonymous disruption at-

tacks in his original formulation of DC-nets [13], and

proposed a probabilistic tracing approach based on traps,

upon which Waidner and Pfitzmann expanded [50].

Herbivore [24, 44] sidestepped the disruption issue by

forming groups dynamically, enabling nodes to leave dis-

rupted groups and form new groups until they find a

disruption-free group. Unfortunately, the likelihood that

a group contains some malicious node likely increases

rapidly with group size, and hence anonymity set, lim-

iting this and related partitioning approaches [1] to sys-

tems supporting small anonymity sets. Further, in an ana-

log to a known attack against Tor [9], an adversary might

selectively disrupt only groups he has only partially but

not completely compromised. With a powerful adversary

controlling many nodes, after some threshold a victim

becomes more likely to “settle into” a group that works

precisely because it is completely compromised, than to

find a working uncompromised group.

k-anonymous message transmission [1] also achieves

disruption resistance by partitioning participants into

small disruption-free groups. A crucial limitation of the

k-anonymity system is that an honest client is anony-

mous only among a small constant (k) number of nodes.

In contrast, Verdict clients in principle obtain anonymity

among the set of all honest clients using the system.

Dissent [14, 52] uses verifiable shuffles [10, 36] to

establish a transmission schedule for DC-nets, enabling

groups to guarantee a one-to-one correspondence of

group members to anonymous transmission slots. The

original Dissent protocol [14] offered accountability but

limited performance. A more recent version [52] im-

proves performance and scalability, but uses a retrospec-

tive “blame” protocol which requires an expensive shuf-

fle when disruption is detected.

Golle and Juels [25] introduced the verifiable DC-net

concept and formally developed a scheme based on bilin-

ear maps, forming Verdict’s starting point. To our knowl-

edge this scheme was never implemented in a work-

ing anonymous communication system, however, and we

find that its expensive pairing operations limit its practi-

cal performance.

Crowds [40], LAP [27], Mixminion [16], Tarzan [21],

and Tor [18], provide anonymity in large networks, but

these systems cannot protect against adversaries that ob-

serve traffic [4, 35] or perform active attacks [9] on a

large fraction of network links. Verdict maintains its se-

curity properties in the presence of this type of strong ad-

versary. A cascade of cryptographically verifiable shuf-

fles [23, 36] can offer the same security guarantees that

Verdict does, but these shuffles generally require more

expensive proofs-of-knowledge.

8 Conclusion

Verdict is a new anonymous group messaging system

that combines the traffic analysis resistance of DC-nets

with disruption resistance based on public-key cryptog-

raphy and knowledge proofs. Our experiments show that

Verdict may be suitable for messaging in groups of hun-

dreds to thousands of users, and can be combined with

traditional XOR-based DC-nets to offer good normal-

case performance while reducing the system’s vulnera-

bility to disruption events by two orders of magnitude.

Acknowledgments

We wish to thank Aaron Johnson, Ewa Syta, Michael J.

Fischer, Michael Z. Lee, Michael “Fitz” Nowlan, and

Ramki Gummadi for their helpful comments. We also

thank our shepherd, Micah Sherr, and the anonymous

USENIX reviewers, for their valuable feedback. Finally,

we thank the DeterLab staff for their flexibility, patience,

and support during the evaluation process. This material

is based upon work supported by the Defense Advanced

Research Agency (DARPA) and SPAWAR Systems Cen-

ter Pacific, Contract No. N66001- 11-C-4018.

14

USENIX Association 22nd USENIX Security Symposium 161

References

[1] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper.

k-anonymous message transmission. In ACM conference

on Computer and Communications Security (CCS), pages

122–130, 2003.

[2] Alexa top 500 global sites, April 2012. http://www.

alexa.com/topsites.

[3] Jack M. Balkin. Digital speech and democratic culture: A

theory of freedom of expression for the information soci-

ety. Faculty Scholarship Series, 2004. Paper 240.

[4] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi

Kohno, and Douglas Sicker. Low-resource routing attacks

against Tor. In Workshop on Privacy in the Electronic

Society (WPES), pages 11–20, October 2007.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are

practical: A paradigm for designing efficient protocols. In

ACM conference on Computer and communications secu-

rity (CCS), pages 62–73, 1993.

[6] Dan Boneh. The decision Diffie-Hellman prob-

lem. In Joe Buhler, editor, Algorithmic Number The-

ory, volume 1423 of Lecture Notes in Computer Sci-

ence, pages 48–63. Springer Berlin / Heidelberg, 1998.

10.1007/BFb0054851.

[7] Dan Boneh and Xavier Boyen. Efficient selective-ID se-

cure identity-based encryption without random oracles.

In International Conference on the Theory and Appli-

cations of Cryptographic Techniques (Eurocrypt), pages

223–238, 2004.

[8] Dan Boneh and Matt Franklin. Identity-based encryption

from the Weil pairing. In IACR International Cryptology

Conference (CRYPTO), pages 213–229. 2001.

[9] Nikita Borisov, George Danezis, Prateek Mittal, and

Parisa Tabriz. Denial of service or denial of security?

How attacks on reliability can compromise anonymity. In

ACM Conference on Computer and Communications Se-

curity (CCS), pages 92–102, October 2007.

[10] Justin Brickell and Vitaly Shmatikov. Efficient

anonymity-preserving data collection. In ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining (KDD), pages 76–85, August 2006.

[11] Jan Camenisch and Markus Stadler. Proof systems for

general statements about discrete logarithms. Technical

Report 260, Dept. of Computer Science, ETH Zurich,

March 1997.

[12] Miguel Castro and Barbara Liskov. Practical Byzantine

fault tolerance. In USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), pages 173–186,

February 1999.

[13] David Chaum. The dining cryptographers problem: Un-

conditional sender and recipient untraceability. Journal

of Cryptology, pages 65–75, January 1988.

[14] Henry Corrigan-Gibbs and Bryan Ford. Dissent: account-

able anonymous group messaging. In ACM conference

on Computer and communications security (CCS), pages

340–350, October 2010.

[15] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan

Ford. Proactively accountable anonymous messaging in

Verdict. Technical Report YALEU/DCS/TR1478, De-

partment of Computer Science, Yale University, 2013.

[16] George Danezis, Roger Dingledine, and Nick Mathew-

son. Mixminion: Design of a Type III anonymous re-

mailer protocol. In IEEE Security and Privacy (SP),

pages 2–15, May 2003.

[17] DeterLab network security testbed, September 2012.

http://isi.deterlab.net/.

[18] Roger Dingledine, Nick Mathewson, and Paul Syverson.

Tor: the second-generation onion router. In USENIX Se-

curity Symposium, pages 303–320, 2004.

[19] John R. Douceur. The Sybil attack. In 1st Interna-

tional Workshop on Peer-to-Peer Systems, pages 251–

260, March 2002.

[20] Taher ElGamal. A public key cryptosystem and a sig-

nature scheme based on discrete logarithms. In George

Blakley and David Chaum, editors, Advances in Cryptol-

ogy, volume 196 of Lecture Notes in Computer Science,

pages 10–18. Springer Berlin / Heidelberg, 1985.

[21] Michael J. Freedman and Robert Morris. Tarzan: A peer-

to-peer anonymizing network layer. In ACM conference

on Computer and communications security (CCS), pages

193–206, 2002.

[22] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring

signature. In International Conference on Theory and

Practice of Public Key Cryptography (PKC), pages 181–

200, April 2007.

[23] Jun Furukawa and Kazue Sako. An efficient scheme for

proving a shuffle. In CRYPTO, pages 368–387, August

2001.

[24] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun

Sirer. Herbivore: A scalable and efficient protocol for

anonymous communication. Technical Report 2003-

1890, Cornell University, February 2003.

[25] Philippe Golle and Ari Juels. Dining cryptographers re-

visited. Eurocrypt, pages 456–473, May 2004.

[26] Jens Groth. Honest verifier zero-knowledge arguments

applied. PhD thesis, University of Aarhus, October 2004.

[27] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig,

Akira Yamada, Samuel C. Nelson, Marco Gruteser, and

Wei Meng. LAP: Lightweight anonymity and privacy. In

IEEE Security and Privacy, pages 506–520, 2012.

[28] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz. Lim-

its of anonymity in open environments. In 5th Interna-

tional Workshop on Information Hiding, pages 53–69,

15

162 22nd USENIX Security Symposium USENIX Association

October 2002.

[29] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Link-

able spontaneous anonymous group signature for ad hoc

groups. In Australian Conference on Information Security

and Privacy, pages 614–623, July 2004.

[30] Ben Lynn. On the implementation of pairing-based cryp-

tosystems. PhD thesis, Stanford University, Stanford, CA,

USA, 2007.

[31] Ewen MacAskill, Julian Borger, Nick Hopkins,

Nick Davies, and James Ball. GCHQ taps

fibre-optic cables for secret access to world’s

communications. The Guardian, June 2013.

http://www.guardian.co.uk/uk/2013/jun/21/

gchq-cables-secret-world-communications-nsa.

[32] Ulf Moeller and Lance Cottrell. Mixmaster

protocol: Version 2, January 2000. http://

www.eskimo.com/~rowdenw/crypt/Mix/

draft-moeller-mixmaster2-protocol-00.txt.

[33] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad

Derakhshani, and Ian Goldberg. SkypeMorph: Protocol

obfuscation for Tor bridges. In ACM Conference on Com-

puter and Communications Security (CCS), pages 97–

108, 2012.

[34] Steven J. Murdoch and George Danezis. Low-cost traffic

analysis of Tor. In IEEE Security and Privacy, pages 183–

195, May 2005.

[35] Steven J. Murdoch and Piotr Zieliński. Sampled traf-

fic analysis by Internet-exchange-level adversaries. In

Proceedings of the 7th international conference on Pri-

vacy enhancing technologies, PETS’07, pages 167–183,

Berlin, Heidelberg, 2007. Springer-Verlag.

[36] C. Andrew Neff. A verifiable secret shuffle and its ap-

plication to e-voting. In ACM Conference on Computer

and Communications Security, pages 116–125, Novem-

ber 2001.

[37] National Institute of Standards and Technology. FIPS

PUB 186-3: Digital Signature Standard (DSS), 2009.

[38] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and

Thomas Engel. Website fingerprinting in onion routing

based anonymization networks. In Workshop on Privacy

in the Electronic Society (WPES), pages 103–114, Octo-

ber 2011.

[39] Jennifer Preston. Facebook officials keep quiet

in its role in revolts. New York Times, Febru-

ary 2011. http://www.nytimes.com/2011/02/15/

business/media/15facebook.html.

[40] Michael K. Reiter and Aviel D. Rubin. Anonymous Web

transactions with Crowds. Communications of the ACM,

42(2):32–48, 1999.

[41] Ronald Rivest, Adi Shamir, and Yael Tauman. How to

leak a secret. In ASIACRYPT, pages 552–565, December

2001.

[42] Claus P. Schnorr. Efficient signature generation by smart

cards. Journal of Cryptology, 4(3):161–174, 1991.

[43] Berry Schoenmakers. A simple publicly verifiable secret

sharing scheme and its application to electronic voting. In

IACR International Cryptology Conference (CRYPTO),

pages 784–784, 1999.

[44] Emin Gün Sirer, Sharad Goel, Mark Robson, and Doğan

Engin. Eluding carnivores: File sharing with strong

anonymity. In ACM SIGOPS European Workshop

(SIGOPS EW), September 2004.

[45] Edward Stein. Queers anonymous: Lesbians, gay men,

free speech, and cyberspace. Harvard Civil Rights-Civil

Liberties Law Review, 2003.

[46] Al Teich, Mark S. Frankel, Rob Kling, and Ya-ching Lee.

Anonymous communication policies for the Internet: Re-

sults and recommendations of the AAAS conference. In-

formation Society, May 1999.

[47] Nguyen Tran, Bonan Min, Jinyang Li, and Lakshmi-

narayanan Submaranian. Sybil-resilient online content

voting. In Symposium on Networked System Design and

Implementation (NSDI), pages 15–28, April 2009.

[48] Stanford University. The pairing-based cryptography li-

brary. http://crypto.stanford.edu/pbc/.

[49] Eugene Vasserman, Rob Jansen, James Tyra, Nicholas

Hopper, and Yongdae Kim. Membership-concealing

overlay networks. In ACM conference on Computer

and Communications Security (CCS), pages 390–399,

November 2009.

[50] Michael Waidner and Birgit Pfitzmann. The dining cryp-

tographers in the disco: Unconditional sender and recip-

ient untraceability with computationally secure service-

ability. In Eurocrypt, pages 302–319, April 1989.

[51] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan

Ford, and Aaron Johnson. Scalable anonymous group

communication in the anytrust model. In European Work-

shop on System Security (EuroSec), April 2012.

[52] David Isaac Wolinsky, Henry Corrigan-Gibbs, Aaron

Johnson, and Bryan Ford. Dissent in numbers: Making

strong anonymity scale. In USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI), pages

179–192, October 2012.

[53] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and

Feng Xiao. SybilLimit: A near-optimal social network

defense against sybil attacks. In IEEE Symposium on Se-

curity and Privacy, pages 3–17, May 2008.

[54] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and

Abraham Flaxman. SybilGuard: Defending against sybil

attacks via social networks. In ACM SIGCOMM, pages

267–278, September 2006.

16

USENIX Association 22nd USENIX Security Symposium 163

ZQL: A Compiler for Privacy-Preserving Data Processing

Cédric Fournet
Microsoft Research

Markulf Kohlweiss
Microsoft Research

George Danezis
Microsoft Research

Zhengqin Luo
MSR-INRIA Joint Centre

Abstract
ZQL is a query language for expressing simple compu-
tations on private data. Its compiler produces code to
certify data, perform client-side computations, and verify
the correctness of their results. Under the hood, it synthe-
sizes zero-knowledge protocols that guarantee both in-
tegrity of the query results and privacy for all other data.

We present the ZQL language, its compilation scheme
down to concrete cryptography, and the security guaran-
tees it provides. We report on a prototype compiler that
produces F# and C++. We evaluate its performance on
queries for smart-meter billing, for pay-as-you-drive in-
surance policies, and for location-based services.

1 Introduction

A variety of private user data is used to tailor modern ser-
vices, and some go as far as billing based on fine grained
customer readings. For example, smart meters are used
to charge a different tariff depending on the time of elec-
tricity usage; pay-as-you-drive insurance premiums de-
pend on detailed driving pattern of drivers. Such schemes
are currently implemented by collecting fine-grained in-
formation, and processing it on the service side—an ar-
chitecture that has led to serious privacy concerns.

This paper supports an alternative approach: clients
could perform sensitive computations on their own data
certified by meters or car on-board units [55, 60], and
upload only the results, together with a proof of correct-
ness to ensure their integrity. We propose ZQL, a simple
query language to express at a high level such compu-
tations, without any cryptographic details. Queries are
compiled to code for the data sources, the clients, and
the verifiers by synthesizing zero-knowledge protocols.

The most popular language for querying and perform-
ing computations on user data is SQL [29] based on re-
lational algebra. The ZQL feature set was chosen to sup-
port a subset of SQL. Data is organized into tables of
rows, with private and public columns. Queries accept

tables as inputs, and can iterate over them to produce
other tables, or aggregate values. Simple arithmetic oper-
ations on rows are supported natively, and so is a limited
form of SQL joins through table lookups.

ZQL offers advantages over hand-crafted protocols, in
that computations are flexible and can be expressed at a
high level by application programmers. The computa-
tions can also be modified and recompiled, without the
need to involve cryptography experts.

The ZQL compiler is free to synthesize custom zero-
knowledge protocols behind the scene, and we currently
support two main branches, for RSA and Elliptic Curve
primitives. We also support a symbolic execution back-
end to derive estimates of the cost of evaluating and ver-
ifying queries. Synthesized protocols themselves are in-
ternally represented and optimized as fragments of an
extended ZQL language until the final code is emitted.
Intermediate ZQL is strongly typed, and precise refine-
ment types can be used to verify security properties on
the final compiled code, using F7 [16] or F* [58].

Informally, for a given source query, the desired secu-
rity properties on the resulting ZQL-compiled code are:

• Correctness. For any given source inputs, the se-
quential composition of the cryptographic queries
for the data sources, the user, and the verifier yields
the same result as the source query.

• Integrity. An adversary given the capabilities of
the user cannot get the verifier to accept any other
result—except with a negligible probability.

• Privacy. An adversary given the capabilities of the
verifier, able to choose any two collections of in-
puts such that the source query yields the same re-
sult, and given the result of the user’s cryptographic
query, cannot tell which of the two inputs was used.

This corresponds to the source query being executed by
a fictional trusted third party sitting between the data
sources, the user, and the verifier.

1

164 22nd USENIX Security Symposium USENIX Association

Contents The rest of the paper is organized as fol-
lows. §2 introduces our query language using a series of
privacy-preserving data processing examples. §3 speci-
fies our target privacy and integrity goals. §4 reviews the
main cryptographic mechanisms used by our compiler.
§5 describes the compilation process. §6 gives our main
security theorems. §7 discusses applications and §8 pro-
vides experimental results and discusses future work.

This short version of the paper omits many details
and discussions; an extended version with auxiliary def-
initions, proofs, and examples is available at http://
research.microsoft.com/zql.

Related work The ZQL language provides private data
processing. The zero-knowledge protocols synthesized
are standard Σ-protocols [32, 30, 33], but in ZQL they are
used for proving the correctness of general computations
rather than for cryptographic protocol design.

Arguably, previous works on zero-knowledge compil-
ers focused on the latter as the primary use-case [19,
51, 2, 1]. The use of zero-knowledge for authentication
and authorization as in credential and e-cash technolo-
gies [23, 51, 4] received particular attention, but, to our
knowledge, no-one considered the use of Σ-protocols to
prove the execution of general programs.

More specifically, a long line of work [19, 7, 2]
culminating in the CACE compiler tackles the prob-
lem of automatically translating proof goals specified
in the Camenisch-Stadler notation [22] into efficient Σ-
protocols. Intermediate translations steps of ZQL (the
shared translation) are at a similar level of abstraction
to the Camenisch-Stadler notation but ZQL also syn-
thesizes those representations from source code, and
then proceeds to compile them to low level operations.
ZKPDL [51], an alternative compiler for Σ-protocols,
uses a natural language inspired specification of zero-
knowledge proof goals. This specification language may
be even closer in spirit to our intermediary notation, as
it allows for the possibility to specify the generation of
the protocol inputs. The authors of the CACE compiler
discuss the difference and similarity between these two
approaches in a Usenix poster [9]. The cryptographic
prototyping language Charm [1] also includes a zero-
knowledge proof compiler for Camenisch-Stadler state-
ments which is currently primarily a proof of concept
and thus less sophisticated than CACE and ZKPDL. We
are also aware of an embedding of a zero-knowledge lan-
guage in C++ [45].

ZQL differs from standard multi-party computation
compilers [49], in that it assumes the client knows all
private data. This assumption allows for single round
protocols, and the efficient non-interactive implementa-
tion of non-linear operations including joins.

ZQL Source
Query

Verifier
Code

Prover
Code

Data Source
code

Data Sources Client Service

Certified Data Certified Query
Results

Figure 1: ZQL in a privacy friendly computation system.

2 A Language for Private Data Processing

Why ZQL? We design ZQL to support privacy proto-
cols that rely on client-side computation while requiring
high integrity [35]. In this setting, a number of (possibly
independent) data sources provide signed personal data
items to a user. The signed data is then used as an input to
some computation performed on a user device on which
the operation of a service relies (for example billing for
a utility, determining the proximity of to a specific path,
or profiling the shopping habits of a user). The results
of the computation are then sent to the relying service,
while private input data is kept secret. The ZQL compiler
takes a high level description of the computation and is
responsible for producing the code executed by the data
sources to sign personal data, the computation prover and
the computation verifier, as illustrated in Figure 1.

It is assumed that communications take place over pri-
vate authenticated channels; the data sources are trusted
by all to maintain the privacy of the raw personal data
they produce, and to securely sign them. Given this,
our protocols guarantee integrity through cryptographic
proofs that establish the authenticity of the personal data
inputs and the correctness of a particular computation.
Thus, a malicious client cannot manipulate the result of
the computation. On the other hand, the private inputs
to the computations are kept secret by the user, and the
proofs do not leak anything about them. Thus, privacy is
preserved, and only the result of the computations (and
any inferences that can be drawn from them) become
known to the relying service. Compiling allows us to
statically verify the security of the resulting protocols us-
ing refinement types (see the full paper). Hence, both the
prover and the verifier, or anyone they trust, can sepa-
rately review the source query, compile the protocol, and
verify its security by typing.

There are advantages in de-coupling data sources from
specific computations. It allows for meters, or services
providing personal data, to remain simple, cheap, and
generic. In turn, the computations, such as billing, can be

2

USENIX Association 22nd USENIX Security Symposium 165

e ::= Expressions
| x variable
| op ẽ application
| let ρ = e in e let binding
| ↓ e declassification

op ::= Operators
| (,) | (, ,) | . . . tuples
| + | − | ∗ arithmetic
| = | ∧ boolean
| map (ρ → e) map iterator
| fold (ρ → e) fold iterator
| lookup ρ table lookup

τ ::= Types
| int [pub] security type
| ρ table table
| ρ lookuptable lookup table

ρ,θ ,Γ ::= ε | x : τ,ρ Tuple types

Figure 2: ZQL Syntax

updated without changing the devices that certify read-
ings. Finally, private computations can aggregate dis-
parate data sources that are not aware of one another, or
may not trust one another with the privacy or integrity of
the computations.

We first provide a brief description of our source lan-
guage and then illustrate its primitives through simple
examples. §7 provides larger examples of protocols that
have been proposed in the literature.

The ZQL language At its core, ZQL is a pure expres-
sion language, with built-in operators that act on integers
and tables. Figure 2 gives its abstract syntax. A query
θ → e consists of the declaration of input variables (θ)
that can be either public or private, and of an expression
body (e).

Expressions consist of variables, operators applied to
sub-expressions ẽ (including constants as a special case
when ẽ is empty), and let bindings for sequential com-
position. Expressions evaluate to tuples of values: for
example, the expression let x : int,y : int = e in e0 first
evaluates the sub-expression e to a pair of integers vx,vy,
then evaluates e0 after substituting vx and vy for x and y.

A variety of operators support arithmetic (0, 1, +, ∗),
booleans (=, ∧), and operations on tables (map, fold,
lookup). The iterators map and fold are parametrized
by a ZQL expression, conceptually acting as the body of
the corresponding loop. (We write these expressions as
functions, but they can only specialize the iterator; they
cannot be assigned to variables.)

Query inputs and expression results are specified us-
ing tuples of typed variables (θ for query inputs and ρ
for sub-expressions). Each base type can be marked as

public, and is otherwise treated as private. Types also in-
clude tables, where ρ indicates the type of each row in
the table. Tables can contain mixtures of public and pri-
vate columns; for example, (time:int pub, reading: int) table
is the type of tables of private readings indexed by pub-
lic times. On the other hand, the current ZQL compiler
does not attempt to hide the query definition itself, or the
number of rows in tables.

Intermediate expressions are automatically classified
as public or private, depending on the types of their vari-
ables, following a standard information flow discipline:
public inputs can flow to private results, but not the con-
verse. Alternatively, a ZQL expression can be explicitly
declassified, using the special operator ↓ e which speci-
fies that the result of e can be released to the verifier, and
marks it as public.

A ZQL query itself defines the privacy goals of the
synthesized zero-knowledge protocols. For example, a
query θ →↓ e, where e does not contain any declassi-
fication, states that only the final result of the query is
released, and that the protocol should not leak any side
information on inputs marked as private in θ . A key fea-
ture of the language is that the underlying cryptographic
mechanisms are totally hidden in the definition of the
ZQL query. Since the ZQL query defines what results
are declassified, it is important that users, or their prox-
ies, review it to ensure no more than the necessary in-
formation leaks from it. Additional privacy mechanisms,
such as differential privacy [37], could be used to mea-
sure or minimize any leakage resulting from the query
declassification.

The ZQL language is strongly typed, with a type sys-
tem simple enough to allow for automated type checking
and type inference, which means that the programmer
only has to write the input types of the query. We write
Γ � e : ρ to state that expression e has type ρ in environ-
ment Γ. The type system ensures both runtime safety: e
returns only to values of types ρ , and non-interference:
in the absence of declassification, e does not leak inputs
typed as private in Γ to results typed as public in ρ . The
type system can also be used to track the maximal length
of private variables to statically prevent arithmetic over-
flows. We omit the formal definition of the language
semantics and type system, which are standard. Inter-
nally, ZQL relies on a richer type system with refine-
ments types [14, 42] to keep track of various properties
and to structure our security proofs—see the full paper.

ZQL by example We present the ZQL language and
semantics through simple concrete examples, building to
fuller queries that address problems in the literature in §7.
The first example query computes the discriminant of the
polynomial xk2 + zk+ y, for public x and private y and z.

let discriminant (x:int pub) (y:int) (z:int) = ↓ (z∗z − 4∗x∗y)

3

166 22nd USENIX Security Symposium USENIX Association

Anticipating on its compilation, the part of the expres-
sion that is linear in the secrets, namely −4 ∗ x ∗ y, can
be proved efficiently through homomorphisms of Peder-
sen commitments, while the non-linear z ∗ z requires a
Σ-protocol to prove the correctness of the private multi-
plication. The ZQL compiler will choose to synthesize
the right proof mechanisms for each case.

The query declassifies its result, which leaks some in-
formation about y and z. For instance, given x = 30 and
discriminant x y z = 1000, if the verifier knows a priori that
0≤ y< 200 and 0≤ z< 200, then it can infer that (y,z) is
one of the pairs (5,40), (45,80), (75,100) or (155,140),
but our privacy theorem ensures that its does not learn
which pair was actually used.

Our next examples illustrate the use of tables and it-
erators map and fold. The first query computes the sum
of all integers in table X , while the second returns the
sum of their squares. The third query takes a table with a
public column and two secret columns and returns a table
with the same public column, and the element-wise sum
of the secret columns. By design, the size of the tables
is not hidden by ZQL. (Hiding table sizes naively would
involve padding the computation to the maximum size of
allowed tables, which would be very expensive.)

let sum of x (X : int table) =
↓ (fold ((s, x) →s + x) 0 X)

let sum of square (X : int table) =
↓ (fold ((s, x) →s + x∗x) 0 X)

let linear (T: (int pub ∗ int ∗ int) table) =
↓ (map ((a,x,y) →a, x+y) T)

In these queries, the iterators are parametrized by a sub-
query, which is applied to every row of the table, accu-
mulating the sums in s, or building another table of re-
sults. The equivalent SQL statements would be written
select SUM(x) from X, select SUM(x*x) from X, and se-

lect a, x+y from T. The first and third queries compute
linear combinations of secrets; we compile them without
the use of any expensive Σ-protocols.

We found sum queries to be frequent enough to jus-
tify some derived syntax: we write sum (ρ → e) T as
syntactic sugar for fold (s,ρ → s+ e) 0 T .

A key feature of the ZQL language is the ability to
perform lookups on input tables. This provides a lim-
ited form of join and enable the computation of arbitrary
functions with small domains. The expression lookup x T
finds a row x,v1, . . .vn in T that matches x, and returns
v1, . . . ,vn. From an information-flow viewpoint, the re-
sult of a lookup on a private variable is also private (even
if the lookup table is public); in that case, ZQL leaks
no information about which row is returned. If multi-
ple rows match x, the verifier is only able to assert that
any matching row was used. If no row matches x, a run-
time exception is raised on the prover side, and the proof
fails. This semantics allow the implementation of func-

tions, set membership tests, and half-joins.
To enable lookups, each row of the input table cur-

rently needs to be signed using a re-randomizable signa-
ture by a trusted source, so these tables are given a spe-
cial type (ρ lookuptable) and lookups on intermediate,
computed tables are not supported.

The example blur, listed below, repeatedly uses a
lookup to map private city identifiers to their respective
countries; the resulting table is then declassified.

let blur (X: int table) (F: (int ∗ int) lookuptable) =
↓ (map (city → lookup city F) X)

The equivalent SQL statement would be select F.country

from X, F where F.city = X.city. The query implementa-
tion relies on a data source that issues a signed table from
cities to countries.

3 Security

The next two sections provide rigorous security defini-
tions for what the ZQL compiler achieves and the crypto-
graphic building blocks it uses, necessary for formulating
our security theorems in §6. The mere fact that we can
give formal cryptographic definitions for a large class of
cryptographic protocols relies on our simple expression
language having a formal semantic for both source and
compiled programs. Readers interested in compiler ar-
chitecture can jump straight to §5, or those curious about
applications can find them in §7.

Notations Consider a well-typed ZQL source query
Q

�
= θ →↓ e, with � input variables θ = (xi : τi)i=0..�−1,

that declassifies only its result. As explained in §2, the
typed variables θ specify the data sources and privacy
policy. Let �T range over values of type θ , and R =Q(�T)
be the corresponding query result. Given Q, our com-
piler produces queries (S,(Ki,Di)i=0..�−1,P,V) with for-
mal parameters indicated in parentheses as follows. (We
use primed variables for compiled values.)

• S, the setup generator, generates global parameters
χ used by the commitment scheme;

• (Ki)i=0..�−1, the data sources key generation, gener-
ate key pairs ski,vki := Ki(χ) used to sign data and
verify their signatures;

• (Di)i=0..�−1, the data sources, extend and sign each
input: T ′

i := Di(χ,ski,Ti);

• P, the prover, produces an extended result from ex-
tended inputs: R′ := P(χ, �vk,�T ′);

• V, the verifier, returns either some source result
R := V(χ, �vk,R′) or a verification error.

Main Properties We first define functional correctness
when all participants comply with the protocol.

4

USENIX Association 22nd USENIX Security Symposium 167

Definition 1 (S,(Ki,Di)i=0..�−1,P,V) correctly imple-
ments the source query Q when, for any source inputs
�T : θ and χ := S, (ski,vki := Ki(χ))i=0..�−1, we have

V(χ, �vk,P(χ, �vk,Di(χ,ski,Ti)i=0..�−1)) = Q(�T).

We define privacy as indistinguishability between two
series of chosen inputs that yield the same query result.

Definition 2 Given a source query Q and an adver-
sary A , let AdvPriv

A = |2Pr[A wins]−1| where the event
‘A wins’ is defined by the following game:

(1) The challenger runs S and Ki to generate setup χ
and keys �sk, �vk; it provides χ and �vk to A .

(2) The adversary A provides two vectors of input data
�T 0 : θ and �T 1 : θ such that (a) they coincide on pub-
lic data and (b) Q(�T 0) = Q(�T 1).

(3) The challenger picks a random bit b, encodes the
corresponding inputs �T ′ := (Di(χ,ski,T b

i))i=0..�−1,
and generates R′ := P(χ, �vk,�T ′).

(4) Given R′, A returns his guess b′, and wins iff b= b′.

(S,(Ki)i=0..�−1,(D)i=0..�−1,P,V) is (t,ε)-private when,
for all A running at most for time t, we have AdvPriv

A ≤ ε .

Note that we do not formally provide privacy protection
against corrupted data sources. To strengthen our scheme
against data source attacks, we would have to rerandom-
ize all cryptographic material flowing from data sources
to verifiers, which precludes our efficient use of homo-
morphic commitments.

We define integrity as a game in which an adversary
has to produce an invalid but accepted response.

Definition 3 Given a source query Q and an adver-
sary A , let AdvSnd

A = Pr[A wins] where the event
‘A wins’ is defined by the following game:

(1) The challenger runs S and Ki to generate setup χ
and keys �sk, �vk; it provides χ and �vk to A .

(2) The adversary A can adaptively corrupt data
sources Di to get their signing keys ski and, at
the same time, it can obtain signed inputs T ′

i :=
Di(χ,ski,Ti) for source inputs Ti : τi of its choice.

(3) Valid results are source values R = Q(�T) such
that, for each i, either i was corrupted or Ti was
signed. The adversary wins if he outputs R′ such
that V (χ, �vk,R′) returns any invalid result R�.

(S,(Ki)i=0..�−1,(D)i=0..�−1,P,V) is (t,ε)-sound when,
for all A running at most for time t, we have AdvSnd

A ≤ ε .

Depending on the adversary, there can be zero, one,
or numerous valid responses. In fact, depending on the
query and the input tables, whether a response is valid
may not even be efficiently checkable. The definition is,
however, still meaningful.

4 Main Cryptographic Tools (Review)

Signatures A digital signature scheme allows every-
one in possession of the verification key vk to verify the
authenticity of data signed by the owner of the corre-
sponding signing key sk. We use signatures to let veri-
fiers authenticate data sources. Instead of signing private
data in the clear, data sources sign public commitments;
thus, the resulting signature tags are also public.

Cryptographic groups Besides conventional digital
signatures, for which we use standardized schemes, our
remaining cryptographic tools can either be specified for
composite order groups, obtained by computing modulo
an RSA modulus, or for prime order groups with a bi-
linear pairing. We use the latter for our presentation and
formal analysis as it offers both performance and con-
ceptual advantages.

Let G, Ĝ, and GT be groups of prime order q. Let
g ∈ G and ĝ ∈ Ĝ be generators of G and Ĝ respectively.
A bilinear pairing is an efficiently computable function
ê : G∗Ĝ→GT that is bilinear, i.e. ∀a,b∈Fq : e(ga, ĝb)=
e(g, ĝ)ab and non-degenerate, i.e. e(g, ĝ) �= 1. Whenever
possible we perform all operations in the base group G
with the shortest representation.

Commitments A commitment scheme allows a user to
commit to a hidden value such that he can reveal the com-
mitted value at a later stage. The properties of a commit-
ment scheme are hiding: the committed value must re-
main hidden until the reveal stage, and binding: the only
value which may be revealed is the one that was chosen
in the commit stage. We use the perfectly hiding commit-
ment scheme proposed by Pedersen [54]: given a group
G of prime order q with generators g and h, generate a
commitment Cx to x ∈ Fq by sampling a random opening
ox ← Fq and computing Cx = gxhox. The commitment is
opened by revealing both x and ox.

Two useful properties of Pedersen commitments are
(i) their homomorphic property that allows to derive a
commitment to the linear combination of input values;
and (ii) their algebraic structure that allows for efficient
zero-knowledge proofs. For RSA groups, we use com-
mitments with similar properties [43, 34].

Zero-knowledge proofs [59, 39, 11] provide a verify-
ing algorithm with an efficient means for checking the
truth of a statement by guaranteeing that given access
to a successful proof generation algorithm one can ex-
tract a secret witness for said truth. At the same time,
zero-knowledge proofs [47, 46], and the related concepts
of witness indistinguishable proofs [38, 32], allow the
prover to keep this witness secret. We make use of a
long line of work on efficient proofs of conjunctions of
discrete logarithm (DL) representations [57, 28, 52, 32,
30, 18, 26, 33, 50]. For non-linear computations such as

5

168 22nd USENIX Security Symposium USENIX Association

multiplication, we use the approach of Brands [18], Ca-
menisch [26], and Cramer and Damgård [31].

DL representation proofs are interactive protocols of
three or more messages. To ease deployment and min-
imize communications, we use the Fiat-Shamir Heuris-
tic [40] and replace random messages sent by the verifier
with hash function computations. The resulting proto-
cols can still be formally analyzed in the random oracle
model [12, 62].

Proof compatible signatures The combination of
zero-knowledge proofs and digital signatures allows us
to prove authentication properties on private data, such
as, for instance, the existence and properties of a match-
ing row when performing a private lookup.

We use CL signatures [20], as they are compatible
with DL representation proofs. The original scheme was
proven secure under the Strong RSA assumption and re-
quires groups with hidden order [6, 24]. Other CL signa-
ture proposals rely on a variety of assumptions based on
bilinear pairings [21, 17, 3, 25] and require more stan-
dard prime order DL-representation proofs. We also use
the scheme of [25], a good trade-off between security and
performance. An additional benefit is that it is syntacti-
cally very close to RSA-based CL signatures.

To certify our lookup tables, data sources extend each
row of the table with a CL signature. For instance,
tables of triples of private integers (x0,x1,x2) are ex-
tended to tables with rows of the form (x0,x1,x2,e,v,A).
The verification equations for RSA and bilinear pairing
based CL signatures are of the form Z = AeRx0

0 Rx1
1 Rx2

2 Sv

and ê(Z, ĝ) = ê(A,pk∗ge)ê(Rx0
0 Rx1

1 Rx2
2 Sv, ĝ) respectively,

where (Z,R0,R1,R2,S,pk) are group elements that form
the components of the verification key vk. Both verifi-
cation equations can be proven using efficient DL repre-
sentations. The security of these two schemes is based on
the strong RSA assumption and the strong Diffie-Hellman
(SDH) assumption respectively.

5 Compiler Architecture
Protocol Overview The ZQL compiler takes a source
query, which contains no cryptographic computations,
and automatically produces programs for each data
source, for the prover, and for the verifier.

First, the compiler augments the source query with
various cryptographic commitments to secrets and repre-
sentation equations to generate a shared translation that
will lead to both prover and verifier code. Some com-
mitments are computed and signed by the data sources
that certify the computation inputs, and simply passed to
the prover and verifier programs. Others, representing
intermediate secrets in the query, are interleaved with the
source computation: for any such secret x, the prover
may sample a secret opening ox, compute a Pedersen

commitment Cx =G gxhox, and send it to the verifier; and
the verifier may check it using a zero-knowledge proof.

Linear relations between secrets do not require com-
plex zero knowledge proofs, as they can be checked by
the verifier simply by using the homomorphisms of Ped-
ersen commitments. For example, a private sum z= x+y
will have commitment Cz =G Cx ∗Cy. Such commit-
ments need not be transmitted, as they can be recom-
puted by the verifier. On the other hand, non-linear re-
lations between secrets, including multiplication and ta-
ble lookup, require Σ-protocol proofs to be synthesized.
For instance, to prove that z is the product of a secret x
committed in Cx and a secret y, one proves the con-
junction of the representation equations Cx =G gxhox and
1 =G (Cx)

−ygzhoz. Note that the second equation uses a
variable commitment Cx as a base.

All Σ-protocols used in the compiler come down to
proving knowledge of the secret values underlying the
discrete logarithm representations of public group el-
ements, and equality relations between the secret val-
ues. Assume the ZQL query reduces to proving in zero-
knowledge the representations �C =G �e[x̃] of a number of
commitments �C, represented by public group elements,
using a number of secrets x̃ (including secret openings).
For the multiplication example above, we have two equa-
tions on five secrets: �C ≡ (Cx,1), x̃ ≡ (x,ox,y,z,oz)
and �e[(α,β ,γ,δ ,ε)] ≡ (gα ∗ hβ ,C−γ

x gδ hε). The zero-
knowledge protocol synthesized works as follows. The
prover

(1) samples a vector of random values t̃, one for each
secret in x̃; We call t̃ values the proof randomness;

(2) computes the challenge c = H(�e[t̃]);
(3) computes the responses r̃ = t̃ − c∗ x̃, for all secrets.

The proof sent to the verifier consists of the public pa-
rameters and values, the commitments �C, the global chal-
lenge c, and the responses r̃. The verifier checks that
H(�Cc ∗G�e[r̃]) = c, which ensures that the prover knows
the secret values in the commitments [40, 12]. As de-
tailed below, our compiled prover and verifier programs
introduce secrets and process equations on the fly, de-
pending on the query and its inputs.

Once the shared translation is decided, its specializa-
tion into prover and verifier code is relatively straight-
forward. It involves mainly ensuring the right data flows
within the query processing to compute all commitments
and responses, and to correctly verify them in the same
order. The inputs of the shared translation also deter-
mine the data source programs that generate keys, com-
pute commitments, and sign extended data.

Embedding cryptography within ZQL Our compiler
mostly operates within ZQL, with F# and C++ back-ends
to turn the compiled queries into executable code. This

6

USENIX Association 22nd USENIX Security Symposium 169

e ::= . . . Expressions
| assert ϕ;e static assertion

op ::= . . . Operators
| −1,0,1, . . . constants
| sample | random | div exponents (mod q)
| *G |=G| expG group operations
| ê : G∗ Ĝ → GT EC bilinear form
| extend | finalize cryptographic hash
| keygen | sign | verify plain signatures
| mapP | mapV
| foldP | foldV translated iterators

τ ::= . . . Types
| num | x opening | x rand exponents (mod q)
| eltG | x ox commitment group elements
| hash cryptographic hash
| tagi | ski | vki plain signatures

Figure 3: ZQL internal constructs

enables us to reason about code in a simple, domain-
specific language. To this end, Figure 3 supplements
the source language of Figure 2 with the types and op-
erators for expressing cryptographic operations. Expres-
sions are extended with assert, used in the shared trans-
lation to embed proof obligations. As an invariant, all
asserted equations ϕ must hold at runtime. We have
types and operations for integers modulo q (Fq, written
num), for group elements (eltG), and for bitstrings, and
more specific sub-types to keep track of their usage. For
instance, hash is the sub-type of bitstrings representing
cryptographic hashes, and xopening is a sub-type of num
tracking openings generated for the secret value x. In our
presentation, we use standard abbreviated forms for their
operations; for instance we often omit group parameters,
writing gx for expG g x.

Setup and Key Generation The abstract setup S pro-
duces global parameters χ supplied by our cryptographic
runtimes, including q, the prime order of G, Ĝ, and GT ;
and independent, random generators g, h, (Ri)i=0..n, S,
Z in G; and ĝ in Ĝ. Its fixed code is provided by our
cryptographic libraries.

We use DLT ⊆ 0..�− 1 to denote the subset of data
sources that sign lookup table. The key generation
Ki is defined as keygen χ when τi is a scalar or a ta-
ble (i /∈ DLT), and as the CL-key generation let sk =
sample() in sk,(ĝ)sk when τi is a lookup table (i ∈ DLT).
The data source code Di is explained below, as we dis-
cuss these two representations.

Shared Translation We extend the source query with
openings and commitments, but not yet with the corre-
sponding proof randomness and responses.

The main difficulty of the translation is to select cryp-
tographic mechanisms, and notably intermediate com-

mitments, to run the private computation: for every pri-
vate sub-expression, our compiled protocol may rely on
zero, one, or more Pedersen openings and commitments,
and it may allocate some proof randomness or not.

In this presentation, for simplicity, we give a formal
translation that assumes that all source private integer
variables are handled uniformally, with a commitment in
the same group, sharing the same bases, and (later) with
a proof randomness for the secret and for its opening.
Figure 4 and 5 show how we translate types and expres-
sions, respectively, in this special case. We discuss our
general, more efficient compilation scheme below.

A source expression is public in a typing environment
when all its free variables have public types. The trans-
lation leaves public types (1) and expressions (3) un-
changed. The translation of a private integer expression
is a triple of an integer for the source value, its opening,
and its commitment, with the types given on line (2).
Fresh commitments Our compilation rules may require
openings and commitments on their arguments, and may
not produce openings and commitments on their re-
sults. Our compiler attempts to minimize those cases.
Nonetheless, assuming for instance that we need a com-
mitment for z, we produce it on demand, using the ex-
pression abbreviation Commit z below

Commit z �
=

let oz : z opening = sample() in
let Cz : zoz commitment = gz ∗G hoz in
assert Cz = gz ∗G hoz;
z,oz,Cz

The translation is compositional, as can be seen on
lines (4,5,6) in the figure. For instance, we translate let
expressions by translating their two sub-expressions, and
we translate source maps to maps that operate on their
translated arguments.

The translation assumes prior rewriting of the source
query into simpler sub-expressions. For instance, to
compile the discriminant query of §2, we first introduce
intermediate variables for the private product and the de-
classification, rewriting expression ↓ (z∗z−4∗x∗y) into

ed
�
= let p = z∗ z in let d = p−4∗ x∗ y in ↓ d.

As a sanity check, our translation preserves typing, in
an environment extended with the constants used in our
cryptographic libraries; variants of this lemma with more
precise refinement types for the prover and verifier trans-
lation can be used to verify their privacy and integrity.

Lemma 1 (Typing the shared translation) Let Γ0
�
=

g,h,Z,R0, . . .Rn,S : eltG, ĝ,(pki)i∈DLT : eltĜ. If Γ � e : ρ ,
then Γ0, [[Γ]] � [[Γ � e]] : [[ρ]].

Next, we explain and illustrate the base cases of the
shared translation on private expressions.

7

170 22nd USENIX Security Symposium USENIX Association

[[x : τ{ϕ}]] = x : τ{ϕ} when τ is public; (1)

otherwise:

[[x : int{ϕ}]] = x : int{ϕ},
ox : x opening,
Cx : x ox commitment

(2)

[[ρ table]] = [[ρ]] table,s : tag

[[ρ lookuptable]] = (ρ,σ) table

σ = e : num,v : num,A : eltG
[[ε]] = ε

[[x : τ{ϕ},ρ]] = [[x : τ{ϕ}]], [[ρ]]

Figure 4: Shared translation of types and environments

Expressions affine in private variables are translated
by supplementing the expression with a linear expres-
sion on openings and an homomorphic product of com-
mitments (7); we easily check that the resulting triple
(z,oz,Cz) is such that Cz = gz ∗G hoz. Note that the public
constant a0 is not included in the opening computation.

Expressions polynomial in private variables are trans-
lated using an auxiliary representation equation for every
product of private expressions, depending on the avail-
ability of openings and commitments—see translation
rule (8). To illustrate affine and quadratic expressions,
let us translate the discriminant query θ → ↓(ed) where
the source environment θ = x : int pub,y : int,z : int spec-
ifies that x is public, whereas y and z are private. By
definition, the translated environment [[θ]] is

x : int pub,
y : int,oy : y opening,Cy : y oy commitment,
z : int,oz : z opening,Cz : z oz commitment

and, from the translation invariant, we already know that
Cy =G gyhoy and Cz =G gzhoz. Applying rules (4), (8), (7),
and (10) and inlining the definition of Commit we arrive
at the shared translation

let p, op , Cp =
let p = z∗z in
let o′ = oz∗ z in
assert 1 = (Cz)

z ∗G g−p ∗G h−o′ ; (E1)
let op = sample() in
let Cp = gp ∗G hop in
assert Cp = gp ∗G hop; (E2)
(p, op, Cp)

let d, od , Cd =
(p−4∗ x∗ y),(op−4∗ x∗oy),(Cp ∗C−4∗x

y)

↓ d

and we easily check that Cd is a commitment to z2 −4xy
with opening op−4x∗oy. The code of the shared transla-
tion makes explicit the two representation equations for
the private multiplication, presented more abstractly at
the beginning of §5. Anticipating on the next stages of

[[Γ � e]] = e when e is public (3)

[[Γ � x]] = [[Γ(x)]] otherwise

[[Γ � let ρ = e in e0]] = (4)

let [[ρ]] = [[Γ � e]] in [[Γ,ρ � e0]]

[[Γ � map (ρ → e)T]] = (5)

map ([[ρ]] → [[Γ,ρ � e]]) [[Γ � T]]
where Γ(T) = ρ table and Γ,ρ � e : ρ ′

[[Γ � fold (a : τ,ρ → e)a T]] = (6)

fold ([[a : τ,ρ]] → [[Γ,a : τ,ρ � e]])
[[Γ � a]] [[Γ � T]]

where Γ(T) = ρ table and Γ,a : τ,ρ � e : τ

[[Γ � a0 +∑n
i=1 ai ∗ xi]] = (7)

a0 +∑n
i=1 ai ∗ xi,

∑n
i=1 ai ∗oxi,

ga0 ∗G ∏n
G,i=1(Cxi)

ai

when the ai are public and the xi private

[[Γ � x∗ y]] = (8)

let p : int = x∗ y in
let o′ : num = ox∗ y in
assert 1 = (Cx)

y ∗G g−p ∗G h−o′ ;
Commit p
when x and y private

[[Γ � lookup x0 Ti]] = (9)

let x1, . . . ,xn,e,v,A = lookup x0 Ti in
let d,od,Cd = Commit (random()) in
let p = d ∗ e in
let o′ = od ∗ e in
assert 1 =G Cd

eg−ph−o′

let A′ = A∗h−d in
assert ê(Z, ĝ)ê(1/A′,pki) =GT

(∏n
i=0 ê(Ri, ĝ)xi)ê(A′, ĝ)e

ê(S, ĝ)vê(h, ĝ)pê(h,pki)
d

Commit x1, . . . ,Commit xn
where Γ(Ti) = (xi : int)i∈0..n−1 lookuptable

[[Γ �↓ x]] = ↓ x when x private (10)

Figure 5: Shared translation of typed source expressions

the translation, the prover will compute Cp, pass it to the
verifier, and extend its challenge computation with equa-
tion E2, whereas the verifier will receive some Cp and
use it to check this equation. Note that the cryptographic
overhead depends on the target level of privacy: given
instead a source environment θ declaring that x is also
private, the same discriminant expression would involve
representation proofs for two private products.

Private lookups are translated using proofs of knowl-
edge of signatures. To enable this, data sources extend
input tables T : ρ lookuptable, where ρ is of the form
x0 : int, . . . ,xn : int, into tables T ′ : (ρ,σ)table with a CL
signature at the end of each row, as follows:

8

USENIX Association 22nd USENIX Security Symposium 171

Di
�
= χ,sk,T → map (x0 . . . xn →

let e = random() in
let v = random() in
let A = (∏n

G,i=0 Ri
xi SvZ−1)

1
sk+e in

x0, . . ., xn, e, v, A)
T

Although this pre-processing may be expensive for large
tables, it can be amortized over many queries.

A lookup within a source query, such as the one from
the blur query of §2, is translated to a proof of posses-
sion of a CL signature. For instance, let us translate the
expression lookup c F in environment

ρ = F : (city : int,country : int) lookuptable,c : int.

The environment is first translated to

[[ρ]] = (city : int,country : int,σ)table,
c : int,oc : c opening,Cc : c oc commitment

The lookup itself is translated (using rule 9) to
[[Γ � lookup c F]]=

let country, e,v,A = lookup c F in
let d, od, Cd = Commit(random()) in
let p, o′ = d ∗ e, od ∗ e in
assert 1 =G Cd

eg−ph−o′ ;
let A′ = A∗h−d in
assert ê(Z, ĝ) · ê(1/A′,pki) =GT

ê(R0, ĝ)c · ê(R1, ĝ)country·
ê(A′, ĝ)e · ê(S, ĝ)v · ê(h, ĝ)p · ê(h,pki)

d ;
Commit country

This code first looks for a signed tuple (city,country,
e,v,A) in F such that c = city and retrieves the remaining
elements; it then proves knowledge of this tuple, without
revealing which tuple is used in the proof, by blinding
the element A of the signature. (Note that this proof in-
ternally relies on a proof of multiplication.)
Iterators and Committed Tables ZQL supports tables
with mixed public and private columns, as well as itera-
tors map and fold. To enable processing on their private
contents, data sources extend tables with commitments
and sign them. For instance, here is the code for the
provider of the table of cities for the blur query.

Di
�
= χ,sk,X →

let X ′ = map (x: int →Commit x) X in
let H = fold (H,x,ox,Cx →extend H Cx) H0 X ′ in
X ′, sign sk H

This code first uses map to extend each source inte-
ger with a fresh opening and commitment, using the
Commit abbreviation; this yield the extended table X ′

passed to the prover. It then uses fold to compute the
joint hash of these commitments, and finally signs the re-
sult. (In the hash computation, H0 is some fixed tag, and
we omit a conversion from eltG to hash). As outlined
at the end of this section, both the prover and the veri-
fier perform some initial processing for these extended

tables: the prover must show his knowledge of the repre-
sentation for these commitments, and the verifier must
verify the signature and the representation proofs for
these commitments.

We illustrate the translation of the map iterator (5) on
the blur query from §2. The translation of fold (6) is
similar. The map expression of blur is translated to an-
other map expression, in a translated environment that
provides the extended input X : [[x : int]] table:

[[Γ � map(c → lookup c F) X]] =
map (c,oc,Cc → [[Γ,c : int � lookup c F]])X

and the translation continues with the lookup expression,
as explained above.

Prover Translation Continuing from the result of the
shared translation, the prover translation uniformly turns
its assertions into a custom non-interactive Σ-protocol, in
two passes, written [[]]1 and [[]]2, that produce code first
for the message randomness, then for the responses.

Figure 6 defines these two passes, as well as the top-
level query translation [[]]PROVER that combines [[]]1
and [[]]2 with additional glue. Overall, the prover for a
source query θ → e is thus defined using this translation
after the shared translation: P �

= [[[[θ � e]]]]PROVER.
First-message translation In the first pass, H is the pub-
lic hash incrementally computing the global challenge;
a is the accumulated cryptographic evidence that will be
sent to the verifier; and every private variable x is re-
placed with a pair x, tx where tx is the proof random-
ness for x. (Openings are treated as any other secrets.)
In combination with the shared translation, every private
source expression becomes a tuple of the form [[[[e]]]]1 :
(x, tx,ox, tox,Cx) where x is the value of e, tx is the ran-
domness for x, ox is an opening for x, tox is the random-
ness for ox, and Cx is a commitment to x. For efficiency,
all these additional values are optional in our compiler.

Compositionally, the type translation [[ρ]]1 maps
shared environments to environments extended with an
entry for each proof randomness, and leaves the other en-
tries unchanged; the expression translation [[]]1 takes H
and a as free variables and returns their updated values of
the form extend . . . (extend H E1) ... En, with one exponen-
tial expression Ei for each assertion in e, and a, a1, . . .am

for each additional evidence a j produced by e.
We explain the main cases of the first-pass translation.

Public expressions are (still) unaffected. Note that they
may includes public expressions generated by the shared
translation, such as products of commitments. Affine pri-
vate expressions are translated homomorphically, adding
a corresponding linear expression on the proof random-
ness. Private exponential computations yields evidence
that must be communicated to the verifier; we add their
results to a. More complex private expression are supple-
mented with the sampling of a fresh message randomness

9

172 22nd USENIX Security Symposium USENIX Association

for their result—we rely on the assertions introduced by
the shared translation to prove those expressions.

Assertions of equations of the form eP = ex are trans-
formed into extensions of the global-challenge compu-
tation. The left-hand-side must be a public expression,
and is discarded. The right-hand-side must be an ex-
pression on private variables. Let et be the expressions
obtained by replacing each of theses variables x with tx.
The translation computes it, and extends H with the re-
sult. Declassifications are similarly translated: the de-
classified value x is added to a, and the hash is extended
with gtx to link it to its proof randomness (as if we were
translating assert gx=gx). Continuing with our example,
we give below the expression e1, obtained by translating
the shared-translation of the discriminant query, after re-
moving the unnecessary commitment Cd . (This code has
been rearranged for simplicity; the full code produced by
the translation rules appears in the full paper.)

let p = z∗z in
let tp = random() in
let o′ = oz ∗ z in
let to′ = random() in
let H = extend H ((Cz)

tz ∗G g−tp ∗G h−to′) in
let op = sample() in
let top = random() in
let Cp = gp ∗G hop in
let H = extend (extend H Cp) (gtp ∗G htop) in
let d = p−4∗ x∗ y in
let td = tp − 4 ∗ x ∗ ty in
let H = extend (extend H gd) gtd in
let a = a, (p,tp), (o′,to′), (op, top), Cp, d in
(H, a, d)

Response Translation In the second pass, after complet-
ing the computation of the global challenge c, we revisit
the collected evidence a, and we replace every pair of a
private value x and associated proof randomness tx with
the response rx = tx−c∗x. This pass is defined by induc-
tion on the type of a, produced by the first-message trans-
lation, which indicates where those pairs are. (Techni-
cally, this pass also needs to re-balance nested tuples, as
the prover produces (. . .(a0,a1),a2, . . . ,an) whereas the
verifier consumes (a0,(a1,(. . .an) . . .)); we omit those
details.) Continuing with the discriminant prover, the re-
sulting evidence a : δ binds the series of variables

(z, tz), (oz, toz), (p,tp), (o′,to′), (op, top), Cp, d

and thus [[δ]]2 simply computes the responses for the five
pairs of secret and associated proof randomness:

[[δ]]2
�
= let (z,tz), (oz,toz), (p,tp), (o′,to′), (op, top), Cp, d = a

let rz = tz − c∗ z
let roz = toz − c∗oz
let rp = tp − c∗ p
let r′o = to′ − c∗o′

let rop = top − c∗op
(rz, roz, rp, ro′ , rop, Cp, d)

Top-Level Prover Translation (P) We arrive at the fol-
lowing code for the prover, given here for the discrim-
inant query. (See Figure 6 for the general case.) This
prover relies on data sources extending both private
source inputs y and z with an opening, a commitment,
and a signature on that commitment

x, (y, oy, Cy, σy), (z, oz, Cz, σz) →
let H = extend (extend H0 Cy) Cz
let tz = random()
let toz = random()
let a = (z, tz), (oz, toz)
let H = extend H (gtz ∗G htoz)
let H, a: δ , d = [[[[θ]] � [[e]]]]1 // phase 1 detailed above
let c = finalize H in
let a = [[δ]]2 // phase 2 detailed above
(x, (Cy, σy), (Cz, σz), a, c)

In this code, H0 is the hash of all public values used as
bases in the Σ-protocol, [[θ]]D is the tuple type of the
(extended) provided data, and [[θ]]pub is an expression
that extracts their public parts (including the plain signa-
tures, excluding lookup tables). The type δ of the ad-
ditional evidence depends on the first-pass of the transla-
tion, and is used to drive the second part. In-between, the
final value H : hash is finalized into the global challenge
c : num. The last line assembles the message passed from
the prover to the verifier, which consists of (1) the public
parts of the input data and of the result; (2) the additional
evidence for proving this result; and (3) the global chal-
lenge for verifying this proof.

Verifier Translation Also following the shared trans-
lation, the prover translation leaves the public parts of
the query unchanged, and it incrementally re-computes
the challenge using the responses and additional evi-
dence prepared by the prover for the private parts of the
query. Figure 7 gives the compositional translation ap-
plied to the result of the shared translation, and the top-
level translation [[]]VERIFIER. In combination, the verifier
is defined as V �

= [[[[θ � e]]]]VERIFIER.
Compositional translation [[]]v In the verification pass,
H is the public hash incrementally re-computing the
global challenge, a is the received evidence consumed
by the verifier, and every private variable x is replaced
with a (public) response variable rx—the type translation
[[ρ]]v performs this replacement. In combination with the
shared translation, every private source expression now
yields a tuple of the form rx,rox,Cx where rx and rox are
(presumably) responses associated with the exponents
committed to Cx. (Again, all these values are actually
optional in the compiler.)

The verifier expression [[e]]v takes free variables H
and a, and additionally returns the updated H and the rest
of a. Public expressions are unchanged. Private expres-
sions are discarded, and replaced with response expres-
sions, either computed (for affine expressions) or read

10

USENIX Association 22nd USENIX Security Symposium 173

off the evidence a (for more complex expressions). Note
that the translation of affine expressions includes a term
−c∗a0 for the constant, to ensure that, given correct re-
sponses for its free variables, the translation of an expres-
sion also produces a correct response.

Assertions of equations of the form eP = ex are trans-
lated to hash computations, by computing the expression
(eP)

c ∗ er, where er is obtained from ex by replacing ev-
ery variable x with rx, and by extending H with the result.
Declassifications ↓ x are similarly translated by reading x
off the evidence a and extending the hash with gx+c∗rx .

For instance, continuing with the discriminant query,
the (simplified) verifier translation [[[[ρ]] � [[ed]]]]v is

let rp,ro′ ,rop, Cp, d, a = a in
let H = extend H ((Cz)

rz ∗G g−rp ∗G h−ro′) in
let H = extend (extend H Cp) ((Cp)

c ∗G grp ∗G hrop) in
let rd = rp − 4 ∗ x ∗ ry in
let H = extend (extend H gd) ((gd)c ∗G grd) in
(H, a ,d)

Top-Level Verifier We finally give below the top-level
verifier translation, also for our sample discriminant
query; see Figure 7 for additional details.

x, Cy, σy, Cz, σz, a, c →
verify vky Cy σy;
verify vkz Cz σz;
let H = extend (extend H0 Cy) Cz
let rz, roz, a = a in
let H = extend H Cc

z ∗G gr
z ∗G hroz in

let H, a, d = [[[[θ]] � [[e]]]]v in // translation detailed above
check c = finalize H;
d

The prover first verifies the signatures on the two re-
ceived commitments for y and z; it starts the challenge
re-computation on the representation equation for input z
(since we need a response for z an oz to check the proof
of the square z2), then proceeds with the verification for
the query expression; it checks that the received and re-
computed challenges match; it finally returns the public
result d (unless of course verify or check raised an error.)

6 Security Theorems
Consider a well-typed ZQL source query Q

�
= θ →↓ e,

with � input variables θ = (xi : τi)i=0..�−1, that declassi-
fies only its result and its translation (S,(Ki,Di)i=0..�−1,
P,V). We give our main results based on the definitions
of §3. We refer to the full paper for the proof outlines,
and for a discussion of automated, type-based verifica-
tion for the compiled protocols. For functional correct-
ness and soundness, we also suppose that there is no
source-program overflow—formally, integers and their
operations are computed modulo q.

Theorem 1 (Functional Correctness)
(S,(Ki,Di)i=0..�−1,P,V) is correct.

Theorem 2 (Perfect Privacy)
(S,(Ki,Di)i=0..�−1,P,V) is (t,0)-private.

Our soundness theorem below is in the random-oracle
model, requiring that extend and finalize are indepen-
dent random oracles. It assumes that the Discrete Loga-
rithm (DL) and Strong Diffie Hellman (SDH) assump-
tions hold—to guarantee the security of commitments
and CL signatures, respectively—and assuming that the
�CMA conventional signatures primitives of data-sources
are chosen message attack secure (CMA).

Theorem 3 (Computational Soundness)
(S,(Ki,Di)i=0..�−1,P,V) is (t,ε)-sound, where the
execution time t and success probability ε are respec-
tively lower- and upper-bounded by the corresponding
parameters of the assumptions.

Concretely, let tDL, tSDH , tCMA and εDL, εSDH , εCMA
be those parameters, for large enough bounds on the
number of calls to their primitives. If t < tCMA − tred1,
t < (tDL − tred2)/2, and t < (tSDH − tred3)/2, where the
tredi are small constants, then ε < �CMA · εCMA + Q ·
√

εDL +(�− �CMA) · εSDH +Q2/q, where Q is the num-
ber of random oracle queries made by A and q is the
order of G and thus also the size of the challenge.

In contrast with our privacy theorem, which is
information-theoretic, our concrete-security soundness
theorem is somewhat more cumbersome than the asymp-
totic security theorems often found in theoretical cryp-
tography, but it remains closer to reality, in which cryp-
tographic primitives come with concrete security bounds,
and thus provides guidance for configuring these primi-
tives to achieve adequate security.

7 ZQL applications
The expressivity of ZQL stems from the ease with which
the primitive operators can be composed to build larger
queries. We illustrate this by providing queries for appli-
cations in prior literature.

In the setting of smart metering, a meter issues signed
private readings, and a household needs to compute their
bill on the basis of a public tariff policy that maps each
reading to a fee over time. A number of custom privacy
protocols have been proposed to do this [55, 48]. One
such billing policy takes a table of public times and pri-
vate readings, as well as a lookup table from readings to
prices to be summed:

let smart meter bill
(R: (int pub ∗ int) table) // time, reading
(T: (int ∗ int) lookuptable) = // reading, fee
↓ (sum ((time, reading) → lookup reading T) R)

The query looks up the non-linear price of each reading
in the table T using lookup and sums the results.

11

174 22nd USENIX Security Symposium USENIX Association

Another popular application in the literature involves
pay-as-you-drive insurance schemes. Such schemes re-
quire drivers to fit a black box in their car that records
their driving habits, and allow the insurer to compute a
premium based on the safety of the driving, as well as
distance or time. The use of zero-knowledge protocols
to support such automotive settings, including road us-
age billing and tolling has been well established in the
literature [5, 61, 44].

An example policy used by a UK auto insurance pi-
lot scheme involves recording the segment of road trav-
elled, the distance and the speed and use those to sub-
tract “points” from a virtual driving license. Points are
linked to the magnitude of speed violations on the road
segments travelled. The insurance rate per mile is then
computed as a function of the points subtracted, up to
a threshold where the insurance becomes invalid. We
can express such a policy in ZQL using a table for the
recorded road segments used, and lookup tables to en-
code the speed limit of road segments, the penalty points
per magnitude of violation, and finally the insurance pre-
mium for a certain number of points:

let pay as you go
(Segments : (int ∗ int ∗ int ∗ int) table)
(Limits : (int ∗ int) lookuptable)
(Penalties : (int ∗ int) lookuptable)
(Rates : (int ∗ int) lookuptable) =
let points =

sum ((time, road, speed, miles) →
let limit = lookup road Limits
lookup (speed − limit) Penalties) Segments

let rate = lookup points Rates
let miles =

sum ((time, road, speed, miles) →miles) Segments
↓ (miles ∗ rate)

The pay as you go application makes extensive use of
lookup tables to simulate traditional database half-joins
between tables. The values of these tables are largely ar-
bitrary and related to the insurance policy. We note that
to fully secure this insurance mechanism, some informa-
tion about the start and end times of the segments must
also be signed by the black box and verified to avoid ma-
licious replays or omissions. We also note that, depend-
ing on policies, the query leaks information from indi-
vidual secret inputs to the computed premium. Securing
against source query leakage is beyond the remit of ZQL,
but could be achieved by adapting differentially private
schemes [36].

The final example illustrates how ZQL lookups can be
used to approximate functions on real numbers. A very
common problem in privacy preserving protocols for lo-
cation based services is to prove that the reading from a
trusted sensor is at a certain distance from a specific loca-
tion. For example privacy friendly theft prevention sys-
tem may need to periodically prove that a trusted reading

is within a certain distance from their (secret) home lo-
cation [56]. Similar protocols can be of use for offender
monitoring, curfew enforcement or tracking of trucks of
goods. Previous work has proposed zero-knowledge dis-
tance protocols, such as [15].

The gps distance protocol takes as secret inputs the
longitude and latitude of two points, as well as some
precomputed tables, and returns an approximation of the
distance between the two points in meters. The approxi-
mation used works for small distances under the assump-
tion that the curvature of the earth is negligible. It still
requires the computation of the trigonometric function
cos(x/2). To achieve this, we assume the input longitude
and latitudes are in the units rad/105, and that interme-
diate computations are precise to two decimal points.

let gps distance (lat1: int) (lon1: int) (lat2: int) (lon2: int)
(hcos: (int ∗ int) lookuptable)
(red: (int ∗ int) lookuptable)
(dist: (int ∗ int) lookuptable) =

let latsum = lat1 + lat2
// Table: hcos(x) = round(cos((x)/2 ·105) ·102)
let hc = lookup latsum hcos
let dlat = lat2 − lat1
let dlon = lon2 − lon1
let lon cos = dlon ∗ hc
// Table: red(x) = round(x/102)in(rad/105)2

let r2 = lookup lon cos red
let squares = dlat∗dlat + r2
// Table: dist(x) = round(

√
x ·R/105)

// where R is earth’s radius (meters).
↓ (lookup squares dist)

In this example, lookups are used to approximate real
functions, including trigonometric functions and division
which is not yet natively supported. The hcos table has a
large domain (∼ 1 million items) but can be reused across
multiple operations. Other tables have a relatively small
domain related to the distances of the points compared.

8 Discussion

Prototype implementation & limitations Our com-
piler uses the language development and testing facili-
ties of F#: we program source queries as (a small sub-
set of) F#, then extract the ZQL abstract syntax tree
(AST) through reflection. The compilation pipeline per-
forms ZQL type-checking, applies the shared translation,
and finally produces the data-source, prover and verifier
code. Each of these steps operates on well-typed ZQL
expressions. This enables us to share many optimizations
as ZQL-to-ZQL transformations.

Besides standard optimizations, the compiler supports
a more general variant of lookup primitive, named find,
that returns any lookup-table row that meets a condition
expressed as a boolean expression on the whole content

12

USENIX Association 22nd USENIX Security Symposium 175

of the row. This provides more flexibility on the use of
lookup tables, but its compilation is more complex.

In addition to cryptographic code, ZQL also synthe-
sizes a custom marshaller and un-marshaller for the cryp-
tographic evidence and results of the query. Following
the ZQL approach, this code is specialized and compiled
for a specific proof. Hence, the size and location of all
fields, parametrized on the input table lengths, in known
at compile time and there is no need to rely on a general-
purpose parser, a component that is traditionally a source
of security flaws.

We support three distinct compiler back-ends:

Concrete F# The main branch of the compiler trans-
forms and compiles the final ZQL data source, prover
and verifier into F# code, linked either to the standard
.NET big integer libraries, or to proprietary managed li-
braries that support pairing based cryptography.

Symbolic F# The second branch of the compiler is
linked against symbolic execution libraries for all the op-
erators and primitives. Interestingly, since the F# branch
makes extensive use of abstract types in the final prover
and verifier, there is no need to write a separate symbolic
execution environment: the mathematical functions can
simply be replaced with equivalents computing on sym-
bolic polynomials. The resulting code jointly computes
the execution time and the proof size, as polynomial ex-
pressions of the input lengths and the unit costs of each
cryptographic operation. We use symbolic execution to
predict the performance of the compiler, and hope to use
it in the future to chose between alternative optimization
strategies at compile time.

Concrete C++ Finally, we support compilation of the
verifier to native C++ code, linked with high perfor-
mance native big integer libraries. This branch in-
volves transforming the functional ZQL verifier and un-
marshaller code into an imperative program and optimiz-
ing it using standard low-level techniques such as remov-
ing dead code, removing spurious copies, and minimiz-
ing memory re-allocations. The resulting native program
takes a proof as an input, and outputs the verified result.
The native branch does not support on-the-fly compila-
tion and execution, and currently works for RSA groups
only. Yet the resulting binary can be easily deployed
where .NET runtimes are not available.

The process of compiling a query remains fast even on
small devices. Thus, a service could simply send ZQL
queries to the user, to be reviewed, compiled, then ex-
ecuted locally. To this end, our compiler also has an
API that takes source ZQL ASTs, compiles them to F#,
then also compiles and dynamically load the resulting F#
code. This is likely to be faster, cheaper, safer and more
reliable than providing custom binaries every time the
query is updated.

The prototype compiler is still subject to limitations.
For instance, some optimizations, such as moving de-
classifications up in the dataflow to minimize the size of
the Σ-protocol, or batching some exponential computa-
tions, could be systematically applied.

Performance Evaluation Table 1 illustrates the per-
formance of ZQL code for the three applications pre-
sented in Section 7. It provides the execution time for the
F# provers and verifiers, as well as the size of the proof,
for different security parameters of RSA (1024 bits, 2048
bits) and the pairing based cryptography over a 254 bits
Barreto-Naehrig curve (BN254). The smart meter bill
readings table is of size �read = 5 and the pay as you go
query road segments table is of size �seg = 25. This

means that for the 1024 bit RSA branch, the prover can
process a meter reading every ∼ 120mS or a segment
of road every ∼ 360mS. The proof size for the pair-
ing based branch is ∼ 755 bytes per reading and ∼ 1921
bytes per segment. As expected, the pairing based proofs
are more compact than their RSA counterparts for the
same or even higher levels of security: a 254 bits curve
provides about 128 bits of security which would corre-
spond to a 3072 bits RSA modulus.1 This is further ag-
gravated by the lack of tightness in RSA-based security
reductions [8]. Prover timings take into account the gen-
eration of random numbers. We note that these numbers,
while slow by the standards of non-privacy friendly com-
putation, are perfectly adequate for computing bills and
insurance premiums in real time.

Besides the main F# backend we experimented with
a C++ back-end that compiles to a native verifier. Al-
though more performant in absolute terms, the native
verifier is not significantly faster than its F# counterpart.
The RSA 1024 bit computation of the pay as you go ver-
ifier took 4,290mS as compared with the F# backend us-
ing native big integer binding that took 5,111mS. Pro-
filing the C++ execution indicates that more than 90%
of the time is spent inside the modular multiplication
function performing exponentiations. Thus, improving
the performance of ZQL comes down to either faster ex-
ponentiations (through batching, multi-exponentiation or
hardware) or reducing the number of operations required
through more aggressive simplification of the protocols.

Finally, table 1 illustrates the output of the symbolic
execution engine on these three applications, in a config-
uration that measures the number of exponentiations (E),
pairings (ê), and signature verification operations (sigv)
in terms of the length of the input tables (�read and �seg),
and ignore all other costs.

Where next? The current ZQL language is subject to
some intrinsic limitations, and we are actively exploring
options to overcome them.

1http://www.cryptopp.com/wiki/Security_Level

13

176 22nd USENIX Security Symposium USENIX Association

Examples (branch) prover (mS) verifier (mS) proof size (Bytes)
smart meter bill (1024) 586 599 6,106
smart meter bill (2048) 3,498 3,148 10,585
smart meter bill (BN254) 1,374 2,092 3,773

smart meter bill (symbolic)
E+16 ·E · �read+

6 · �read · ê
6 ·E+14 ·E · �read+

8 · �read · ê+ sigv

67+ |h|+ |sig|+2 · �Ga+
�Ga · �read +22 · �read+
2 · �read ·q+num+7 ·q

pay as you go (1024) 5,314 5,111 57,368
pay as you go (2048) 32,442 30,859 100,099
pay as you go (BN254) 8,305 12,261 28,819

pay as you go (symbolic)
15 ·E+40 ·E · �seg+

12 · �seg · ê+6 · ê
29 ·E+35 ·E · �seg+

16 · �seg · ê+8 · ê+ sigv

167+ |h|+ |sig|+6 · �Ga+
4 · �Ga · �seg +56 · �seg+
8 · �seg ·q+num+23 ·q

gps dist (1024) 501 529 5044
gps dist (2048) 3,017 2,889 8629
gps dist (BN254) 841 1,253 2751

gps dist (symbolic) 60 ·E+18 · ê 71 ·E+24 · ê+4 · sigv
233+ |h|+4 · |sig|+

10 · �Ga +33 ·q

Table 1: Performance for our three applications: runtime, and communicated proof sizes. The smart meter bill readings table is
of size �read = 5, the pay as you go query road segments table is of size �seg = 25, the gps distance is between two points.

Many of the limitations are cryptographic and could
be overcome by applying more advanced protocols. For
example, lookup and find are currently restricted to ex-
ternally signed tables. Lookup tables based on accumu-
lators [13] or vector commitments [27] would be more
flexible and may reduce cost. At a lower level, table
processing leads to many similar cryptographic opera-
tions in a data-parallel style. Batch proof and verification
techniques and homomorphic signature schemes could
speed them up [10]. Well known, zero-knowledge proofs
for disjunctions, would allow ZQL branching statements.
The shared translation could bundle multiple secrets per
commitment. Alternatively one could also employ com-
pletely different low-level proof engines, e.g., [53]. We
note that choosing automatically the best encoding and
technique, as well as compiling them in a compositional
manner are challenging open problems. For some pre-
liminary work in this direction see [41].

On the language design side, we illustrated in §7 how
functions can be approximated though lookups. ZQL
could automate and optimize the process by compiling
data sources that calculate and sign function-tables ap-
propriately. Finally, by design, our source language
shields programmers from cryptography, and this may
hinder power-users that wish to customize our compila-
tion scheme, or experiment with its variants. Similarly,
some users may wish to rely on external, unverified pro-
cedures, and use ZQL only to validate their results. Ad-
vanced APIs exposing the internals of the ZQL compiler
without breaking its invariants would help them.

Acknowledgments The authors would like to thank
Ian Goldberg for early discussions of languages for zero-
knowledge proofs and the advantages of compilation ver-
sus interpretation, and Nikhil Swamy for his comments.

References

[1] J. A. Akinyele, M. D. Green, and A. D. Rubin. Charm: A frame-
work for rapidly prototyping cryptosystems. Cryptology ePrint
Archive, Report 2011/617, 2011.

[2] J. B. Almeida, M. Barbosa, E. Bangerter, G. Barthe, S. Krenn,
and S. Z. Béguelin. Full proof cryptography: verifiable compi-
lation of efficient zero-knowledge protocols. In ACM Confer-
ence on Computer and Communications Security, pages 488–
500, 2012.

[3] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA.
In R. D. Prisco and M. Yung, editors, SCN 2006, volume 4116 of
LNCS, pages 111–125, Maiori, Italy, 2006. Springer.

[4] M. Backes, M. Maffei, and K. Pecina. Automated synthesis of
privacy-preserving distributed applications. 19th Annual Network
& Distributed System Security Symposium (NDSS12), 2012.

[5] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and
C. Geuens. PrETP: Privacy-preserving electronic toll pricing. In
USENIX Security Symposium, pages 63–78, 2010.

[6] E. Bangerter, J. Camenisch, and U. M. Maurer. Efficient proofs
of knowledge of discrete logarithms and representations in groups
with hidden order. In Public Key Cryptography, pages 154–171,
2005.

[7] E. Bangerter, T. Briner, W. Henecka, S. Krenn, A.-R. Sadeghi,
and T. Schneider. Automatic generation of sigma-protocols. In
EuroPKI, pages 67–82, 2009.

[8] E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, and J.-
K. Tsay. On the design and implementation of efficient zero-
knowledge proofs of knowledge. ECRYPT workshop on Soft-
ware Performance Enhancements for Encryption and Decryption
and Cryptographic Compilers (SPEED-CC ’09), 2009.

[9] E. Bangerter, S. Krenn, A.-R. Sadeghi, and T. Schneider. Yaczk:
Yet another compiler for zero-knowledge. In USENIX Security
Symposium, 2010.

[10] S. Bayer and J. Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In EUROCRYPT, pages 263–280, 2012.

[11] M. Bellare and O. Goldreich. On defining proofs of knowledge.
In CRYPTO, pages 390–420, 1992.

[12] M. Bellare and P. Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In ACM Conference
on Computer and Communications Security, pages 62–73, 1993.

[13] J. C. Benaloh and M. de Mare. One-way accumulators: A de-
centralized alternative to digital sinatures (extended abstract). In

14

USENIX Association 22nd USENIX Security Symposium 177

EUROCRYPT, pages 274–285, 1993.
[14] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and

S. Maffeis. Refinement types for secure implementations. In
21st IEEE Computer Security Foundations Symposium (CSF’08),
pages 17–32, 2008.

[15] T. S. Benjamin. Zero-knowledge protocols to prove distances.
Personal communication, 2008.

[16] K. Bhargavan, C. Fournet, and A. D. Gordon. F7: refinement
types for F#, 2008. Microsoft Research Technical Report.

[17] D. Boneh, X. Boyen, and H. Shacham. Short group signatures.
In CRYPTO, pages 41–55, 2004.

[18] S. Brands. Rapid demonstration of linear relations connected by
boolean operators. In EUROCRYPT, pages 318–333, 1997.

[19] T. Briner. Compiler for zero-knowledge proof-of-knowledge pro-
tocols. Master thesis, ETH Zurich & IBM Research Lab Zurich,
2004.

[20] J. Camenisch and A. Lysyanskaya. A signature scheme with effi-
cient protocols. In SCN, pages 268–289, 2002.

[21] J. Camenisch and A. Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In CRYPTO, pages 56–72,
2004.

[22] J. Camenisch and M. Stadler. Efficient group signature schemes
for large groups. In B. Kaliski, editor, Advances in Cryptology —
CRYPTO ’97, volume 1296 of LNCS, pages 410–424. Springer
Verlag, 1997.

[23] J. Camenisch and E. Van Herreweghen. Design and implementa-
tion of the idemix anonymous credential system. Technical Re-
port Research Report RZ 3419, IBM, May 2002.

[24] J. Camenisch, A. Kiayias, and M. Yung. On the portability of
generalized schnorr proofs. In EUROCRYPT, pages 425–442,
2009.

[25] J. Camenisch, M. Kohlweiss, and C. Soriente. Solving revocation
with efficient update of anonymous credentials. In SCN, pages
454–471, 2010.

[26] J. L. Camenisch. Group Signature Schemes and Payment Sys-
tems Based on the Discrete Logarithm Problem. PhD thesis, ETH
Zürich, 1998. Diss. ETH No. 12520, Hartung Gorre Verlag, Kon-
stanz.

[27] D. Catalano and D. Fiore. Vector commitments and their appli-
cations. Cryptology ePrint Archive, Report 2011/495, 2011.

[28] D. Chaum and T. P. Pedersen. Wallet databases with observers.
In CRYPTO, pages 89–105, 1992.

[29] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[30] R. Cramer. Modular Design of Secure yet Practical Crypto-
graphic Protocols. PhD thesis, University of Amsterdam, 1997.

[31] R. Cramer and I. Damgård. Zero-knowledge proofs for finite field
arithmetic; or: Can zero-knowledge be for free? In CRYPTO,
pages 424–441, 1998.

[32] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In
CRYPTO, pages 174–187, 1994.

[33] I. Damgård. On Σ-protocols, 2002. Available at http://www.
daimi.au.dk/~ivan/Sigma.ps.

[34] I. Damgård and E. Fujisaki. An integer commitment scheme
based on groups with hidden order. IACR Cryptology ePrint
Archive, 2001:64, 2001.

[35] G. Danezis and B. Livshits. Towards ensuring client-side compu-
tational integrity. In CCSW, pages 125–130, 2011.

[36] G. Danezis, M. Kohlweiss, and A. Rial. Differentially private
billing with rebates. In Information Hiding, pages 148–162,
2011.

[37] C. Dwork. Differential privacy: A survey of results. Theory and
Applications of Models of Computation, pages 1–19, 2008.

[38] U. Feige and A. Shamir. Witness indistinguishable and witness
hiding protocols. In STOC, pages 416–426, 1990.

[39] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of iden-
tity. In STOC, pages 210–217, 1987.

[40] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–
194, 1986.

[41] M. Fredrikson and B. Livshits. Z0: An optimizing distributing
zero-knowledge compiler. 2013. MSR Technical report.

[42] T. Freeman and F. Pfenning. Refinement types for ML. In
Programming Language Design and Implementation (PLDI’91),
pages 268–277. ACM, 1991.

[43] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols
to prove modular polynomial relations. In CRYPTO, pages 16–
30, 1997.

[44] F. D. Garcia, E. R. Verheul, and B. Jacobs. Cell-based roadpric-
ing. In EuroPKI, pages 106–122, 2011.

[45] I. Goldberg. Natural zero-knowledge embedding in c++. Personal
communication, October 2011.

[46] O. Goldreich, S. Micali, and A. Wigderson. How to prove all
np-statements in zero-knowledge, and a methodology of crypto-
graphic protocol design. In CRYPTO, pages 171–185, 1986.

[47] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):
186–208, 1989.

[48] M. Jawurek, M. Johns, and F. Kerschbaum. Plug-in privacy for
smart metering billing. In PETS, pages 192–210, 2011.

[49] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure
two-party computation system. In USENIX Security, pages 287–
302, 2004.

[50] U. M. Maurer. Unifying zero-knowledge proofs of knowledge.
In B. Preneel, editor, AFRICACRYPT, volume 5580, pages 272–
286. Springer, 2009.

[51] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyan-
skaya. ZKPDL: A language-based system for efficient zero-
knowledge proofs and electronic cash. In USENIX Security Sym-
posium, pages 193–206, 2010.

[52] T. Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In CRYPTO, volume 740,
pages 31–53. Springer, 1992.

[53] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symposium on
Security and Privacy, 2013.

[54] T. P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO ’92, volume 576 of LNCS,
pages 129–140, 1992.

[55] A. Rial and G. Danezis. Privacy-preserving smart metering. In
WPES, pages 49–60, 2011.

[56] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno.
Privacy-preserving location tracking of lost or stolen devices:
Cryptographic techniques and replacing trusted third parties with
dhts. In 17th USENIX Security Symposium, pages 275–290, 2008.

[57] C.-P. Schnorr. Efficient signature generation by smart cards. J.
Cryptology, 4(3):161–174, 1991.

[58] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and
J. Yang. Secure distributed programming with value-dependent
types. In ICFP, pages 266–278, 2011.

[59] M. Tompa and H. Woll. Random self-reducibility and zero
knowledge interactive proofs of possession of information. In
FOCS, pages 472–482, 1987.

[60] C. Troncoso, G. Danezis, E. Kosta, and B. Preneel. PriPAYD:
privacy friendly pay-as-you-drive insurance. In P. Ning and T. Yu,
editors, WPES, pages 99–107. ACM, 2007.

[61] C. Troncoso, G. Danezis, E. Kosta, J. Balasch, and B. Preneel.
Pripayd: Privacy-friendly pay-as-you-drive insurance. IEEE
Trans. Dependable Sec. Comput., 8(5):742–755, 2011.

[62] H. Wee. Zero knowledge in the random oracle model, revisited.
In ASIACRYPT, pages 417–434, 2009.

15

178 22nd USENIX Security Symposium USENIX Association

First stage: [[x : τ,ρ]]1 = x : τ, [[ρ]]1 when x public (including all group elements)

[[x : τ,ρ]]1 = x : τ, tx : x witness, [[ρ]]1 when x private int or num

[[Γ � e]]1 = H,a,e when e public expression, that is, whose variables are all public in Γ.

[[Γ � e]]1 = let C = e in extend H C,(a,C),C when Γ � e : eltG and e is not public

[[Γ � a0 +∑n
i=1 ai ∗ xi]]1 = H,a,a0 +∑n

i=1 ai ∗ xi,∑n
i=1 ai ∗ txi

when the xi are private and the ai public:
(Γ(ai) = pub num)i=0..n,(Γ(xi) = num)i=1..n

[[Γ � e]]1 = let a,ρ = e in (let txi = random() in)xi
H,(a, [[ρ]]1), [[ρ]]1

when Γ � e : ρ non-linear private expression (including assoc, random, opening...)
and xi ranges over the private variables bound in ρ

[[Γ � assert eC =G ex]]1 = extend H et ,a,ε when eC public and ex algebraic on private exponents

[[Γ �↓ x]]1 = let a = a,x in extend (extend H gx) gtx ,a,x

[[Γ � let ρ = e in e0]]1 = let H,a, [[ρ]]1 = [[Γ � e]]1 in [[Γ,ρ � e0]]1

Second stage: [[δ ,ρ]]2 = let a, [[ρ]]1 = a in [[δ]]2, [let rx = tx − c∗ x in]x [[ρ]]v
where x ranges over the private variables bound in ρ

[[δ ,δ ′ table]]2 = let a,A = a in [[δ]]2,map (δ ′ → [[δ ′]]2)A

[[ε]]2 = ε

[[θ → e]]PROVER = [[θ]]D →
let H = H0 in let a = () in
// hash and prove commitments for all private inputs (omitted)
let H : hash,a : δ ,r = [[θ � e]]1 in
let c = finalize H in
[[θ ,r]]pub, [[δ]]2,c

Figure 6: Prover Translation (see full paper for map and fold)

[[x : τ,ρ]]v = x : τ, [[ρ]]v when x public (including all group elements)

[[x : τ,ρ]]v = rx : (c,x) response, [[ρ]]v when x private

[[Γ � e]]v = H,a,e when e public expression, that is, whose variables are all public in Γ.

[[Γ � e]]v = let C,a = a in extend H C,a,C when Γ � e : eltG and e is not public

[[Γ � a0 +∑n
i=1 ai ∗ xi]]v = H,a,−c∗a0 +∑n

i=1 ai ∗ rxi
when the xi are private and the ai public:
(Γ(ai) = pub num)i=0..n,(Γ(xi) = num)i=1..n

[[Γ � e]]v = let a, [[ρ]]v = a in H,a, [[ρ]]v
when Γ � e : ρ non-linear private-exponent expression (including assoc, random, opening...)
and ρ binds private exponents and public elements

[[Γ � assert eC =G ex]]v = extend H ((eC)
c ∗G [[ex]]v),a,ε when ex algebraic on private exponents

[[Γ �↓ x]]v = let x,a = a in
extend (extend H gx) gc∗x+rx ,a,x

[[Γ � let ρ = e in e0]]v = let H,a, [[ρ]]v = Γ � [[e]]1 in [[Γ,ρ � e0]]v

[[θ → e]]VERIFIER = [[θ ,r]]pub′ ,a,c →
// check plain signatures, hash commitments into H,
// and check commitment proofs for all private inputs (omitted)
let H = H0 in
let H,a,r = [[Γ � e]]v in
check c = finalize H;
r

Figure 7: Verifier Translation (see full paper for map and fold)

16

USENIX Association 22nd USENIX Security Symposium 179

DupLESS:

Server-Aided Encryption for Deduplicated Storage

Mihir Bellare

University of California, San Diego

Sriram Keelveedhi

University of California, San Diego

Thomas Ristenpart

University of Wisconsin–Madison

Abstract

Cloud storage service providers such as Dropbox, Mozy,

and others perform deduplication to save space by only

storing one copy of each file uploaded. Should clients

conventionally encrypt their files, however, savings are

lost. Message-locked encryption (the most prominent

manifestation of which is convergent encryption) re-

solves this tension. However it is inherently subject

to brute-force attacks that can recover files falling into

a known set. We propose an architecture that pro-

vides secure deduplicated storage resisting brute-force

attacks, and realize it in a system called DupLESS. In

DupLESS, clients encrypt under message-based keys ob-

tained from a key-server via an oblivious PRF protocol.

It enables clients to store encrypted data with an exist-

ing service, have the service perform deduplication on

their behalf, and yet achieves strong confidentiality guar-

antees. We show that encryption for deduplicated storage

can achieve performance and space savings close to that

of using the storage service with plaintext data.

1 Introduction

Providers of cloud-based storage such as Dropbox [3],

Google Drive [7], and Mozy [63] can save on storage

costs via deduplication: should two clients upload the

same file, the service detects this and stores only a sin-

gle copy. The savings, which can be passed back directly

or indirectly to customers, are significant [50,61,74] and

central to the economics of the business.

But customers may want their data encrypted, for rea-

sons ranging from personal privacy to corporate policy

to legal regulations. A client could encrypt its file, under

a user’s key, before storing it. But common encryption

modes are randomized, making deduplication impossi-

ble since the SS (Storage Service) effectively always sees

different ciphertexts regardless of the data. If a client’s

encryption is deterministic (so that the same file will al-

ways map to the same ciphertext) deduplication is pos-

sible, but only for that user. Cross-user deduplication,

which allows more storage savings, is not possible be-

cause encryptions of different clients, being under dif-

ferent keys, are usually different. Sharing a single key

across a group of users makes the system brittle in the

face of client compromise.

One approach aimed at resolving this tension is

message-locked encryption (MLE) [18]. Its most promi-

nent instantiation is convergent encryption (CE), in-

troduced earlier by Douceur et al. [38] and others

(c.f., [76]). CE is used within a wide variety of com-

mercial and research SS systems [1, 2, 5, 6, 8, 12, 15, 32,

33, 55, 60, 66, 71, 78, 79]. Letting M be a file’s contents,

hereafter called the message, the client first computes a

key K ← H(M) by applying a cryptographic hash func-

tion H to the message, and then computes the ciphertext

C ← E(K,M) via a deterministic symmetric encryption

scheme. The short message-derived key K is stored sep-

arately encrypted under a per-client key or password. A

second client B encrypting the same file M will produce

the same C, enabling deduplication.

However, CE is subject to an inherent security limita-

tion, namely susceptibility to offline brute-force dictio-

nary attacks. Knowing that the target message M un-

derlying a target ciphertext C is drawn from a dictio-

nary S = {M1, . . . ,Mn} of size n, the attacker can recover

M in the time for n = |S| off-line encryptions: for each

i = 1, . . . ,n, it simply CE-encrypts Mi to get a ciphertext

denoted Ci and returns the Mi such that C = Ci. (This

works because CE is deterministic and keyless.) Security

is thus only possible when the target message is drawn

from a space too large to exhaust. We say that such a

message is unpredictable.

Bellare, Keelveedhi, and Ristenpart [18] treat MLE

formally, providing a definition (semantic-security for

unpredictable messages) to capture the best possible se-

curity achievable for MLE schemes in the face of the in-

herent limitation noted above. The definition is based

1

180 22nd USENIX Security Symposium USENIX Association

on previous ones for deterministic encryption, a primi-

tive subject to analogous inherent limitations [16,17,27].

The authors go on to show that CE and other mechanisms

achieve their definition in the random-oracle model.

The unpredictability assumption. The above-mentioned

work puts security on a firm footing in the case messages

are unpredictable. In practice, however, security only for

unpredictable data may be a limitation for, and threat to,

user privacy. We suggest two main reasons for this. The

first is simply that data is often predictable. Parts of a

file’s contents may be known, for example because they

contain a header of known format, or because the adver-

sary has sufficient contextual information. Some data,

such as very short files, are inherently low entropy. This

has long been recognized by cryptographers [43], who

typically aim to achieve security regardless of the distri-

bution of the data.

The other and perhaps more subtle fear with regard to

the unpredictability assumption is the difficulty of vali-

dating it or testing the extent to which it holds for “real”

data. When we do not know how predictable our data

is to an adversary, we do not know what, if any, secu-

rity we are getting from an encryption mechanism that is

safe only for unpredictable data. These concerns are not

merely theoretical, for offline dictionary attacks are rec-

ognized as a significant threat to CE in real systems [77]

and are currently hindering deduplication of outsourced

storage for security-critical data.

This work. We design and implement a new system

called DupLESS (Duplicateless Encryption for Simple

Storage) that provides a more secure, easily-deployed

solution for encryption that supports deduplication. In

DupLESS, a group of affiliated clients (e.g., company

employees) encrypt their data with the aid of a key server

(KS) that is separate from the SS. Clients authenticate

themselves to the KS, but do not leak any information

about their data to it. As long as the KS remains in-

accessible to attackers, we ensure high security. (Ef-

fectively, semantic security [43], except that ciphertexts

leak equality of the underlying plaintexts. The latter is

necessary for deduplication.) If both the KS and SS are

compromised, we retain the current MLE guarantee of

security for unpredictable messages.

Unlike prior works that primarily incorporate CE into

new systems, our goal is to make DupLESS work trans-

parently with existing SS systems. DupLESS therefore

sits as a layer on top of existing simple storage interfaces,

wrapping store, retrieve, and other requests with algo-

rithms for encrypting filenames and data on the fly. This

also means that DupLESS was built: to be as feature-

compatible as possible with existing API commands, to

not assume any knowledge about the systems implement-

ing these APIs, to give performance very close to that of

using the SS without any encryption, and to achieve the

same availability level as provided by the SS.

We implement DupLESS as a simple-to-use

command-line client that supports both Dropbox [3] and

Google Drive [7] as the SS. We design two versions of

the KS protocol that clients can use while encrypting

files. The first protocol uses a RESTful, HTTPS based,

web interface, while the second is a custom protocol

built over UDP. The first is simpler, being able to

run on top of existing web servers, and the latter is

optimized for latency, and capable of servicing requests

at close to the (optimal) round-trip time of the network.

These protocols and their implementations, which at

core implement an oblivious pseudorandom function

(OPRF) [64] service, may be of independent interest.

To evaluate end-to-end performance, we deploy our

KS on Amazon EC2 [10] and experimentally evaluate

its performance. DupLESS incurs only slight overheads

compared to using the SS with plaintext data. For a

1 MB file and using Dropbox, the bandwidth overhead

is less than 1% and the overhead in the time to store a

file is about 17%. We compute storage overheads of as

little as 4.5% across a 2 TB dataset consisting of over

2,000 highly dedupable virtual machine file system im-

ages that we gathered from Amazon EC2. All this shows

that DupLESS is practical and can be immediately de-

ployed in most SS-using environments. The source code

for DupLESS is available from [4].

2 Setting

At a high level, our setting of interest is an enterprise

network, consisting of a group of affiliated clients (for

example, employees of a company) using a dedupli-

cated cloud storage service (SS). The SS exposes a sim-

ple interface consisting of only a handful of operations

such as storing a file, retrieving a file, listing a direc-

tory, deleting a file, etc.. Such systems are widespread

(c.f., [1, 3, 7, 11, 63]), and are often more suitable to user

file backup and synchronization applications than richer

storage abstractions (e.g., SQL) [37, 69] or block stores

(c.f., [9]). An example SS API, abstracted from Drop-

box, is detailed in Figure 5 (Section 6). The SS performs

deduplication along file boundaries, meaning it checks if

the contents of two files are the same and deduplicates

them if so, by storing only one of them.

Clients have access to a key server (KS), a semi-

trusted third party which will aid in performing dedu-

pable encryption. We will explain further the role of the

KS below. Clients are also provisioned with per-user en-

cryption keys and credentials (e.g., client certificates).

2

USENIX Association 22nd USENIX Security Symposium 181

Threat model. Our goal is to protect the confidentiality

of client data. Attackers include those that gain access

to the SS provider’s systems (including malicious insid-

ers working at the provider) and external attackers with

access to communication channels between clients and

the KS or SS. Security should hold for all files, not just

unpredictable ones. In other words, we seek semantic

security, leaking only equality of files to attackers.

We will also be concerned with compromise re-

silience: the level of security offered by the scheme to

legitimate clients should degrade gracefully, instead of

vanishing, should other clients or even the KS be com-

promised by an attacker. Specifically, security should

hold at least for unpredictable files (of uncompromised

clients) when one or more clients are compromised and

when the KS is compromised.

We will match the availability offered by the SS, but

explicitly do not seek to ensure availability in the face

of a malicious SS: a malicious provider can always

choose to delete files. We will, however, provide pro-

tection against a malicious SS that may seek to tamper

with clients’ data, or mount chosen-ciphertext attacks,

by modifying stored ciphertexts.

Malicious clients can take advantage of an SS that per-

forms client-side deduplication to mount a side-channel

attack [46]. This arises because one user can tell if an-

other user has already stored a file, which could violate

the latter’s privacy.1 We will not introduce such side-

channels. A related issue is that client-side deduplica-

tion can be abused to perform illicit file transfers be-

tween clients [73]. We will ensure that our systems can

work in conjunction with techniques such as proofs-of-

ownership [45] that seek to prevent such issues.

We will not explicitly target resistance to traffic anal-

ysis attacks that abuse leakage of access patterns [48] or

file lengths [24, 31, 40, 47, 59, 65, 72], though our system

will be compatible with potential countermeasures.

Our approaches may be used in conjunction with exist-

ing mechanisms for availability auditing [13, 41, 51, 70]

or file replication across multiple services [26]. (In the

latter case, our techniques will enable each service to in-

dependently perform deduplication.)

Design goals. In addition to our security goals, the sys-

tem we build will meet the following functionality prop-

erties. The system will be transparent, both from the per-

spective of clients and the SS. This means that the sys-

tem will be backwards-compatible, work within existing

SS APIs, make no assumptions about the implementation

details of the SS, and have performance closely matching

that of direct use of the SS. In normal operation and for

all clients of a particular KS, the space required to store

1The reader might be interested to note that our experience with the

Dropbox client suggests this side channel still exists.

all encrypted data will match closely the space required

when storing plaintext data. The system should never

reduce storage availability, even when the KS is unavail-

able or under heavy load. The system will not require any

client-side state beyond a user’s credentials. A user will

be able to sit down at any system, provide their creden-

tials, and synchronize their files. We will however allow

client-side caching of data to improve performance.

Related approaches. Several works have looked at the

general problem of enterprise network security, but none

provide solutions that meet all requirements from the

above threat model. Prior works [42,53,54,58,75] which

build a secure file system on top of a flat outsourced stor-

age server break deduplication mechanisms and are unfit

for use in our setting. Convergent encryption (CE) based

solutions [8,71], as we explored in the Introduction, pro-

vide security only for unpredictable messages even in the

best case, and are vulnerable to brute-force attacks. The

simple approach of sharing a secret key across clients

with a deterministic encryption scheme [16, 68] fails to

achieve compromise resilience. Using CE with an addi-

tional secret shared across all clients [76] does not work

for the same reason.

3 Overview of DupLESS

DupLESS starts with the observation that brute-force ci-

phertext recovery in a CE-type scheme can be dealt with

by using a key server (KS) to derive keys, instead of set-

ting keys to be hashes of messages. Access to the KS is

preceded by authentication, which stops external attack-

ers. The increased cost slows down brute-force attacks

from compromised clients, and now the KS can func-

tion as a (logically) single point of control for imple-

menting rate-limiting measures. We can expect that by

scrupulous choice of rate-limiting policies and parame-

ters, brute-force attacks originating from compromised

clients will be rendered less effective, while normal us-

age will remain unaffected.

We start by looking at secret-parameter MLE, an ex-

tension to MLE which endows all clients with a system-

wide secret parameter sk (see Section 4). The rationale

here is that if sk is unknown to the attacker, a high level

of security can be achieved (semantic security, except for

equality), but even if sk is leaked, security falls to that

of regular MLE. A server-aided MLE scheme then is a

transformation where the secret key is restricted to the

KS instead of being available to all clients. One sim-

ple approach to get server-aided MLE is to use a PRF

F, with a secret key K that never leaves the KS. A client

would send a hash H of a file to the KS and receive back

a message-derived key K′ ← F(K,H). The other steps

are as in CE. However, this approach proves unsatisfying

3

182 22nd USENIX Security Symposium USENIX Association

from a security perspective. The KS here becomes a sin-

gle point of failure, violating our goal of compromise re-

silience: an attacker can obtain hashes of files after gain-

ing access to the KS, and can recover files with brute-

force attacks. Instead, DupLESS employs an oblivious

PRF (OPRF) protocol [64] between the KS and clients,

which ensures that the KS learns nothing about the client

inputs or the resulting PRF outputs, and that clients learn

nothing about the key. In Section 4, we propose a new

server-aided MLE scheme DupLESSMLE which com-

bines a CE-type base with the OPRF protocol based on

RSA blind-signatures [20, 29, 30].

Thus, a client, to store a file M, will engage in the

RSA OPRF protocol with the KS to compute a message-

derived key K, then encrypt M with K to produce a ci-

phertext Cdata. The client’s secret key will be used to en-

crypt K to produce a key encapsulation ciphertext Ckey.

Both Ckey and Cdata are stored on the SS. Should two

clients encrypt the same file, then the message-derived

keys and, in turn, Cdata will be the same (the key encap-

sulation Ckey will differ, but this ciphertext is small). The

DupLESS client algorithms are described in Section 6

along with how DupLESS handles filenames and paths.

Building a system around DupLESSMLE requires

careful design in order to achieve high performance. Du-

pLESS uses at most one or two SS API calls per op-

eration. (As we shall see, SS API calls can be slow.)

Because interacting with the KS is on the critical path

for storing files, DupLESS incorporates a fast client-to-

KS protocol that supports various rate-limiting strategies.

When the KS is overloaded or subjected to denial-of-

service attacks, DupLESS clients fall back to symmet-

ric encryption, ensuring availability. On the client side,

DupLESS introduces dedup heuristics (see Section 6)

to determine whether the file about to be stored on the

SS should be selected for deduplication, or processed

with randomized encryption. For example, very small

files or files considered particularly sensitive can be pre-

vented from deduplication. We use deterministic authen-

ticated encryption (DAE) [68] to protect, in a structure-

preserving way, the path and filename associated to

stored files. Here we have several choices along an ef-

ficiency/security continuum. Our approach of preserving

folder structure leaks some information to the SS, but on

the other hand, enables direct use of the SS-provided API

for file search and moving folders.

DupLESS is designed for a simple SS API, but can be

adapted to settings in which block-oriented deduplica-

tion is used, and to complex network storage and backup

solutions that use NFS [62], CIFS [56] and the like, but

we do not consider these further.

In the following sections we go into greater detail on

the various parts of the DupLESS system, starting with

the cryptographic primitives in Section 4, then moving

on to describing KS design in Section 5, and then on to

the client algorithms in Section 6, followed by perfor-

mance and security in Sections 7 and 8 respectively.

4 Cryptographic Primitives

A one-time encryption scheme SE with key space {0,1}k

is a pair of deterministic algorithms (E,D). Encryption

E on input a key K ∈ {0,1}k and message M ∈ {0,1}∗

outputs a ciphertext C. Decryption D takes a key and

a ciphertext and outputs a message. CTR mode using

AES with a fixed IV is such a scheme. An authen-

ticated encryption (AE) scheme is pair of algorithms

AE = (EA,DA) [19, 67]. Encryption EA takes as in-

put a key K ∈ {0,1}k, associated data D ∈ {0,1}∗, and

message M ∈ {0,1}∗ and outputs a ciphertext of size

|M|+τd , where τd is the ciphertext stretch (typically, 128

bits). Decryption DA is deterministic; it takes input a

key, associated data, and a ciphertext and outputs a mes-

sage or error symbol ⊥. When encryption is determinis-

tic, we call the scheme a deterministic authenticated en-

cryption (DAE) scheme [68]. We use the Encrypt-then-

MAC [19] scheme for AE and SIV mode [68] for DAE,

both with HMAC[SHA256] and CTR[AES].

Oblivious PRFs. A (verifiable) oblivious PRF (OPRF)

scheme [64] consists of five algorithms OPRF =

(Kg,EvC,EvS,Vf,Ev), the last two deterministic. Key

generation (pk,sk)
$
←Kg outputs a public key pk which

can be distributed freely among several clients, and a

secret key sk, which remains with a single entity, the

server. The evaluation protocol runs as follows: on the

client-side, EvC starts with an input x and ends with out-

put y such that y = Ev(sk,x), while on the server-side,

EvS starts with secret key sk and ends without output.

Figure 1 gives an example. Verification Vf(pk,x,y) re-

turns a boolean. Security requires that (1) when keys

are picked at random, Ev(sk, ·) outputs are indistinguish-

able from random strings to efficient attackers without

pk, and (2) no efficient attacker, given (pk,sk), can pro-

vide x,x′,y such that Vf(pk,x,y) = Vf(pk,x′,y) = true,

or Vf(pk,x,y) = true but Ev(sk,x) �= y, or Vf(pk,x,y) =
false but Ev(sk,x) = y, except with negligible probabil-

ity. Moreover, in the OPRF protocol, the server learns

nothing about client inputs or resulting PRF outputs, and

the client learns nothing about sk.

Verifiable OPRF schemes can be built from deter-

ministic blind signatures [29]. The RSA-OPRF[G,H]
scheme based on RSA blind signatures [20, 30] is de-

scribed as follows. The public RSA exponent e is fixed

as part of the scheme. Key generation Kg runs RSAKg

with input e to get N,d such that ed ≡ 1 mod φ(N), mod-

ulus N is the product of two distinct primes of roughly

equal length and N < e. Then, (N,(N,d)) is output as

4

USENIX Association 22nd USENIX Security Symposium 183

EvC(N,M) EvS(N,d)

If e ≤ N then ret ⊥

r
$
←ZN

h ←H(M)

x ← h·re mod N x
✲

y ← xd mod N

y
✛

z ← y·r−1 mod N

If ze mod N �= h then ret ⊥

Else ret G(z)

Figure 1: The RSA-OPRF protocol. The key generation Kg
outputs PRF key N,d and verification key N. The client uses

two hash functions H : {0,1}∗ → ZN and G : ZN →{0,1}k.

the public key, secret key pair. The evaluation proto-

col (EvC,EvS) with verification Vf is shown in Figure 1.

The client uses a hash function H : {0,1}∗ → ZN to first

hash the message to an element of ZN , and then blinds

the result with a random group element r raised to the e-

th power. The resulting blinded hash, denoted x, is sent

to the KS. The KS signs it by computing y ← xd mod N,

and sends back y. Verification then removes the blind-

ing by computing z← yr−1 mod N, and then ensures that

ze mod N is indeed equal to H(M). Finally, the output of

the PRF is computed as G(z), where G : ZN →{0,1}k is

another hash function.

This protocol can be shown to be secure as long as

the map fe : Z∗
N → Z

∗
N , defined by fe(x) = xe mod N for

all x ∈ Z
∗
N , is a permutation on Z

∗
N , which is assured by

gcd(ϕ(N),e) = 1. In particular, this is true if the server

creates its keys honestly. However, in our setting, the

server can cheat while generating the keys, in an attempt

to glean something about H(M). This is avoided by re-

quiring that N < e, which will be verified by the client.

Given that e is prime, this standard technique ensures that

gcd(ϕ(N),e) = 1 even if N is maliciously generated, and

thus ensures that fe is a permutation. Since fe is a per-

mutation and the client checks the signature, even a ma-

licious server cannot force the output K = G(z) to be a

fixed value or force two keys output for distinct messages

to collide, as long as G is collision-resistant.

MLE. A deterministic Message-Locked Encryption

(MLE) scheme is a tuple MLE = (P,K,E,D) of algo-

rithms, the last three deterministic2. Parameter gen-

eration outputs a public parameter P
$
←P, common to

all users of a system. To encrypt M, one generates

the message-derived key K ← K(P,M) and ciphertext

2We drop the tag generation algorithm which was part of the origi-

nal MLE formulation [18]. Since we restrict attention to deterministic

MLE schemes, we let ciphertexts work as tags.

C ← E(P,K,M). Decryption works as M ← D(P,K,C).

Security requires that no efficient attacker can distin-

guish ciphertexts of unpredictable messages from ran-

dom strings except with negligible probability. Conver-

gent encryption (CE) [38] is the most prominent MLE

scheme. We use CE with parameters P set to random

128-bit strings, key generation returning the first 128 bits

of SHA256(P�M) on input M, and encryption and de-

cryption being implemented with CTR[AES].

In a secret-parameter MLE scheme SPMLE, parame-

ter generation outputs a (system-wide) secret parameter

sk along with a public parameter P. This secret param-

eter, which is provided to all legitimate users, is used

to generate message-derived keys as K ← K(P,sk,M).

In a server-aided MLE scheme, the secret parameter is

provided only to a KS. Clients interact with the KS to

obtain message-derived keys. A simple of way of do-

ing this of course is that clients can send the messages

to the KS which would then reply with message-derived

keys. But, as we saw in the previous section, this is un-

desirable in the DupLESS setting, as the KS now be-

comes a single point of failure. Instead, we propose

a new server-aided MLE scheme DupLESSMLE com-

bining RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) and

CTR[AES]. Here parameter generation runs Kg to get

(N,(N,d)), then outputs N as the public parameter and

(N,d) as the secret parameter (recall that e is fixed as part

of the scheme). From a message M, a key K is gener-

ated as K ← Ev((N,d),M) = G(H(M)
d mod N) by in-

teracting with the KS using EvC and EvS. Encryption

and decryption work as in CE, with CTR[AES]. We use

RSA1024 with full-domain-hash using SHA256 in the

standard way [22] to get H and G.

The advantage of server-aided MLE is the prospect

of multi-tiered security. In DupLESSMLE in particular,

when the adversary does not have access to the KS (but

has access to ciphertexts and OPRF inputs and outputs),

it has no knowledge of sk, and semantic-security sim-

ilar to deterministic SE schemes follows, from the se-

curity of RSA-OPRF[G,H] and CTR[AES]. When the

attacker has access to the KS additionally, attacks are

still constrained to be online and consequently slow, and

subject to rate-limiting measures that the KS imposes.

Security here relies on implementing the OPRF proto-

col correctly, and ensuring that the rate-limiting mea-

sures cannot be circumvented. We will analyze this care-

fully in Section 5. Even when sk is compromised to the

attacker, DupLESSMLE provides the usual MLE-style

security, conditioned on messages being unpredictable.

Moreover, we are guaranteed that the clients’ inputs are

hidden from the KS, even if the KS is under attack and

deviates from its default behavior, from the security of

the RSA-OPRF[G,H] protocol.

5

184 22nd USENIX Security Symposium USENIX Association

5 The DupLESS KS

In this section we describe the KS side of DupLESS. This

includes protocols for client-KS interaction which real-

ize RSA-OPRF[G,H], and rate limiting strategies which

limit client queries to slow down online brute-force at-

tacks. We seek low-latency protocols to avoid degrading

performance, which is important because the critical path

during encryption includes interaction with a KS. Addi-

tionally, the protocol should be light-weight, letting the

KS handle a reasonably high request volume.

We describe two protocols: OPRFv1, and OPRFv2,

which rely on a CA providing the KS and clients with

verifiable TLS certificates. In the following, we assume

that each client has a unique certificate, and that clients

can be identified by their certificates. Of course, the pro-

tocols can be readily converted to work with other au-

thentication frameworks. We believe our OPRF proto-

cols to be faster than previous implementations [36], and

given the support for rate-limiting, we expect that they

will be useful in other applications using OPRFs.

HTTPS based. In the first protocol, OPRFv1, all com-

munication with the KS happens over HTTPS. The KS

exposes an interface with two procedures: KSInit and

KSReq. The first time a client uses the KS, it makes a

KSInit request to obtain, and then locally cache, the KS’s

OPRF public key. Here the client must perform any nec-

essary checks of the public key, which for our scheme

is simply that e > N. When the client wants a key, say

for a file it is about to upload, the client will make use

of the KSReq interface, by sending an HTTPS POST

of the blinded hash value. Now, the KS checks request

validity, and performs rate-limiting measures which we

describe below. Then, the KS computes the signature

over the blinded hash value, and sends this back over the

established HTTPS channel.

OPRFv1 has the benefit of extreme simplicity. With 20

lines of code (excluding rate limiting logic) in the form

of a Web-Server Gateway Interface (WSGI) Python mod-

ule, one can run the KS on top of most webservers. We

used Apache 2.0 in our implementation.

Unfortunately, while simple, this is a high latency so-

lution, as it requires four full round trips across the net-

work (1 for TCP handshake, 2 for the TLS handshake, 1

for the HTTP request) to perform KSReq. While sub-

second latency is not always critical (e.g., because of

poor SS performance or because the KS and clients share

a LAN), it will be critical in many settings, and so we

would like to do better.

UDP based. We therefore turn to OPRFv2, which re-

moves the slow per-request handshakes from the criti-

cal path of encryption. Here, the KSInit procedure starts

with a TLS handshake with mutual authentication, initi-

ated by a client. The KS responds immediately following

a valid handshake with the OPRF public key pk, a TLS

identifier of a hash function H (by default SHA-256), a

random session identifier S ∈ {0,1}128, and a random

session key KS ∈ {0,1}k (we set k = 128 in our imple-

mentations). We shave off one round trip from KSInit by

responding immediately, instead of waiting for an HTTP

message as in OPRFv1. The KS also associates a se-

quence number with this session, initialized to zero. In-

ternally the KS maintains two tables, one mapping ses-

sion identifiers with keys, and a second which keeps

track of sequence numbers. Each session lasts for a fixed

time period (currently 20 minutes in our implementation)

and table entries are removed after the session expires.

The client caches pk,S and KS locally and initializes a

sequence number N = 0.

To make an OPRF request KSReq on a blinded value

X , the client first increments the sequence number N ←
N+1, then computes a MAC tag using its session key, as

T ← HMAC[H](KS,S�N �X) and sends the concatena-

tion S�N �X �T to the KS in a single UDP packet. The

KS recovers S,N,X and T and looks up KS and NS. It

ensures that N > NS and checks correctness of the MAC

T . If the packet is malformed or if some check fails, then

the KS drops the packet without further action. If all the

checks pass, the KS sends the OPRF protocol response

in a single UDP packet.

The client waits for time tR after sending a KSReq

packet before triggering timeout behavior. In our imple-

mentation, this involves retrying the same request twice

more with time tR between the tries, incrementing the se-

quence number each time. After three attempts, the client

will try to initiate a new session, again timing out after

tR units. If this step fails, the client believes the KS to

be offline. This timeout behavior is based on DNS, and

following common parameters, we set tR = 1 second.

We implemented OPRFv2 in Python. It comes to 165

lines of code as indicated by the cloc utility, the bulk of

which is in fact the rate limiting logic discussed below.

Our current KS implementation is not yet optimized. For

example it spawns and kills a new thread for each con-

nection request (as opposed to keeping a pool of children

around, as in Apache). Nevertheless the implementation

is fully functional and performs well.

Rate limiting KS requests. We explore approaches for

per-client rate limiting. In the first approach, called

Bounded, the KS sets a bound q on the total number

of requests a client can make during a fixed time inter-

val tE , called an epoch. Further queries by the client

will be ignored by the KS, until the end of the epoch.

Towards keeping the KS simple, a single timer controls

when epochs start and end, as opposed to separate timers

for each client that start when their client performs a ses-

6

USENIX Association 22nd USENIX Security Symposium 185

sion handshake. It follows that no client can make more

than 2q queries within a tE -unit time period.

Setting q gives rise to a balancing act between online

brute-force attack speed and sufficiently low-latency KS

requests, since a legitimate client that exceeds its budget

will have to wait until the epoch ends to submit further

requests. However, when using these OPRF protocols

within DupLESS, we also have the choice of exploiting

the trade-off between dedupability and online brute-force

speed. This is because we can build clients to simply

continue with randomized encryption when they exceed

their budgets, thereby alleviating KS availability issues

for a conservative choice of q.

In any case, the bound q and epoch duration should

be set so as to not affect normal KS usage. Enterprise

network storage workloads often exhibit temporal self-

similarity [44], meaning that they are periodic. In this

case, a natural choice for the epoch duration is one pe-

riod. The bound q can be set to the expected number of

client requests plus some buffer (e.g., one or more stan-

dard deviations). Administrators will need to tune this

for their deployment; DupLESS helps ease this burden

by its tolerance of changes to q as discussed above.

We also considered two other mechanisms for rate

limiting. The fixed delay mechanism works by intro-

ducing an artificial delay tD before the KS responds to

a client’s query. This delay can either be a system-wide

constant, or be set per client. Although this method is

the simplest to implement, to get good brute-force secu-

rity, the delay introduced would have to be substantially

high and directly impacts latency. The exponential delay

mechanism starts with a small delay, and doubles this

quantity after every query. The doubling stops at an up-

per limit tU . The server maintains synchronized epochs,

as in the bounded approach, and checks the status of ac-

tive clients after each epoch. If a client makes no queries

during an entire epoch, its delay is reset to the initial

value. In both these approaches, the server maintains an

active client list, which consists of all clients with queries

awaiting responses. New queries from clients in the ac-

tive client list are dropped. Client timeout in fixed delay

is max(tD, tR) and in exponential delay it is max(tU , tR).

To get a sense of how such rate-limiting mechanisms

might work in real settings, we estimate the effects on

brute-force attacks by deriving parameters from the char-

acteristics of a workload consisting of about 2,700 com-

puters running on an enterprise network at NetApp, as

reported in [57]. The workload is periodic, with simi-

lar patterns every week. The clients together make 1.65

million write queries/week, but the distribution is highly

skewed, and a single client could potentially be responsi-

ble for up to half of these writes. Let us be conservative

and say that our goal is to ensure that clients making at

most 825,000 queries/week should be unaffected by rate-

Mechanism Rate formula NetApp Scenario

Bounded 2q/tE 2.73

Fixed delay 1/tD 1.36

Exp. delay 2tE/tU 2.73

None 3,200 3,200

Offline 120–12000 120–12000

Figure 2: Comparing brute-force rates in queries per second

for different rate limiting approaches, no rate limiting (None),

and hashes as computed using SHA-256 (Offline). The first

column is the formula used to derive the rate as a function of

the request limit q, epoch duration tE , delay tD, and upper limit

tU . The second column is the rates as for the NetApp workload.

The None row does not include offline computation cost.

limiting. We set the epoch duration tE as one week and

query bound as q = 825k. The fixed delay would need

to be set to 730 milliseconds (in order to facilitate 825k

requests in one week), which is also the upper limit tU
for the exponential technique.

The maximum query rates in queries per second that

an attacker who compromised a client can achieve are

given in Figure 2, along with the formulas used to calcu-

late them. The “None” row, corresponding to no rate lim-

iting, gives as the rate the highest number of replies per

second seen for OPRFv2 in the throughput experiment

above. The offline brute force rate was measured by run-

ning Intel’s optimized version of SHA256 [49] to get pro-

cessing speed as 120 MBps on our client system, whose

7200-RPM hard disk has peak read speed of 121MBps

(as measured by hdparm). The range then varies from

the number of hashes per second for 1 MB files up to the

number of hashes per second for 1 KB files, assuming

just a single system is used.

Despite being generous to offline brute-force attacks

(by just requiring computation of a hash, not considering

parallelization, and not including in the online attacks

any offline computational costs), the exercise shows the

huge benefit of forcing brute-force attackers to query the

KS. For example, the bounded rate limiting mechanism

slows down brute-force attacks by anywhere from 43x

for large files up to 4,395x for small files. If the attacker

wants to identify a 1KB file which was picked at random

from a set S of 225 files, then the offline brute-force attack

requires less than an hour, while the bounded rate limited

attack requires more than twenty weeks.

We note that bounded rate-limiting is effective only

if the file has enough unpredictability to begin with. If

|S| < q = 825k, then the online brute-force attack will

be slowed down only by the network latency, meaning

that it will proceed at one-fourth the offline attack rate.

Moreover, parallelization will speed up both online and

offline attacks, assuming that this is permitted by the KS.

7

186 22nd USENIX Security Symposium USENIX Association

Operation Latency (ms)

OPRFv1 KSReq (Low KS load) 374±34

OPRFv2 KSInit 278±56

OPRFv2 KSReq (Low KS load) 83±16

OPRFv2 KSReq (Heavy KS load) 118±37

Ping (1 RTT) 78±01

Figure 3: The median time plus/minus one standard deviation

to perform KSInit and KSReq operations over 1000 trials. Low

KS load means the KS was otherwise idle, whereas Heavy KS

load means it was handling 3000 queries per second.

Performance. For the OPRF, as mentioned in Section 4,

we implement RSA1024 with full-domain-hash using

SHA256 in the standard way [22]. The PKI setup

uses RSA2048 certificates and we fix the ECDHE-RSA-

AES128-SHA ciphersuite for the handshake. We set up

the two KS implementations (OPRFv1 and OPRFv2) on

Amazon EC2 m1.large instances. The client machine,

housed on a university LAN, had an x86-64 Intel Core

i7-970 processor with a clockspeed fixed at 3201 MHz.

Figure 3 depicts the median times, in milliseconds, of

various operations for the two protocols. OPRFv2 signif-

icantly outperforms OPRFv1, due to the reduced number

of round trip times. On a lightly loaded server, a KS re-

quest requires almost the smallest possible time (the RTT

to the KS). The time under a heavy KS load was mea-

sured while a separate m1.large EC2 instance sent 3000

requests per second. The KS request time for OPRFv2

increases, but is still three times faster than OPRFv1

for a low KS load. Note that the time reported here is

only over successful operations; ones that timed out three

times were excluded from the median.

To understand the drop rates for the OPRFv2 protocol

on a heavily loaded server and, ultimately, the through-

put achievable with our (unoptimized) implementation,

we performed the following experiment. A client sent

100i UDP request packets per second (qps) until a total

of 10,000 packets are sent, once for each of 1 ≤ i ≤ 64.

The number of requests responded to was then recorded.

The min/max/mean/standard deviation over 100 trials are

shown in Figure 4. At rates up to around 3,000 queries

per second, almost no packets are dropped. We expect

that with further (standard) performance optimizations

this can be improved even further, allowing a single KS

to support a large volume of requests with very occa-

sional single packet drops.

Security of the KS protocols. Adversarial clients can

attempt to snoop on, as well as tamper with, commu-

nications between (uncompromised) clients and the KS.

With rate-limiting in play, adversaries can also attempt

to launch denial-of-service (DOS) attacks on uncompro-

29 210 211 212 213 214 215

20

40

60

80

100

Queries per second

P
er

ce
n

ta
g

e
o

f
q

u
er

ie
s

re
p

li
ed

Max

Min

Mean

Figure 4: Packet loss in OPRFv2 as a function of query rate.

Packet loss is negligible at rates < 3k queries per second.

mised clients, by spoofing packets from such clients. Fi-

nally, adversaries might try to circumvent rate-limiting.

A secure protocol must defend against all these threats.

Privacy of OPRF inputs and outputs follows from

blinding in the OPRF protocol. Clients can check

OPRF output correctness and hence detect tampering. In

OPRFv1, every KSReq interaction starts with a mutual-

authentication TLS handshake, which prevents adver-

saries from spoofing requests from other clients. In

OPRFv2, creating a new session once again involves a

mutual-authentication TLS handshake, meaning that an

adversary cannot initiate a session pretending to be a un-

compromised client. Moreover, an adversary cannot cre-

ate a fresh KSReq packet belonging to a session which

it did not initiate, without a successful MAC forgery

(HMAC with SHA256 specifically). Packets cannot be

replayed across sessions, due to session identifiers being

picked at random and being included in the MAC, and

packets cannot be replayed within a session, due to in-

creasing sequence numbers. Overall, both protocols of-

fer protecting against request spoofing, and neither of the

two protocols introduce new denial-of-service vulnera-

bilities.

In the Bounded rate-limiting approach, the server

keeps track of the total number of the queries made by

each client, across all sessions in an epoch, and stops

responding after the bound q is reached, meaning that

even adversarial clients are restricted to q queries per

epoch. In the fixed-delay and exponential-delay ap-

proaches, only one query from a client is handled at a

time by the KS in a session through the active clients list.

If a client makes a second query — even from a different

session, while a query is in process, the second query is

not processed by the KS, but simply dropped.

8

USENIX Association 22nd USENIX Security Symposium 187

Command Description

SSput(P,F,M) Stores file contents M as P/F

SSget(P,F) Gets file P/F

SSlist(P) Gets metadata of P

SSdelete(P,F) Delete file F in P

SSsearch(P,F) Search for file F in P

SScreate(P) Create directory P

SSmove(P1,F1,P2,F2) Move P1/F1 to P2/F2

Figure 5: API commands exposed by the storage service (SS)

used by DupLESS. Here F represents a filename and P is the

absolute path in a directory hierarchy.

6 The DupLESS client

The Dupless client works with an SS which implements

the interface described in Figure 5 (based on the Drop-

box API [39]), and provides an analogous set of com-

mands DLput, DLget, DLlist, etc. Figure 6 gives pseu-

docode for the DupLESS commands for storing and re-

trieving a file. We now explain the elements of these

commands, and will then discuss how other API com-

mands are handled.

Path and filename encryption. The SS provides a rudi-

mentary file system abstraction. Clients can generate

directories, use relative and absolute paths, move files

from one directory to another, etc. Following our design

goal of supporting as much of the base SS functional-

ity as possible, DupLESS should also support paths, file-

names, and related functionalities such as copying files.

One option is to treat paths and filenames as non-private,

and simply mirror in clear the directory hierarchy and

filenames asked for by a user. This has the benefit of

simplicity and no path-related overheads, but it relies on

users guaranteeing that paths and filenames are, in fact,

not confidential. A second option would be to hide the

directory structure from the SS by using just a single di-

rectory, and storing the client’s directory hierarchy and

filenames in completely encrypted form using some kind

of digest file. But this would increase complexity and

decrease performance as one would (essentially) have

to build a file system on top of the SS. For example,

this would bar use of the SS API to perform filename

searches on behalf of DupLESS.

We design DupLESS to provide some security for di-

rectory and filenames while still enabling effective use

of the SS APIs. To encrypt file and directory names,

we use the SIV DAE scheme [68] SIV = (ED,DD) with

HMAC[SHA256] and CTR[AES]. The EncPath subrou-

tine takes as input a DAE key Kdae, a path P (a sequence

of directory names separated by ‘/’), and a filename F ,

and returns an encrypted path Cpath and an encrypted

filename F . It does so by encrypting each directory D

in P by way of ED(Kdae,0,D) and likewise encrypting

F by ED(Kdae,0,F). (The associated data being set to

0 here will be used to distinguish this use from that of

the key encapsulation, see below.) Being deterministic,

twice encrypting the same file or directory name results

in the same ciphertext. We will then use the cipher-

texts, properly encoded into a character set allowed by

the SS, as the directory names requested in calls to, e.g.,

SScreate. We note that the choice of encoding as well

as the ciphertext stretch τd mean that the maximum file-

name length supported by DupLESS will be shorter than

that of the SS. Should this approach prove limiting, an

alternative approach would be to use format-preserving

encryption [21] instead to reduce ciphertext expansion.

All this means that we will be able to search for file

and directory names and have efficient file copy and

move operations. That said, this approach does leak the

structure of the plaintext directory hierarchy, the lengths

of individual directory and file names, and whether two

files have the same name. While length leakage can be

addressed with padding mechanisms at a modest cost on

storage overhead, hierarchy leakage cannot be addressed

without adversely affecting some operations.

Store requests. To store a file with filename F and con-

tents M at path P, the DupLESS client first executes the

client portion of the KS protocol (see Section 5). The re-

sult is either a message-derived key K or an error mes-

sage ⊥. The client then runs a check canDedup to

determine whether to use dedupable encryption or non-

dedupable encryption. If K = ⊥ or canDedup returns

false, then a random key is selected and will be used in

place of a message-derived key. In this case the resulting

ciphertext will not be dedupable. We discuss canDedup

more below. The client next encrypts M under K with

CTR[AES] and a fixed IV to produce ciphertext Cdata,

and then wraps K using SIV to produce ciphertext Ckey.

We include the filename ciphertext Cname and Cdata in or-

der to cryptographically bind together the three cipher-

texts. The client uploads to the SS via the SSput com-

mand the file “Cname.key” with contents Ckey and Cdata

in file “Cname.data”. DupLESS encodes the ciphertexts

into character sets allowed by the SS API. Both files are

uploaded in parallel to the SS. Usually, the SS might re-

quire the client to be authorized, and if this is the case,

the authorization can be handled when the client starts.

The “.data” file contains only ciphertext Cdata, and can

be deduplicated by the SS assuming K was not replaced

by a random value. The “.key” file cannot be dedu-

plicated, its contents being essentially uniformly dis-

tributed, but requires only a fixed, small number of bits

equal to k + τd . With our instantiation choices, this is

384 bits, and does not lead to significant overheads as

we show in Section 7.

9

188 22nd USENIX Security Symposium USENIX Association

DLputKdae,Kae ,pkks
(P,F,M)

K
$
←EvC

EvS
(pkks,M)

Cpath,Cname ← EncPath(Kdae,P,F)

If canDedup(P,F,M) = false then

Cdata ← EA(Kae,Cname,M)

SSput(Cpath ,Cname �“.data” ,Cdata)

Else

If K =⊥ then K
$
←{0,1}k

Cdata ← E(K,M)

Ckey ← ED(Kdae,1�Cname �Cdata,K)

SSput(Cpath ,Cname �“.key” ,Ckey)

SSput(Cpath ,Cname �“.data” ,Cdata)

DLgetKdae ,Kae
(P,F)

Cpath,Cname ← EncPath(Kdae,P,F)

Cdata ← SSget(Cpath ,Cname �“.data”)

Ckey ← SSget(Cpath ,Cname �“.key”)

If Ckey =⊥ then

Return DA(Kae,Cname,Cdata)

Else

K ←DD(Kdae,1�Cname �Cdata,Ckey)

If K =⊥ then

Ret ⊥

Else

Ret D(K,Cdata)

Figure 6: DupLESS client procedures for storage and retrieval. They use our server-aided MLE scheme DupLESSMLE =

(P,K,E,D), built with RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) along with the DAE scheme SIV = (ED,DD), and the AE

scheme EtM= (EA,DA). Instantiations are as described in text. The subroutine canDedup runs dedup heuristics while EncPath

encrypts the path and file name using SIV.

Dedupability control. The canDedup subroutine en-

ables fine-grained control over which files end up get-

ting deduplicated, letting clients enforce polices such as

not deduplicating anything in a personal folder, and set-

ting a lower threshold on size. Our current implementa-

tion uses a simple length heuristic: files less than 1 KB

in size are not deduplicated. As our experiments show

in Section 7, employing this heuristic does not appear to

significantly degrade storage savings.

By default, DLput ensures that ciphertexts are of the

same format regardless of the output of canDedup.

However, should canDedup mark files non-dedupable

based only on public information (such as file length),

then we can further optimize performance by produc-

ing only a single ciphertext file (i.e. no Ckey) using an

authenticated-encryption scheme with a key Kae derived

from the client’s secret key. We use AES in CTR mode

with random IVs with HMAC in an Encrypt-then-MAC

scheme. This provides a slight improvement in storage

savings over non-deduped ciphertexts and requires just

a single SSput call. We can also query the KS only if

needed, which is more efficient.

When canDedup’s output depends on private infor-

mation (e.g., file contents), clients should always interact

with the KS. Otherwise there exists a side channel attack

in which a network adversary infers from the lack of a

KS query the outcome of canDedup.

Retrieval and other commands. The pseudocode for re-

trieval is given in Figure 6. It uses EncPath to recom-

pute the encryptions of the paths and filenames, and then

issues SSget calls to retrieve both Ckey and Cdata. It then

proceeds by decrypting Ckey, recovering K, and then us-

ing it to decrypt the file contents. If non-dedupable en-

cryption was used and Ckey was not uploaded, the second

SSget call fails and the client decrypts accordingly.

Other commands are implemented in natural ways,

and we omit pseudocode for the sake of brevity. Dup-

LESS includes listing the contents of a directory (per-

form an SSlist on the directory and decrypt the paths

and filenames); moving the contents of one directory to

another (perform an SSmove command with encrypted

path names); search by relative path and filename (per-

form an SSsearch using the encryptions of the relative

path and filename); create a directory (encrypt the direc-

tory name and then use SScreate); and delete (encrypt

the path and filename and perform a delete on that).

The operations are, by design, simple and whenever

possible, one-to-one with underlying SS API commands.

The security guarantees of SIV mean that an attacker

with access to the SS cannot tamper with stored data. An

SS-based attacker could, however, delete files or modify

the hierarchy structure. While we view these attacks as

out of scope, we note that it is easy to add directory hi-

erarchy integrity to DupLESS by having EncPath bind

ciphertexts for a directory or file to its parent: just in-

clude the parent ciphertext in the associated data during

encryption. The cost, however, is that filename search

can only be performed on full paths.

In DupLESS, only DLput requires interaction with the

KS, meaning that even if the KS goes down files are

never lost. Even DLput will simply proceed with a ran-

dom key instead of the message-derived key from the

KS. The only penalty in this case is loss of the storage

savings due to deduplication.

Other APIs. The interface in Figure 5 is based on the

Dropbox API [39]. Google Drive [7] differs by index-

ing files based on unique IDs instead of names. When a

file is uploaded, SSput returns a file ID, which should be

10

USENIX Association 22nd USENIX Security Symposium 189

provided to SSget to retrieve the file. The SSlist func-

tion returns a mapping between the file names and their

IDs. In this case, DupLESS maintains a local map by

prefetching and caching file IDs by calling SSlist when-

ever appropriate; this caching reduces DLget latency.

When a file is uploaded, the encrypted filename and re-

turned ID are added to this map. Whenever a local map

lookup fails, the client runs SSlist again to check for an

update. Hence, the client can start without any local state

and dynamically generate the local map.

Supporting keyword search in DupLESS requires ad-

ditional techniques, such as an encrypted keyword index

as in searchable symmetric encryption [34], increasing

storage overheads. We leave exploring the addition of

keyword search to future work.

7 Implementation and Performance

We implemented a fully functional DupLESS client. The

client was written in Python and supports both Drop-

box [3] and Google Drive [7]. It will be straightforward

to extend the client to work with other services which

export an API similar to Figure 5. The client uses two

threads during store operations in order to parallelize the

two SS API requests. The client takes user credentials

as inputs during startup and provides a command line

interface for the user to type in commands and argu-

ments. When using Google Drive, a user changing di-

rectory prompts the client to fetch the file list ID map

asynchronously. We used Python’s SSL and Crypto li-

braries for the client-side crypto operations and used the

OPRFv2 KS protocol.

We now describe the experiments we ran to mea-

sure the performance and overheads of DupLESS. We

will compare both to direct use of the underlying SS

API (no encryption) as well as when using a version

of DupLESS modified to implement just MLE, in par-

ticular the convergent encryption (CE) scheme, instead

of DupLESSMLE. This variant computes the message-

derived key K by hashing the file contents, thereby avoid-

ing use of the KS. Otherwise the operations are the same.

Test setting and methodology. We used the same ma-

chine as for the KS tests (Section 5). Measurements in-

volving the network were repeated 100 times and other

measurements were repeated 1,000 times. We measured

running times using the timeit Python module. Opera-

tions involving files were repeated using files with ran-

dom contents of size 22i KB for i ∈ {0,1, . . . ,8}, giving

us a file size range of 1 KB to 64 MB.

Dropbox exhibited significant performance variability

in the course of our experiments. For example, the me-

dian time to upload a 1 KB file was 0.92 seconds, while

the maximum observed was 2.64 seconds, with standard

deviation at 0.22 seconds. That is close to 25% of the

median. Standard deviation decreases as the file size

increases, for example it is only 2% of the median up-

load time for 32 MB files. We never observed more than

1 Mbps throughput to Dropbox. Google Drive exhibited

even slower speeds and more variance.

Storage and retrieval latency. We now compare the time

to store and retrieve files using DupLESS, CE, and the

plain SS. Figure 7 (top left chart) reports the median time

for storage using Dropbox. The latency overhead when

storing files with DupLESS starts at about 22% for 1 KB

files and reduces to about 11% for 64 MB files.

As we mentioned earlier, Dropbox and Google Drive

exhibited significant variation in overall upload and

download times. To reduce the effect of these variations

on the observed relative performance between DupLESS

over the SS, CE over the SS and plain SS, we ran the

tests by cycling between the three settings to store the

same file, in quick succession, as opposed to, say, run-

ning all plain Dropbox tests first. We adopted a similar

approach with Google Drive.

We observe that the CE (Convergent Encryption) store

times are close to DupLESS store times, since the

KSReq step, which is the main overhead of DupLESS

w.r.t CE, has been optimized for low latency. For ex-

ample, median CE latency overhead for 1 KB files over

Dropbox was 15%. Put differently, the overhead of mov-

ing to DupLESS from using CE is quite small, compared

to that of using CE over the base system.

Relative retrieval latencies (bottom left, Figure 7) for

DupLESS over Dropbox were lower than the store laten-

cies, starting at about 7% for 1 KB files and reducing to

about 6% for 64 MB files.

Performance with Google Drive (Figure 7, top middle

chart) follows a similar trend, with overhead for Dup-

LESS ranging from 33% to 8% for storage, and 40% to

10% for retrieval, when file sizes go from 1 KB to 64 MB.

These experiments report data only for files larger

than 1 KB, as smaller files are not selected for dedu-

plication by canDedup. Such files are encrypted with

non-dedupable, randomized encryption and latency over-

heads for storage and retrieval in these cases are negligi-

ble in most cases.

Microbenchmarks. We ran microbenchmarks on DLput

storing 1MB files, to get a breakdown of the overhead.

We report median values over 100 trials here. Up-

loading a 1 MB file with Dropbox takes 2700 millisec-

onds (ms), while time for the whole DLput operation

is 3160 ms, with a 17% overhead. The KSReq latency,

from Section 5, is 82 ms or 3%. We measured the total

time for all DLput steps except the two SSput operations

(refer to Figure 6) to be 135 ms, and uploading the con-

tent file on top of this took 2837 ms. Then, net overhead

11

190 22nd USENIX Security Symposium USENIX Association

20 24 28 212 216
28

210

212

214

216

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Convergent Encryption

Dropbox

20 24 28 212 216
28

210

212

214

216

DupLESS

Convergent Encryption

Google Drive

20 24 28 212 216

27

29

211

213
DupLESS

Dropbox

20 24 28 212 216
28

210

212

214

File size (KB)

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Dropbox

20 24 28 212 216
28

210

212

214

File size (KB)

DupLESS

Google Drive

20 24 28 212 216

27

29

211

213

File size (KB)

DupLESS

Dropbox

Figure 7: (Left) Median time to store (top two graphs) and retrieve (bottom two graphs) as a function of file size. (Top Right)

Median time to delete a file as a function of file size. (Bottom Right) Median time to copy a file as a function of file size. All axes

are log-scale and error bars indicate one standard deviation. Standard deviations are displayed only for base Dropbox/Google Drive

times to reduce cluttering.

of KS and cryptographic operations is about 5%, while

storing the key file accounts for 12%. Our implementa-

tion of DLput stores the content and key files simultane-

ously, by spawning a new thread for storing the key, and

waiting for both the stores to complete before finishing.

If DLput exits before the key store thread completes, i.e.,

if the key is uploaded asynchronously, then the overhead

drops to 14%. On the other hand, uploading the files se-

quentially by storing the content file first, and then stor-

ing the key, incurs a 54% overhead (for 1 MB files).

Bandwidth overhead. We measured the increase in

transmission bandwidth due to DupLESS during storage.

To do so, we used tcpdump and filtered out all traffic un-

related to Dropbox and DupLESS. We took from this the

total number of bytes (in either direction). For even very

small files, the Dropbox API incurs a cost of about 7 KB

per upload. Figure 8 (middle) shows the ratio of band-

width used by DupLESS to that used by plain Dropbox

as file size increases. Given the small constant size of the

extra file sent by DupLESS, overhead quickly diminishes

as files get larger.

Storage overhead. DupLESS incurs storage overhead,

due to the encrypted file name, the MLE key, and the

MAC. The sizes of these components are independent of

the length of the file. Let n denote the length of the file-

name in bytes. Then, encrypting the filename with SIV
and encoding the result with base64 encoding consumes

2n + 32 bytes. Repeating the process for the content

and key files, and adding extensions brings the file name

overhead to 4n+72−n = 3n+72 bytes. The contents of

the key file include the MLE key, which is 16 bytes long

in our case, and the 32 byte HMAC output, and hence

48 bytes together. Thus, the total overhead for a file with

an n-byte filename is 3n+ 120 bytes. Recall that if the

file size is smaller than 1 KB, then canDedup rejects the

file for deduplication. In this case, the overhead from en-

crypting and encoding the file name is n+32 bytes, since

only one file is stored. Randomized encryption adds 16

bytes, bringing the total to n+48 bytes.

To assess the overall effect of this in practice, we

collected a corpus of around 2,000 public Amazon vir-

tual machine images (AMIs) hosting Linux guests. The

AMIs were gathered using techniques similar to those

used previously [14, 28], the difference being that we

as well downloaded a snapshot of the full file system

for each public AMI. There are 101,965,188 unique files

across all the AMIs, with total content size of all files be-

ing 2,063 GB. We computed cryptographic hashes over

the content of all files in the dataset, in order to simulate

the storage footprint when using plain deduplication as

well as when using DupLESS. This dataset has signifi-

cant redundancy, as one would expect, given that many

AMIs are derivative of other AMIs and so share com-

mon files. The plain dedup storage required for the file

contents is just 335 GB. DupLESS with the dedupability

12

USENIX Association 22nd USENIX Security Symposium 191

20 24 28 212

27

29

211

213

Number of files

T
im

e
in

m
il

li
se

co
n
d
s

DupLESS

Dropbox

21 24 27 210 213 216

1

1.2

1.4

1.6

1.8

File size (KB)

B
an

d
w

id
th

o
v
er

h
ea

d

1,000 2,000 4,000 6,000 8,000

1.1

1.2

1.3

1.4

Threshold size in bytes

R
el

at
iv

e
si

ze
o
f

en
c.

d
at

as
et

Figure 8: (Left) Median time to list a directory as a function of number of files in the directory. Both axes are logscale and error

bars are one standard deviation. (Middle) Network bandwidth overhead of DupLESS as a function of file size (log-scale axis) for

store operations. (Right) The ratio of space required when DupLESS is used for the AMI dataset and when plain dedup is used, as

a function of the dedupable threshold length.

length threshold used by canDedup (see Section 6) set

to zero (all files were dedupable) requires 350 GB, or an

overhead of about 4.5%. In this we counted the size of

the filename and path ciphertexts for the DupLESS esti-

mate, though we did not count these in the base storage

costs. (This can only inflate the reported overhead.)

We also measure the effect of higher threshold val-

ues, when using non-dedupable encryption. Setting the

threshold to 100 bytes saves a few hundred megabytes in

storage. This suggests little benefit from deduping small

files, which is in line with previous observations about

deduplication on small files [61].

Figure 8 plots the storage used for a wide range of

threshold values. Setting a larger threshold leads to im-

proved security (for those files) and faster uploads (due

to one less SSput request) and appears to have, at least

for this dataset, only modest impact on storage overheads

for even moderately sized thresholds.

The above results may not extend to settings with sig-

nificantly different workloads. For example, we caution

when there is significantly less deduplication across the

corpus, DupLESS may introduce greater overhead. In

the worst case, when there is no deduplication what-

soever and all 1 KB files with long names of about

100 characters, the overhead will be almost 30%. Of

course here one could have canDedup force use of non-

dedupable encryption to reduce overhead for all files.

Overhead of other operations. The time to perform

DLmove, DLdelete, and DLlist operations are reported

in Figure 7 and Figure 8 for Dropbox. In these opera-

tions, the DupLESS overheads and the data sent over the

network involve just the filenames, and do not depend on

the length of the file. (The operations themselves may

depend on file length of course.) The overhead of Dup-

LESS therefore remains constant. For DLlist, DupLESS

times are close to those of plain Dropbox for folders with

twice as many files, since DupLESS stores an extra key

encapsulation file for each user file. We also measured

the times for DLsearch and DLcreate, but in these cases

the DupLESS overhead was negligible.

8 Security of DupLESS

We argued about the security of the KS protocols and

client encryption algorithms in sections 5 and 6. Now,

we look at the big picture, the security of DupLESS as a

whole. DupLESS provides security that is usually signif-

icantly better than current, convergent encryption based

deduplicated encryption architectures, and never worse.

To expand, security is “hedged,” or multi-tiered, and we

distinguish three tiers, always assuming that the adver-

sary has compromised the SS and has the ciphertexts.

The optimistic or best case is that the adversary

does not have authorized access to the KS. Recall that

both OPRFv1 and OPRFv2 need clients to authenticate

first, before requesting queries, meaning that in this set-

ting, the attacker cannot obtain any information about

message-derived keys. These keys are effectively ran-

dom to the attacker. In other words, all data stored on

the SS is encrypted with random keys, including file con-

tents, names and paths. The attacker can only learn about

equality of file contents and the topology of the file sys-

tem (including file sizes). Thus, DupLESS provides, ef-

fectively, semantic security. In particular, security holds

even for predictable messages. By using the SIV DAE

scheme, and generating tags over the file names, file con-

tents and keys, DupLESS ensures that attempts by the SS

to tamper with client data will be detected.

The semi-optimistic, or next best case is that the ad-

versary, having compromised one or more clients, has

remote access to the KS but does not have the KS’s se-

cret key. Here, security for completely predictable files

is impossible. Thus, it is crucial to slow down brute-

force attacks and push the feasibility threshold for the

attacker. We saw in Section 5 that with the right rate-

13

192 22nd USENIX Security Symposium USENIX Association

limiting setup (Bounded, with appropriate parameters),

brute-force attacks can be slowed down significantly. Im-

portantly, attackers cannot circumvent the rate-limiting

measures, by say, repeating queries.

Finally, the pessimistic case is that the adversary has

compromised the KS and has obtained its key. Even then,

we retain the guarantees of MLE, and specifically CE,

meaning security for unpredictable messages [18]. Ap-

propriate deployment scenarios, such as locating the KS

within the boundary of a large corporate customer of a

SS, make the optimistic case the most prevalent, result-

ing in appreciable security gains without significant in-

crease in cost. The security of non-deduplicated files, file

names, and path names is unaffected by these escalations

in attack severity.

9 Conclusions

We studied the problem of providing secure outsourced

storage that both supports deduplication and resists

brute-force attacks. We design a system, DupLESS, that

combines a CE-type base MLE scheme with the ability to

obtain message-derived keys with the help of a key server

(KS) shared amongst a group of clients. The clients in-

teract with the KS by a protocol for oblivious PRFs, en-

suring that the KS can cryptographically mix in secret

material to the per-message keys while learning nothing

about files stored by clients.

These mechanisms ensure that DupLESS provides

strong security against external attacks which compro-

mise the SS and communication channels (nothing is

leaked beyond file lengths, equality, and access patterns),

and that the security of DupLESS gracefully degrades

in the face of comprised systems. Should a client be

compromised, learning the plaintext underlying another

client’s ciphertext requires mounting an online brute-

force attacks (which can be slowed by a rate-limited KS).

Should the KS be compromised, the attacker must still

attempt an offline brute-force attack, matching the guar-

antees of traditional MLE schemes.

The substantial increase in security comes at a mod-

est price in terms of performance, and a small increase in

storage requirements relative to the base system. The low

performance overhead results in part from optimizing the

client-to-KS OPRF protocol, and also from ensuring Du-

pLESS uses a low number of interactions with the SS.

We show that DupLESS is easy to deploy: it can work

transparently on top of any SS implementing a simple

storage interface, as shown by our prototype for Drop-

box and Google Drive.

Acknowledgements

We thank the anonymous USENIX Security 2013 re-

viewers for their valuable comments and feedback. We

thank Matt Green for his feedback on early drafts of

the paper. Ristenpart was supported in part by generous

gifts from Microsoft, RSA Labs, and NetApp. Bellare

and Keelveedhi were supported in part by NSF grants

CNS-1228890, CNS-1116800, CNS 0904380 and CCF-

0915675.

References

[1] Bitcasa, inifinite storage. http://www.bitcasa.com/.

[2] Ciphertite data backup. http://www.ciphertite.
com/.

[3] Dropbox, a file-storage and sharing service. http://www.
dropbox.com/.

[4] Dupless source code. http://cseweb.ucsd.edu/
users/skeelvee/dupless.

[5] The Flud backup system. http://flud.org/wiki/
Architecture.

[6] GNUnet, a framework for secure peer-to-peer networking.

https://gnunet.org/.

[7] Google Drive. http://drive.google.com.

[8] ADYA, A., BOLOSKY, W., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J., HOWELL, J., LORCH, J.,

THEIMER, M., AND WATTENHOFER, R. Farsite: Federated,

available, and reliable storage for an incompletely trusted envi-

ronment. ACM SIGOPS Operating Systems Review 36, SI (2002),

1–14.

[9] AMAZON. Amazon Elastic Block Store (EBS). http://
aws.amazon.com/ebs.

[10] AMAZON. Amazon Elastic Compute Cloud (EC2). http://
aws.amazon.com/ec2.

[11] AMAZON. Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3.

[12] ANDERSON, P., AND ZHANG, L. Fast and secure laptop backups

with encrypted de-duplication. In Proc. of USENIX LISA (2010).

[13] ATENIESE, G., BURNS, R. C., CURTMOLA, R., HERRING, J.,

KISSNER, L., PETERSON, Z. N. J., AND SONG, D. Provable

data possession at untrusted stores. In ACM CCS 07 (Alexandria,

Virginia, USA, Oct. 28–31, 2007), P. Ning, S. D. C. di Vimercati,

and P. F. Syverson, Eds., ACM Press, pp. 598–609.

[14] BALDUZZI, M., ZADDACH, J., BALZAROTTI, D., KIRDA, E.,

AND LOUREIRO, S. A security analysis of amazon’s elastic com-

pute cloud service. In Proceedings of the 27th Annual ACM Sym-

posium on Applied Computing (2012), ACM, pp. 1427–1434.

[15] BATTEN, C., BARR, K., SARAF, A., AND TREPETIN, S. pStore:

A secure peer-to-peer backup system. Unpublished report, MIT

Laboratory for Computer Science (2001).

[16] BELLARE, M., BOLDYREVA, A., AND O’NEILL, A. Deter-

ministic and efficiently searchable encryption. In CRYPTO 2007

(Santa Barbara, CA, USA, Aug. 19–23, 2007), A. Menezes, Ed.,

vol. 4622 of LNCS, Springer, Berlin, Germany, pp. 535–552.

[17] BELLARE, M., FISCHLIN, M., O’NEILL, A., AND RISTEN-

PART, T. Deterministic encryption: Definitional equivalences

and constructions without random oracles. In CRYPTO 2008

(Santa Barbara, CA, USA, Aug. 17–21, 2008), D. Wagner, Ed.,

vol. 5157 of LNCS, Springer, Berlin, Germany, pp. 360–378.

14

USENIX Association 22nd USENIX Security Symposium 193

[18] BELLARE, M., KEELVEEDHI, S., AND RISTENPART, T.

Message-locked encryption and secure deduplication. In EU-

ROCRYPT 2013, to appear. Cryptology ePrint Archive, Report

2012/631, November 2012.

[19] BELLARE, M., AND NAMPREMPRE, C. Authenticated encryp-

tion: Relations among notions and analysis of the generic compo-

sition paradigm. In ASIACRYPT 2000 (Kyoto, Japan, Dec. 3–7,

2000), T. Okamoto, Ed., vol. 1976 of LNCS, Springer, Berlin,

Germany, pp. 531–545.

[20] BELLARE, M., NAMPREMPRE, C., POINTCHEVAL, D., AND

SEMANKO, M. The one-more-RSA-inversion problems and the

security of Chaum’s blind signature scheme. Journal of Cryptol-

ogy 16, 3 (June 2003), 185–215.

[21] BELLARE, M., RISTENPART, T., ROGAWAY, P., AND STEGERS,

T. Format-preserving encryption. In SAC 2009 (Calgary, Alberta,

Canada, Aug. 13–14, 2009), M. J. Jacobson Jr., V. Rijmen, and

R. Safavi-Naini, Eds., vol. 5867 of LNCS, Springer, Berlin, Ger-

many, pp. 295–312.

[22] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:

A paradigm for designing efficient protocols. In ACM CCS 93

(Fairfax, Virginia, USA, Nov. 3–5, 1993), V. Ashby, Ed., ACM

Press, pp. 62–73.

[23] BELLARE, M., AND YUNG, M. Certifying permutations: Non-

interactive zero-knowledge based on any trapdoor permutation.

Journal of Cryptology 9, 3 (1996), 149–166.

[24] BISSIAS, G., LIBERATORE, M., JENSEN, D., AND LEVINE,

B. N. Privacy Vulnerabilities in Encrypted HTTP Streams. In

Proceedings of the Privacy Enhancing Technologies Workshop

(May 2005), pp. 1–11.

[25] BONEH, D., GENTRY, C., HALEVI, S., WANG, F., AND WU,

D. Private database queries using somewhat homomorphic en-

cryption.

[26] BOWERS, K. D., JUELS, A., AND OPREA, A. HAIL: a high-

availability and integrity layer for cloud storage. In ACM CCS 09

(Chicago, Illinois, USA, Nov. 9–13, 2009), E. Al-Shaer, S. Jha,

and A. D. Keromytis, Eds., ACM Press, pp. 187–198.

[27] BRAKERSKI, Z., AND SEGEV, G. Better security for deter-

ministic public-key encryption: The auxiliary-input setting. In

CRYPTO 2011 (Santa Barbara, CA, USA, Aug. 14–18, 2011),

P. Rogaway, Ed., vol. 6841 of LNCS, Springer, Berlin, Germany,

pp. 543–560.

[28] BUGIEL, S., NÜRNBERGER, S., PÖPPELMANN, T., SADEGHI,

A., AND SCHNEIDER, T. Amazonia: when elasticity snaps back.

In ACM Conference on Computer and Communications Secu-

rity – CCS ‘11 (2011), ACM, pp. 389–400.

[29] CAMENISCH, J., NEVEN, G., AND SHELAT, A. Simulatable

adaptive oblivious transfer. In EUROCRYPT 2007 (Barcelona,

Spain, May 20–24, 2007), M. Naor, Ed., vol. 4515 of LNCS,

Springer, Berlin, Germany, pp. 573–590.

[30] CHAUM, D. Blind signatures for untraceable payments. In

CRYPTO’82 (Santa Barbara, CA, USA, 1983), D. Chaum, R. L.

Rivest, and A. T. Sherman, Eds., Plenum Press, New York, USA,

pp. 199–203.

[31] CHEN, S., WANG, R., WANG, X., AND ZHANG, K. Side-

Channel Leaks in Web Applications: a Reality Today, a Chal-

lenge Tomorrow. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (May 2010), pp. 191–206.

[32] COOLEY, J., TAYLOR, C., AND PEACOCK, A. ABS: the ap-

portioned backup system. MIT Laboratory for Computer Science

(2004).

[33] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche:

making backup cheap and easy. SIGOPS Oper. Syst. Rev. 36 (Dec.

2002), 285–298.

[34] CURTMOLA, R., GARAY, J. A., KAMARA, S., AND OSTRO-

VSKY, R. Searchable symmetric encryption: improved defini-

tions and efficient constructions. In ACM CCS 06 (Alexandria,

Virginia, USA, Oct. 30 – Nov. 3, 2006), A. Juels, R. N. Wright,

and S. Vimercati, Eds., ACM Press, pp. 79–88.

[35] DE CRISTOFARO, E., LU, Y., AND TSUDIK, G. Efficient tech-

niques for privacy-preserving sharing of sensitive information.

In Proceedings of the 4th international conference on Trust and

trustworthy computing (Berlin, Heidelberg, 2011), TRUST’11,

Springer-Verlag, pp. 239–253.

[36] DE CRISTOFARO, E., SORIENTE, C., TSUDIK, G., AND

WILLIAMS, A. Hummingbird: Privacy at the time of twitter.

In Security and Privacy (SP), 2012 IEEE Symposium on (2012),

IEEE, pp. 285–299.

[37] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,

G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,

VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly

available key-value store. In ACM SIGOPS Operating Systems

Review (2007), vol. 41, ACM, pp. 205–220.

[38] DOUCEUR, J., ADYA, A., BOLOSKY, W., SIMON, D., AND

THEIMER, M. Reclaiming space from duplicate files in a server-

less distributed file system. In Distributed Computing Systems,

2002. Proceedings. 22nd International Conference on (2002),

IEEE, pp. 617–624.

[39] DROPBOX. Dropbox API Reference. https://www.
dropbox.com/developers/reference/api.

[40] DYER, K., COULL, S., RISTENPART, T., AND SHRIMPTON, T.

Peek-a-boo, i still see you: Why efficient traffic analysis counter-

measures fail. In Security and Privacy (SP), 2012 IEEE Sympo-

sium on (2012), IEEE, pp. 332–346.

[41] ERWAY, C. C., KÜPÇÜ, A., PAPAMANTHOU, C., AND TAMAS-

SIA, R. Dynamic provable data possession. In ACM CCS 09

(Chicago, Illinois, USA, Nov. 9–13, 2009), E. Al-Shaer, S. Jha,

and A. D. Keromytis, Eds., ACM Press, pp. 213–222.

[42] GOH, E., SHACHAM, H., MODADUGU, N., AND BONEH, D.

Sirius: Securing remote untrusted storage. NDSS.

[43] GOLDWASSER, S., AND MICALI, S. Probabilistic encryption.

Journal of Computer and System Sciences 28, 2 (1984), 270–299.

[44] GRIBBLE, S. D., MANKU, G. S., ROSELLI, D., BREWER,

E. A., GIBSON, T. J., AND MILLER, E. L. Self-similarity in

file systems. In ACM SIGMETRICS Performance Evaluation Re-

view (1998), vol. 26, ACM, pp. 141–150.

[45] HALEVI, S., HARNIK, D., PINKAS, B., AND SHULMAN-

PELEG, A. Proofs of ownership in remote storage systems. In

Proceedings of the 18th ACM conference on Computer and com-

munications security (2011), ACM, pp. 491–500.

[46] HARNIK, D., PINKAS, B., AND SHULMAN-PELEG, A. Side

channels in cloud services: Deduplication in cloud storage. Se-

curity & Privacy, IEEE 8, 6 (2010), 40–47.

[47] HINTZ, A. Fingerprinting Websites Using Traffic Analysis. In

Proceedings of the Privacy Enhancing Technologies Workshop

(April 2002), pp. 171–178.

[48] ISLAM, M., KUZU, M., AND KANTARCIOGLU, M. Access pat-

tern disclosure on searchable encryption: Ramification, attack

and mitigation. In Network and Distributed System Security Sym-

posium (NDSS12) (2012).

[49] JIM GUILFORD, KIRK YAP, V. G. Fast SHA-

256 Implementations on Intel Architecture Processors.

http://download.intel.com/embedded/
processor/whitepaper/327457.pdf.

[50] JIN, K., AND MILLER, E. L. The effectiveness of deduplication

on virtual machine disk images. In Proceedings of SYSTOR 2009:

The Israeli Experimental Systems Conference (2009), ACM, p. 7.

15

194 22nd USENIX Security Symposium USENIX Association

[51] JUELS, A., AND KALISKI JR., B. S. Pors: proofs of retrievabil-

ity for large files. In ACM CCS 07 (Alexandria, Virginia, USA,

Oct. 28–31, 2007), P. Ning, S. D. C. di Vimercati, and P. F. Syver-

son, Eds., ACM Press, pp. 584–597.

[52] KAKVI, S., KILTZ, E., AND MAY, A. Certifying rsa. Advances

in Cryptology–ASIACRYPT 2012 (2012), 404–414.

[53] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,

Q., AND FU, K. Plutus: Scalable secure file sharing on untrusted

storage. In Proceedings of the 2nd USENIX Conference on File

and Storage Technologies (2003), pp. 29–42.

[54] KAMARA, S., PAPAMANTHOU, C., AND ROEDER, T. Cs2: A

searchable cryptographic cloud storage system. Tech. rep., Tech-

nical Report MSR-TR-2011-58, Microsoft, 2011.

[55] KILLIJIAN, M., COURTÈS, L., POWELL, D., ET AL. A survey

of cooperative backup mechanisms, 2006.

[56] LEACH, P. J., AND NAIK, D. C. A Common Internet File Sys-

tem (CIFS/1.0) Protocol. http://tools.ietf.org/
html/draft-leach-cifs-v1-spec-01.

[57] LEUNG, A. W., PASUPATHY, S., GOODSON, G., AND MILLER,

E. L. Measurement and analysis of large-scale network file sys-

tem workloads. In USENIX 2008 Annual Technical Conference

on Annual Technical Conference (2008), pp. 213–226.

[58] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Secure

untrusted data repository (SUNDR). Defense Technical Informa-

tion Center, 2003.

[59] LIBERATORE, M., AND LEVINE, B. N. Inferring the Source of

Encrypted HTTP Connections. In Proceedings of the ACM Con-

ference on Computer and Communications Security (November

2006), pp. 255–263.

[60] MARQUES, L., AND COSTA, C. Secure deduplication on mobile

devices. In Proceedings of the 2011 Workshop on Open Source

and Design of Communication (2011), ACM, pp. 19–26.

[61] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-

plication. ACM Transactions on Storage (TOS) 7, 4 (2012), 14.

[62] MICROSYSTEMS, S. NFS: Network File System Proto-

col Specification. http://tools.ietf.org/html/
rfc1094.

[63] MOZY. Mozy, a file-storage and sharing service. http://
mozy.com/.

[64] NAOR, M., AND REINGOLD, O. Number-theoretic construc-

tions of efficient pseudo-random functions. In 38th FOCS (Mi-

ami Beach, Florida, Oct. 19–22, 1997), IEEE Computer Society

Press, pp. 458–467.

[65] PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND ENGEL, T.

Website Fingerprinting in Onion Routing-based Anonymization

Networks. In Proceedings of the Workshop on Privacy in the

Electronic Society (October 2011), pp. 103–114.

[66] RAHUMED, A., CHEN, H., TANG, Y., LEE, P., AND LUI, J.

A secure cloud backup system with assured deletion and version

control. In Parallel Processing Workshops (ICPPW), 2011 40th

International Conference on (2011), IEEE, pp. 160–167.

[67] ROGAWAY, P. Authenticated-encryption with associated-data.

In ACM CCS 02 (Washington D.C., USA, Nov. 18–22, 2002),

V. Atluri, Ed., ACM Press, pp. 98–107.

[68] ROGAWAY, P., AND SHRIMPTON, T. A provable-security treat-

ment of the key-wrap problem. In EUROCRYPT 2006 (St. Peters-

burg, Russia, May 28 – June 1, 2006), S. Vaudenay, Ed., vol. 4004

of LNCS, Springer, Berlin, Germany, pp. 373–390.

[69] SEARS, R., VAN INGEN, C., AND GRAY, J. To blob or not to

blob: Large object storage in a database or a filesystem? arXiv

preprint cs/0701168 (2007).

[70] SHACHAM, H., AND WATERS, B. Compact proofs of retriev-

ability. In ASIACRYPT 2008 (Melbourne, Australia, Dec. 7–11,

2008), J. Pieprzyk, Ed., vol. 5350 of LNCS, Springer, Berlin, Ger-

many, pp. 90–107.

[71] STORER, M., GREENAN, K., LONG, D., AND MILLER, E. Se-

cure data deduplication. In Proceedings of the 4th ACM inter-

national workshop on Storage security and survivability (2008),

ACM, pp. 1–10.

[72] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W., PAD-

MANABHAN, V. N., AND QIU, L. Statistical Identification of

Encrypted Web Browsing Traffic. In Proceedings of the IEEE

Symposium on Security and Privacy (May 2002), pp. 19–30.

[73] VAN DER LAAN, W. Dropship. https://github.com/
driverdan/dropship.

[74] WALLACE, G., DOUGLIS, F., QIAN, H., SHILANE, P., SMAL-

DONE, S., CHAMNESS, M., AND HSU, W. Characteristics of

backup workloads in production systems. In Proceedings of

the Tenth USENIX Conference on File and Storage Technologies

(FAST12) (2012).

[75] WANG, W., LI, Z., OWENS, R., AND BHARGAVA, B. Secure

and efficient access to outsourced data. In Proceedings of the

2009 ACM workshop on Cloud computing security (2009), ACM,

pp. 55–66.

[76] WILCOX-O’HEARN, Z. Convergent encryption reconsid-

ered, 2011. http://www.mail-archive.com/
cryptography@metzdowd.com/msg08949.
html.

[77] WILCOX-O’HEARN, Z., PERTTULA, D., AND WARNER, B.

Confirmation Of A File Attack. https://tahoe-lafs.
org/hacktahoelafs/drew_perttula.html.

[78] WILCOX-O’HEARN, Z., AND WARNER, B. Tahoe: The least-

authority filesystem. In Proceedings of the 4th ACM international

workshop on Storage security and survivability (2008), ACM,

pp. 21–26.

[79] XU, J., CHANG, E.-C., AND ZHOU, J. Leakage-resilient client-

side deduplication of encrypted data in cloud storage. Cryptology

ePrint Archive, Report 2011/538, 2011. http://eprint.
iacr.org/.

16

USENIX Association 22nd USENIX Security Symposium 195

Trafficking Fraudulent Accounts:
The Role of the Underground Market in Twitter Spam and Abuse

Kurt Thomas†� Damon McCoy‡ Chris Grier†∗ Alek Kolcz� Vern Paxson†∗
†University of California, Berkeley ‡George Mason University

∗International Computer Science Institute �Twitter
{kthomas, grier, vern}@cs.berkeley.edu mccoy@cs.gmu.edu ark@twitter.com

Abstract
As web services such as Twitter, Facebook, Google, and
Yahoo now dominate the daily activities of Internet users,
cyber criminals have adapted their monetization strate-
gies to engage users within these walled gardens. To fa-
cilitate access to these sites, an underground market has
emerged where fraudulent accounts – automatically gen-
erated credentials used to perpetrate scams, phishing, and
malware – are sold in bulk by the thousands. In order
to understand this shadowy economy, we investigate the
market for fraudulent Twitter accounts to monitor prices,
availability, and fraud perpetrated by 27 merchants over
the course of a 10-month period. We use our insights
to develop a classifier to retroactively detect several mil-
lion fraudulent accounts sold via this marketplace, 95%
of which we disable with Twitter’s help. During active
months, the 27 merchants we monitor appeared respon-
sible for registering 10–20% of all accounts later flagged
for spam by Twitter, generating $127–459K for their ef-
forts.

1 Introduction
As web services such as Twitter, Facebook, Google,

and Yahoo now dominate the daily activities of Inter-
net users [1], cyber criminals have adapted their mon-
etization strategies to engage users within these walled
gardens. This has lead to a proliferation of fraudulent
accounts – automatically generated credentials used to
disseminate scams, phishing, and malware. Recent stud-
ies from 2011 estimate at least 3% of active Twitter ac-
counts are fraudulent [29]. Facebook estimates its own
fraudulent account population at 1.5% of its active user
base [13], and the problem extends to major web services
beyond just social networks [14].

The complexities required to circumvent registration
barriers such as CAPTCHAs, email confirmation, and IP

blacklists have lead to the emergence of an underground
market that specializes in selling fraudulent accounts in
bulk. Account merchants operating in this space brazenly
advertise: a simple search query for “buy twitter ac-
counts” yields a multitude of offers for fraudulent Twitter
credentials with prices ranging from $10–200 per thou-
sand. Once purchased, accounts serve as stepping stones
to more profitable spam enterprises that degrade the qual-
ity of web services, such as pharmaceutical spam [17] or
fake anti-virus campaigns [25].

In this paper we describe our investigation of the un-
derground market profiting from Twitter credentials to
study how it operates, the impact the market has on Twit-
ter spam levels, and exactly how merchants circumvent
automated registration barriers.1 In total, we identified
and monitored 27 account merchants that advertise via
web storefronts, blackhat forums, and freelance labor
sites. With the express permission of Twitter, we con-
ducted a longitudinal study of these merchants and pur-
chased a total of 121,027 fraudulent Twitter accounts on
a bi-weekly basis over ten months from June, 2012 –
April, 2013. Throughout this process, we tracked ac-
count prices, availability, and fraud in the marketplace.
Our findings show that merchants thoroughly understand
Twitter’s existing defenses against automated registra-
tion, and as a result can generate thousands of accounts
with little disruption in availability or instability in pric-
ing.

In order to fulfill orders for fraudulent Twitter ac-
counts, we find that merchants rely on CAPTCHA solving
services; fraudulent email credentials from Hotmail, Ya-
hoo, and mail.ru; and tens of thousands of hosts located
around the globe to provide a diverse pool of IP addresses

1Our study is limited to Twitter, as we were unable to acquire per-
mission to conduct our research from other companies we saw being
abused.

1

196 22nd USENIX Security Symposium USENIX Association

to evade blacklisting and throttling. In turn, merchants
stockpile accounts months in advance of their sale, where
“pre-aged” accounts have become a selling point in the
underground market. We identify which registration bar-
riers effectively increase the price of accounts and sum-
marize our observations into a set of recommendations
for how web services can improve existing automation
barriers to increase the cost of fraudulent credentials.

Finally, to estimate the overall impact the underground
market has on Twitter spam we leveraged our under-
standing of how merchants abuse the registration process
in order to develop a classifier that retroactively detects
fraudulent accounts. We applied our classifier to all ac-
counts registered on Twitter in the last year and iden-
tify several million suspected fraudulent accounts gener-
ated and sold via the underground market. During active
months, the 27 merchants we monitor appeared respon-
sible for registering 10–20% of all accounts later flagged
by Twitter as spam. For their efforts, the merchants
generated an estimated total revenue between $127,000–
$459,000 from the sale of accounts.

With Twitter’s cooperation, we disable 95% of all
fraudulent accounts registered by the merchants we
track, including those previously sold but not yet sus-
pended for spamming. Throughout the suspension pro-
cess, we simultaneously monitor the underground market
for any fallout. While we do not observe an apprecia-
ble increase in pricing or delay in merchants delivering
new accounts, we find 90% of all purchased accounts im-
mediately after our action are suspended on arrival. We
are now actively working with Twitter to integrate our
defense into their real-time detection framework to help
prevent abusive signups.

In summary, we frame our contributions as follows:

• We perform a 10 month longitudinal study of 27
merchants profiting from the sale of Twitter ac-
counts.

• We develop a classifier based on registration signals
that detects several million fraudulent accounts that
merchants sold to generate $127,000–$459,000 in
revenue.

• We investigate the impact that the underground mar-
ket has on Twitter spam levels and find 10–20%
all spam accounts originate from the merchants we
study.

• We investigate the failures of existing automated
registration barriers and provide a set of recommen-
dations to increase the cost of generating fraudulent
accounts.

2 Background

Fraudulent accounts are just a single facet of the
menagerie of digital criminal goods and services for sale
in the underground market. We provide an overview
of previous investigations into the digital blackmarket,
outline the role that account abuse plays in this space,
and summarize existing strategies for detecting spam and
abuse. Finally, in order to carry out our investigation of
the market for fraudulent Twitter accounts, we adhere to
a strict set of legal and ethical guidelines set down by our
institutions and by Twitter, documented here.

2.1 Underground Market

At the center of the for-profit spam and malware ecosys-
tem is an underground market that connects Inter-
net miscreants with parties selling a range of special-
ized products and services including spam hosting [2,
11], CAPTCHA solving services [19], pay-per-install
hosts [4], and exploit kits [9]. Even simple services such
as garnering favorable reviews or writing web page con-
tent are for sale [21, 31]. Revenue generated by miscre-
ants participating in this market varies widely based on
business strategy, with spam affiliate programs generat-
ing $12–$92 million [17] and fake anti-virus scammers
$5-116 million [25] over the course of their operations.

Specialization within this ecosystem is the norm.
Organized criminal communities include carders that
siphon credit card wealth [7]; email spam affiliate pro-
grams [16]; and browser exploit developers and traffic
generators [9]. The appearance of account merchants
is yet another specialization where sellers enable other
miscreants to penetrate walled garden services, while
at the same time abstracting away the complexities of
CAPTCHA solving, acquiring unique emails, and dodg-
ing IP blacklisting. These accounts can then be used for a
multitude of activities, outlined below, that directly gen-
erate a profit for miscreants.

2.2 Impact of Fraudulent Accounts

Miscreants leverage fraudulent social networking ac-
counts to expose legitimate users to scams, phishing, and
malware [8, 10]. Spam monetization relies on both grey-
market and legitimate affiliate URL programs, ad syn-
dication services, and ad-based URL shortening [29].
Apart from for-profit activities, miscreants have also
leveraged fraudulent accounts to launch attacks from
within Twitter for the express purposes of censoring po-
litical speech [28]. All of these examples serve to illus-
trate the deleterious effect that fraudulent accounts have
on social networks and user safety.

2

USENIX Association 22nd USENIX Security Symposium 197

2.3 Spam Detection Strategies

The pervasive nuisance of spam in social networks has
lead to a multitude of detection strategies. These in-
clude analyzing social graph properties of sybil ac-
counts [6, 33, 34], characterizing the arrival rate and dis-
tribution of posts [8], analyzing statistical properties of
account profiles [3, 26], detecting spam URLs posted by
accounts [27], and identifying common spam redirect
paths [15]. While effective, all of these approaches rely
on at-abuse time metrics that target strong signals such
as sending a spam URL or forming hundreds of rela-
tionships in a short period. Consequently, at-abuse time
classifiers delay detection until an attack is underway,
potentially exposing legitimate users to spam activities
before enough evidence of nefarious behavior triggers
detection. Furthermore, dormant accounts registered
by account merchants will go undetected until miscre-
ants purchase the accounts and subsequently send spam.
Overcoming these shortcomings requires at-registration
abuse detection that flags fraudulent accounts during the
registration process before any further interaction with a
web service can occur.

2.4 Ethical Considerations

Our study hinges on infiltrating the market for fraudulent
Twitter credentials where we interact with account mer-
chants and potentially galvanize the abuse of Twitter. We
do so with the express intent of understanding how sell-
ers register accounts and to disrupt their future efforts,
but that does not allay our legal or ethical obligations.
Prior to conducting our study, we worked with Twitter
and our institutions to set down guidelines for interacting
with merchants. A detailed summary of the restrictions
placed on our study is available in Appendix A

3 Marketplace for Twitter Accounts

We infiltrate the market for Twitter accounts to under-
stand its organization, pricing structure, and the avail-
ability of accounts over time. Through the course of
our study, we identify 27 account merchants (or sellers)
whom we purchase from on a bi-weekly basis from June,
2012 – April, 2013. We determine that merchants can
provide thousands of accounts within 24 hours at a price
of $0.02 – $0.10 per account.

3.1 Identifying Merchants

With no central operation of the underground market, we
resort to investigating common haunts: advertisements
via search engines, blackhat forums such as blackhat-

world.com, and freelance labor pages including Fiverr
and Freelancer [20, 21]. In total, we identify a disparate
group of 27 merchants. Of these, 10 operate their own
websites and allow purchases via automated forms, 5 so-
licit via blackhat forums, and 12 advertise via freelance
sites that take a cut from sales. Advertisements for Twit-
ter accounts range in offerings from credentials for ac-
counts with no profile or picture, to “pre-aged” accounts2

that are months old with unique biographies and profile
data. Merchants even offer 48 hours of support, during
which miscreants can request replacements for accounts
that are dysfunctional. We provide a detailed breakdown
of the merchants we identify and their source of solicita-
tion in Table 1. We make no claim our search for mer-
chants is exhaustive; nevertheless, the sellers we identify
provide an insightful cross-section of the varying levels
of sophistication required to circumvent automated ac-
count registration barriers, outlined in detail in Section 4.

3.2 Purchasing from Merchants

Once we identify a merchant, we place an initial test pur-
chase to determine the authenticity of the accounts being
sold. If genuine, we then determine whether to repeat-
edly purchase from the merchant based on the quality of
accounts provided (discussed in Section 4) and the over-
all impact the seller has on Twitter spam (discussed in
Section 6). As such, our purchasing is an iterative pro-
cess where each new set of accounts improves our un-
derstanding of the market and subsequently directs our
investigation.

Once we vet a merchant, we conduct purchases on a
bi-weekly basis beginning in June, 2012 (at the earliest)
up to the time of our analysis in April, 2013, detailed in
Table 1. We note that purchasing at regular intervals is
not always feasible due to logistical issues such as mer-
chants delaying delivery or failing to respond to requests
for accounts. In summary, we place 144 orders (140 of
which merchants successfully respond to and fulfill) for a
total of 120,019 accounts. Purchases typically consist of
a bulk order for 1,000 accounts, though sellers on Fiverr
operate in far less volume.

Throughout this process, we protect our identity from
merchants by using a number of email and Skype
pseudonyms. We conduct payments through multiple
identities tied to PayPal, WebMoney, and pre-paid credit

2Pre-aged accounts allow miscreants to evade heuristics that disable
newly minted accounts based upon weak, early signs of misbehavior. In
contrast, in order to limit the impact on legitimate users, disabling older
accounts only occurs in the face of much stronger signals of malefi-
cence.

3

198 22nd USENIX Security Symposium USENIX Association

Merchant Period # Accts Price
alexissmalley† 06/12–03/13 14 13,000 $4
naveedakhtar† 01/13–03/13 4 2,044 $5
truepals† 02/13–03/13 3 820 $8
victoryservices† 06/12–03/13 15 15,819 $6
webmentors2009† 10/12–03/13 9 9,006 $3–4

buuman� 10/12–10/12 1 75 $7
danyelgallu� 10/12–10/12 1 74 $7
denial93� 10/12–10/12 1 255 $20
formefor� 09/12–11/12 3 408 $2–10
ghetumarian� 09/12–10/12 3 320 $4–5
jackhack08� 09/12–09/12 2 755 $1
kathlyn� 10/12–10/12 1 74 $7
smokinbluelady� 08/12–08/12 1 275 $2
twitfollowers� 10/12–10/12 1 80 $6
twitter007� 10/12–10/12 1 75 $7

kamalkishover� 06/12–03/13 14 12,094 $4–7
shivnagsudhakar� 06/12–06/12 1 1,002 $4

accs.biz‡ 05/12–03/13 15 17,984 $2–3
buyaccountsnow.com‡ 06/12–11/12 8 7,999 $5–8
buyaccs.com‡ 06/12–03/13 14 13,794 $1–3
buytwitteraccounts.biz‡ 09/12–10/12 3 2,875 $5
buytwitteraccounts.info‡ 10/12–03/13 9 9,200 $3–4
dataentryassistant.com‡ 10/12–03/13 9 5,498 $10
getbulkaccounts.com‡ 09/12–09/12 1 1,000 $2
quickaccounts.bigcartel‡ 11/12–11/12 2 1,501 $3
spamvilla.com‡ 06/12–10/12 3 2,992 $4
xlinternetmarketing.com‡ 10/12–10/12 1 1,000 $7

Total 05/12–03/13 140 120,019 $1–20

Table 1: List of the merchants we track, the months monitored,
total purchases performed (#), accounts purchased, and the
price per 100 accounts. Source of solicitations include blackhat
forums†, Fiverr�, and Freelancer� and web storefronts‡.

cards. Finally, we access all web content on a virtual
machine through a network proxy.

3.3 Account Pricing & Availability

Prices through the course of our analysis range from
$0.01 to $0.20 per Twitter account, with a median cost of
$0.04 for all merchants. Despite the large overall span,
prices charged by individual merchants remain roughly
stable. Table 1 shows the variation in prices for six mer-
chants we tracked over the longest period of time. Price
hikes are a rare occurrence and no increase is more than
$0.03 per account. So long as miscreants have money
on hand, availability of accounts is a non-issue. Of the
orders we placed, merchants fulfilled 70% in a day and
90% within 3 days. We believe the stable pricing and
ready availability of fraudulent accounts is a direct result

� � � �

� � � � � � � � �

� �0.02

0.04

0.06

Jul Oct Jan Apr

Date of Purchase

Pr
ic

e

� accs.biz
alexissmalley

buyaccs.com
kamalkishover

victoryservices
webmentors2009

Figure 1: Variation in prices over time for six merchants we
track over the longest period of time.

of minimal adversarial pressures on account merchants,
a hypothesis we explore further in Section 4.

3.4 Other Credentials For Sale

Our permission to purchase accounts is limited to Twitter
credentials, but many of the merchants we interact with
also sell accounts for Facebook, Google, Hotmail, and
Yahoo. We compare prices between web services, but
note that as we cannot vet non-Twitter credentials, some
prices may represent scams.

Facebook Prices for Facebook accounts range from
$0.45–1.50 per phone verified account (PVA) and $0.10
for non-PVA accounts. Phone verification requires that
miscreants tie a SIM card to a newly minted Facebook
account and verify the receipt of a text message, the
complexities of which vastly increase the price of an ac-
count.3 For those sellers that advertise their registration
process, SIM cards originate from Estonia or Ukraine.

Google Prices for Google PVA accounts range from
$0.03–0.50 per account.

Hotmail Prices for Hotmail accounts cost $0.004 – 0.03
per account, a steep reduction over social networking or
PVA credentials. We see similar prices for a multitude of
web mail providers, indicating that email accounts are in
demand and cheaper to create.

Yahoo Yahoo accounts, like Hotmail, are widely avail-
able, with prices ranging from $0.006 – 0.015 per ac-
count.

3Advertisements that we encountered for phone verification ser-
vices ranged in price from $.10 – $.15 per verification for bulk orders
of 100,000 verifications, and $.25 per verification for smaller orders.

4

USENIX Association 22nd USENIX Security Symposium 199

Merchant Reaccessed Resold
getbulkaccounts.com 100% 100%
formefor 100% 99%
denial93 100% 97%
shivnagsudhakar 98% 98%
quickaccounts.bigcartel.com 67% 64%
buytwitteraccounts.info 39% 31%
ghetumarian 30% 28%
buytwitteraccounts.biz 20% 18%
jackhack08 12% 11%
buyaccountsnow.com 10% 1%
kamalkishover 8% 0%
buyaccs.com 7% 4%
alexissmalley 6% 0%
victoryservices 3% 2%

Total 10% 6%

Table 2: List of dishonest merchants that reaccessed and resold
credentials we purchased to other parties.

3.5 Merchant Fraud

Operating in the underground market is not without risk
of fraud and dishonesty on the part of account merchants.
For instance, eight of the merchants we contacted at-
tempted to sell us a total of 3,317 duplicate accounts.
One merchant even schemed to resell us the same 1,000
accounts three times. For those merchants willing to
honor their “48 hours of support”, we requested replace-
ment accounts for duplicates, bringing our account total
up to 121,027 unique credentials.

Apart from duplicate credentials, some merchants
were quick to resell accounts we purchased to third par-
ties. In order to detect resales, we coordinate with Twitter
to monitor all successful logins to accounts we purchase
after they come under our control. We denote these ac-
counts reaccessed. We repeat this same process to de-
tect new tweets or the formation of relationships. Such
behaviors should only occur when an account changes
hands to a spammer, so we denote these accounts as
resold. Such surreptitious behavior is possible because
we make a decision not to change the passwords of ac-
counts we purchase.

Table 2 shows the fraction of purchased accounts per
seller that merchants reaccessed and resold. A total of
10% of accounts in our dataset were logged into (either
by the seller or a third party; it is not possible to distin-
guish the two) within a median of 3 days from our pur-
chase. We find that 6% of all accounts go on to be resold
in a median of 5 days from our purchase. This serves to
highlight that some merchants are by no means shy about
scamming potential customers.

4 Fraudulent Registration Analysis

Account merchants readily evade existing abuse safe-
guards to register thousands of accounts on a recurring
basis. To understand these failings, we delve into the
tools and techniques required to operate in the account
marketplace. We find that merchants leverage thousands
of compromised hosts, CAPTCHA solvers, and access to
fraudulent email accounts. We identify what registration
barriers increase the price of accounts and summarize our
observations into a set of recommendations for how web
services can improve existing automation barriers to in-
crease the cost of fraudulent credentials in the future.

4.1 Dataset Summary

To carry out our analysis, we combine intelligence gath-
ered from the underground market with private data pro-
vided through a collaboration with Twitter. Due to the
sensitivity of this data, we strictly adhere to a data pol-
icy set down by Twitter, documented in Appendix A. In
total, we have the credentials for 121,027 purchased ac-
counts, each of which we annotate with the seller and
source of solicitation. Furthermore, we obtain access
to each account’s associated email address; login his-
tory going back one year including IP addresses and
timestamps; signup information including the IP and user
agent used to register the account; the history of each
account’s activities including tweeting or the formation
of social connections, if any; and finally whether Twit-
ter has flagged the account as spam (independent of our
analysis).

4.2 Circumventing IP Defenses

Unique IP addresses are a fundamental resource for reg-
istering accounts in bulk. Without a diverse IP pool,
fraudulent accounts would fall easy prey to network-
based blacklisting and throttling [12, 18, 35]. Our anal-
ysis leads us to believe that account merchants either
own or rent access to thousands of compromised hosts
to evade IP defenses.

IP Address Diversity & Geolocation As a whole, mis-
creants registered 79% of the accounts we purchase from
unique IP addresses located across the globe. No single
subnet captures the majority of abused IPs; the top ten
/24 subnets account for only 3% of signup IPs, while
the top ten /16 subnets account for only 8% of regis-
trations. We provide a breakdown of geolocations tied
to addresses under the control of merchants in Table 3.
India is the most popular origin of registration, account-
ing for 8.5% of all fraudulent accounts in our dataset.

5

200 22nd USENIX Security Symposium USENIX Association

Registration Origin Unique IPs Popularity
India 6,029 8.50%
Ukraine 6,671 7.23%
Turkey 5,984 5.93%
Thailand 5,836 5.40%
Mexico 4,547 4.61%
Viet Nam 4,470 4.20%
Indonesia 4,014 4.10%
Pakistan 4,476 4.05%
Japan 3,185 3.73%
Belarus 3,901 3.72%

Other 46,850 48.52%

Table 3: Top 10 most popular geolocations of IP addresses
used to register fraudulent accounts.

Other ‘low-quality’ IP addresses (e.g. inexpensive hosts
from the perspective of the underground market [4]) fol-
low in popularity. In summary, registrations come from
164 countries, the majority of which serve as the origin
of fewer than 1% of accounts in our dataset. However, in
aggregate, these small contributors account for 48.5% of
all registered accounts.

Merchants that advertise on blackhat forums or oper-
ate their own web storefronts have the most resources at
their disposal, registering all but 15% of their accounts
via unique IPs from hundreds of countries. Conversely,
merchants operating on Fiverr and Freelancer tend to op-
erate solely out of the United States or India and reuse
IPs for at least 30% of the accounts they register.

Long-term IP Abuse To understand the long-term abuse
of IP addresses, we analyze data provided by Twitter that
includes all registered accounts (not just our purchases)
from June, 2012 – April, 2013. From this, we select a
random sample of 100,000 unique IPs belonging to ac-
counts that Twitter has disabled for spamming (e.g. sus-
pended) and an equally sized sample of IPs used to regis-
ter legitimate Twitter accounts. We add a third category
to our sample that includes all the unique IP addresses
used by merchants to register the accounts we purchased.
For each of these IPs, we calculate the total number of
Twitter accounts registered from the same IP.

A CDF of our results, shown in Figure 2, indicates
merchants use the IP addresses under their control to reg-
ister an abnormal number of accounts. Furthermore, the
merchants we track are more cautious than other Twit-
ter spammers who register a larger volume of accounts
from a single IP address, making the merchants harder to
detect. In total, merchants use 50% of the IP addresses
under their control to register fewer than 10 accounts,

�

�����

�

��

�

�

�

�

�

0.25

0.50

0.75

1.00

10 1,000 100,000

Registrations from IP

Fr
ac

tio
n

of
 IP

s

� legitimate
purchased
suspended

Figure 2: CDF of registrations per IP tied to purchased ac-
counts, legitimate accounts, and suspended (spam) accounts.

� �

�
� � � � �

�
� �

�
�

� �

0.7

0.8

0.9

1.0

Jul Oct Jan Apr

Date of Purchase

Fr
ac

tio
n

U
ni

qu
e

IP
s

� accs.biz
alexissmalley

buyaccs.com
kamalkishover

victoryservices
webmentors2009

Figure 3: Availability of unique IPs over time for the six mer-
chants we track over the longest period. All but one seller we
repeatedly purchase from are able to acquire new IP addresses
to register accounts from over time.

compared to 73% of IPs tied to legitimate users and only
26% for other spammers. We note that the small fraction
of legitimate IP addresses used to register thousands of
accounts likely belong to mobile providers or other mid-
dleboxes.

IP Churn & Pool Size In order to sustain demand for
new accounts without overextending the abuse of a single
IP address, merchants obtain access to tens of thousands
of IP addresses that change over time. Figure 3 shows
the fraction of accounts we purchase that appear from a
unique IP address4 as a function of time. We restrict our
analysis to the six merchants we track over the longest
period. Despite successive purchases of 1,000 accounts,
all but one seller maintains IP uniqueness above roughly
80% of registered accounts, indicating that the IPs avail-
able to merchants change over time.

4We calculate uniqueness over the IP addresses in our dataset, not
over all IPs used to register accounts on Twitter.

6

USENIX Association 22nd USENIX Security Symposium 201

We calculate the number of IP addresses under each
merchant’s control by treating IP reuse as a closed
capture-recapture problem. Closed capture-recapture
measurements – used to estimate an unknown population
size – require (1) the availability of independent sam-
ples and (2) that the population size under study remains
fixed. To begin, we assume each purchase we make is
an independent sample of the IP addresses under a mer-
chant’s control, satisfying the first requirement. The sec-
ond requirement is more restrictive. If we assume that
merchants use IP addresses tied to compromised hosts,
then there is an inherent instability in the population size
of IPs due to hosts becoming uninfected, new hosts be-
coming infected, and ISPs reallocating dynamic IPs. As
such, comparisons over long periods are not possible.
Nevertheless, if we restrict our analysis to batches of ac-
counts from a single seller that were all registered within
24 hours, we can minimize the imprecision introduced
by IP churn.

To this end, we select clusters of over 300 accounts
registered by merchants within a 24 hour window. We
split each cluster in half by time, with the first half m
acting as the set of marked IPs and the second set c as
the captured IPs, where there are r overlapping, or re-
captured, IPs between both sets. We can then estimate
the entire population size N̂ (e.g. the number of unique
IPs available to a merchant) according to the Chapman-
Petersen method [24]:

N̂ =
(m+ 1)(c+ 1)

(r + 1)
− 1

And standard error according to:

SE =

√

N̂2(c− r)

(c+ 1)(r + 2)

For 95% confidence intervals, we calculate the error
of N̂ as ±1.96 × SE. We detail our results in Table 4.
We find that sellers like accs.biz and victoryservices have
tens of thousands of IPs at their disposal on any given
day, while even the smallest web storefront merchants
have thousands of IPs on hand to avoid network-based
blacklisting and throttling.

4.3 CAPTCHAs & Email Confirmation

Web services frequently inhibit automated account cre-
ation by requiring new users to solve a CAPTCHA or con-
firm an email address. Unsurprisingly, we find neither
of these barriers are insurmountable, but they do impact
the pricing and rate of generation of accounts, warranting
their continued use.

Merchant N̂ Estimate ± Error
accs.biz 21,798 4,783
victoryservices 17,029 2,264
dataentryassistant.com 16,887 4,508
alexissmalley 16,568 3,749
webmentors2009 10,019 2,052
buyaccs.com 9,770 3,344
buytwitteraccounts.info 6,082 1,661
buyaccountsnow.com 5,438 1,843
spamvilla.com 4,646 1,337
kamalkishover 4,416 1,170

Table 4: Top 10 merchants with the largest estimated pool of
IP addresses under their control on a single day.

Email Confirmation All but 5 of the merchants we pur-
chase from readily comply with requirements to confirm
email addresses through the receipt of a secret token. In
total, merchants email confirm 77% of accounts we ac-
quire, all of which they seeded with a unique email. The
failure of email confirmation as a barrier directly stems
from pervasive account abuse tied to web mail providers.
Table 5 details a list of the email services frequently tied
to fraudulent Twitter accounts. Merchants abuse Hotmail
addresses to confirm 60% of Twitter accounts, followed
in popularity by Yahoo and mail.ru. This highlights the
interconnected nature of account abuse, where creden-
tials from one service can serve as keys to abusing yet
another.

While the ability of merchants to verify email ad-
dresses may raise questions of the processes validity, we
find that email confirmation positively impacts the price
of accounts. Anecdotally, Hotmail and Yahoo accounts
are available on blackhatworld.com for $6 per thousand,
while Twitter accounts from the same forum are $40 per
thousand. This is also true of web storefront such as buy-
accs.com where mail.ru and Hotmail accounts are $5 per
thousand, compared to $20 per thousand for Twitter ac-
counts. Within our own dataset, we find that Twitter ac-
counts purchased without email confirmation cost on av-
erage $30 per thousand compared to $47 per thousand for
accounts with a confirmed email address. This difference
likely includes the base cost of an email address and any
related overhead due to the complexity of responding to
a confirmation email.

CAPTCHA Solving Twitter throttles multiple registra-
tions originating from a single IP address by requiring
a CAPTCHA solution. Merchants solved a CAPTCHA
for 35% of the accounts we purchase; the remaining ac-
counts were registered from fresh IPs that did not trigger
throttling. While there are a variety of CAPTCHA solving

7

202 22nd USENIX Security Symposium USENIX Association

Email Provider Accounts Popularity
hotmail.com 64,050 60.08%
yahoo.com 12,339 11.57%
mail.ru 12,189 11.43%
gmail.com 2,013 1.89%
nokiamail.com 996 0.93%

Other 2,157 0.14%

Table 5: Top 5 email providers used to confirm fraudulent
Twitter accounts.

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Captcha Solution Accuracy

Fr
ac

tio
n

of
 IP

s

� All merchants
buuman

buyaccs.com
smokinbluelady

victoryservices
webmentors2009

Figure 4: CAPTCHA solution rates per each IP address abused
by a variety of merchants as well as the rates for all merchants
combined.

services available in the underground market [19], none
are free and thus requiring a CAPTCHA slightly increases
the cost of creating fraudulent accounts.

A second aspect of CAPTCHAs is the success rate of
automated or human solvers. By virtue of only buy-
ing successfully registered accounts, we cannot exactly
measure CAPTCHA failure rates (unless account sellers
fail and re-try a CAPTCHA during the same registration
session, something we find rare in practice). However,
we can examine registration attempts that occur from the
same IPs as the accounts we purchase to estimate the rate
of failure. To carry out this analysis, we examine all reg-
istrations within the previous year, calculating the frac-
tion of registrations that fail due to incorrect CAPTCHA
solutions per IP address.

We show a CDF of CAPTCHA solution rates for a sam-
ple of merchants in Figure 4. The median CAPTCHA so-
lution rate for all sellers is 7%, well below estimates for
automated CAPTCHA solving software of 18–30% [19],
a discrepancy we currently have no explanation for. For
two of the Fiverr sellers, buuman and smokinbluelady,
the median CAPTCHA solution rate per IP is 100% and

67% respectively, which would indicate a human solver.
In total, 92% of all throttled registration attempts from
merchants fail. Despite this fact, account sellers are still
able to register thousands accounts over the course of
time, simply playing a game of odds.

4.4 Stockpiling & Suspension

Without effective defenses against fraudulent account
registration, merchants are free to stockpile accounts and
sell them at a whim. For many solicitations, merchants
consider “pre-aged” accounts a selling point, not a de-
traction. To highlight this problem, we examine the fail-
ure of at-abuse time metrics for detecting dormant ac-
counts and the resulting account stockpiles that occur.

Account Suspension Twitter suspends (e.g. disables)
spam accounts due to at-abuse time metrics such as send-
ing spam URLs or generating too many relationships, as
outlined in Twitter’s rules [30]. In our case, we are inter-
ested in whether fraudulent accounts that do not perform
visible spam actions (e.g. are dormant) nevertheless be-
come suspended. While for miscreants this should ide-
ally be impossible, there are multiple avenues for guilt
by association, such as clustering accounts based on reg-
istration IP addresses or other features. As such, when
Twitter suspends a large volume of active fraudulent ac-
counts for spamming, it is possible for Twitter to catch
dormant accounts in the same net.

Of the dormant accounts we purchase, only 8% are
eventually detected and suspended. We exclude accounts
that were resold and used to send spam (outlined in Sec-
tion 3.5) from this metric in order to not skew our re-
sults. Of the merchants we track, Fiverr sellers take the
least caution in registering unlinkable accounts, result-
ing in 57% of our purchases becoming suspended by the
time of our analysis. In contrast, web storefronts lever-
age the vast resources at their disposal to create unlink-
able accounts, where only 5% of our purchased accounts
are eventually detected as fraudulent. These poor detec-
tion rates highlight the limitation of at-abuse time metrics
against automated account registration. Without more
sophisticated at-registration abuse signals, merchants are
free to create thousands of accounts with minimal risk of
Twitter suspending back stock.

Account Aging & Stockpiling We examine the age of
accounts, measured as the time between their registra-
tion and subsequent date of purchase, and find that ac-
counts are commonly stockpiled for a median of 31 days.
While most merchants deal exclusively in back stock,
some merchants operate in an on-demand fashion. At
the far end of this spectrum is a merchant spamvilla.com

8

USENIX Association 22nd USENIX Security Symposium 203

that sold us accounts registered a median of 323 days ago
– nearly a year in advance of our purchase. In contrast,
webstores such as buyaccs.com and Fiverr merchants in-
cluding smokinbluelady sell accounts less than a day old.
Even though these merchants operate purely on-demand,
they are still able to fulfill large requests in short order
(within a day in our experience). Both modes of opera-
tion illustrate the ease that merchants circumvent exist-
ing defenses and the need for at-registration time abuse
detection.

4.5 Recommendations

Web services that rely on automation barriers must strike
a tenuous balance between promoting user growth and
preventing the proliferation of fraudulent accounts and
spam behavior. We summarize our findings in this sec-
tion with a number of potential improvements to existing
barriers that should not impede legitimate users. While
we draw many of our observations from the Twitter ac-
count abuse problem, we believe our recommendations
should generalize across web services.

Email Confirmation While account merchants have
cheap, disposable emails on hand to perform email con-
firmation, confirmation helps to increase the cost of
fraudulent accounts. In the case of Twitter, email con-
firmation raises the cost of accounts by 56%. Further-
more, in the absence of clear abuse signals, services
can use email reconfirmation as a soft action against au-
tomation, similar to requiring a CAPTCHA before send-
ing an email or tweet. Of the Twitter accounts we pur-
chased, only 47% included the email address and pass-
word used to confirm the account. Merchants will some-
times re-appropriate these email addresses and sell them
as “second-hand” at a discount of 20%. Without the orig-
inal credentials, miscreants will be unable to perform
email reconfirmation. Even if merchants adapt and be-
gin to provide email credentials as part of their sale, the
possibility of reselling email addresses disappears, cut-
ting into a merchant’s revenue.

CAPTCHAs CAPTCHAs serve to both increase the cost
of accounts due to the requirement of a CAPTCHA solv-
ing service as well as to throttle the rate of account cre-
ation. In our experience, when required, CAPTCHAs pre-
vent merchants from registering 92% of fraudulent ac-
counts. Services could also leverage this failure rate as a
signal for blacklisting an IP address in real-time, cutting
into the number of accounts merchants can register from
a single IP.

IP Blacklisting While miscreants have thousands of IP
addresses at their disposal that rapidly change, IP black-
listing is not without merit. Our results show that mer-
chants use a small fraction of IPs to register tens of
thousands of accounts, which services could curb with
real-time blacklisting. While public and commercial
IP blacklists exist such as CBL [5], previous work has
shown these generate too many false positives in the case
of social spam [28], requiring service providers to gener-
ate and maintain their own blacklists.

Phone Verification While Twitter does not require
phone verification, we observe the positive impact phone
verification has on increasing the cost of fraudulent ac-
counts for other services. Facebook and GMail accounts
that are phone verified cost up to 150x more than their
Twitter, non-PVA counterpart. As with CAPTCHAs or
email reconfirmation, phone verification can serve as a
soft action against spammers who do not clearly fall into
the set of accounts that should be automatically disabled.

5 Detecting Fraudulent Registrations

To understand the impact account merchants have on
Twitter spam, we develop a classifier trained on pur-
chased accounts to retroactively identify abusive regis-
trations. Our technique relies on identifying patterns in
the naming conventions and registration process used by
merchants to automatically generate accounts. We ap-
ply our classifier to all Twitter accounts registered in the
last year (overlapping with our investigation) and iden-
tify several million accounts which appear to be fraud-
ulent. We note this approach is not meant to sustain
accuracy in an adversarial setting; we only apply it to
historical registrations where adaptation to our signals is
impossible.

5.1 Automatic Pattern Recognition

Our detection framework begins by leveraging the lim-
ited variability in naming patterns used by account gener-
ation algorithms which enables us to automatically con-
struct regular expressions that fingerprint fraudulent ac-
counts. Our approach for generating these expressions
is similar to previous techniques for identifying spam
emails based on URL patterns [32] or spam text tem-
plates [22, 23]. However, these previous approaches fail
on small text corpuses (e.g. screennames), especially
when samples cannot be linked by repeating substrings.
For this reason, we develop a technique explicitly for ac-
count naming patterns. Algorithm 1 shows a sketch of
our approach which we use to guide our discussion.

9

204 22nd USENIX Security Symposium USENIX Association

Algorithm 1 Generate Merchant Pattern
Input: List of accounts for a single merchant
Parameters: τ (minimum cluster size)
clusters ← GROUP accounts BY

(Σ-Seq, repeatedNames, emailDomain)
for all cluster ∈ clusters do

if cluster.size() > τ then
patterns ← MINMAXΣ-SEQ (cluster)
OUTPUTREGEX(patterns, repeatedNames)

end if
end for

Common Character Classes To capture accounts that
all share the same naming structure, we begin by defining
a set of character classes:

Σ = {p{Lu}, p{Ll}, p{Lo}, d, . . . }

composed of disjoint sets of characters including up-
percase Unicode letters, lowercase Unicode letters, non-
cased Unicode letters (e.g., Arabic). and digits.5 We treat
all other characters as distinct classes (e.g., +, -,). We
chose these character classes based on the naming pat-
terns of accounts we purchase, a sample of which we
show in Table 6. We must support Unicode as registra-
tion algorithms draw account names from English, Cyril-
lic, and Arabic.

From these classes we define a function Σ-Seq that
captures transitions between character classes and pro-
duces an ordered set σ1σ2 . . . σn of arbitrary length,
where σi represents the i-th character class in a string.
For example, we interpret the account Wendy Hunt from
accs.biz as a sequence p{Lu}p{Ll} p{Lu}p{Ll}. We
repeat this process for the name, screenname, and email
of each account. We note that for emails, we strip the
email domain (e.g. @hotmail.com) prior to processing
and use this as a separate feature in the process for pat-
tern generation.

Repeated Substrings While repeated text stems be-
tween multiple accounts are uncommon due to randomly
selected dictionary names, we find the algorithms used to
generate accounts often reuse portions of text for names,
screennames, and emails. For instance, all of the ac-
counts in Table 6 from victoryservices have repeated sub-
strings between an account’s first name and screenname.

To codify these patterns, we define a function repeat-
edNames that canonicalizes text from an account’s fields,
brute forces a search of repeated substrings, and then
codifies the resulting patterns as invariants. Canonical-
ization entails segmenting a string into multiple sub-

5We use Java character class notation, where p{*} indicates a class
of letters and Lu indicates uppercase, Ll lowercase, and Lo non-case.

strings based on Σ-Seq transitions. We preserve full
names by ignoring transitions between upper and low-
ercase letters; spaces are also omitted from canonicaliza-
tion. We then convert all substrings to their lowercase
equivalent, when applicable. To illustrate this process,
consider the screenname WendyHunt5. Canonicalization
produces an ordered list [wendy,hunt,5], while the name
Wendy Hunt is converted to [wendy,hunt].

The function repeatedNames proceeds by performing
a brute force search for repeated substrings between all
canonicalized fields of an account. For our previous ex-
ample of WendyHunt5, one successful match exists be-
tween name[1] and screenname[1], where [i] indicates
the i-th position of a fields substring list; this same pat-
tern also holds for the name and screenname for Kristina
Levy. We use this positional search to construct invari-
ants that hold across accounts from a single merchant.
Without canonicalization, we could not specify what re-
lationship exists between Wendy and Kristina due to dif-
fering text and lengths. When searching, we employ both
exact pattern matching as well as partial matches (e.g.
neff found in brindagtgneff for buyaccs.com). We use the
search results to construct invariants for both strings that
must repeat as well as strings that never repeat.

Clustering Similar Accounts Once we know the Σ-Seq,
repeatedNames, and email domain of every account from
a merchant, we cluster accounts into non-overlapping
groups with identical patterns, as described in Algo-
rithm 1. We do this on a per-merchant basis rather than
for every merchant simultaneously to distinguish which
merchant an account originates from. We prune small
clusters based on a empirically determined τ to reduce
false positives, with our current implementation drop-
ping clusters with fewer than 10 associated accounts.

Bounding Character Lengths The final phase of
our algorithm strengthens the invariants tied to Σ-Seq
transitions by determining a minimum length min(σi)
and maximum length max(σi) of each character class
σi. We use these to define a bound {lmin, lmax}
that captures all accounts with the same Σ-Seq. Re-
turning to our examples in Table 6, we group the
account names from accs.biz and produce an expression
p{Lu}{1, 1}p{Ll}{5, 8} {1, 1}p{Lu}{1, 1}p{Ll}{4, 4}.
We combine these patterns with the invariants produced
by repeatedNames to construct a regular expression that
fingerprints a cluster. We refer to these patterns for the
rest of this paper as merchant patterns.

10

USENIX Association 22nd USENIX Security Symposium 205

Seller Popularity Name Screenname Email

victoryservices 57%
Trstram Aiken Trstramsse912 KareyKay34251@hotmail.com
Millicent Comolli Millicentrpq645 DanHald46927@hotmail.com

accs.biz 46%
Wendy Hunt WendyHunt5 imawzgaf7083@hotmail.com
Kristina Levy KristinaLevy6 exraytj8143@hotmail.com

formefor 43%
ola dingess olawhdingess TimeffTicnisha@hotmail.com
brinda neff brindagtgneff ScujheShananan@hotmail.com

spamvilla.com 38%
Kiera Barbo Kierayvydb LinJose344@hotmail.com
Jeannine Allegrini Jeanninewoqzg OpheliaStar461@hotmail.com

Table 6: Obfuscated sample of names, screennames, and emails of purchased accounts used to automatically generate merchant
patterns. Popularity denotes the fraction of accounts that match the pattern for an individual merchant.

5.2 Pattern Refinement

We refine our merchant patterns by including abuse-
orientated signals that detect automated signup behavior
based on the registration process, user-agent data, and
timing events.

Signup Flow Events We begin our refinement of mer-
chant patterns by analyzing the activities of purchased
accounts during and immediately after the signup work
flow. These activities include events such as a user im-
porting contacts and accessing a new user tutorial. The
complete list of these events is sensitive information and
is omitted from discussion. Many of these events go un-
triggered by the automated algorithms used by account
sellers, allowing us to distinguish automated registrations
from legitimate users.

Given a cluster of accounts belonging to a single mer-
chant, we generate a binary feature vector esig = {0, 1}n
of the n possible events triggered during signup. A value
of 1 indicates that at least ρ accounts in the cluster trig-
gered the event e. For our experiments, we specify a
cutoff ρ = 5% based on reducing false positives. Subse-
quently, we determine whether a new account with event
vector e matches a seller’s signup flow signature esig by
computing whether e ⊆ esig holds. The majority of le-
gitimate accounts have |e| � |esig|, so we reject the
possibility they are automated even though their naming
conventions may match a merchant’s.

User Agents A second component of signups is the user
agent associated with a form submission. Direct match-
ing of user agents used by a seller with new subse-
quent signups is infeasible due to sellers randomizing
user agents. For instance, buytwitteraccounts.info uses a
unique (faked) agent for every account in our purchased
dataset. Nevertheless, we can identify uniformity in the
naming conventions of user agents just as we did with
account names and screennames.

Given a cluster of accounts from a single seller, we
generate a prefix tree containing every account’s user
agent. A node in the tree represents a single character
from a user agent string while the node’s depth mirrors
the character’s position in the user agent string. Each
node also contains the fraction of agents that match the
substring terminated at the given node. Rather than find
the longest common substring between all accounts, we
prune the tree so that every substring terminating at a
node has a fraction of at least φ accounts in the cluster
(in practice, 5%). We then generate the set of all sub-
strings in the prefix tree and use them to match against
the agents of newly registered accounts. The resulting
substrings include pattens such as Mozilla/5.0 (X11; Linux
i686 which, if not truncated, would include multiple spu-
rious browser toolbars and plugins and be distinct from
subsequent signups. While in theory the resulting user
agent substrings can be broad, in practice we find they
capture browser variants and operating systems before
being truncated.

Form Submission Timing The final feature from the
signup process we use measures the time between Twit-
ter serving a signup form to the time the form is submit-
ted. We then compute a bound {mints,maxts} for each
seller to determine how quickly a seller’s algorithm com-
pletes a form. To counter outliers, we opt for the 99%
for both minimum and maximum time. For instance, the
Fiverr merchant kathlyn registers accounts within {0, 1}
seconds. A newly minted account can match a seller’s al-
gorithm if its form completion time is within the sellers
bound.

5.3 Alternative Signals

There were a number of alternative signals we consid-
ered, but ultimately rejected as features for classifica-
tion. We omitted the delay between an account’s reg-
istration and subsequent activation as we lacked training

11

206 22nd USENIX Security Symposium USENIX Association

data to measure this period; all our accounts remain dor-
mant after purchase (minus the small fraction that were
resold). We also analyzed both the timing of registra-
tions as well as the interarrival times between successive
registrations. We found that merchants sell accounts in
blocks that sometimes span months, preventing any in-
terarrival analysis. Furthermore, merchants register ac-
counts at uniformly random hours and minutes. Finally,
as merchants create accounts from IP addresses around
the globe, no subnet or country accurately captures a sub-
stantive portion of abusive registrations.

5.4 Evaluation

To demonstrate the efficacy of our model, we retroac-
tively apply our classifier to all Twitter accounts regis-
tered in the last year. In total, we identify several mil-
lion6 distinct accounts that match one of our merchant
patterns and thus are potentially fraudulent. We validate
these findings by analyzing both the precision and recall
of our model as well measuring the impact of time on the
model’s overall accuracy.

Precision & Recall Precision measures the fraction of
identified accounts that are in fact fraudulent (e.g., not
misclassified, legitimate users), while recall measures
the fraction of all possible fraudulent accounts that we
identify, limited to the merchants that we study. To es-
timate the precision of each merchant pattern, we se-
lect a random sample of 200 accounts matching each of
26 merchant patterns,7 for a total of 4,800 samples. We
then manually analyze the login history, geographic dis-
tribution of IPs, activities, and registration process tied to
each of these accounts and label them as spam or benign.
From this process, we estimate our overall precision at
99.99%, with the breakdown of the most popular mer-
chant pattern precisions shown in Table 7. In a similar
vein, we estimate recall by calculating the fraction of all
accounts we purchase that match our classifier. In to-
tal, we correctly identify 95% of all purchased accounts;
the remaining 5% of missed accounts did not form large
enough clusters to be included in a merchant’s pattern,
and as a result, we incorrectly classified them as legiti-
mate.

Performance Over Time The performance of our model
is directly tied to accurately tracking adaptations in the

6Due to operational concerns, we are unable to provide exact num-
bers on the volume of spam accounts registered. As such, we reference
merchants and the impact they have on Twitter as a relative volume of
all several million accounts that we detect.

7We omit accounts purchased from the Freelancer merchant shiv-
nagsudhakar as these were registered over a year ago and thus lay out-
side the range of data to which we had access.

Service Rel. Volume P R
buuman 0.00% 100.00% 70.67%
smokinbluelady 0.08% 100.00% 98.91%
danyelgallu 0.12% 100.00% 100.00%
twitter007 0.13% 100.00% 97.33%
kathlyn 0.13% 100.00% 93.24%
jackhack08 0.41% 100.00% 100.00%
twitfollowers 0.72% 100.00% 92.50%
denial93 2.18% 100.00% 100.00%
ghetumarian 3.05% 100.00% 85.94%
formefor 4.75% 100.00% 100.00%

shivnagsudhakar – – –
kamalkishover 29.90% 99.60% 92.73%

naveedakhtar 0.24% 100.00% 98.40%
webmentors2009 0.85% 100.00% 99.64%
truepals 1.02% 100.00% 93.08%
alexissmalley 1.68% 100.00% 98.62%
victoryservices 6.33% 99.70% 99.03%

spamvilla.com 0.71% 99.00% 98.70%
getbulkaccounts.com 2.97% 100.00% 100.00%
xlinternetmarketing.com 3.12% 100.00% 95.13%
accs.biz 4.48% 100.00% 97.62%
buytwitteraccounts.biz 6.10% 100.00% 84.27%
quickaccounts.bigcartel 10.91% 100.00% 99.73%
buytwitteraccounts.info 20.45% 99.60% 81.85%
dataentryassistant.com 24.01% 100.00% 96.57%
buyaccountsnow.com 30.75% 99.10% 95.10%
buyaccs.com 58.39% 100.00% 91.66%

Total 100.00% 99.99% 95.08%

Table 7: Breakdown of the merchants, the relative volume of
all detected accounts in the last year that match their pattern,
precision (P) and recall (R).

algorithms used by merchants to register accounts. To
understand how frequently these adaptations occur, we
evaluate the performance of our classifier as a function
of time. Figure 5 shows the overall recall of each of
our merchant patterns for the sellers we track over the
longest period of time. For each merchant, we train a
classifier on accounts acquired up to time t and evalu-
ate it on all accounts from the merchant, regardless of
when we purchased the account. We find that some sell-
ers such as alexissmalley rarely alter their registration
algorithm throughout our study, allowing only two pur-
chases to suffice for accurate detection. In contrast, we
see a shift in registration algorithms for a number of mer-
chants around October and January, but otherwise pat-
terns remain stable for long periods. The several million
accounts we identify as fraudulent should thus be viewed
as a lower bound in the event we missed an adaptation.

Pattern Overlap & Resale The simultaneous adapta-
tion of merchant patterns in Figure 5 around October and

12

USENIX Association 22nd USENIX Security Symposium 207

�
�

�

� � � � � � � � � � � �

0.00

0.25

0.50

0.75

1.00

Jul Oct Jan Apr

Date of Purchase

Fr
ac

tio
n

m
at

ch
in

g
ac

co
un

ts

� accs.biz
alexissmalley

buyaccs.com
kamalkishover.freelancer

victoryservices
webmentors2009

Figure 5: Recall of generated merchant patterns for all pur-
chased accounts as a function of training the classifier on data
only prior to time t.

other periods leads us to believe that a multitude of mer-
chants are using the same software to register accounts
and that an update was distributed. Alternatively, the
account marketplace may have multiple levels of resale
(or even arbitrage) where accounts from one merchant
are resold by another for an increased cost, leading to
correlated adaptations. Further evidence of correlated
patterns appears in the merchant patterns we construct,
where a classifier for one merchant will accurately de-
tect accounts sold to us by a second merchant. For in-
stance, the accounts sold by kamalkishover from Free-
lancer overlap with the patterns of 9 other merchants, the
most popular of which is buyaccountsnow.com. We find
most Fiverr sellers are independent with the exception
of denial93, ghetumarian, and formefor, whose patterns
overlap with the major account web storefronts. This
would explain why these three Fiverr sellers appear to
be much larger (from the perspective of Table 7) com-
pared to other Fiverr merchants. As a result, our esti-
mates for the number of accounts registered by each mer-
chant may be inflated, though our final total counts only
unique matches and is thus globally accurate.

6 Impact of the Underground Market

We analyze the several million accounts we flag as
registered by merchants operating in the underground
market and estimate the fraction that have been sold
and used to generate Twitter spam. We find that, dur-
ing active months, the underground market was respon-
sible for registering 10–20% of all accounts that Twit-
ter later flagged as spam. For their efforts, we estimate
that merchants generated a combined revenue between
$127,000– $459,000.

0.0

0.2

0.4

0.6

Apr 2012 Jul 2012 Oct 2012 Jan 2013 Apr 2013

Registration Date

Fr
ac

tio
n

of
 A

cc
ou

nt
s

Figure 6: Fraction of all suspended accounts over time that
originate from the underground market.

6.1 Impact on Twitter Spam

From our seed set of 121,027 accounts purchased from
27 merchants, we are able to identify several million
fraudulent accounts that were registered by the same
merchants. Of these, 73% were sold and actively tweet-
ing or forming relationships at one point in time, while
the remaining 37% remained dormant and were yet to be
purchased.

In cooperation with Twitter, we analyzed the total frac-
tion of all suspended accounts that appear to originate
from the merchants we track, shown in Figure 6. At its
peak, the underground marketplace was responsible for
registering 60% of all accounts that would go on to be
suspended for spamming. During more typical periods of
activity, the merchants we track contribute 10–20% of all
spam accounts. We note that the drop-off around April
does not indicate a lack of recent activity; rather, as ac-
counts are stockpiled for months at a time, they have yet
to be released into the hands of spammers, which would
lead to their suspension. The most damaging merchants
from our impact analysis operate out of blackhat forums
and web storefronts, while Fiverr and Freelancer sellers
generate orders of magnitude fewer accounts.8

6.2 Estimating Revenue

We estimate the revenue generated by the underground
market based on the total accounts sold and the prices
charged during their sale. We distinguish accounts that
have been sold from those that lay dormant and await sale
based on whether an account has sent tweets or formed
relationships. For sold accounts, we identify which mer-

8The exception to this is a Freelancer merchant kamalkishover, but
based on their merchant pattern overlapping with 9 other merchants,
we believe they are simply reselling accounts.

13

208 22nd USENIX Security Symposium USENIX Association

chant created the account and determine the minimum
and maximum price the merchant would have charged
for that account based on our historical pricing data.9

In the event multiple merchants could have generated
the account (due to overlapping registration patterns), we
simply take the minimum and maximum price of the set
of matching merchants.

We estimate that the total revenue generated by the
underground account market through the sale of Twitter
credentials is between the range of $127,000– $459,000
over the course of a year. We note that many of the
merchants we track simultaneously sell accounts for a
variety of web services, so this value likely represents
only a fraction of their overall revenue. Nevertheless,
our estimated income is far less than the revenue gener-
ated from actually sending spam [17] or selling fake anti-
virus [25], where revenue is estimated in the tens of mil-
lions. As such, account merchants are merely stepping
stones for larger criminal enterprises, which in turn dis-
seminate scams, phishing, and malware throughout Twit-
ter.

7 Disrupting the Underground Market

With Twitter’s cooperation, we disable 95% of all
fraudulent accounts registered by the 27 merchants we
track, including those previously sold but not yet sus-
pended for spamming. Throughout this process, we si-
multaneously monitor the underground market to track
fallout and recovery. While we do not observe an ap-
preciable increase in pricing or delay in merchant’s de-
livering new accounts, we find 90% of all purchased ac-
counts immediately after our actioning are suspended on
arrival. While we successfully deplete merchant stock-
piles containing fraudulent accounts, we find that within
two weeks merchants were able to create fresh accounts
and resume selling working credentials.

7.1 Suspending Identified Accounts

In order to disrupt the abusive activities of account mer-
chants, we worked with Twitter’s Anti-spam, SpamOps,
and Trust and Safety teams to manually validate the ac-
curacy of our classifier and tune parameters to set an ac-
ceptable bounds on false positives (legitimate users in-
correctly identified as fraudulent accounts). Once tuned,
we applied the classifier outlined in Section 5 to every ac-
count registered on Twitter going back to March, 2012,

9Determining the exact time of sale for an account is not possible
due to the potential of miscreants stockpiling their purchases; as such,
we calculate revenue for both the minimum and maximum possible
price.

filtering out accounts that were already suspended for
abusive behavior.

From the set of accounts we identified10, Twitter it-
eratively suspended accounts in batches of ten thousand
and a hundred thousand before finally suspending all the
remaining identified accounts. At each step we moni-
tored the rate of users that requested their accounts be
unsuspended as a metric for false positives, where un-
suspension requests require a valid CAPTCHA solution.
Of the accounts we suspended, only 0.08% requested to
be unsuspended. However, 93% of these requests were
performed by fraudulent accounts abusing the unsuspend
process, as determined by manual analysis performed by
Twitter. Filtering these requests out, we estimate the fi-
nal precision of our classifier to be 99.9942%. The tuned
classifier has a recall of 95%, the evaluation of which is
identical to the method presented in Section 5. Assuming
our purchases are a random sample of the accounts con-
trolled by the underground market, we estimate that 95%
of all fraudulent accounts registered by the 27 merchants
we track were disabled by our actioning.

7.2 Marketplace Fallout and Recovery

Immediately after Twitter suspended the last of the un-
derground market’s accounts, we placed 16 new orders
for accounts from the 10 merchants we suspected of con-
trolling the largest stockpiles. Of 14,067 accounts we
purchased, 90% were suspended on arrival due to Twit-
ter’s previous intervention. When we requested working
replacements, one merchant responded with:

All of the stock got suspended ... Not just mine .. It
happened with all of the sellers .. Don’t know what
twitter has done ...

Similarly, immediately after suspension, buyaccs.com
put up a notice on their website stating “Временно
не продаем аккаунты Twitter.com”, translating via
Google roughly to “Temporarily not selling Twitter.com
accounts”.

While Twitter’s initial intervention was a success, the
market has begun to recover. Of 6,879 accounts we pur-
chased two weeks after Twitter’s intervention, only 54%
were suspended on arrival. As such, long term disrup-
tion of the account marketplace requires both increasing
the cost of account registration (as outlined in Section 4)
and integrating at-signup time abuse classification into
the account registration process (similar to the classifier

10Due to operational concerns, we cannot specify the exact volume
of accounts we detect that were not previously suspended by Twitter’s
existing defenses.

14

USENIX Association 22nd USENIX Security Symposium 209

outlined in Section 5). We are now working with Twitter
to integrate our findings and existing classifier into their
abuse detection infrastructure.

8 Summary

We have presented a longitudinal investigation of the
underground market tied to fraudulent Twitter creden-
tials, monitoring pricing, availability, and fraud per-
petrated by 27 account merchants. These merchants
specialize in circumventing automated registration bar-
riers by leveraging thousands of compromised hosts,
CAPTCHA solvers, and access to fraudulent Hotmail, Ya-
hoo, and mail.ru credentials. We identified which reg-
istration barriers positively influenced the price of ac-
counts and distilled our observations into a set of recom-
mendations for how web services can improve existing
barriers to bulk signups. Furthermore, we developed a
classifier based on at-registration abuse patterns to suc-
cessfully detect several million fraudulent accounts gen-
erated by the underground market. During active months,
the 27 merchants we monitor appeared responsible for
registering 10–20% of all accounts later flagged by Twit-
ter as spam. For their efforts, these merchants generated
an estimated revenue between $127,000–$459,000. With
Twitter’s help, we successfully suspended 95% of all ac-
counts registered by the 27 merchants we track, deplet-
ing the account stockpiles of numerous criminals. We
are now working with Twitter to integrate our findings
and existing classifier into their abuse detection infras-
tructure.

Acknowledgments

This work was supported by the National Sci-
ence Foundation under grants 1237076 and 1237265,
by the Office of Naval Research under MURI grant
N000140911081, and by a gift from Microsoft Research.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

References
[1] Alexa. Alexa top 500 global sites. http://www.alexa.com/topsites,

2012.

[2] D.S. Anderson, C. Fleizach, S. Savage, and G.M. Voelker. Spam-
scatter: Characterizing internet scam hosting infrastructure. In
USENIX Security, 2007.

[3] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detect-
ing Spammers on Twitter. In Proceedings of the Conference on
Email and Anti-Spam (CEAS), 2010.

[4] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring

pay-per-install: The commoditization of malware distribution. In
USENIX Security Symposium, 2011.

[5] CBL. Composite Blocking List. http://
cbl.abuseat.org/, 2012.

[6] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using
social networks. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2009.

[7] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into
the nature and causes of the wealth of Internet miscreants. In Pro-
ceedings of ACM Conference on Computer and Communications
Security, pages 375–388, October 2007.

[8] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B.Y. Zhao. Detect-
ing and characterizing social spam campaigns. In Proceedings of
the Internet Measurement Conference (IMC), 2010.

[9] C. Grier, L. Ballard, J. Caballero, N. Chachra, C.J. Dietrich,
K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pit-
sillidis, et al. Manufacturing compromise: The emergence of
exploit-as-a-service. 2012.

[10] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the un-
derground on 140 characters or less. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2010.

[11] T. Holz, C. Gorecki, F. Freiling, and K. Rieck. Detection and
mitigation of fast-flux service networks. In Proceedings of the
15th Annual Network and Distributed System Security Sympo-
sium (NDSS), 2008.

[12] C.Y. Hong, F. Yu, and Y. Xie. Populated ip ad-
dresses—classification and applications. 2012.

[13] Heather Kelley. 83 million facebook accounts are fakes
and dupes. http://www.cnn.com/2012/08/
02/tech/social-media/facebook-fake-
accounts/index.html, 2012.

[14] Brian Krebs. Spam volumes: Past & present, global & lo-
cal. http://krebsonsecurity.com/2013/
01/spam-volumes-past-present-global-
local/, 2012.

[15] S. Lee and J. Kim. Warningbird: Detecting Suspicious URLs
in Twitter Stream. In Symposium on Network and Distributed
System Security (NDSS), 2012.

[16] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Fele-
gyhazi, C. Grier, T. Halvorson, C. Kanich, C. Kreibich, H. Liu,
D. McCoy, N. Weaver, V. Paxson, G.M. Voelker, and S. Sav-
age. Click Trajectories: End-to-End Analysis of the Spam Value
Chain. In Proceedings of the 32nd IEEE Symposium on Security
and Privacy, 2011.

[17] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver, C. Kreibich,
B. Krebs, G.M. Voelker, S. Savage, and K. Levchenko. Phar-
maleaks: Understanding the business of online pharmaceutical
affiliate programs. In Proceedings of the 21st USENIX confer-
ence on Security symposium. USENIX Association, 2012.

[18] A. Metwally and M. Paduano. Estimating the number of users be-
hind ip addresses for combating abusive traffic. In Proceedings of
the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011.

[19] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G.M.
Voelker, and S. Savage. Re: Captchas–understanding captcha-
solving services in an economic context. In USENIX Security
Symposium, volume 10, 2010.

15

210 22nd USENIX Security Symposium USENIX Association

[20] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G.M.
Voelker. An analysis of underground forums. In Proceedings of
the Internet Measurement Conference (IMC). ACM, 2011.

[21] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G.M.
Voelker. Dirty jobs: The role of freelance labor in web service
abuse. In Proceedings of the 20th USENIX Security Symposium,
2011.

[22] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M.
Voelker, V. Paxson, N. Weaver, and S. Savage. Botnet Judo:
Fighting spam with itself. 2010.

[23] P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer. Learning to
identify regular expressions that describe email campaigns. 2012.

[24] W.E. Ricker. Computation and interpretation of biological statis-
tics of fish populations, volume 191. Department of the Environ-
ment, Fisheries and Marine Service Ottawa, 1975.

[25] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel, D. Steiger-
wald, and G. Vigna. The Underground Economy of Fake An-
tivirus Software. In Proceedings of the Workshop on Economics
of Information Security (WEIS), 2011.

[26] G. Stringhini, C. Kruegel, and G. Vigna. Detecting Spammers
on Social Networks. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2010.

[27] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and
Evaluation of a Real-time URL Spam Filtering Service. In Pro-
ceedings of the 32nd IEEE Symposium on Security and Privacy,
2011.

[28] K. Thomas, C. Grier, and V. Paxson. Adapting social spam
infrastructure for political censorship. In Proceedings of the
5th USENIX conference on Large-Scale Exploits and Emergent
Threats. USENIX Association, 2012.

[29] K. Thomas, C. Grier, V. Paxson, and D. Song. Suspended Ac-
counts In Retrospect: An Analysis of Twitter Spam. In Proceed-
ings of the Internet Measurement Conference, November 2011.

[30] Twitter. The Twitter Rules. http://
support.twitter.com/entries/18311-the-
twitter-rules, 2010.

[31] G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal, H. Zheng,
and B.Y. Zhao. Serf and Turf: Crowdturfing for Fun and Profit.
In Proceedings of the International World Wide Web Conference,
2011.

[32] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov.
Spamming botnets: Signatures and characteristics. Proceedings
of ACM SIGCOMM, 2008.

[33] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu. Analyzing
Spammers’ Social Networks for Fun and Profit: a Case Study of
Cyber Criminal Ecosystem on Twitter. In Proceedings of the 21st
International Conference on World Wide Web, 2012.

[34] H. Yu, M. Kaminsky, P.B. Gibbons, and A. Flaxman. Sybilguard:
defending against sybil attacks via social networks. ACM SIG-
COMM Computer Communication Review, 2006.

[35] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum.
Botgraph: Large scale spamming botnet detection. 2009.

A Legal and Ethical Guidelines

To minimize the risk posed to Twitter or its users by
our investigation of the account market, we follow a set
of policies set down by our institutions and Twitter, re-
produced here to serve as a note of caution to other re-
searchers conducting similar research.

Twitter & Users Some of the account merchants we deal
with work in an on-demand fashion, where purchases we
place directly result in abusive registrations on Twitter
(e.g. harm) in violation of the site’s Terms of Services.
Even purchases from existing stockpiles might be mis-
construed as galvanizing further abuse of Twitter. As
such, we directly contacted Twitter to receive permission
to conduct our study. In the process, we determined that
any interactions with the underground market should not
result in harm to Twitter’s user base. In particular, ac-
counts we purchased should never be used to tweet or
form relationships while under our control. Furthermore,
we take no special action to guarantee our accounts are
not suspended (e.g disabled) by Twitter; our goal is to
observe the natural registration process, not to interact
with or impede Twitter’s service in any way.

Account Merchants We do not interact with merchants
anymore than necessary to perform transactions. To this
end, we only purchased from merchants that advertise
their goods publicly and never contact merchants outside
the web sites or forums they provide to conduct a sale
(or to request replacement accounts in the event of a bad
batch). Our goal is not to study the merchants themselves
or to collect personal information on them; only to ana-
lyze the algorithms they use to generate accounts.

Sensitive User Data Personal data logged by Twitter is
subject to a multitude of controls, while user names and
passwords sold by merchants also carry controls to pre-
vent fraud, abuse, and unauthorized access. First, we
never log into accounts; instead, we rely on Twitter to
verify the authenticity of credentials we purchase. Fur-
thermore, all personal data such as IP addresses or activi-
ties tied to an account are never accessed outside of Twit-
ter’s infrastructure, requiring researchers involved in this
study to work on site at Twitter and to follow all relevant
Twitter security practices. This also serves to remove
any risk in the event an account is compromised rather
than registered by an account merchant, as no personal
data ever leaves Twitter. To our knowledge, we never
obtained credentials for compromised accounts.

16

USENIX Association 22nd USENIX Security Symposium 211

Impression Fraud in Online Advertising via Pay-Per-View
Networks

Kevin Springborn
Broadcast Interactive Media

kspringborn@bimlocal.com

Paul Barford
Broadcast Interactive Media

University of Wisconsin-Madison
pbarford@bimlocal.com

ABSTRACT
Advertising is one of the primary means for revenue gener-
ation for millions of websites and mobile apps. While the
majority of online advertising revenues are based on pay-
per-click, alternative forms such as impression-based dis-
play and video advertising have been growing rapidly over
the past several years. In this paper, we investigate the prob-
lem of invalid traffic generation that aims to inflate adver-
tising impressions on websites. Our study begins with an
analysis of purchased traffic for a set of honeypot websites.
Data collected from these sites provides a window into the
basic mechanisms used for impression fraud and in partic-
ular enables us to identify pay-per-view (PPV) networks.
PPV networks are comprised of legitimate websites that use
JavaScript provided by PPV network service providers to
render unwanted web pages "underneath" requested content
on a real user’s browser so that additional advertising im-
pressions are registered. We describe the characteristics of
the PPV network ecosystem and the typical methods for de-
livering fraudulent impressions. We also provide a case study
of scope of PPV networks in the Internet. Our results show
that these networks deliver hundreds of millions of fraudu-
lent impressions per day, resulting in hundreds of millions
of lost advertising dollars annually. Characteristics unique
to traffic delivered via PPV networks are also discussed. We
conclude with recommendations for countermeasures that
can reduce the scope and impact of PPV networks.

1. INTRODUCTION
Advertising is one of the primary methods for generating

revenues from websites and mobile apps. A recent report
from the Internet Advertising Bureau (IAB) places ad rev-
enues in the US for the first half of 2012 at $17B, which rep-
resents a 14% increase over the previous year [15]. While
the majority of that revenue is search-based, ad words ad-
vertising, display and video advertising have been growing.
Indeed, a recent report places display and video advertis-
ing in the US at $12.7B for FY2012, growing at 17% annu-
ally [27]. At a high level the basic notion of selling space on
web pages and apps for advertising is simple. However, the
mechanisms and infrastructure that are required for online
advertising are highly diverse and complex.

The online ad ecosystem can roughly be divided into three
groups: advertisers, publishers and intermediaries. Adver-
tisers pay publishers to place a specified volume of creative
content with embedded links (i.e., text, display or video ads)
on websites and apps. Intermediaries (e.g., ad servers and ad
exchanges) are often used to facilitate connections between
publishers and advertisers. Intermediaries typically place a
surcharge on the fees paid by advertisers to publishers for ad
placements and/or ad clicks. What is immediately obvious
from this simple description is that publisher and intermedi-
ary platform revenues are directly tied to the number of daily
visits to a website or app. Thus, there are strong incentives
for publishers and intermediaries to use any means available
to drive user traffic to publisher sites.

There are certainly legitimate methods for traffic gener-
ation for publisher sites. The most widely used are the
text-based ad words that appear in search results e.g., from
Google or Bing. However, it can be quite difficult and ex-
pensive to drive large traffic volumes to target sites using
ad words alone.1 Thus, other methods for traffic genera-
tion have emerged, many of which are deeded as fraudulent
by advertisers and intermediaries. Google defines invalid
(fraudulent) traffic as follows:2

Invalid traffic includes both clicks and impres-
sions that Google suspects to not be the result
of genuine user interest [21].

Standard methods for generating invalid traffic includes (i)
using employees at publisher companies to view sites and
click on ads, (ii) hiring 3rd parties to view sites and click
on ads, (iii) click/view pyramid schemes and (iv) using soft-
ware and/or botnets to automate views/clicks [21]. The chal-
lenges for advertisers and intermediaries focused on offering
trustworthy platforms are to understand these and potentially
other threats so that effective countermeasures can be de-
ployed.

In this paper, we investigate a relatively new threat for dis-
play and video advertising called Pay-Per-View (PPV) net-
1This has led to the emergence of a large number of Search Engine
Optimization companies in recent years.
2While Google is not the only company in this domain, we refer to
them as an authoritative source of information due to their size and
experience in online advertising.

1

212 22nd USENIX Security Symposium USENIX Association

works. The basic idea for PPV networks is to pay legitimate
publishers to run specialized JavaScript when users access
their sites that will display other publishers websites in a
camouflaged fashion. This will result in impressions and po-
tentially even clicks that are registered on the camouflaged
pages without "genuine user interest" i.e., invalid traffic gen-
eration. Legitimate publishers view this as another way to
monetize their sites without impact to their users. PPV net-
works sell their traffic generation capability by touting real
and unique users, geolocation and context specificity among
other things. The fact that pages are appearing on real users’
systems makes detecting and preventing PPV traffic genera-
tion challenging.

To study PPV networks, we employ a small set of honey-
pot websites that we use as the target for traffic generation.
These sites were constructed to include what appears to be
legitimate content and advertising. We then use search to
identify a wide variety of traffic generation offerings on the
Internet. We purchased impressions for our honeypot sites in
various quantities from a selection of different traffic gener-
ation services over the course of a 3.5 month period. By en-
gaging with traffic generation services directly, we were able
to uncover the basic mechanisms of PPV networks and ini-
tiate additional measurements to characterize their deploy-
ments.

The characteristics of the traffic purchased for our honey-
pot sites is dictated at a high level by the service offerings,
which enable volume, time frame and geographic location,
etc. of users to be specified. Our results show that impres-
sions are typically spread in a somewhat bursty fashion over
the specified time frame and that user characteristics are well
matched with specifications. By considering the referer field
of the incoming traffic, we were able to identify the fact that
our honeypot sites were being loaded into a frame (along
with as many as ten other sites) for display on remote sys-
tems. By considering names of a small selection of traf-
fic generation services, we use a recent, publicly-available,
Internet-wide web crawl to identify the scope of PPV net-
works. We find tags from these services are, in fact, widely
deployed – on tens of thousands of sites. By appealing to
MuStat [29], we conservatively estimate the number of in-
valid impressions that are generated from this small set of
PPV networks to be on the order of 500 million per day. As-
suming a modest quality level for sites that are part of PPV
networks, we estimate the annual cost to advertisers for this
invalid traffic to be on the order of $180 million annually.

Finally, we offer three different methods to defend against
PPV networks. First, observing viewport dimensions of ad
requests can determine if the end user can possibly view the
advertisement. In an effort to increase traffic, PPV networks
commonly display destinations in zero sized frames. Sec-
ond, blacklists of websites that participate in PPV networks
can potentially be used. The idea is to block advertising on
websites that commonly receive PPV traffic until the pub-
lisher discontinues purchasing PPV traffic. Such blacklists

can be compiled through programmatic enumeration of PPV
destinations. Finally, referer fields can be queried at the time
of advertisement load in order to identify traffic originating
from known PPV domains.

The remainder of this paper is organized as follows. In
Section 2 we provide a description of the online advertis-
ing ecosystem and an overview of invalid traffic generation
threats. In Section 3, we describe the details of our hon-
eypot websites and our traffic purchases for these sites. In
Section 4, we describe the details of the evaluations that we
conduct on our data including analyses of additional data
sets and measurements that enable us to project some of the
broader characteristics of PPV networks. We provide rec-
ommendations for counter measures that can be employed
to reduce the impact of PPV networks in Section 5. We dis-
cuss prior studies that inform our work in Section 6. We
summarize, conclude and discuss future work in Section 7.

2. ONLINE ADVERTISING ECOSYSTEM
In this section we provide an overview of the online adver-

tising ecosystem including both the business framework and
technical framework for delivering advertisements to pub-
lisher websites and apps. Some prior studies have provided
similar overviews including [16, 34, 41]. We also provide an
overview of invalid traffic generation threats and the chal-
lenges they pose in the ecosystem.

2.1 Business Framework
As mentioned in Section 1, there are three main partici-

pant groups in ad networks: advertisers, intermediaries and
publishers. As shown in Figure 1 there are two other im-
portant groups: brands and users. Brands pay advertisers
to help them sell their products and services. Internet-based
campaigns are attractive to brands and advertisers since con-
sumers/users spend a growing proportion of their time on-
line. An important appeal of online advertising (especially
for consumer goods) is that it offers the opportunity to tie
ad campaigns and associated costs directly to sales e.g., by
tracking clicks from online ads to purchases on a brand’s
ecommerce site.

Advertisers are companies that create and manage adver-
tising campaigns for brands. Advertisers pay publishers to
make ad placements on websites and apps using one of sev-
eral different models. One is the widely used Pay-Per-Click
(PPC) model, where an advertiser only pays a publisher for
an ad when a user clicks on it. PPC campaigns are typically
associated with ad words (short, text-based ads) campaigns.
An alternative payment method that is common in display
and video advertising is Cost Per Mille/Thousand (CPM),
where advertisers pay publishers whenever users view an
ad (CPM prices are given per thousand impressions). The
CPM-based payment model is the primary focus for this pa-
per. The goal for advertisers is to place ads on sites that
they believe attract a brand’s target demographic in a cost-
effective fashion. Thus, their challenge is in identifying these

2

USENIX Association 22nd USENIX Security Symposium 213

Figure 1: Key participants in the online advertising
ecosystem. Payments flow from brands to advertisers to
intermediaries and publishers.

sites and facilitating ad placement.
In addition to working with publishers directly, advertisers

often work with intermediaries in order to actually place ads
on websites and apps. The two main reasons for this are the
complexity of Internet advertising’s technical landscape (see
below) and the enormous and growing diversity of websites
and apps. Among other things, intermediaries offer "one-
stop shopping" for advertisers, and competitive CPM rates to
publishers who may not be able to fill all of their placements
via direct campaigns.

The scope of intermediaries is quite broad. The most com-
mon offerings include targeting services, ad servers and ad
exchanges to facilitate placements. One of the most widely
used intermediaries in the display advertising space is Google
AdExchange (AdX) [20,30]. The revenue model that is most
commonly used by intermediaries is to take a small CPM
payment for each ad that they participate in serving and then
to pass the remainder of the CPM paid by the advertiser to
the publisher.

Internet publishers are companies that create content that
is of interest to users. Publishers display ads on their pages
using standard sized creatives that typically appear in an
iframe. A publisher’s goal is to maximize their revenue yield
by attracting (i) premium advertisers that pay high CPM’s
and (ii) a high volume of users, some whom will click through
on ads. It is important to note that while ad words-based ad-
vertising (e.g., through AdSense) is widely available, display
and video ads are typically only available to sites that have
somewhat higher volumes of users.

2.2 Technical Framework
Displaying an advertisement on a publisher’s page includes

potentially a large number of data exchanges between par-
ticipants in the advertising ecosystem. A simple example is
depicted in Figure 2. The process begins with the placement
of an ad tag in a section of a publisher page. Ad tags (of-
ten supplied by intermediaries that manage ad servers) are
simple HREF strings that typically reference JavaScript code

Figure 2: Typical data exchanges required to render an
ad in a user’s browser. (1) User request to publisher page.
(2) Base page delivered. (3) Ad tag request to CDN. (4)
JavaScript delivered. (5) Update to JavaScript in CDN
if necessary. (6) Request to ad server. (7) Redirected re-
quest delivered. (8) Request to exchange or 3rd party ad
server. (9) Ad creative delivered.

hosted in a CDN infrastructure.
The JavaScript typically gathers context keywords and other

information from the publisher page or user browser and
then sends an ad request to the target ad server infrastruc-
ture. Ad servers process the ad request and either respond
with an ad directly (e.g., from a direct advertiser campaign)
or send a redirect to a third party such as an ad exchange.
The redirect is forwarded by browser to the target server or
exchange, which will respond with an ad that is rendered in
the browser. The redirect usually includes sufficient infor-
mation for ad targeting and billing. This entire process must
take place quickly (typically on the order of tens of millisec-
onds) in order to ensure a good user experience. When the
ad is delivered, an impression is registered for the ad serv-
ing entity. Click tracking is typically managed by directing
clicks to the ad server, which then redirects to the advertiser.

2.3 Invalid Traffic Generation Threats
Impression-based advertising has a number of potential

threats. The focus of this paper is on traffic generation that
causes invalid impression and thereby inflates publisher and
(some) intermediary revenues. Specifically, we focus on in-
valid traffic generation via PPV networks, which we describe
in detail in Section 4.

Valid methods for traffic generation include search and ad
words-based advertising. However, web search reveals that
there is a wide variety of other traffic generation offerings
available. Many offer a specified volume of traffic at a target
site over a specified time period. Many also include guaran-
tees of specific features in the traffic such as geographic lo-
cations of host systems. Most do not describe their method-

3

214 22nd USENIX Security Symposium USENIX Association

ology in detail if at all. One of the important objectives of
traffic generation is that it appear to come from real users.
Appealing to the definition of invalid traffic given in Sec-
tion 1 above, there are many ways in which such traffic might
be generated.

Common methods for invalid traffic generation have been
borrowed directly from click generation services that have
been offered for some time. Examples include hiring peo-
ple to view pages, bots of various types, and using expired
domains to divert users to 3rd-party pages.

PPV networks are sites that load 3rd-party pages in an
obfuscated fashion when accessed by users. Publishers be-
come part of a PPV network simply by placing a tag on their
site that looks very much like a standard ad tag. We define
a "network" as a series of sites that run tags from the same
PPV service. Participating publishers are paid on a CPM ba-
sis for something that appears to be low or no impact on their
site.

Since the third party pages that are rendered via PPV net-
works are clearly not the interest of the users, all of the re-
sulting impressions are invalid. Beyond laking the intent
necessary to qualify as valid traffic, we show that PPV net-
work traffic has characteristics unlike organic traffic. For ex-
ample, natural traffic displays a diurnal traffic pattern, while
the PPV traffic we observed often showed highly artificial
delivery patterns.

3. DATA COLLECTION ON HONEYPOT
WEBSITES

To begin our investigation of traffic generation and im-
pression fraud we established a set of honeypot websites.
We then purchased traffic from a number of different ser-
vices and captured a diverse set of data from the resulting
hits on our sites. In this section we provide details on our
honeypot websites and traffic purchases. The results of these
activities are described in detail in Section 4.

3.1 Honeypot Websites
We created three websites as the starting point for our in-

vestigation of traffic generation service providers. The sites
differed only in styling, formatting, and deployment. The
content on each site was identical. The reason for creating
three different sites was to enable us to conduct A-B com-
parisons between different traffic generation services.

The design objective for our honeypots was to create sites
that looked relatively "legitimate". To that end, they have a
standard layout, content changes regularly and the deploy-
ment is standard. A second objective was that the sites were
instrumented to gather as much data as possible on arriving
traffic.

Each site consisted of a base landing page and four sub-
pages. Three of the pages displayed RSS content from the
news feeds of topwirenews.com or espn.com. One page
listed links to popular news sites. The final page was a non-
functional search result. Every page contained four adver-

Figure 3: Screenshot of one of the honeypot websites that
was a target for traffic generation purchases.

tisement placements, identical to standard CPM placements
except they contained dummy creatives instead of displaying
paying advertisers’ placements. All of the ads have embed-
ded links to dummy landing pages that we also monitor.

Domain names were registered for each site with GoDaddy
using their anonymous registration option. We attempted to
give the sites names that sounded interesting and connoted
the news-related content of the sites. The sites were cre-
ated using dotCMS inside Amazon EC2. Amazon’s Cloud-
Front CDN was enabled for the sites in order to handle larger
bursts of traffic. We used a "noindex, nofollow" meta tag and
a robots.txt file to attempt to prevent inclusion in search en-
gine results.

Instrumentation was facilitated in several ways. Google
Analytics tags were deployed on all pages for general mon-
itoring. Logs from the serving infrastructure were used to
understand the details of individual connections. A series of
JavaScript blocks collected information about the site vis-
itors. The instrumentation reported viewer characteristics
(See Table 1) using 1x1 pixels. Each advertisement on the
sites was instrumented with code that reported the three key
events in the life cycle of every ad: (1) JavaScript load (2)
JavaScript execution and (3) successful delivery. Finally,
the pages contained JavaScript that tracked user interaction
on the site. Simliar to [41] the interaction metrics reported
mouse movements and clicks. The mouse position was col-
lected every time the cursor moved at least 20 pixels.

3.2 Purchased Traffic
We identified and reviewed 34 traffic generation service

providers for this study. These service providers were iden-
tified using web search. We manually reviewed each service
provider’s site to catalog available purchasing options. De-
tails of the sites and options are given in Table 3. We make
no claims on the completeness of this list of traffic genera-
tion service providers. However, given the commonality of
their offerings, we believe that they are a representative cross
section.

We also investigated the service provider websites them-
selves to gain some insights on their legitimacy. Their do-

4

USENIX Association 22nd USENIX Security Symposium 215

main names were checked with McAfee SiteAdvisor [6].
The DNS record was inspected using Network Solutions’
Whois tool [8]. Finally, a tool available from SameID.net [9]
was used to search for sites sharing the same IP address or
Google Analytics tag.

Table 1: Visitor information collected from honeypot
websites.

Timestamp Client IP
URL User Agent

User UID Page Load UID
Viewport Dimensions Referer

From the set of 34 traffic generation services, we selected
5 from which we made purchases. Services were selected to
get a diversity of delivery rates and price points. The char-
acteristics of our purchased traffic indicated the selected ser-
vices were independent networks. The purchased traffic was
directed to the honeypot sites between November 11th, 2012
and February 18th, 2013, resulting in over 69K delivered im-
pressions. We used target URL’s including Google Analytics
campaign parameters [5] to help to differentiate overlapping
purchases.

Our purchasing strategy was oriented around diversity and
not volume. Details of the purchased traffic can be found in
Table 2. With the exception of BuildTraffic all traffic pur-
chased was designated as only traffic from United States and
labeled as news and information. The intended delivery rate
of purchased traffic varied between 333 visitors per day to
25,000 visitors per day. We intend to investigate further di-
versity and higher volume purchases in future work.

Table 2: Traffic purchases made for this study.

Vendor Amount Runtime Price
MaxVisits 10,000 5 days $11.99

BuildTraffic 20,000 60 days $55.00
AeTraffic 10,000 7 days $39.95

BuyBulkVisitor 20,000 5 days $53.00
TrafficMasters 50,000 2 days $70.00

3.3 Pay-Per-View Publisher Signup
In addition to traffic generation itself, PPV service

providers also offer publishers the opportunity to participate
as a traffic source in their network (this was our initial indi-
cation of PPV networks). To further investigate the mecha-
nisms of traffic generation, we enrolled as a website owner
willing to display content with a PPV service provider called
InfinityAds. The signup was completed using InfinityAds’
fully automated publisher signup system on their website.
Upon signup we were given a block of JavaScript to load on
our site. In return for running this tag, the website owner is
assured of a relatively attractive CPM (quoted and qualified

at $1.80) and that "...pop under ads will not block any of your
site content and do not lead to actions where users might be
led to leave your site." [23]. In this case, pop-under windows
are the method that InfinityAds uses to generate traffic. We
describe these in more detail below.

4. PAY-PER-VIEW NETWORK
CHARACTERISTICS

In this section we report the results of our analysis of pur-
chased traffic at our honeypot sites. This analysis reveals the
mechanisms used to drive traffic to target sites and opens the
door to a broader analysis of PPV networks, which is also
reported below.

4.1 Traffic Generation Offerings
We reviewed the details of the 34 traffic genera-

tion/ecommerce sites that we identified via web search using
strings like "website traffic", "buying web traffic", "web traf-
ficking", etc. Features such as traffic characteristics, pricing,
timing, reseller information, and DNS entries were noted for
each site. Details are listed in Table 3.

4.1.1 Pricing
There is no uniform pricing for traffic providers. The pric-

ing given in Table 3 was normalized to the cost of delivering
25,000 visitors from the United States for comparison. Of
the 34 traffic generation services that we investigated, five
of them did not allow purchasing traffic originating exclu-
sively from the United States. One site was deemed fraud-
ulent because it did not have a space to enter a traffic desti-
nation prior to checkout completion. The remaining 28 sites
charged between $29.99 and $200 to purchase 25k visitors.

4.1.2 Overlap/Reselling
There were significant similarities between many of the

traffic purchase sites. Many of the providers made mul-
tiple copies of their site in order to target different pub-
lisher segments or to simply use another attractive domain
name. All of the provider domains were assessed using the
sameid.net domain investigation tool [9]. Seven of the
providers appeared to be repackaging another site (handy-
traffic, cmkmarketing, visitorboost, revisitors, buybulkvis-
itor, highurlstats, xrealvisitors). Four of the repackaged
sites shared a Google Analytics account with another traffic
provider site (handytraffic, cmkmarketing, visitorboost, re-
visitors). Three of the repackaged sites shared an IP address
with another traffic purchase site (buybulkvisitor, highurl-
stats, xrealvisitors). Shared website hosting could cause IP
overlap, but it is unlikely that 3 sites in our 34 site sample
are randomly hosted on the same IP. Furthermore an imple-
mentation error caused highurlstats.com to load buybulkvis-
itor.com, making it plausible that these sites are related.

Four of the PPV sellers investigated offered the ability to
become a traffic reseller (hitpro, ineedhits, toptrafficwhole-
saler, traffic-masters). A reseller sells traffic without having

5

216 22nd USENIX Security Symposium USENIX Association

Table 3: Traffic provider details.

Site Price2 Geotargeting Category Pacing Adult Allow Pop-up/Sound
aetraffic.com $75 Yes Yes Option Option Yes2

allseostar.com NA No No No Opion2 No
bringvisitor.com NA No No No ? Yes2

buildtraffic.com $119 Yes Yes 30 days ? No
buybulkvisitor.com $53 Yes Yes Option ? No
buyhitscheap.com $110 Yes No No ? Yes
cheapadvertising.biz NA No No No Option ?
cmkmarketing.com $82 Yes Yes No ? No
cybertrafficstore.com $70 Yes Yes 30 days Option ?
easytraffic.biz $100 Yes Yes 60 days ? No
fulltraffic.net $220 Yes No No ? ?
getwebsitetraffic.org $75 Yes Yes Option Option Yes2

growstats.com $84 Yes Yes Option ? Yes2

handytraffic.com $99 Yes Yes Option2 ? Yes
highurlstats.com $200 Yes Yes 30 days ? ?
hitpro.us $60 Yes Yes 30 days ? No
ineedhits.com $120 Yes Yes 30 days ? No
masvisitas.net No information, nowhere to enter website URL
maxvisits.com $30 Yes Yes Option ? Yes
meantraffic.com $30 Yes Yes No Option2 ?
perfecttraffic.com $43 Yes Yes Option ? ?
plusvisites.com $30 Yes Yes Option ? ?
purchasewebtraffic.net $99 No No No ? No
realtrafficsource.com $55 Yes Yes No ? ?
revisitors.com $119 Yes Yes Option2 Option2 Yes2

source4traffic.com $88 Yes Yes 30 days ? No
thewebtrafficdominator.com $32 Yes Yes No Option2 ?
toptrafficwholesaler.com $111 Yes Yes2 30 days Option2 No
traffic-masters.com $35 Yes Yes Option Option2 No
trafficchamp.com $89 Yes Yes 30 days No No
trafficelf.com $55 Yes Yes Option Option2 Yes
trafixtech.com $35 Yes Yes Option Option2 No
visitorboost.com $116 Yes Yes 30 days ? No
xrealvisitors.com NA No No No ? ?

1 Cost to purchase 25,000 United States visitors (normalized where needed)
2 Extra cost

to manage traffic delivery infrastructure or payment process-
ing. The reseller acts only as an intermediary forwarding
orders along to the true traffic provider. As per the descrip-
tions, the reseller is charged a fixed rate for the traffic and
can resell the traffic at the price of their choosing. Two of
the reseller packages offered prepackaged websites where
the reseller only needs to supply their branding and market-
ing.

4.1.3 Provider Site Analysis
Given the potentially fraudulent nature of traffic genera-

tion, we were interested in a general measure of the trustwor-
thiness of providers sites. McAfee’s SiteAdvisor [6] rated
most of the provider websites as safe. Specifically, out of

the 34 sites investigated 22 were labeled as Safe, 11 had not
yet been reviewed by SiteAdvisor, and 1 was labeled as sus-
picious.

4.1.4 DNS Registration
A Whois lookup was performed on each of the traffic

providers websites to gain insights on deployments. 14 out
of the 34 sites listed a DNS anonymization service as their
primary contact. Four of the sites were registered or renewed
in the previous 12 months. Expiration and creation dates
give the period the domain registration. On average the sites
were registered for 5.71 years. The longest registration was
for 16 years. Six sites are registered for only 1 year.

Looking at the contract information of the sites not us-

6

USENIX Association 22nd USENIX Security Symposium 217

ing anonymization gave the following breakdown of country
residency: 10 United States, 2 Australia, 2 Canada, 2 Spain,
1 France, 1 Italy, 1 Singapore, 1 China.

4.1.5 Features
Providers offer a variety of options for purchased traffic.

Many provide assurances that only "real" traffic will be de-
livered and no "black hat techniques" are used. Every site
promises unique views, such that the same user will not be
directed to the site multiple times in 24 hours. Six sites were
more precise, specifying that a user’s IP address will only be
directed to the destination once in a 24-hour period. Typi-
cal traffic volumes range between 10K and 1M visitors per
campaign. Direct email was required for campaigns larger
than 1M visitors. See Table 4 for other options offered by
the traffic providers that we evaluated.

Table 4: Traffic provider features.

Adsense Safe Safe to use with Google AdSense
Adult Traffic Deliver users interested in porn
Alexa Boost Traffic to increase Alexa ranking
Allow Pop-ups/Sound No restrictions on destination
Campaign Pacing Select length of campaign
Geo-targeting Deliver users from a region
Clicks Deliver clicks on target website
Mobile Traffic Deliver users of mobile devices
Traffic Classes Deliver users with specific interest

4.2 Purchased Traffic Characteristics
One of our purchases did not deliver any appreciable vol-

ume of traffic. The reason for the failure of traffic delivery is
not clear. The provider may have decided not to deliver due
to the instrumentation of the destination site. The provider
still collected payment for the traffic which was not deliv-
ered. See Tables 5 and 6 for a summary of our measure-
ments. Of the target of 110,000 visits that we purchased, we
received 69,567. At the time of writing AeTraffic was still
delivering visitors beyond the campaign end. The BuildTraf-
fic purchase stopped delivering visitors abruptly at the end of
January, 28 days into the 60-day campaign.

We analyzed traffic delivered to our honeypot websites for
a variety of characteristics. Before processing, the data was
filtered to remove any events originating from our honeypot
server’s IP address. Also any user agent containing case-
insensitive ’bot’ was excluded. This was done to remove the
effects of web crawler traffic from our results. All of the
traffic observed appeared to originate from our purchases.
We did not see any indications of natural traffic.

4.2.1 Blacklist Comparison
The IP addresses of the purchased traffic showed some

overlap with public IP blacklists. Every morning at 7 GMT
IP blocklists were pulled from DShield.org [3] and UcePro-
tect [10] as points of comparison. The count of blacklisted IP

addresses from these sources averaged 303,968 (or 0.007%
of the entire IP space) for January 2013. On average, source
IP addresses of the purchased data matched the blacklists
0.97% of the time. This is perhaps more than would be ex-
pected by chance, but too low to draw a strong conclusion
about overlap between the set of sources from traffic gener-
ation services and malicious sources.

4.2.2 Interaction
Each of our honeypot pages tracked four JavaScript events:

onmousemove, onmousedown, onblur, onfocus. There was
an extremely small number of activity events (190) reported
for all purchased traffic. There are a few explanations for
such low interation: (i) it may be an accurate reflection of
reality, (ii) the site was 0 sized and the user could not interact
with it (see 4.2.7) or (iii) it could be the result of JavaScript
events not firing as expected. Unfortunately we cannot rule
out JavaScript failure. We cannot draw strong conclusions
from the lack of interaction events other than the fact that
we did not pay for anything other than impressions.

4.2.3 Temporal Distribution
The pacing of visitor delivery varied greatly depending

on traffic service provider. As is described below service
providers traffic millions if not billions of visitors a day,
but individual purchases can require delivery of less than
100 visitors a day to a destination. Furthermore, the net-
work throughput is not guaranteed. So the deliveries need
to be slightly front-loaded to ensure full delivery in the case
of lower than expected throughput. The problem of pacing
manifested itself in both the time of arrivals within a day and
the arrival distribution over the entire campaign.

The daily arrival patterns of visitors showed some unusual
artifacts. AeTraffic delivered consistently though the entire
day as can be seen in Figure 4. It is well known that typical
user traffic follows a diurnal cycle, reaching the high peak
during the day and low peak overnight when users are sleep-
ing. A more obvious example of artificial delivery is Build-
Traffic, which delivered only during the first 10 minutes of
the hour, as can be seen in Figure 5.

The arrival of users throughout the campaign was quite
bursty in some cases. With periods of high delivery followed
by periods of low delivery. MaxVisists delivered traffic pri-
marily in the first half of every day as can be seen in Figure
6. Meanwhile, TrafficMasters delivery primarily consisted
of two large spikes with little delivery between, as can be
seen in Figure 7.

4.2.4 Incomplete Loads
Every page on our honeypot sites contained four JavaScript

blocks which loaded advertising creatives. Each creative
was independently instrumented to report when it had been
loaded. Four blocks of JavaScript need to complete in order
to successfully load all of the ads on the pages. Using this
information, we can calculate the percentage of page loads

7

218 22nd USENIX Security Symposium USENIX Association

Table 5: Purchased traffic delivery.

Vendor Expected Visitors Delivered Visitors Expected Duration Actual Duration % Loading all 4 Ads
AeTraffic 10,000 17,205 7 days 8 days1 16.40
BuildTraffic 20,000 1,086 60 days 29 days 60.75
BuyBulkVisitor 20,000 1 5 days 1 day Unknown2

MaxVisits 10,000 9,635 5 days 5 days 12.80
TrafficMasters 50,000 41,640 2 days 3 days 58.34

1 Still sending traffic at the time of submission
2 User failed to load JavaScript

 20

 40

 60

 80

 100

 120

 140

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

Im
p

re
s
s
io

n
s
 p

e
r

5
 M

in
u

te
s

Time(UTC)

Figure 4: Traffic distribution from AeTraffic.

 0

 10

 20

 30

 40

 50

 60

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

00:00

Im
p

re
s
s
io

n
s
 p

e
r

5
 M

in
u

te
s

Time(UTC)

Figure 5: Traffic distribution from BuildTraffic.

that completed for all four ads.
Traffic from BuildTraffic and TrafficMasters resulted in

ads completely loading approximately 60% of the time. Ae-
Traffic and MaxVisits only loaded approximately 15% of
the time. Reasons for failure to load all the ads include:
JavaScript blockers, JavaScript errors, JavaScript execution
timeout, and navigation away from the page.

4.2.5 IP Address Distribution
IP addresses from an entire traffic generation campaign

where checked for duplicates to get an idea of the distri-
bution of traffic sources. According to the advertised 24-
hour-unique policy an IP address could be used once per
day. For small purchases our data showed very little over-

 0

 50

 100

 150

 200

 250

 300

 350

 400

11-19 00:00

11-20 00:00

11-21 00:00

11-22 00:00

11-23 00:00

11-24 00:00

11-25 00:00

11-26 00:00

Im
p

re
s
s
io

n
s
 p

e
r

H
o

u
r

Time(UTC)

Figure 6: Traffic distribution from MaxVisits.

 0

 2000

 4000

 6000

 8000

 10000

 12000

02-18 18:00

02-19 00:00

02-19 06:00

02-19 12:00

02-19 18:00

02-20 00:00

02-20 06:00

02-20 12:00

02-20 18:00

02-21 00:00

02-21 06:00

02-21 12:00

Im
p

re
s
s
io

n
s
 p

e
r

H
o

u
r

Time(UTC)

Figure 7: Traffic Distribution from TrafficMasters.

lap of IP address for the campaigns: AeTraffic reused 0.75%
of IP addresses, BuildTraffic reused 0.64% and MaxVisits
reused 11.25%. The larger purchase from TrafficMasters
showed significantly more IP address overlap with 65% of
IPs reused. The majority of the IPs geolocated inside of the
US, with the exception of the BuildTraffic IPs.

4.2.6 User Agents
The number of unique user agents across the purchases

shows the traffic came from a diverse set of browsers. An
alternative explanation could be that artificial traffic gener-
ators utilized a large set of User Agent strings. However,
combined with the diverse set of IP addresses, it appears the
traffic could well be generated from genuine viewers.

8

USENIX Association 22nd USENIX Security Symposium 219

Table 6: Purchased traffic characteristics.

Vendor IP Sources % US IPs % Blacklisted Unique User Agents % Mobile User Agents % Zero Sized
AeTraffic 17,075 93.14 .99 3,331 5.44 34.08
BuildTraffic 1,079 .17 1.75 312 14.42 NA1

BuyBulkVisitor 1 100 0 Unknown2 0 Unknown2

MaxVisits 8,551 98.83 .47 1,883 4.03 NA1

TrafficMasters 14,489 99.29 1.65 3,096 4.59 47.34

1 Detailed tracking not implemented at time of purchase
2 User failed to load JavaScript

About 5% of the traffic from AeTraffic, MaxVisists and
TrafficMasters had the User Agent signature of a mobile de-
vice. BuildTraffic traffic contained a much higher percent-
age of mobile device User Agents. Possibly due to the in-
creased geographic diversity of the traffic.

4.2.7 Viewport Size
Halfway through our purchases we instrumented the code

to record the element height and width.3 Overall 46.51% of
ad views had a height or width of 0, meaning that the adver-
tisement could not possibly be viewed by the user. 13.42%
of views had both a height and width of zero. These results
corroborate the BuildTraffic delivery technique of zero-sized
frames described in 4.3.1.

4.3 Pay-Per-View Networks
By examining the JavaScript provided by traffic genera-

tion services and the referer fields from traffic on our hon-
eypot sites, we were able to identify the fact that traffic was
generated primarily from pop-under windows. Interestingly,
while we did see evidence of traffic from expired domains,
we saw no evidence of traffic from botnets. This observation
led to our deeper investigation of the use of pop-unders for
traffic generation and our characterization of PPV networks.

As noted above when publishers participate in a traffic
generation service i.e., a PPV network, they are given a block
of JavaScript to place on their site, which looks very much
like a standard ad tag. In the case of PPV networks, when a
user accesses a PPV network publisher page, the JavaScript
opens a new window (typically behind the active browser
window, hence a pop-under) and loads the PPV server URL.
The publisher running the tag gets a share of the revenue for
every PPV URL that is subsequently loaded. The PPV net-
work solves two problems with respect to marshaling users:
(i) it delivers the JavaScript which creates the pop-under
window and (ii) it determines the site to display in the win-
dow.

In response to prevalent pop-up advertising, web browsers
give users the option to prevent pages from opening unso-
3Using document.documentElement.clientHeight, docu-
ment.body.clientHeight, window.innerHeight depending on
browser type.

licited windows. PPV networks need to circumvent this re-
striction. One option is the PPV code can explicitly by-
pass browser protections. A review of the issue trackers for
Chrome or Firefox does not list many bugs related to the
browsers’ pop-up blockers, thus this is likely to be a difficult
coding challenge. Our empirical data did not show any PPV
network tags that attempt to bypass the pop-up blocker di-
rectly. The common approach is to tie pop-under creation to
a user action since browsers typically allow creation of new
windows on these events. Typically the pop-under action is
attached to the onclick event of the body of the page. This
causes the pop-under action to fire whenever the user clicks
anywhere on the site.

After creation, the pop-under window is directed to load
a specific URL pointing to the network’s ad server. The
ad server URL contains a number of parameters describing
targeting and attribution of the visitor. The parameters al-
ways include an identifier for the originating site so that the
publisher can get paid for the traffic. The list of parame-
ters is clearly dependent on individual implementations, but
some of the more common targeting parameters are: (i) user-
Token, (ii) indication if adult sites are allowed, (iii) user
IP/geolocation, and (iv) viewport size. Using these parame-
ters the ad server selects and returns the most profitable 3rd-
party web sites (i.e., the publishers that have purchased traf-
fic) available. This is presumably the point where the 24
hour unique user guarantee is enforced.

Manually loading a publisher’s PPV network tag often
showed multiple redirections through a network of PPV
servers. This mimics what is seen in standard advertis-
ing networks where an individual ad can be redirected
across many networks in order to optimize the return from
each user. For example, repeatedly loading the InfinityAds
publisher tag showed network connections being made to
ads.lzjl.com,
cpxcenter.com, and 199.21.148.39. Whois and reverse IP
lookups on these all indicate YesUp eCommerce Solutions
Inc. for the contact information. YesUp is located in Ontario
Canada and has a host of eCommerce offerings.

Ideally we would have identified the referer to the main
pop-under page in our purchased traffic. This would en-
able us to identify the sites hosting pop-under tags. Un-

9

220 22nd USENIX Security Symposium USENIX Association

fortunately, the sandboxing of child frames (especially child
frames with different domains than the parent) protects the
Document Object Model of the parent frame. Therefore, the
document.referrer node of the parent is inaccessible to the
child frame. None of our traffic purchases had a value for
parent.document.referrer. The best we can do is the referer
value of the frame loading our honeypot sites. This referer
points to the origin of the pop-under window code (originat-
ing from the PPV service provider).

4.3.1 Delivery Analysis
In order to gain a better understanding of how traffic is

delivered to purchasing sites, we reviewed the pages listed in
the referer fields for the traffic arriving at our honeypot sites.
A closer examination of two of the referer sites (BuildTraffic
and RealTrafficSource) showed methods for increasing the
number of "page views" for every user delivered.

Loading the referer of traffic purchased from BuildTraf-
fic resulted in a simple HTML page, including 11 frames
(see Appendix for example code). The main frame loads
the primary target destination in 100% of the browser view-
port. Following the primary frame there are 10 frames with
a height of 0 pixels. Each of these frames loads the URL of a
PPV network customer. Eight of the frames load paths from
a link shortening service (itsssl.com), which resolve directly
to a number of sites (presumably those purchasing traffic).
One of the frames loads another targeting link from the same
network. The final frame loads a targeting link from yet an-
other domain. Resulting in a total of 11 "page loads" each
time the PPV network URL is loaded. Ten of those page
loads are invisible to the end user because they are loaded in
a frame 0 pixels high.

The page listed as the referer in traffic from RealTraffic-
Source also used a frame to load the final destination. In this
case only a single frame covered the entire viewport, but the
outer page reloaded itself every 15 seconds. When the page
is displayed as a pop-under it will continue to load a differ-
ent site every 15 seconds even if the pop-under window is
not visible to the user.

4.4 PPV Network Throughput
Based on our evaluation of the pop-under mechanisms

used by PPV networks, we endeavored to assess the broader
issues of the scale of these networks (e.g., number of pub-
lisher sites and number of users) and the potential volume of
impressions that are being delivered on a daily basis. While
all of this analysis is approximate and is based on certain as-
sumptions, we take a conservative approach and argue that
our results provide a meaningful depiction of this threat.

4.4.1 Self Reported Network Data
Many of the PPV providers list the throughput details

(unique users and page views) of their network in advertis-
ing materials. Clearly, when self reporting these numbers,
PPV network providers have incentive to over state in or-

der to make their network appear larger than their competi-
tors. Nonetheless, the self reported numbers give an insight
into at least the approximate size of the networks. None
of the providers publish throughput numbers broken down
by features or delivery mechanisms. Thus, the numbers in-
clude pop-unders, expired domains and any other generation
techniques. As shown in Table 4, 8 of the providers offer
throughput information. An average of 17.16M unique visi-
tors and 6.29B page views per provider per day are claimed.
While the self report by TrafficMasters on page views is
much higher than others and could be false, it may be due
to an extensive affiliate network. Indeed, the use of affili-
ate networks means that simple summation of throughput to
assess scope is unlikely to be accurate. However, the self
reported numbers still point to a sizable capacity for PPV
networks.

Table 7: Self reported network throughput from PPV
providers.

Site Daily Visitors Daily Deliveries
CMK Marketing 2M 25M

HitPro 40.5M 112M
TrafficElf 20M 45M

BuildTraffic 3.3M -
FullTraffic 20M -

TopTrafficWholesaler - 30M
BringVisitor - 26.6M

TrafficMasters - 37.5B

4.4.2 Volume Estimation
In order to estimate throughput of the networks we inves-

tigated the scope of the deployment of the PPV network tags
across publisher sites. Given the publisher sites where the
PPV network tags are present along with the estimated traf-
fic for those sites we create a conservative estimate for the
daily traffic across PPV networks.

The first step in determining where the PPV network tags
are deployed is identifying the tag URLs. The PPV networks
we considered commonly used a domain name for their de-
livery infrastructure that was different from the public facing
websites that market to publishers. We used three techniques
to identify 10 active PPV network tag URLs: (i) subscribing
to a PPV network as a publisher, (ii) investigating referer
fields and (iii) searching for ad code on public forums.

Where possible we utilized automated signup processes
to harvest PPV tags directly from the publishers. This is a
trivial case where the code to be run on the publisher site is
directly supplied.

Using referer fields to identify PPV tags was more chal-
lenging. Typically the destination is loaded inside a frame,
so the referer references the outer page hosting the frame.
The display page is typically not loaded directly from the
publisher site. The publisher loads JavaScript which handles

10

USENIX Association 22nd USENIX Security Symposium 221

Table 8: Estimated pop-under window loads per day.

Network Tag Count Domains Domain Traffic Subdomain Traffic Total Estimate (Views/Day)
adsrevenue.net 1,797 21 802,815 128 802,943
adversalservers.com 93,060 269 1,185,769 14,168 1,199,937
clicksor.com 855,268 2,801 24,741,249 909,649 25,650,898
edomz.com 21,750 62 971,409 11,244 982,653
ero-advertising.com 2,691,930 5,830 100,664,523 69,110 100,733,633
flagads.net 36,382 102 2,294,143 2,023 2,296,166
lzjl.com 195,406 1,192 17,427,379 425,839 17,853,218
popadscdn.net 245,302 1,029 17,016,554 124,463 17,141,017
poponclick.com 28,521 164 2,651,188 2,467 2,653,655
visit-tracker.com 90 38 623,344 0 623,344
Total 4,169,506 11,508 168,378,373 1,559,091 169,937,464

the pop-under creation and then calls the display page to fill
the newly created window. In some cases, both the display
page and the pop-under JavaScript are hosted on the same
infrastructure. Searching the Common Crawl [2] database
for the infrastructure domain lead to the identification of a
number of PPV tags.

Finally, entering PPV network names into search engines
resulted in a number of forum posts discussing pop-under
tags. Many of the tags collected this way were no longer in
use, but there were a few that were still active.

The next step is identifying the publisher sites that have
deployed PPV network tags. To do this we used the Com-
mon Crawl repository of web crawl data. The August 2012
(see Table 4 for details provided by [11]) dataset included
derived metadata about all of the crawled URLs. The meta-
data dataset contained a list of all outgoing links for each
crawled page (including loading of JavaScript files). Ama-
zon’s Elastic MapReduce was used to list all paths with egress
links pointing to the serving domains. The egress links were
then manually reviewed to identify JavaScript files result-
ing in pop-under advertising. Selecting only pop-under tags
from the MapReduce results gives a list of domains running
those tags. We argue that this results in a conservative esti-
mate of PPV networks that use pop-unders and an even more
conservative estimate of PPV networks in general.

Estimates on traffic volumes on the identified publisher
sites was done using public web analytics data. Alexa and
Compete did not have traffic estimates for many of the do-
mains. Thus, mustats.com was used to estimate domain
traffic. A script was used to programmatically query mus-
tats.com for traffic estimates on the identified PPV sites. We
collected issued queries for 11,629 domains. MuStats re-
turned an estimate for 10,737 of the queries. 2,635 of the
returned queries estimated 0 views per day for the domain.

Subdomains posed an additional problem for traffic esti-
mation. The web analytics products did not estimate traf-
fic per subdomain. They only gave an estimate for the en-
tire domain. For example, it is clear that just because blog-
sofnote.blogspot.com hosts a PPV network tag, not every do-

Table 9: August 2012 CommonCrawl database sum-
mary.

Crawl Date: January-June 2012
Data Size: 40.1TB (compressed)
Parsed URLs: 3,005,629,093
Domains: 40,600,000

main on blogspot.com hosts that same ad tag. Attributing all
of the traffic for blogspot.com to a PPV network would be
inaccurate.

To estimate the impact of subdomains on PPV networks,
we again utilize the Common Crawl database. Our analysis
counts the total number of URLs crawled for each domain
that lists PPV tags. URLs with file extensions jpg, png, gif,
js were removed from the total count. The final total count
approximates the number of webpages and page fragments
crawled for a given domain. Dividing the link count by the
total crawled pages results in the percentage of pages in a
domain containing links to the PPV code. This is likely a
significant underestimation of reality for two reasons First,
many of the URLs crawled were page fragments (where a
full page is the combination of many fragements). Second,
each path is given even weight despite the fact that tags are
more likely to be found on high traffic pages. In any case,
subdomain traffic is estimated by taking the estimated traffic
for the whole domain and multiplying that by the percentage
of pages inside the domain linking to the tag.

domains =

{123lyrics.in f o,serverhk.net, ...}
(1)

subDomains =

{site1.blogspot.com,site2.blogspot.com, ...}
(2)

11

222 22nd USENIX Security Symposium USENIX Association

estimate =

∑
domains

domainTra f f ic+

∑
subDomains

linkedPages
totalPages

∗domainTra f f ic

(3)

Our final algorithm for calculating PPV network through-
put is then the estimated traffic for domains hosting PPV tags
plus the proportional estimated traffic for subdomains con-
taining PPV tags as shown in Equation 3. Our estimates only
include the traffic expected from pop-under tags. Obviously,
by including traffic from expired domains and typo squat-
ting domains and bots would likely increase the estimated
throughput substantially.

Table 8 shows throughput estimates for a selection of 10
PPV networks using our algorithm. As is expected from our
conservative approach, the dominant portion of estimated
traffic was to full domains with subdomain estimates mak-
ing up a small portion of the total estimate. The PPV tags
from ero-advertising.com, which is the largest PPV network,
were displayed predominantly on publishers hosting adult
content. It is possible that visitors browsing adult content
are more tolerant of pop-under advertising.

So far we have estimated the number of times that pop-
under code is executed per day. In reality many users have
browser add-ons that prevent the creation of the pop-under
window. One such popular extension for Firefox and Chrome
is Adblock Plus [1]. The Firefox add-ons page for Adblock
Plus lists 15.6M users [4]. Firefox claims 450M users [7],
giving an install rate of 3.5% for Adblock Plus on Firefox.
We conservatively estimate one quarter of all page loads pre-
vent pop-up/pop-under creation due to plugins. Given this,
we still would expect 75% of the estimated loads to result in
a pop-under window. Our investigation of delivery mech-
anisms shows that PPV networks can load up to 11 des-
tinations or more (in the case of auto refresh) in a single
pop-under window. To maintain our conservative approach
we assume four destinations loaded per pop-under window.
Combining the effect of pop-up blockers and multiple loads
we expect each view of a page hosting pop-under code will
deliver 3 (0.75 * 4) impressions to the PPV network.

Our calculation of throughput for just 10 publisher net-
works resulted in more than 160M estimated tag loads per
day, thus more than 500M visitor deliveries per day. Assum-
ing a modest price of $25 per 25k visitors, the PPV providers
make a minimum of $15M in sales of targeted traffic per
month. Those 15B page views per month are delivered to
purchasing websites. Assume the purchasing websites con-
tain an average of 4 ads and each of those ads pays a $0.25
CPM. Advertisers spend $15M a month advertising to pop-
under viewers on these 10 networks alone.

5. PAY-PER-VIEW NETWORK
COUNTERMEASURES

In this section, we describe three potential counter mea-
sures to address the problem of invalid impressions gener-

ated by PPV networks. Each method offers a different per-
spective on the threat and each offers a different capability
in terms of what can be done about the threat. While there
could certainly be other viable counter measures, the follow-
ing methods can be implemented by participants in the ad
ecosystem who would benefit by detection and/or prevention
of invalid impressions via PPV networks.

5.1 Viewport Size Filters
Advertisers who run their own ad server or intermediaries

who run ad servers who are interested in removing impres-
sions from PPV networks can filter ad requests based on
viewport size. An advertiser or intermediary could imple-
ment a viewport size check countermeasure by augmenting
their current JavaScript tag to include code that ensures a
minimum sized viewport. This simple check code would
prevent display of the advertisement for viewports which are
too small to reasonably be seen by users on target platforms.
In addition to reducing invalid impressions, this approach
would save advertisers the bandwidth costs of delivering cre-
atives in PPV networks.

JavaScript that detects zero-sized viewports could prevent
a large amount of invalid impressions. Over 46% of the
impressions in our data corpus are delivered via zero-sized
viewports. Assuming this approach is used by PPV networks
writ large, we estimate that a zero size viewport filter could
block impressions from loading on over 200M pages per day
from just the 10 PPV networks we investigated.

5.2 Referer Blacklist
Participants in the ad ecosystem could also use blacklists

to identify and block traffic originating from PPV networks.
We found that the referer field identifies a source in the ma-
jority of the traffic that we purchased. Over time, a black-
list of referers could be built that identifies traffic originat-
ing from a large number of PPV networks. This is similar
to browser ad-blocking add-ons or in-network solutions that
utilize a blacklist to remove undesired traffic. The difference
with the referer blacklist is that the advertiser or intermedi-
ary implements the list directly. One limitation of this ap-
proach is that it will only work if no iframes are in use since
iframes would prevent the advertiser code from accessing
the referer.

Similar to viewport size filters, an advertiser/intermediary
could incorporate the blacklist into their ad tags in order to
prevent display to questionable viewers. As a passive alter-
native an advertiser could simply log the referers and com-
pare them against the blacklist at a later time. Then the ad-
vertiser can use the information in negotiations with their
advertising network.

The blacklist will need continual tuning as new PPV net-
works emerge and old networks disappear. One drawback
of this approach is that a savvy adversary can trivially defeat
this method by clearing or altering the referer field. There
is some evidence that this is already happening. A few of

12

USENIX Association 22nd USENIX Security Symposium 223

the referer strings in our data corpus contained direct IP ad-
dresses instead of DNS names, possibly to thwart existing or
suspected blacklist methodology or simply to obfuscate their
behavior. Even so a referer blacklist based on domain names
would have prevented 99.51% of our purchased traffic.

5.3 Publisher Blacklists
An alternative approach is to create and maintain a black-

list of publishers that participate in PPV networks. Similar
to countermeasures described above, this list could be used
by advertisers to avoid running their display advertising on
sites sourcing traffic from the PPV networks. This somewhat
strong-armed approach would be likely to get the attention
of publishers very quickly since we assume at least some
percentage may not be aware of the negative aspects of their
participation. Even if a publisher was aware, such an ap-
proach would discourage them from engaging with invalid
traffic. Thus, this method could have potential benefits to
the entire advertising ecosystem.

Publisher blacklists can be implemented by the advertiser
in their tag as either preventative or informative, similar to
the referer blacklist. Again this list will need continual up-
dates as publisher behavior changes. One method of gen-
erating a publisher blacklist is to isolate and repeatedly call
the PPV destination selection code block. This would enu-
merate all possible destinations for that PPV network over
time.

6. RELATED WORK
General aspects of online advertising have been discussed

in a large number of studies over the past decade. These
studies have focused on wide variety of issues including the
economic aspects of advertising e.g., [17, 18], theoretical or
analytical evaluations of sponsored search and ad auctions
e.g., [13, 35, 37] and more recently ad exchanges e.g., [14,
30]. However, there are relatively few examples of empiri-
cal characterization studies of online advertising, most likely
due to the private nature of advertising data. Relatively re-
cent empirical studies include [19,26,31,32,39], which pro-
vide informative insights on key assumptions made in theo-
retical studies as well as recommendations that improve the
effectiveness of online advertising.

Google, Microsoft, Yahoo and other large industry players
have online documentation about their invalid traffic moni-
toring activities (although no significant technical details are
disclosed) [21, 24, 38]. This is given to raise trust for adver-
tisers. However, many platforms offered by intermediaries
have almost no documentation on fraud. What is clear is
that detecting and preventing fraud in advertising networks
presents significant challenges [33, 36].

The problem of fraud in online advertising has been the
subject of many different studies over the years. The ma-
jority of these studies have focused on fraud in PPC-based
environments. Botnets are well known to be used for click
fraud. One example of a large-scale botnet focus on click

fraud was the Bamital botnet, which was recently disman-
tled [25]. Similarly, the ZeroAccess botnet can generate
fraudulent clicks estimated to cost advertisers over $900K/day
in lost revenue [12]. Other studies have focused on develop-
ing methods for detecting click-fraud e.g., [28,40]. Haddadi
describes bluff ads as a means for measuring click fraud ac-
tivity and creating blacklists for IP addresses to reduce click
fraud [22]. Dave et al. [16] developed a novel measurement
methodology to gather data on click fraud in ad networks.
Their work informs our measurement efforts. Another re-
cent empirical study by Zhang et al. is perhaps most simi-
lar to our work in terms of measurement methods [41]. In
that study, the authors purchased traffic aimed at a honey-
pot website, and reported on a range of characteristics. Our
findings on the characteristics of purchased traffic are in line
with theirs, although we only purchased impression traffic
and did not focus on click-through in our study.

Finally, several recent studies have included brief discus-
sions of impression fraud. In particular, Stone-Gross et al.
use logs from a large online ad exchange to investigate a va-
riety of characteristics that relate to invalid activity, includ-
ing behaviors related to impression spam [34]. Our work
differs from prior studies principally in its focus on impres-
sion fraud. To the best of our knowledge there are no prior
studies that investigate impression fraud in depth from an
empirical perspective, or that investigate PPV networks and
their characteristics.

7. SUMMARY AND CONCLUSIONS
Internet-based advertising is a large and growing industry.

Search-based advertising still dominates in terms of annual
expenditures, however display and video advertising have
seen significant growth over the past several years. While
publishers have always been motivated to use diverse meth-
ods to drive users to their sites, the fact that payments for dis-
play and video ads are often based on impressions motivates
new offerings from 3rd-party traffic generation services.

In this paper, we investigate the problem of invalid traffic
generation that is aimed at inflating impressions on publisher
websites and apps. We address this problem empirically
by setting up several honeypot websites that were used as
the targets for traffic generation purchases, which we made
over the course of several months. This traffic provides the
baseline from which we were able to identify a particular
form of impression generation that we call pay-per-view net-
works. A PPV network is a series of legitimate publisher
sites that include a common embedded reference from a par-
ticular traffic generation service. When users access pub-
lisher sites that participate in PPV networks, 3rd-party web-
sites are rendered in an obfuscated and often invisible fash-
ion. By evaluating the JavaScript associated with PPV net-
works, we find that the predominate mechanism used is pop-
under windows. We also find that PPV networks place mul-
tiple 3rd-party pages on pop-unders using frames or use pe-
riodic refresh to leverage every user access. This approach

13

224 22nd USENIX Security Symposium USENIX Association

preserves the user experience on the publisher’s site and gen-
erates invalid impressions on the 3rd-party sites in a way that
is difficult to detect.

Next, we investigate aspects of the broader scope of PPV
networks by gathering information from a small selection of
ten traffic generation services. We search for tags from these
services in a publicly available Internet-wide crawl database
to estimate deployments on publisher sites. We couple these
estimates with estimates for daily unique page views from
those sites and find tag throughput above 150M per day.
Combined with conservative estimates of 3rd-party displays
per tag and ad placements per page, this easily pushes the
number of invalid impressions above 500M per day from
these ten PPV networks alone. Based on the fact that our
sampling is so small, the impact of PPV networks is likely
to be much larger.

To address the threat of PPV networks, we describe three
different counter measures. Each offers a different constituency
an opportunity to block the display of the unwanted 3rd-
party content. In future work, we plan to focus on devel-
oping implementations of the proposed counter measures as
well as developing other techniques to address this threat.
Our measurement and characterization work are ongoing and
will soon focus on traffic generation services outside of North
America.

Acknowledgements
The authors would like to thank our shepherd, Chris Grier,
for his input and multiple reviews of the paper. This work
was supported in part by NSF grants CNS-0831427, CNS-
0905186, ARL/ARO grant W911NF1110227 and the DHS
PREDICT Project. Any opinions, findings, conclusions or
other recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the
NSF, ARO or DHS.

8. REFERENCES

[1] Adblock Plus. http://adblockplus.org, 2013.
[2] Common Crawl. http://commoncrawl.org/, 2013.
[3] Dshield Daily Sources.

http://www.dshield.org/feeds/daily_sources, 2013.
[4] Firefox Add-Ons - Adblock Plus.

https://addons.mozilla.org/en-
US/firefox/addon/adblock-plus/, February
2013.

[5] Google Analytics URL Builder.
http://support.google.com/analytics/bin/answer.py?
hl=en&answer=1033867&topic=1032998&ctx=topic,
2013.

[6] McAfee SiteAdvisor. http://www.siteadvisor.com/,
2013.

[7] Mozilla Press Center.
http://blog.mozilla.org/press/ataglance/, February
2013.

[8] Network Solutions Whois.
http://www.networksolutions.com/whois, 2013.

[9] SameID.net. http://sameid.net/, 2013.
[10] UCEPROTECT Blacklist.

http://rsync-mirrors.uceprotect.net/rbldnsd-
all/ips.backscatterer.org.gz,
2013.

[11] Web Data Commons - Extraction Results from the
August 2012 Common Crawl Corpus.
http://webdatacommons.org/#toc2, 2013.

[12] ZeroAccess is Top Bot in Home Networks.
http://www.infosecurity-magazine.com, February
2013.

[13] G. Aggarwal, J. Feldman, S. Muthukrishnan, and
M. Pai. Sponsored Search Auctions with Markovian
Users. Internt and Network Economics, Lecture Notes
in Computer Science, 5385, 2008.

[14] S. Balseiro, J. Feldman, v. Mirrokni, and
S. Muthukrishnan. Yield Optimization of Display
Advertising with Ad Exchange. In Proceedings of the
ACM Electronic Commerce ’11, San Jose, CA, June
2011.

[15] Internet Advertising Board. IAB Internet Advertising
Revenue Report 2012 First Six Months Results.
http://www.iab.net, October 2012.

[16] V. Dave, S. Guha, and Y. Zhang. Measuring and
Fingerprinting Click-Spam in Ad Networks. In
Proceedings of ACM SIGCOMM ’12, Helsinki,
Finland, August 2012.

[17] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
Advertising and the Generalized Second Price
Auctions: Selling Billions of Dollars Worth of
Keywords. American Economic Review, 2007.

[18] D. Evans. The Economics of the Online Advertising
Industry. Review of Network Economics, 7(3), 2008.

[19] A. Ghose and S. Yang. An Empirical Analysis of
Search Engine Advertising: Sponsored Search in
Electronic Markets. Management Science, 55(10),
July 2009.

[20] Google. Adexchange.
http://www.google.com/adwords/watchthisspace/
solutions/ad-exchange/, 2013.

[21] Inc Google. Ad Traffic Quality Resource Center.
http://www.google.com/ads/adtrafficquality/index.html,
2013.

[22] H. Haddadi. Fighting Online Click-fraud Using Bluff
Ads. ACM SIGCOMM Computer Communications
Review, 40(2), 2010.

[23] InfinityAds. Publisher Signup.
http://www.infinityads.com, 2013.

[24] T. Kelleher. How Microsoft Advertising Helps Protect
Advertisers from Invalid Traffic.
http://community.bingads.microsoft.com, November
2011.

[25] J. Kirk. Microsoft, Symantec Take Down Bamital

14

USENIX Association 22nd USENIX Security Symposium 225

Click-fraud Botnet. http://www.infoworld.com,
February 2013.

[26] S. Lahaie and P. McAfee. Efficient Ranking in
Sponsored Search. In Proceedings of the Seventh
Workshop on Ad Auctions, San Jose, CA, July 2011.

[27] I. Lunden. Forrester: US Online Display Ad Spend
$12.7B In 2012, Rich Media and Video Leading The
Charge. http://www.techcrunch.com, October 2012.

[28] A. Metwally, D. Agrawal, and A. El Abbadi. Using
Association Rules for Fraud Detection in Web
Advertising Networks. In Proceedings of the
International Conference on Very Large Databases,
Trondheim, Norway, August 2005.

[29] MuStat. MuStat. http://www.mustat.com, 2013.
[30] S. Muthukrishnan. AdX: A Model for Ad Exchanges.

ACM SIGEcon Exchanges, 8(2), 2009.
[31] M. Ostrovsky and M. Schwarz. Reserve Prices in

Internet Advertising Auctions: A Field Experiment. In
Proceedings of the Sixth Workshop on Ad Auctions,
Cambridge, MA, July 2010.

[32] N. Vallina Rodriguez, J. Shah, A. Finamore,
Y. Grunenberger, K. Papaginnaki, H. Haddadi, and
J. Crowcroft. Breaking for commercials:
characterizing mobile advertising. In Proceedings of
ACM Internet Measurement Conference (IMC ’12),
Boston, MA, November 2012.

[33] B. Schwartz. Google: Investigating Invalid AdSense
Traffic is Extremely Difficult.
http://www.seroundtable.com, April 2012.

[34] B. Stone-Gross, R. Stevens, R. Kemmerer, C. Kruegel,
G. Vigna, and A. Zarras. Understanding Fraudulent
Activities in Online Ad Exchanges. In Proceedings of
ACM Internet Measurement Conference (IMC ’11),
Berlin, Germany, November 2011.

[35] C. Tucker and A. Goldfarb. Search Engine
Advertising: Pricing ads to context. In Proceedings of
the Fourth Workshop on Ad Auctions, Chicago, IL,
July 2008.

[36] A. Tuzhilin. The Lane’s Gifts v. Google Report.
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf,
2006.

[37] H. Varian. Position Auctions. International Journal of
Industrial Organization, 25, 2007.

[38] Yahoo. Traffic Quality: We Work to Protect You in a
Variety of Ways. http://advertisingcentral.yahoo.com,
2013.

[39] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and
Z. Chen. How Much can Behavioral Targeting Help
Online Advertising? In Proceedings of WWW ’09,
Madrid, Spaing, April 2009.

[40] L. Zhang and Y. Guan. Detecting Click Fraud in Pay
Per Click Streams of Online Advertising Networks. In
Proceedings of the International Conference on
Distributed Computing Systems, Beijing, China, June
2008.

[41] Q. Zhang, T. Ristenpart, S. Savage, and G. Voelker.
Got Traffic? An Evaluation of Click Traffic Providers.
In Proceedings of WebQuality ’11, Hyderabad, India,
March 2011.

15

226 22nd USENIX Security Symposium USENIX Association

APPENDIX
Traffic Delivery Code
...
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’header’ src=’about:blank’ scrolling=’no’ noresize>
<frame name=’main’ src=" +rurl+ " scrolling=’auto’>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’raaj1’ src=’http://itsssl.com/37kt’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’house2’ src=’http://stats.itsssl.com/?VFJDSz0zNA==’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’house3’ src=’http://stats.itsssl.com/?VFJDSz0zNA==’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’usnopop’ src=’http://stats.itsssl.com/?VFJDSz00’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’usnopop2 src=’http://stats.itsssl.com/?VFJDSz00’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’usnopop3 src=’http://stats.itsssl.com/?VFJDSz00’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’geo1’ src=’http://www.itsssl.com/georedirect/main.html’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’geo2’ src=’http://www.itsssl.com/georedirect/main.html’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’raaj2’ src=’http://stats.buildtraffic.com/?VFJDSz01OA==’ scrolling=’no’ noresize>
<frameset rows=’0,*’ framespacing=’0’ border=’0’ frameborder=’0’>
<frame name=’georedirect’ src=’http://adzay.com/redirect.php’ scrolling=’no’ noresize>
...

16

USENIX Association 22nd USENIX Security Symposium 227

The Velocity of Censorship: High-Fidelity Detection of Microblog Post
Deletions

Tao Zhu
zhutao777@gmail.com
Independent Researcher

David Phipps
Computer Science
Bowdoin College

Adam Pridgen
Computer Science

Rice University

Jedidiah R. Crandall
Computer Science

University of New Mexico

Dan S. Wallach
Computer Science

Rice University

Abstract

Weibo and other popular Chinese microblogging sites are
well known for exercising internal censorship, to comply
with Chinese government requirements. This research
seeks to quantify the mechanisms of this censorship:
how fast and how comprehensively posts are deleted.
Our analysis considered 2.38 million posts gathered over
roughly two months in 2012, with our attention focused
on repeatedly visiting “sensitive” users. This gives us a
view of censorship events within minutes of their occur-
rence, albeit at a cost of our data no longer representing a
random sample of the general Weibo population. We also
have a larger 470 million post sampling from Weibo’s
public timeline, taken over a longer time period, that is
more representative of a random sample.

We found that deletions happen most heavily in the
first hour after a post has been submitted. Focusing
on original posts, not reposts/retweets, we observed that
nearly 30% of the total deletion events occur within 5–
30 minutes. Nearly 90% of the deletions happen within
the first 24 hours. Leveraging our data, we also consid-
ered a variety of hypotheses about the mechanisms used
by Weibo for censorship, such as the extent to which
Weibo’s censors use retrospective keyword-based cen-
sorship, and how repost/retweet popularity interacts with
censorship. We also used natural language processing
techniques to analyze which topics were more likely to
be censored.

1 Introduction

Virtually all measurements of Internet censorship are bi-
ased in some way, simply because it is not feasible to
test every keyword or check every post at small incre-
ments of time. In this paper, we describe our method for
tracking censorship on Weibo, a popular microblogging
platform in China, and the results of our measurements.
Our system focuses on a core set of users who are in-

terconnected through their social graph and tend to post
about sensitive topics. This biases us towards the content
posted by these particular users, but enables us to mea-
sure with high fidelity the speed of the censorship and
discern interesting patterns in censor behaviors.

Sina Weibo (weibo.com, referred to in this paper sim-
ply as “Weibo”) has the most active user community of
any microblog site in China [39]. Weibo provides ser-
vices which are similar to Twitter, with @usernames,
#hashtags, reposting, and URL shortening. In February
2012, Weibo had over 300 million users, and about 100
million messages sent daily [3]. Like Twitter in other
countries, Weibo plays an important role in the discourse
surrounding current events in China. Both professional
reporters and amateurs can provide immediate, first-hand
accounts and opinions of events as they unfold. Also like
Twitter, Weibo limits posts to 140 characters, but 140
characters in Chinese can convey significantly more in-
formation than in English. Weibo also allows embedded
photos and videos, as well as comment threads attached
to posts.

China employs both backbone-level filtering of IP
packets [5, 6, 11, 23, 37, 43] and higher level filtering
implemented in the software of, for example, blog plat-
forms [15, 20, 28], chat programs [13, 29] and search en-
gines [30, 41]. Work specific to Weibo [2, 9] is discussed
in more detail in Section 2. To our knowledge ours is the
first work to focus on how quickly microblog posts are
removed—on a scale of minutes after they are posted.
This fidelity in measurement allows us to not only accu-
rately measure the speed of the censorship, but also to
compare censorship speeds with respect to topics, censor
methods, censor work schedules, and other illuminating
patterns.

What our results illustrate is that Weibo employs
“defense-in-depth” in their strategy for filtering content.
Internet censorship represents a conflict between the cen-
sors, who seek to filter content according to some policy,
and the users who are subject to that censorship. Censor-

228 22nd USENIX Security Symposium USENIX Association

ship can serve to squelch conversations directly as well as
to chill future discussion with the threat of state surveil-
lance. Our goal in this paper is to catalog the wide variety
of mechanisms that Weibo’s censors employ.

This research has several major contributions:

• We describe the implementation of a method that
can detect a censorship event within 1–2 minutes of
its occurrence. A large amount of Weibo posts are
collected constantly via two APIs [26]. There are
more than 470 million posts from the public time-
line and 2.38 million posts from the user timeline in
our database.

• To further understand how the Weibo system can
react so quickly in terms of deleting posts with sen-
sitive content, we propose four hypotheses and at-
tempt to support each with our data. We also de-
scribe several experiments that shed light on cen-
sorship practices on Weibo. The overall picture we
illuminate in this paper is that Weibo employs a
distributed, defense-in-depth strategy for removing
sensitive content.

• Using natural language processing techniques that
overcome the usage of neologisms, named entities,
and informal language which typifies Chinese social
media, we perform a topical analysis of the deleted
posts and compare the deletion speeds for different
topics. We find that the topics where mass removal
happens the fastest are those that are hot topics in
Weibo as a whole (e.g., the Beijing rainstorms or a
sex scandal). We also find that our sensitive user
group has overarching themes throughout all topics
that suggest discussion of state power (e.g., Beijing,
government, China, and the police).

The rest of this paper is structured as follows. Sec-
tion 2 gives some basic background information about
microblogging and Internet censorship in China. Then
Section 3 describes the methods we used for our mea-
surement and analysis, followed by Section 4 that de-
scribes the timing of censorship events. Section 5 intro-
duces the natural language processing we applied to the
data and presents results from topical analysis. Finally,
we conclude with a discussion of various Weibo filtering
mechanisms in Section 6.

2 Background

Starting from 2010, when microblogs debuted in China,
not only have there been many top news stories where
the reporting was driven by social media, but social me-
dia has also been part of the story itself for a number
of prominent events [21, 38], including the protests of

Wukan [33], the Deng Yujiao incident [32], the Yao
Jiaxin murder case [35], and the Shifang protest [36].
There have also been events where social media has
forced the government to address issues directly, such as
the Beijing rainstorms in July 2012.

Chinese social media analysis is challenging [27].
One of many concerns that can hinder this work is the
general difficulty of mechanically processing Chinese
text. Western speakers (and algorithms) expect words
to be separated by whitespace or punctuation. In writ-
ten Chinese, however, there are no such word bound-
ary delimiters. The word segmentation problem in Chi-
nese is exacerbated by the existence of unknown words
such as named entities (e.g., people, companies, movies)
or neologisms (substituting characters that appear sim-
ilar to others, or otherwise coining new euphemisms
or slang expressions, to defeat keyword-based censor-
ship) [12]. Furthermore, since social media is heavily
centered around current events, it may well contain new
named entities that will not appear in any static lexi-
con [8].

Despite these concerns, Weibo censorship has been
the subject of previous research. Bamman et al. [2]
performed a statistical analysis of deleted posts, show-
ing that the presence of some sensitive terms indicated a
higher probability of the deletion of a post. Their work
also showed some geographic patterns in post deletion,
with posts from the provinces of Tibet and Qinghai ex-
hibiting a higher deletion rate than other provinces. Wei-
boScope [9] also collects deleted posts from Weibo, but
their strategy is to follow all users with a high number of
followers. This is in contrast to our strategy which is to
follow a core set of users who have a high rate of post
deletions, some of which have many followers and some
of which have few. The deletion events in these works
are measured with a resolution of hours or days. Our
system is able to detect deletion events at the resolution
of minutes.

3 Methodology

To have a better understanding of what the Weibo system
is targeting for censorship deletions, and how fast they do
so, we have developed a system which collects removed
posts on targeted users in almost real time.

3.1 Identifying the sensitive user group
In Weibo each IP address and Application Programming
Interface (API) has a rate limit for access to the service.
This forced us to make a number of engineering com-
promises, notably focusing our attention where we felt
we could find those posts most likely to be subject to
censorship. We decided to focus on users who we have

USENIX Association 22nd USENIX Security Symposium 229

seen being censored in the past, under the assumption
that they will be more likely to be censored in the future.
We call this group of users the sensitive group.

We started with 25 sensitive users that we discov-
ered manually, leveraging a list from China Digital
Times [4] of sensitive keywords which are not allowed
to be searched on Weibo’s server. To find our initial
sample, we searched using out-dated keywords that were
later un-banned. For example, 党产共 (Reverse of 共产
党, which means “Communist Party”) was found to be
banned on 4 April 2011, but found to not be banned on
20 October 2011, which means the we were able to ob-
tain some posts containing 党产共 when we searched for
this keyword after 20 October 2011. From the search re-
sults, we picked 25 users who stood out for posting about
sensitive topics.

Next, we needed to broaden our search to a larger
group of users. We assumed that anybody who has been
reposted more than five times by our sensitive users must
be sensitive as well. We followed them for a period of
time and manually measured how often their posts were
deleted. Any user with more than 5 deleted posts was
added to our pool of sensitive users.

After 15 days of this process, our sensitive group in-
cluded 3,567 users, and within this group we observed
more than 4,500 post deletions daily, including about
1,500 “permission denied” deletions. (See Section 3.3
for discussion on different types of deletion events.)
Roughly 12% of the total posts from our sensitive users
were eventually deleted. Further, we have enough of
these posts to be able to run topical analysis algorithms,
letting us extract the main subjects that Weibo’s censors
seemed concerned with on any given day.

We contrast these statistics with WeiboScope [9], de-
veloped at the University of Hong Kong in order to track
trends on Weibo concurrently with our own study. The
core difference between our work and WeiboScope is
that they track a large sample: around 300 thousand users
who each have more than 1000 followers. Despite this,
they report observing no more than 100 “permission de-
nied” deletions per day. WeiboScope’s results, therefore,
are perhaps more representative of the overall impact of
Weibo’s censorship as a fraction of total Weibo traffic,
while our work has more resolving power to consider the
speed and techniques employed by Weibo’s censors.

Because we do not have access to WeiboScope’s data,
we are limited in our ability to make direct comparisons
of our datasets. They did briefly support data down-
loads, and we extracted their “2,500 last permission de-
nied data” on 20 July 2012. This service has since been
closed. Our system went live following user timelines
on the same date, giving us a single day from which we
might compare our data. For 20 July 2012, WeiboScope
observed 54 permission-denied posts, while our system

observed 1,056.
(Our own system does not yet support public, real-

time downloads of our data, which among other issues
could make it easier for Weibo to shut it down. An appro-
priate means of disseminating real-time results or regular
summaries is future work for our group.)

While our methodology cannot be considered to yield
a representative sample of Weibo users overall, we be-
lieve it is representative of how users who discuss sensi-
tive topics will experience Weibo’s censorship. We also
believe our methodology enables us to measure the top-
ics that Weibo is censoring on any given day.

3.2 Crawling

Once we settled on our list of users to follow, we wanted
to follow them with sufficient fidelity to see posts as they
were made and measure how long they last prior to being
deleted. Our target sampling resolution was one minute.

We use two APIs provided by Weibo, allowing us to
query individual user timelines as well as the public time-
line1. Starting in July 2012, we queried each of our 3,500
users, once per minute, for which Weibo returns the most
recent 50 posts. Deleted posts outside of this 50-post
window are not detected by our system, meaning that we
may be underestimating the number of older posts that
get deleted.

We also queried the public timeline roughly once ev-
ery four seconds, for which Weibo returns 200 recent
posts. Half of these posts appear to be 1–5 minutes older
than real-time, and the other half are hours older.

Weibo does not support anonymous queries to its
servers, requiring us to create fake accounts on the ser-
vice. Weibo further enforces rate limits both on these
users’ queries as well as on source IP addresses, regard-
less of what user account is being used for the query. To
overcome these concerns, we used roughly 300 concur-
rent Tor circuits [24], driven from our research comput-
ing cluster. Our resulting data was stored and processed
on a four-node cluster using Hadoop and HBase [1].

If and when Weibo might make a concerted effort to
block us, it is easy to imagine a ongoing game where
they invent new detection strategies and we invent new
workarounds. So far, this has not been an issue.

3.3 Detecting deletions

An absent post may have been censored, or it may have
been deleted for any of a variety of other reasons. User

1The user timeline returns both original posts and retweeted posts
by that user, while the public timeline only returns original posts. Also,
the public timeline appears to be only a sampling of the total public
traffic.

230 22nd USENIX Security Symposium USENIX Association

accounts can also be closed, possibly for censorship pur-
poses. Users cannot delete their own account, only the
system can delete accounts. We conducted a variety of
short empirical tests to see if we could distinguish the
different cases. We concluded that we can detect two
kinds of deletions.

If a user deletes his or her own post, a query for that
post’s unique identifier will return a “post does not ex-
ist” error. We have observed this same error code re-
turned from censorship events and we refer to these, in
the remainder of the paper as general deletion. However,
there is another error code, “permission denied,” which
seems to indicate that the relevant database record still
exists but has been flagged by some censorship event.
We refer to these as permission-denied deletions or sys-
tem deletions. In either case, the post is no longer visible
to Weibo users.

The ratio of system deletions to general deletions in
our user timeline data set is roughly 1:2. In this paper, we
generally focus on posts that have been system deleted,
because there appears to be no way for a user to induce
this state. It can only be the result of a censorship event
(i.e., there are no censorship false positives in our system
deletion dataset). Because we followed a core set of users
who post on sensitive subjects, we did not find it neces-
sary to account for spam in our user timeline dataset.

Our crawler, which repeatedly fetches each sensitive
user’s personal timeline, is searching for posts that ap-
pear and then are subsequently deleted. If a post is in
our database but is not returned from Weibo, then we
issue a secondary query for that post’s unique ID to de-
termine what error message is returned. Ultimately, with
the speed of our crawler, we can detect a censorship event
within 1–2 minutes of its occurrence.

For each returned post from Weibo, there is a field
which records the creation time of the post. The life-
time of a post is the time difference between the time our
system detected the post being deleted and the creation
time. Therefore a post’s lifetime recorded by our system
is never shorter than its real lifetime, and never longer
than its real lifetime by more than two minutes.

4 Timing of censorship

For easier explanation we first give some definitions. A
post can be a repost of another post, and can have embed-
ded images. Also other users can repost reposts. If post
A is a repost of post B, we call post A a child post and
post B a parent post. If post A is not a repost of another
post, we call post A a regular post.

Using our user tracking method, from 20 July 2012 to
8 September 2012, we have collected 2.38 million user
timeline posts, with a 12.8% total deletion rate (4.5% for
system deletions and 8.3% for general deletions). Note

that this deletion rate is specific to our users and not rep-
resentative of Weibo as a whole. With a brief analysis,
we found that 82% of the total deletions are child posts,
and 75% of the total deletions have pictures either in
themselves or in their parent post.

●

● ●
●

●●●
●●●

●
●●

●●
●●●

●●●●●●
●
●●●
●
●
●
●●●●●

●●
●
●
●
●

●
●
●
●●

●●●●●
●
●●

●

●●●●

●

●
●
●
●
●
●
●
●
●●
●
●
●●
●●
●●●
●

●●
●●●
●●
●●
●●
●●●
●●

●
●●

●

●
●
●
●●●●
●●●●
●●
●
●
●
●●
●
●
●

●●

●

●
●
●

●
●●●
●
●
●
●
●
●

●

●●
●

●
●
●

●

●
●

●

●●●●
●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●
●

●
●●
●
●

●

●
●
●
●
●●
●
●●

●

●●
●

●
●
●●
●
●●

●

●

●
●
●

●

●

●

●
●

●

●●●●
●●●
●

●●
●●
●
●

●

●
●

●

●
●
●●●

●

●

●

●
●●●
●
●
●

●●

●

●
●
●

●
●●

●●
●●

●

●●
●●

●●
●

●

●●

●
●

●
●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●●●
●

●●

●
●
●●
●
●
●●●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●
●
●

●●

●●

●

●

●
●

●

●

●●

●
●
●●

●
●
●●●
●

●
●
●
●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●
●

●

●
●

●

●●

●

●
●

●

●

●
●
●●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●●●

●●

●

●●

●

●●

●●

●●●

●

●

●

●●

●

●

●●●●

●

●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●

●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●

●●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●●

●

●

●●●●●

●●●

●

●

●

●

●●●

●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●●

●

●

●●●●●

●

●●

●

●●●●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●●●●●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●

●

●●

●

●●●●

●●●

●

●

●●●●●●●●

●

●

●●●

●●●●●●●●●

●●

●●●●

●

●●●●●

●

●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●

●●

●

●●●

●

●

●

●●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●

●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●● ●● ●

10 100 1000 100000

1
5

5
0

5
0

0

(a) Sys. del. posts

Post lifetime in minutes

F
re

q
u

e
n

c
y

(b) Sys. del. posts in first 2h

Post lifetime in minutes

F
re

q
u

e
n

c
y

0 20 40 60 80 100 120

0
5

0
0

1
5

0
0

●

● ●

●

●

●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●●●●

●●●

●●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●●●

●

●

●

●●

●

●●●

●●

●

●●

●●●●●

●

●●●

●

●

●●●●

●●

●

●

●●

●

●

●

●●●

●●

●●●●●●●

●●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●

10 100 1000 100000

1
2

5
1

0
2

0
5

0

(c) Sys. del. reg. posts(txt)

Post lifetime in minutes

F
re

q
u

e
n

c
y

(d) Sys. del. reg. posts(txt) in first 2h

Post lifetime in minutes

F
re

q
u

e
n

c
y

0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0

Figure 1: Lifetime histograms. (a) and (b) are the life-
time histograms of all system deletions. (c) and (d) are
the lifetime histograms of regular text-only posts. (a)
and (c) show the histogram of the whole lifetime, (b)
and (d) only show the first two hours of the lifetime
histogram.

To demonstrate how long a post survives before it gets
deleted, we analyze the system deletion data set (see Sec-
tion 3.3). Figure 1 gives us a big picture of how fast the
Weibo system works for censorship purposes. The x axes
are the length of the lifetime divided into 5-minute bins,
and the y axes are the count of the deleted posts hav-
ing the lifetime in the corresponding bin. We note that
these figures have the distinctive shape of a power law or
long tailed distribution, implying that there is no partic-
ular time bound on Weibo’s censorship activity, despite
the bulk of it happening quickly, and that metrics like
mean and median are not as meaningful as they are in a
normal distribution.

We can see that the post bins with small lifetimes are
large. We zoom into the first 2 hours of data, which is
plotted in Figure 1 (c) and (d). This tells us that system
deletions start within 5 minutes, the same as text-only
regular posts. For both of them, the modal deletion age
appears to be between 5–10 minutes.

In our data set, 5% of the deletions happened in the
first 8 minutes, and within 30 minutes, almost 30% of

USENIX Association 22nd USENIX Security Symposium 231

the deletions were finished. More than 90% of deletions
happened within one day after a post was submitted. This
demonstrates why a measurement fidelity on the order of
minutes, rather than days, is critical.

Considering the big data set that Weibo has to process,
the speed, especially the 5 to 10 minutes peak, is fast,
especially considering that the data cannot be processed
in a fully automated way. How can the Weibo system
find sensitive posts and remove them so quickly? On
the other hand, the long tails suggest that sensitive posts
can still be deleted even after an extended period. How
are those sensitive posts located by the moderators after
a month in their huge database? What factors affect a
post’s lifetime?

In this section, to find the answers to these questions,
we propose four hypotheses and then test them against
our data. Hypotheses 1 and 2 try to explain how the speed
of censorship on Weibo can be so fast. Hypothesis 3 ex-
plains why we see the long tails of the post lifetime for
censored posts in Figure 1. Hypothesis 4 tells us that the
deletion speed does not appear to be strongly related to
particular conversation topics, but rather to popular top-
ics (i.e., those that are being discussed on Weibo as a
whole according to our public timeline) where our core
sensitive users are putting a spin on the discussion that
involves themes of government power (see Section 5).

4.1 Post lifetime regression
Before we give our hypotheses, we first consider what
factors affect a post’s lifetime, regardless of the content
of the post.

For each post, besides the basic information about the
post itself, we also see an embedded picture, if present,
as well as a parent post identifier, if it is a repost. Also,
we know the number of followers and friends of each
user, as well as of any parent post’s user.

From the graphs in Figure 1, we decided to experi-
mentally fit a negative binomial regression to it to see
which factors affect the lifetime of a post. Table 1 and
Table 2 show the results for the regular posts and child
posts, respectively. Three asterisks (‘***’) indicates sta-
tistical significance, one asterisk (‘*’) indicates a coeffi-
cient that is not statistically significant, and no coefficient
is indicated with a dash (‘-’). We can regress the log life-
time for a regular post or a child post via:

ln(¤�Regularlifetime) = Intercept+b1(PHasPic)

+b2(Friends #)+b3(Posts #)

ln(⁄�Childlifetime) = Intercept+b1(PHasPic)

+b2(P.Friends #)+b3(P.Posts #)

We examine the effect on post lifetime of: the exis-
tence of a picture, the number of friends and followers,
and the number of posts sent by this user. We found that,
for both regular and child posts, the existence of a pic-
ture affects the post’s lifetime the most. That is, posts
with pictures have shorter lifetimes than posts without
pictures. Some of the user attributes, such as number of
friends or number of posts, also affect post lifetime. We
note that the coefficients for these are relatively small,
but for users with large numbers of friends or who write
large numbers of posts, these factors can have a sig-
nificant impact on the speed of that users’ posts being
censored. However other attributes of a user, such as
whether a Weibo user is “verified” by Weibo (i.e., Weibo
knows who they are as part of newer Chinese require-
ments that crack down on pseudonyms unconnected to
real world identities) or the number of followers of a user,
are not statistically significant factors in a post’s lifetime.

Table 1: Factors affecting post lifetime (regular posts).
Factors Coef Stat. Sig.
(Intercept) 7.41 ***
Has picture −4.07×10−1 ***
Number of friends −2.42×10−4 ***
Number of posts −5.23×10−5 ***
User verified – -
Number of followers – -

Table 2: Factors affecting post lifetime (child posts)

Factors Coef Stat. Sig.
(Intercept) 6.27 ***
Parent has picture −1.01×10−1 ***
Parent friends number −4.76×10−5 ***
Parent posts number 6.84×10−6 ***
Parent user verified 2.01×10−1 *
Parent followers number – -

4.2 Hypotheses
As a distributed system with 70,000 posts per minute,
Weibo has above a 10% rate of deletion in the pub-
lic timeline (first observed by Bamman et al. [2]; we
have seen similar behavior). This high deletion rate can
be the result of many processes, including anti-spam
features, user deletions, as well as anti-censorship fea-
tures. Within the deletions that we believe are censor-
ship events, we note that 40% of the deletions in our user
timeline data set occur within the first hour after a post
has appeared. Clearly, Weibo exerts significant controls
over its content.

232 22nd USENIX Security Symposium USENIX Association

Before censors deal with the sensitive posts which are
already in the system, are there filters which do not allow
certain posts to enter the Weibo system? This question
leads to our first hypothesis.

Hypothesis 1 Weibo has filtering mechanisms as a
proactive, automated defense.

To find out if there are filtering mechanisms, we at-
tempted to post posts containing sensitive words from
the China Digital Times [4] and Tao et al. [41]. Here we
summarize the filtering mechanisms Weibo was found to
apply based on our observations.

• Explicit filtering: Weibo will inform a poster that
their post cannot be released because of sensitive
content.

For example, on 1 August 2012, we tried to post “政
法委书记” (Secretary of the Political and Legisla-
tive Committee). When we submitted a post with
this character string in it, a warning message says
“Sorry, since this content violates ‘Sina Weibo reg-
ulation rules’ or a related regulation or policy, this
operation cannot be processed. If you need help,
please contact customer service.”

• Implicit filtering: Weibo sometimes suspends
posts until they can be manually checked, telling
the user that the delay is due to “server data syn-
chronization.”

For example when we submitted the post
‘youshenmefalundebanfa’ on the same day, 1
August 2012, Weibo responded with the mes-
sage “Your post has been submitted successfully.
Currently, there is a delay caused by server data
synchronization. Please wait for 1 to 2 minutes.
Thank you very much.” This delay, which fre-
quently takes much longer than the 1–2 minutes
suggested by Weibo, was triggered by our use of
the substring “falun”, pertaining to the Falun Gong
religion. In this example, it took more than 5 hours
for the post to appear.

• Camouflaged posts: Weibo also sometimes makes
it appear to a user that their post was successfully
posted, but other users are not able to see the post.
The poster receives no warning message in this
case.

On 1 August 2012 we submitted a post contain-
ing the substring “cgc” (Chen Guangcheng [31]),
and received no warning messages, so it seemed
to be published successfully to our user. When we
tried to access that post from another user account,
however, we were redirected to Weibo’s error page
which claimed the post does not exist.

We found these phenomena to be repeatable. Over the
course of our experiments, we selected a number of dif-
ferent subsets of the keyword list published by the China
Digital Times [4], trying to post them to Weibo manually.
We consistently found all of these same phenomena, al-
though the specific keywords on any list vary over time.

Figure 1 shows that the deletions happen most heav-
ily for a regular post within 5 to 10 minutes of it being
posted. While we believe this process to happen largely
via automation, it is instructive to estimate how much un-
aided human labor would otherwise be necessary. Sup-
pose an efficient worker could read 50 posts per minute,
including the reposts and figures included in the posts.
Then to read Weibo’s full 70,000 new posts [34] in one
minute, 1,400 simultaneous workers would be needed.
Assuming 8 hour shifts, 4,200 workers would then be
required. We can imagine that such a staff would have
a high error rate, owing to the repetitive nature of their
work. Such a labor force would also be relatively expen-
sive compared to automation. We instead conclude that
Weibo must be using a large amount of automation, per-
haps keyword-based as has been found in other systems
in China such as TOM-Skype [16]. This is likely com-
plemented with human efforts to evolve and refine the
filtering process.

Some of this refinement certainly results from a cen-
tralized list of topics. Other refinement may occur inter-
nally, through a smaller number of censors who look for
users finding new ways to misspell words or otherwise
work around existing filters. Our subsequent hypotheses
consider how this refinement occurs and delve into how
Weibo’s automation operates.

Hypothesis 2 Weibo targets specific users, such as those
who frequently post sensitive content.

Another way to achieve prompt response to sensitive
posts is to track users who are likely to post sensitive
content, using techniques similar to what we are doing.
The posts from those sensitive users could then be read
by moderators more often and more promptly than the
posts of other users.

To test this hypothesis, we plotted Figure 2. We
grouped users together who have the same number of
censorship events occurring to their posts. The x-axis
is the number of such deletions for each cohort of users.
The y-axis shows how long these to-be-censored posts
live. The clear downward trend is evidence that users
with larger deletion frequencies tend to observe faster
censorship of their work, supporting our hypothesis.

Even though this figure shows us that the more dele-
tion posts a user has, the faster the users’ posts tend to
be deleted, we cannot rule out other features which those
users have in common and that those features may lead to
the fast deletions. For example, they may tend to use the

USENIX Association 22nd USENIX Security Symposium 233

1 2 5 10 20 50 100 200

5
0

1
0
0

2
0
0

Deletion counts

P
o
s
t
lif

e
ti
m

e
 (

m
in

u
te

s
)

Figure 2: Users’ median post lifetime in minutes vs.
the number of deletions for that user on a log-log
scale. Black circles show the median lifetime of posts
in the cohort, and the dotted blue bars show the 25%–
75% range.

same keywords, post from the same geographical area,
use the same kind of client platform, and so on. There is
a clear correlation between post lifetime and post dele-
tion counts, but correlation does not imply causation.

If the surveillance keyword list and targeting of spe-
cific users were the only mechanisms for removing sen-
sitive posts, then the histograms in Figure 1 would stop
at a certain time, say 1 or 2 days. However, 10% of
the deletions happen after one day, with some deletions
occurring one month or more after the post was posted.
Clearly, other mechanisms are in use for these long-tail
censorship events, which leads to our next hypothesis.

Hypothesis 3 When a sensitive post is found, a moder-
ator will use automated searching tools to find all of its
related reposts (parent, child, etc.), and delete them all
at once.

If this hypothesis is true, then the child posts which
repost a censored parent post should all be removed at the
same time. To test this hypothesis, we plot the histogram
of the standard deviation of the deletion time of the posts
sharing the same Repost Identification Number (rpid) in
Figure 3. In our system deleted posts dataset, over 82%
of reposted posts have a deletion time standard deviation
of less than 5 minutes, meaning that a sensitive post is
detected and then most of the other posts in a chain of
reposts are immediately deleted.

Standard deviation(miniutes)

D
e
n
s
it
y

0 10 20 30 40 50 60

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Figure 3: Reposts standard deviation histogram.

There are outliers with standard deviations as high as 5
days which suggest that the mass deletion strategy men-
tioned here is not the only method Weibo employs to
delete sensitive reposts. This leads to our next hypoth-
esis.

Hypothesis 4 Deletion speed is related to the topic.
That is, particular topics are targeted for deletion based
on how sensitive they are.

We performed topical analysis on the deleted posts.
The topical analysis methods we use are described
in Section 5.1. Here, to save space, we only list the top
topic in Table 3. (For further topical discussion, please
refer to our technical report [42].) The third column is the
response time for the censor to discover a sensitive topic.
Specifically, the response time here refers to the period
between the time when the first post on this topic ap-
peared in our user timeline data set and the time when the
Weibo system starts to delete the posts on this topic heav-
ily. These times were identified through manual analysis.
Even when a topic is still being actively censored, it does
not necessarily disappear. People may still discuss the
topic only to have their posts deleted. That is why some
topics appear twice or more in the table. When a topic
showed up again, there is no response time for it and we
indicate this with a dash (‘-’).

The main five topics extracted by Independent Com-
ponent Analysis (ICA, see Section 5) are: Qidong, Qian
Yunhui, Beijing Rainstorm, Diaoyu Island2 and Group
Sex. From Table 3, we can see that these topics have a

2Diaoyu Island is the number 3 top topic on 16 August.

234 22nd USENIX Security Symposium USENIX Association

Table 3: Blocked topics.
Date Top 1 Response

Time (hours)
7-20 Support Syrian rebels 21.32
7-21 Lying of gov. (Jixian) 12.20
7-22 Beijing rainstorms 2.55
7-23 Beijing rainstorms (Subway) 1.62
7-24 Beijing rainstormsa 2.65
7-25 Beijing rainstorms (Fangshan) 2.58
7-27 Beijing rainstorms (37 death) 0.82
7-28 Qidong 1.18
7-29 Qidong (Japanese reporter) 2.25
7-30 Complain gov. (Zhou Jun) 5.73
7-31 Judicial independence 2.00
8-01 Complain gov. (Hongkong) 45.30
8-02 Freedom of speech 7.35
8-03 Qidong (Block the village) 31.58
8-04 One-Child Policy Abuse 33.42
8-05 Human Rights News 24.63
8-07 Qian Yunhui Accident 10.87
8-08 Qian Yunhui Accident –
8-09 Group sex 0.78
8-10 RTLb 3.65
8-11 Tang Hui 33.42
8-12 Group sex –
8-13 Corpse Plants in Dalian 532.50
8-14 Hongkong 70.98
8-15 Corpse Plants in Dalian –
8-16 Corpse Plants in Dalian –
8-17 Complain gov. (North Korea) 19.83
8-18 Zhou Kehua (faked) 16.37

aRefuse to donate for Beijing rainstorms.
bRe-education through labor.

relatively short lifetime compared to other topics. These
five topics were also hot topics in our public timeline dur-
ing this period.

This suggests that when sensitive users and a large
number of regular Weibo users are discussing the same
general topic, i.e., the topic is popular in both the user
timeline and public timeline, then extra resources are de-
voted to finding and deleting such posts3. In Section 5
we will show that the sensitive users in the user time-
line combine topics with common themes related to state
power (Beijing, government, China, country, police, and
people). This suggests that the censors consider the com-
bination of these themes with generally popular topics to
warrant extra resources.

3We have not ruled out other possibilities in our study, however,
such as that such topics are viewed by many users and therefore more
likely to be reported by regular users.

5 Topic extraction

Even though we are following a relatively modest num-
ber of Weibo authors, the volume of text we are capturing
is still too much to process manually. We need automatic
methods to classify the posts that we see, particularly
those which are deleted.

Automatic topic extraction is the process of identify-
ing important terms in the text that are representative of
the corpus as a whole. Topic extraction was originally
proposed by Luhn [19] in 1958. The basic idea is to as-
sign weights to terms and sentences based on their fre-
quency and some other statistical information.

However, when it comes to microblog text, standard
language processing tools become inapplicable [18, 40].
Microblogs typically contain short sentences and casual
language [7]. Unknown words, such as named entities
and neologisms often cause problems with these term-
based models. It can be especially challenging to extract
topics from Asian languages such as Chinese, Korean,
and Japanese, which have no spaces between words.

We applied the Pointillism approach [27] and TF*IDF
to extract hot topics. In the Pointillism model, a corpus
is divided into n-grams; words and phrases are recon-
structed from grams using external information (specifi-
cally, temporal correlations in the appearance of grams),
giving the context necessary to manage informal uses of
the language such as neologisms. Salton’s TF*IDF [10]
assigns weights to the terms of a document based on the
terms’ relative importance to that document compared to
the entire corpus.

We next explain how these techniques work together.

5.1 Algorithm

TF*IDF is a common method to determine the impor-
tance of words to a document in a corpus. The TF*IDF
value in our case is calculated as:

f (t,dday)× log
Total number of posts for the month

f (t,dmonth)

Here, f (t,d) means the frequency of the term t in doc-
ument d. We use trigrams as t, and documents d are sets
of posts over a certain period of time. dday is the deleted
posts we caught on day day. We use the posts of July,
2012 in the public timeline as IDF. f (t,dmonth) is the fre-
quency of term t in the public timeline in July, 2012.

First we calculate TF*IDF scores for all trigrams that
have more than 20 occurrences in a day. The top 1000
trigrams with the highest TF*IDF score will be fed to
our trigram connection algorithm, hereafter “Connector.”
We call these top 1000 trigrams the 1000-TFIDF list.

USENIX Association 22nd USENIX Security Symposium 235

To connect trigrams back into longer phrases, Connec-
tor finds two trigrams which have two overlapping char-
acters. For instance, if there are ABC and BCD, Con-
nector will connect them to become ABCD. Sometimes
there is more than one choice for connecting trigrams,
e.g., there could also be BCE and BCF. Sometimes tri-
grams can even form a loop. To solve these problems,
we first build directed graphs for the trigrams with a high
TF*IDF score. Each node is a trigram, and edges indi-
cate the overlap information between two trigrams. For
example, if ABC and BCD can be connected to make
ABCD, then there is an edge from ‘ABC’ to ‘BCD’. Af-
ter all trigrams are selected, we use DFT (Depth First
Traversal) to output the nodes. During the DFT we check
to see if a node has been traversed already. If so we
do not traverse it again. After the graphs have been tra-
versed, we obtain a set of phrases.

For example, the Connector output of the third most
popular topic on 4 August 2012 is:

1.头骨进京鸣冤。河北广平县上坡村76岁的农民冯
虎，其子在19
skull go Beijing to redress an injustice. The son of a 76
year old farmer Fenghu, from Shangpo village, Guang-
ping city, Hebei province, was ... at 19
2.头骨进京鸣冤。冯出示的头骨赴京鸣...
skull go Beijing to redress an injustice. The skull shown
by Feng go Beijing to redress an injustice...
3.头骨进京鸣冤。冯出示的头骨前额有一大窟窿，
他...
skull go Beijing to redress an injustice. There is a big hole
on the skull shown by Feng, he...
4.头骨进京鸣冤。冯出示的头骨前额有一个无罪的公
民...
skull go Beijing to redress an injustice. There is a inno-
cent citizen on the skull shown by Feng, he...
5.头骨进京鸣冤。冯出示的头骨进...
skull go Beijing to redress an injustice. The skull shown
by Feng enter...
6.头骨进京鸣冤。冯出示的头等舱
skull go Beijing to redress an injustice. The first class seat
shown by Feng...
7.【華聯社電】上访15年老父携儿头骨...
Chinese Community report: petition 15 years, old father
bring the skull of his son...

In this example, the 7 outputs of Connector are trans-
lated in English, which is written in the next line after the
original Chinese phrase. Outputs 4 and 6 are incorrectly
connected. This is because the same trigrams are shared
by different stories that have high TF*IDF scores on the
same day. This problem can be solved by examining the

cosine similarity of the frequency of occurrence of the
first and the last trigram for each result.

Cosine similarity is used to judge whether two tri-
grams have correlated trends.

cos.Sim =
< Ai,Bi >»

∑n
i=1 Ai

2 ×
»

∑n
i=1 Bi

2

where <,> denotes an inner product between two vec-
tors. For details, please refer to Song et al. [27].

From the connected sentences, listed above, we can
begin to understand the general events that are driving
major sensitive topics of discussion on Weibo. Table 3
lists the top topics of the deleted posts from 20 July 2012
to 18 August 2012. (A computer failure prevented us
from collecting data on 6 August 2012.) Note that we just
translated the posts from each topical cluster, we have not
confirmed the veracity of any of the claims of the Weibo
users’ posts that we translated.

Interestingly, besides named entities, we also extracted
three neologisms. They are 李W阳 (Li Wangyang, from
李旺阳), 六圌四 (June Fourth, from 六四), 胡()涛
(Hu Jintao, from 胡锦涛, replacing the middle charac-
ter with open- and close-parentheses), and 启-东, 启\东
and 启/东 (Qidong, from 启东, inserting punctuation be-
tween the two characters). These neologisms became
popular enough that they stood out in our TF*IDF anal-
ysis.

5.2 Hot sensitive topics
Table 3 tells us the top topic for each day in terms of
having the highest TF*IDF scores—however, it does not
tell us which topics among these have been discussed for
the longest period of time by our users. Also, are there
some common themes behind those separate topics?

Here are the top 50 words which have appeared in the
1000-TFIDF list most frequently from 20 July 2012 to
20 August 2013, manually translated to English:

Beijing City, Liu Futang, secretary, Lujiang County,
Guo Jinlong, Qian Yunhui, City Government, Zhou Ke-
hua, Red Cross, Diaoyu Island, subprefect, water drain,
ordinary people, taxpayer, Fangshan district, Hagens, lo-
cal police station, office, Beijing, Qidong, government,
China, Japan, citizen, county’s head commissioner, re-
porter, mayor, corrupt official, freedom, country, re-
strain, keyhole report, wrist watch, police, national, rec-
ommend, American, repression, patriotic, democratic,
corpses, people, donation, cancel, opinion, reeducation
through labor, abolition, truck4

We used Independent Component Analysis (ICA) to
extract “independent signals” from those most important

4For clarity, we have elided close variants on China, Japan, and
Beijing from this list.

236 22nd USENIX Security Symposium USENIX Association

terms shown above. ICA [14] is a method to separate a
linearly mixed signal, x, into mutually independent com-
ponents, s.

Let X = [x1,x2, ...,xm]
T be the observation mixture

matrix, consisting of m observed signals xi. Since X is
the linear composition of the independent components,
s, X can be modeled as:

X = AS =
m

∑

i=1

aisi

A, the mixing matrix, gives the coefficients for linear
combinations of the independent signals, the rows of S.

Here, each word is represented by a row vector of
length 864 (36× 24), which contains the 36 days worth
of hourly frequency from 22 July 2012 to 2 Septem-
ber 2012. The 50 × 864 matrix X is fed to an ICA
program [25]. The number of independent components
number is set to 5, which retains almost 100% of the
eigenvalues.

There are six words that appear in almost every inde-
pendent signal: Beijing, government, China, country, po-
liceman, and people. This means that the sensitive user
group in our user timeline has these general themes that
cut across the many individual topics that they discuss,
which may explain why their posts are often subject to
censorship.

6 Discussion

Weibo appears to have a variety of other mechanisms that
do not fit neatly into our hypotheses, but which are in-
teresting to discuss. We first consider other aspects of
Weibo’s filtering, then we look at diurnal (time-of-day)
censorship behaviors, and finally we try to synthesize
some of our observations.

6.1 Weibo’s filtering mechanisms
Sina Weibo has a complex variety of censorship mech-
anisms, including both proactive and retroactive mecha-
nisms. Here we summarize the mechanisms Weibo may
apply. Proactive mechanisms, as we discussed in Hy-
pothesis 1, may include: explicit filtering, implicit fil-
tering, and camouflaged posts. Retroactive mechanisms
for removing content that has already been released may
include:

• Backwards reposts search: In our deleted posts
dataset over 82% of reposted posts have a standard
deviation of less than 5 minutes for deletion time,
meaning that a sensitive post is detected and then
most of the other posts in a chain of reposts are then
deleted (Hypothesis 3).

• Backwards keyword search: We also observed
that Weibo sometimes removes posts retroactively
in a way that causes spikes in the deletion rate of a
particular keyword within a short amount of time.

Here, we give two examples (兲朝 and 37人), out
of many that we witnessed, with a strong spike in
the deletion of posts containing that keyword.

We first consider 兲朝, Tian Chao, a neologism
for “Celestial Empire” where 兲 is an alternate
form for 天; the substitute character is visually
similar to the original and also appears to be
constructed from the two distinct characters 王
八，meaning “bastard.”). The frequency of 兲
朝 in deleted posts, day by day, is the sequence
(6,3,0,0,2,2,0,3,0,2,3,3,2,1,2,0,0,1,0,0,0,5,4,4,2,14,3,6,4)
respectively from 28 July 2012 to 25 August 2012.
There is a concentrated deletion (14 censorship
events) of posts with this word within several
minutes on 22 August 2012, impacting posts that
were several weeks old at the time. It is likely that
a censor discovered this new phrase and ordered it
globally expunged.

Another example is the keyword 37人 (37 people).
There are 44 posts containing this keyword, which
were created from 2 days to 5 days before the cen-
sorship event, all removed together within 5 minutes
(03:25 to 03:30 27 July 2012). Those 44 posts are
from different users, have no common parent posts,
and have no common pictures. The only plausible
explanation for this concentrated deletion would ap-
pear to be a keyword-based deletion. The deletion
time at 3:25am Beijing time also strongly suggests
that there are moderators working in the early morn-
ing. To understand this workforce and its distributed
nature, we perform further analysis in Section 6.2.

• Monitoring specific users: Hypothesis 2 shows a
clear preference for Weibo’s censors to pay more at-
tention to users who seemingly like to discuss cen-
sored topics.

• Account closures: Weibo also closes users’ ac-
counts. There were over 300 user accounts closed
by the system from our sensitive user group (out
of over 3,500 users) during the roughly two month
period while when we collected data for their user
timelines.

• Search filtering: To prevent users from finding sen-
sitive information on weibo.com, Weibo also has a
frequently updated list of words [4] which cannot
be searched.

• Public timeline filtering: We believe that sensitive
topics are filtered out of the public timeline. This

USENIX Association 22nd USENIX Security Symposium 237

filtering appears to be limited to only general topics
that have been known to be sensitive for a relatively
long time. In this paper all major results are based
on the user timeline, we only use the public time-
line for general results about major trending topics
in Weibo.

• User credit points: In May 2012, Sina Weibo an-
nounced a “user credit” points system [22] through
which users can report sensitive or rumor-based
posts to the administrators. We do not know the
extent to which the point system interacts with the
censorship mechanisms that we have already de-
scribed. It is possible that these reports “bubble up”
and help Weibo tune its automated filters, but we
have no way to observe this.

6.2 Time-of-day behavior
In our data, the time at which the censors are working and
deleting posts correlates more with the usage patterns of
regular users than with a typical day-time work schedule
(e.g., 8am to 5pm Beijing time). Figure 4 shows the to-
tal hourly deletions for different kinds of posts (on a log
scale) from 20 July to 8 September 2012. Both “general
deletions” and “system deletions” happen even very late
at night.

Hour

D
e
le

ti
o
n
 c

o
u
n
ts

 (
lo

g
 s

c
a
le

)

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

General del. posts
Sys. del. posts
Sys. del. child posts
Sys. del. child posts(pic)
Sys. del. child posts(text)
Sys. del. regular posts
Sys. del. regular posts(pic)
Sys. del. regular posts(text)

Figure 4: Post deletion amounts over 24 hours.

So do the censors respond as quickly during the night
as during day hours? We plotted the median lifetime of
the posts as a function of their deletion time in Figure 5.
The morning-hour spike suggests that the censors are be-
hind in the morning, both catching up on overnight posts

and dealing with a fresh influx of posts from morning
risers. They catch up by late morning or early afternoon.

Hour
P

o
s
t
lif

e
ti
m

e
 (

m
in

u
te

s
)

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

General del. posts
Sys. del. posts

Figure 5: Post lifetime vs. deletion time of the day.

From Figure 4 and Figure 5 it is clear that, while a
significant fraction of the censors seem to work during
regular work hours, many do not.

6.3 Synthesis

Based on everything we have seen and observed, we
can begin to understand how Weibo censorship works.
Clearly, they are using a strong degree of automation to
help them delete posts that have been declared sensitive.
It is also clear that this process is relatively “loose,” in
the sense that there are few sharp rules that define what
gets deleted vs. what is allowed to remain. Given the
long-tailed distribution that we observe in post lifetimes
prior to censorship, it is clear that some posts are not
considered a high priority for censorship, such as if two
friends start conversing with each other using a new ne-
ologism, euphemism, or other coinage that would other-
wise be censorship-worthy. However, when those new
terms spread and grow, they are censored both proac-
tively and retroactively.

This suggests that Weibo is trying to strike a balance
between satisfying the legal requirements within which
it operates and the costs of running a fine-grained in-
strument of political censorship. Weibo must conduct
just enough censorship to satisfy government regulations
without being so intrusive as to discourage users from us-
ing their service. Among other issues, they must surely
be deeply concerned with false positives. If truly innocu-

238 22nd USENIX Security Symposium USENIX Association

ous posts disappeared with any regularity, Weibo’s users
might defect to a competing service.

It is unclear the extent to which Weibo is using natu-
ral language processing (NLP) algorithms to aid in their
work, versus having a stable of censors watching for
things to go viral and then using search tools to stamp
them out. Certainly, our use of fairly simple NLP tech-
niques helped reduce the workload of analyzing trend-
ing topics, so comparable techniques may well be in
use by Weibo. NLP techniques in a censor’s hands can
be thought of as a “force multiplier,” but it is unclear
whether they fundamentally change the game. Consider,
with English-language spam emails, the degree to which
spammers will try to evade automated spam classifica-
tion systems. These techniques and more could well
be applied to automated or manual rewriting of post-
ings, with the intent of avoiding automated censorship.
The results might not be as easy to read, but humans
will likely have an advantage at reading jumbled text,
at least until NLP algorithms are extended to deal with
them. Conversely, NLP techniques can cluster together
related terms, assisting censors to overcome such tech-
niques. At least so far, we have not seen evidence of
any sort of arms race between increasingly sophisticated
ways to avoid censorship and increasingly powerful cen-
sorship techniques.

In many ways, Internet censorship is related to intru-
sion detection. When our results in this paper are com-
pared to related work (see Section 1), including both IP-
layer filtering and application-level censorship, a picture
of Internet censorship in China emerges where “defense-
in-depth” is taken to a new level. Intrusion detection
research has long focused on issues such as false pos-
itive vs. false negative tradeoffs, viral spreading pat-
terns, polymorphic content, and the distinction between
different layers of abstraction (such as IP packets vs.
application-layer data). The so-called “Great Firewall of
China” and the accompanying application-layer censor-
ship that China’s domestic web services, such as Weibo,
carry out afford us an opportunity to study a real, national
scale intrusion detection system.

6.4 Major caveats

The most important caveat to keep in mind when inter-
preting our results is that we collected posts from a very
specific core set of users, built up from a “seed” group of
users who post about sensitive topics, which we call the
“user timeline.” Unless otherwise noted, such as when
results are from the public timeline, all results in this
paper are from the user timeline and therefore might be
biased by the differences between this core set of users
and the average Weibo user. All deletion rates, dele-
tion times, etc. must be interpreted in this light. In other

words, our sample users should not be considered to be
representative of the general population of Weibo.

Another important caveat is that our system does not
detect post deletions in the user timeline if the post
deleted is not one of the 50 most recent posts by the user
(see Section 3). This may affect our results about the
distribution of post deletions over time in Section 4.

7 Conclusion

Our research found that deletions happen most heavily in
the first hour after a post has been made (see Figure 1).
Especially for original posts that are not reposts, most
deletions occur within 30 minutes, accounting for 30%
of the total deletions of such posts. Nearly 90% of the
deletions of such posts happen within the first 24 hours
of the post.

With respect to the hypotheses enumerated in Sec-
tion 4, we make the following conclusions:

• Hypothesis 1: The Weibo system keeps more than
one keyword list, where each list triggers a different
kind of censorship behavior.

• Hypothesis 2: The clear downward trend in Figure 2
could be evidence that certain users are flagged for
closer scrutiny, but we have not ruled out other
causes in this paper.

• Hypothesis 3: Figure 3 shows that over 82% of re-
posted posts have a standard deviation of less than
5 minutes deletion time, meaning that a sensitive
post is detected and then most of the other posts in
a chain of reposts are then deleted.

• Hypothesis 4: As described in Section 4, us-
ing the methods described in Section 5 we find
that topics that were trends in the user timeline
and were also, according to the public timeline,
hot topics in public discussion as a whole about
events that happened during our month of data
collection (Qidong, Qian Yunhui, Beijing Rain-
storms, Diaoyu islands, and a group sex scandal)
had very short lifetimes. Recall that the deleted
posts in the user timeline included themes related
to state power (Beijing, government, China,

country, policeman, and people). This sug-
gests that such broadly discussed topics are tar-
geted with more censorship resources to limit cer-
tain kinds of discussion about the events.

Future work may reveal many mechanisms beyond
those we described here, and many different strategies
that Weibo uses to prioritize what content to delete. Our

USENIX Association 22nd USENIX Security Symposium 239

results suggest that Weibo employs a distributed, hetero-
geneous strategy for censorship that has a great amount
of “defense-in-depth.”

One aspect of censorship that is not considered in our
analysis, but would be an interesting topic for future
work, is the interactions between social media and tra-
ditional media. Leskovec et al. [17] gives an interesting
analysis of the interplay between blogs and traditional
media during the 2008 U.S. Presidential election. Tradi-
tional media relevant to Weibo may include the state-run
media that is heavily censored, or off-shore news out-
lets that are uncensored but limited in availability and
sometimes offset from China’s news cycles by timezone
differences.

8 Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd, Nikita Borisov, for helpful feedback. We owe
our deepest gratitude to Professors Stephanie Forrest,
Christopher Bronk, and George Luger for their feedback
and comments, and for encouraging us to go forward. We
are also grateful to Ben Edwards for insightful discus-
sions about potential future work. This material is based
upon work supported by the National Science Founda-
tion under Grant Nos. #0844880, #0905177, #1017602.
Jed Crandall is also supported by the Defense Advanced
Research Projects Agency CRASH program under grant
#P-1070-113237.

References
[1] APACHE SOFTWARE FOUNDATION. Apache HBase. http://

http://hbase.apache.org/.

[2] BAMMAN, D., O’CONNOR, B., AND SMITH, N. Censorship
and deletion practices in Chinese social media. First Monday 17,
3-5 (March 2012).

[3] CAO, B. Sina’s Weibo outlook buoys Internet stock
gains: China overnight. Bloomberg, 28 February 2012.
http://www.bloomberg.com/news/2012-02-28/sina-s-weibo-
outlook-buoys-internet-stock-gains-in-n-y-china-overnight.html.

[4] CHINA DIGITAL TIMES. 新浪微博搜索敏感词列表.
http://chinadigitaltimes.net/space/%E6%96%B0%E6%
B5%AA%E5%BE%AE%E5%8D%9A%E6%90%9C%E7%
B4%A2%E6%95%8F%E6%84%9F%E8%AF%8D.

[5] CLAYTON, R., MURDOCH, S. J., AND WATSON, R. N. M.
Ignoring the Great Firewall of China. In 6th Workshop on
Privacy Enhancing Technologies (Cambridge, United Kingdom,
June 2006).

[6] CRANDALL, J. R., ZINN, D., BYRD, M., BARR, E., AND
EAST, R. ConceptDoppler: a weather tracker for internet censor-
ship. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS 2007) (Alexandria, Virginia,
Oct. 2007), ACM, pp. 352–365.

[7] ELLEN, J. All about microtext - a working definition and a sur-
vey of current microtext research within artificial intelligence and
natural language processing. In 3rd International Conference on
Agents and Artificial Intelligence, ICAART 2011 (Jan. 2011).

[8] ESPINOZA, A. M., AND CRANDALL, J. R. Work-in-progress:
Automated named entity extraction for tracking censorship of
current events. In the Proceedings of the USENIX Workshop on
Free and Open Communications on the Internet. (FOCI 2011)
(Aug. 2011).

[9] FU, K.-W., CHAN, C.-H., AND CHAU, M. Assessing censor-
ship on microblogs in China: Discriminatory keyword analysis
and the real-name registration policy. IEEE Internet Computing
(2013), 42–50.

[10] GERARD, S., AND CHRISTOPHER, B. Term-weighting ap-
proaches in automatic text retrieval. Inf. Process. Manage. 24,
5 (Aug. 1988), 513–523.

[11] THE GLOBAL INTERNET FREEDOM CONSORTIUM. The Great
Firewall Revealed, Dec. 2002. http://www.internetfreedom.
org/files/WhitePaper/ChinaGreatFirewallRevealed.pdf .

[12] GOH, C.-L. Unknown Word Identification for Chinese: Mor-
phological Analysis. PhD thesis, Nara Institute of Science and
Technology, 2006.

[13] HUMAN RIGHTS WATCH. Race to the Bottom: Corporate
Complicity in Chinese Internet Censorship, Aug. 2006. http:
//www.unhcr.org/refworld/docid/45cb138f2.html.

[14] HYVARINEN, A., AND OJA, E. Independent component anal-
ysis: algorithms and applications. Neural Networks 13 (2000),
411–430.

[15] KING, G., PAN, J., AND ROBERTS, M. E. How censorhsip in
China allows government criticism but silences collective expres-
sion. American Political Science Review 107 (2013), 1–18.

[16] KNOCKEL, J., CRANDALL, J. R., , AND SAIA, J. Three re-
searchers, five conjectures: An empirical analysis of TOM-Skype
censorship and surveillance, Aug. 2011.

[17] LESKOVEC, J., BACKSTROM, L., AND KLEINBERG, J. Meme-
tracking and the dynamics of the news cycle. In Proceedings of
the 15th ACM International Conference on Knowledge Discovery
and Data Mining (KDD ’99) (Paris, France, 2009), pp. 497–506.

[18] LI, J., LIU, Z., FU, Y., AND SHE, L. Chinese hot topic extrac-
tion based on web log. In Proceedings of the 2009 International
Conference on Web Information Systems and Mining (WISM ’09)
(Nov. 2009), pp. 103–107.

[19] LUHN, H. P. The automatic creation of literature abstracts. IBM
J. Res. Dev. 2, 2 (Apr. 1958), 159–165.

[20] MACKINNON, R. China’s censorship 2.0: How companies cen-
sor bloggers. First Monday 14, 2 (Feb. 2009).

[21] MAGISTAD, M. K. How weibo is changing china. YALEGlobal
Online, Aug. 2012. http://yaleglobal.yale.edu/content/how-
weibo-changing-china.

[22] MERIWETHER, A. A user contract for chinese microbloggers.
Herdict Blog (June 2012).

[23] PARK, J. C., AND CRANDALL, J. R. Empirical study of a
national-scale distributed intrusion detection system: Backbone-
level filtering of HTML responses in China. In Proceedings of the
30th International Conference on Distributed Computing Systems
(ICDCS 2010) (Genoa, Italy, June 2010).

[24] ROGER, D., NICK, M., AND PAUL, S. Tor: the second-
generation onion router. In USENIX Security Symposium (San
Diego, CA, 2004).

[25] SHEN, H., HÜPER, K., AND SEGHOUANE, A.-K. Geometric
optimisation and FastICA algorithms. In Proceedings of the 17th

International Symposium of Mathematical Theory of Networks
and Systems (MTNS 2006) (Kyoto, Japan, 2006), pp. 1412–1418.

[26] SINA. Sina Weibo API. http://open.weibo.com/wiki/API%
E6%96%87%E6%A1%A3/en.

240 22nd USENIX Security Symposium USENIX Association

[27] SONG, P., SHU, A., ZHOU, A., WALLACH, D. S., AND CRAN-
DALL, J. R. A pointillism approach for natural language process-
ing of social media. In IEEE International Conference on Natural
Language Processing and Knowledge Engineering (2012).

[28] TAO. China: Journey to the heart of Internet Censorship. Re-
porters Without Borders and Chinese Human Rights Defenders,
Oct. 2007. http://www.rsf.org/IMG/pdf/Voyage au coeur
de la censure GB.pdf.

[29] VILLENEUVE, N. BREACHING TRUST: An analysis of surveil-
lance and security practices on China’s TOM-Skype platform.
Citizen Lab, Munk Centre for International Studies, Univer-
sity of Toronto, Oct. 2008. http://www.nartv.org/mirror/
breachingtrust.pdf.

[30] WANG, N. Control of Internet search engines in China – a study
on Google and Baidu. Master’s thesis, Unitec New Zealand, Aug.
2008. http://unitec.researchbank.ac.nz/bitstream/handle/
10652/1272/fulltext.pdf?sequence=1.

[31] WIKIPEDIA. Chen Guangcheng. http://en.wikipedia.org/
wiki/Chen Guangcheng.

[32] WIKIPEDIA. Deng Yujiao incident. http://en.wikipedia.org/
wiki/Deng Yujiao incident.

[33] WIKIPEDIA. Protests of Wukan. http://en.wikipedia.org/
wiki/Protests of Wukan.

[34] WIKIPEDIA. Sina Weibo. en.wikipedia.org/wiki/Sina Weibo.

[35] WIKIPEDIA. Yao Jiaxin murder case. http://en.wikipedia.org/
wiki/Yao Jiaxin murder case.

[36] WIKIPEDIA. Shifang protest, 2012. http://en.wikipedia.org/
wiki/Shifang protest.

[37] WOLFGARTEN, S. Investigating large-scale Internet con-
tent filtering. Dublin City Univeristy, Ireland, Aug. 2006.
http://www.security-science.com/mastering-internet-
security/internet-security-ebooks-and-documents/item/
investigating-large-scale-internet-content-filtering.

[38] YANG, L. Weibo’s impact on China’s society. Journalism
Research Paper, May 2011. http://eportfolios.ithaca.edu/
lyang1/docs/jresearch/weibo/.

[39] YE, S. Sina Weibo controls the “holy shit idea of a genera-
tion,” launches new URL Weibo.com. http://techrice.com/
2011/04/07/sina-weibo-controls-the-holy-shit-idea-of-a-
generation-launches-new-url-weibo-com/.

[40] ZHAO, X., JIN, P., AND YUE, L. Analysis of long queries in a
large scale search log. In Future Generation Communication and
Networking Symposia (FGCNS ’08) (Dec. 2008), pp. 39–42.

[41] ZHU, T., BRONK, C., AND WALLACH, D. S. An analysis of
Chinese search engine filtering. CoRR abs/1107.3794 (2011).
http://arxiv.org/abs/1107.3794.

[42] ZHU, T., PHIPPS, D., PRIDGEN, A., CRANDALL, J. R., AND
WALLACH, D. S. Tracking and quantifying censorship on a Chi-
nese microblogging site. CoRR abs/1211.6166 (2012). http:
//arxiv.org/abs/1211.6166.

[43] ZITTRAIN, J., AND EDELMAN, B. Internet filtering in China.
IEEE Internet Computing 7 (Mar. 2003), 70–77.

USENIX Association 22nd USENIX Security Symposium 241

You are How You Click: Clickstream Analysis for Sybil Detection

Gang Wang, Tristan Konolige, Christo Wilson†, Xiao Wang‡,
Haitao Zheng and Ben Y. Zhao

UC Santa Barbara †Northeastern University ‡Renren Inc.
{gangw, tkonolige, htzheng, ravenben}@cs.ucsb.edu, cbw@ccs.neu.edu, xiao.wang@renren-inc.com

Abstract
Fake identities and Sybil accounts are pervasive in to-
day’s online communities. They are responsible for a
growing number of threats, including fake product re-
views, malware and spam on social networks, and as-
troturf political campaigns. Unfortunately, studies show
that existing tools such as CAPTCHAs and graph-based
Sybil detectors have not proven to be effective defenses.

In this paper, we describe our work on building a prac-
tical system for detecting fake identities using server-side
clickstream models. We develop a detection approach
that groups “similar” user clickstreams into behavioral
clusters, by partitioning a similarity graph that cap-
tures distances between clickstream sequences. We vali-
date our clickstream models using ground-truth traces of
16,000 real and Sybil users from Renren, a large Chinese
social network with 220M users. We propose a practical
detection system based on these models, and show that it
provides very high detection accuracy on our clickstream
traces. Finally, we worked with collaborators at Renren
and LinkedIn to test our prototype on their server-side
data. Following positive results, both companies have
expressed strong interest in further experimentation and
possible internal deployment.

1 Introduction

It is easier than ever to create fake identities and user ac-
counts in today’s online communities. Despite increas-
ing efforts from providers, existing services cannot pre-
vent malicious entities from creating large numbers of
fake accounts or Sybils [9]. Current defense mecha-
nisms are largely ineffective. Online Turing tests such as
CAPTCHAs are routinely solved by dedicated workers
for pennies per request [22], and even complex human-
based tasks can be overcome by a growing community
of malicious crowdsourcing services [23, 39]. The result
of this trend is a dramatic rise in forged and malicious

online content such as fake reviews on Yelp [35], mal-
ware and spam on social networks [10, 11, 32], and large,
Sybil-based political lobbying efforts [27].

Recent work has explored a number of potential so-
lutions to this problem. Most proposals focus on de-
tecting Sybils in social networks by leveraging the as-
sumption that Sybils will find it difficult to befriend real
users. This forces Sybils to connect to each other and
form strongly connected subgraphs [36] that can be de-
tected using graph theoretic approaches [8, 34, 45, 46].
However, the efficacy of these approaches in practice is
unclear. While some Sybil communities have been lo-
cated in the Spanish Tuenti network [7], another study on
the Chinese Renren network shows the large majority of
Sybils actively and successfully integrating themselves
into real user communities [43].

In this paper, we describe a new approach to Sybil
detection rooted in the fundamental behavioral patterns
that separate real and Sybil users. Specifically, we pro-
pose the use of clickstream models as a tool to detect
fake identities in online services such as social networks.
Clickstreams are traces of click-through events generated
by online users during each web browsing “session,” and
have been used in the past to model web traffic and user
browsing patterns [12, 20, 24, 28]. Intuitively, Sybils and
real users have very different goals in their usage of on-
line services: where real users likely partake of numerous
features in the system, Sybils focus on specific actions
(i.e. acquiring friends and disseminating spam) while try-
ing to maximize utility per time spent. We hypothesize
that these differences will manifest as significantly dif-
ferent (and distinctive) patterns in clickstreams, making
them effective tools for “profiling” user behavior. In our
context, we use these profiles to distinguish between real
and Sybil users.

Our work focuses on building a practical model for ac-
curate detection of Sybils in social networks. We develop
several models that encode distinct event sequences and
inter-event gaps in clickstreams. We build weighted

242 22nd USENIX Security Symposium USENIX Association

graphs of these sequences that capture pairwise “similar-
ity distance” between clickstreams, and apply clustering
to identify groups of user behavior patterns. We validate
our models using ground-truth clickstream traces from
16,000 real and Sybil users from Renren, a large Chinese
social network with 220M users. Using our methodol-
ogy, we build a detection system that requires little or
no knowledge of ground-truth. Finally, we validate the
usability of our system by running initial prototypes on
internal datasets at Renren and LinkedIn.

The key contributions of this paper are as follows:
• To the best of our knowledge, we are the first to ana-

lyze click patterns of Sybils and real users on social
networks. By analyzing detailed clickstream logs
from a large social network provider, we gain new in-
sights on activity patterns of Sybils and normal users.

• We propose and evaluate several clickstream mod-
els to characterize user clicks patterns. Specially,
we map clickstreams to a similarity graph, where
clickstreams (vertices) are connected using weighted
edges that capture pairwise similarity. We apply
graph partitioning to identify clusters that repre-
sent specific click patterns. Experiments show that
our model can efficiently distinguish between click-
streams of Sybil and normal users.

• We develop a practical Sybil detection system based
on our clickstream model, requiring minimal in-
put from the service provider. Experiments using
ground-truth data show that our system generates
<1% false positives and <4% false negatives.

• Working closely with industrial collaborators, we
have deployed prototypes of our system at Renren
and LinkedIn. Security teams at both companies
have run our system on real user data and received
very positive results. While corporate privacy poli-
cies limit the feedback visible to us, both companies
have expressed strong interest in further experimen-
tation and possible deployment of our system.

To the best of our knowledge, we are the first to study
clickstream models as a way to detect fake accounts in
online social networks. Moving forward, we believe
clickstream models are a valuable tool that can com-
plement existing techniques, by not only detecting well-
disguised Sybil accounts, but also reducing the activity
level of any remaining Sybils to that of normal users.
Roadmap. We begin in Section 2 by describing the
problem context and our ground-truth dataset, followed
by preliminary analysis results in Section 3. Next, in Sec-
tion 4 we propose our clickstream models to effectively
distinguish Sybil with normal users. Then in Section 5,
we develop an incremental Sybil detector that can scale
with today’s large social networks. We then extend this
detector in Section 6 by proposing an unsupervised Sybil

Dataset Users Clicks Date (2011) Sessions
Sybil 9,994 1,008,031 Feb.28-Apr.30 113,595

Normal 5,998 5,856,941 Mar.31-Apr.30 467,179

Table 1: Clickstream dataset.

detector, where only a minimal (and fixed) amount of
ground-truth is needed. Finally, in Section 7, we describe
experimental experience of testing our prototype code in
real-world social networks (Renren and LinkedIn). We
then discuss related work in Section 8 and conclude in
Section 9.

2 Background

In this section, we provide background for our study.
First, we briefly introduce the Renren social network
and the malicious Sybils that attack it. Second, we de-
scribe the key concepts of user clickstreams, as well as
the ground-truth dataset we use in our study.
Renren. Renren is the oldest and largest Online So-
cial Network (OSN) in China, with more than 220 mil-
lion users [17]. Renren offers similar features and func-
tionalities as Facebook: users maintain personal profiles
and establish social connections with their friends. Ren-
ren users can update their status, write blogs, upload pho-
tos and video, and share URLs to content on and off Ren-
ren. When a user logs-in to Renren, the first page they
see is a “news-feed” of their friends’ recent activities.
Sybils. Like other popular OSNs, Renren is targeted
by malicious parties looking to distribute spam and steal
personal information. As in prior work, we refer to the
fake accounts involved in these attacks as Sybils [43].
Our goal is to detect and deter these malicious Sybils; our
goal is not to identify benign fakes, e.g. pseudonymous
accounts used by people to preserve their privacy.

Prior studies show that attackers try to friend normal
users using Sybil accounts [43]. On Renren, Sybils usu-
ally have complete, realistic profiles and use attractive
profile pictures to entice normal users. It is challeng-
ing to identify these Sybils using existing techniques be-
cause their profiles are well maintained, and they inte-
grate seamlessly into the social graph structure.
Clickstream Data. In this paper, we investigate the
feasibility of using clickstreams to detect Sybils. A click-
stream is the sequence of HTTP requests made by a user
to a website. Most requests correspond to a user explic-
itly fetching a page by clicking a link, although some
requests may be programmatically generated (e.g. Xml-
HttpRequest). In our work, we assume that a clickstream
can be unambiguously attributed to a specific user ac-
count, e.g. by examining the HTTP request cookies.

Our study is based on detailed clickstreams for 9994

USENIX Association 22nd USENIX Security Symposium 243

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
of

 U
se

rs
 (%

)

of Sessions Per User

Sybil
Normal

Figure 1: # of sessions per user.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 2 4 6 8 10 12 14 16 18 20 22

%
 o

f S
es

si
on

s

Hour In Day

Sybil
Normal

Figure 2: Sessions through the day.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

C
D

F
of

 U
se

rs
 (%

)

Sessions Per Day Per User

Sybil
Normal

Figure 3: Sessions per day per user.

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
of

 U
se

rs
 (%

)

Average Session Length Per User (Seconds)

Sybil
Normal

Figure 4: Average session length per
user.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
of

 U
se

rs
 (%

)

Average Clicks Per Session Per User

Sybil
Normal

Figure 5: Average # of clicks per ses-
sion per user.

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

C
D

F
of

 U
se

rs
 (%

)

Average Inter-arrival Time
 Per Session Per User (Seconds)

Sybil
Normal

Figure 6: Average time interval be-
tween clicks per session per user.

Sybils and 5998 normal users on Renren. Sybil click-
streams were selected at random from the population of
malicious accounts that were banned by Renren in March
and April 2011. Accounts could be banned for abu-
sive behaviors such as spamming, harvesting user data
or sending massive numbers of friend requests. Nor-
mal user clickstreams were selected uniformly at random
from Renren user population in April 2011, and were
manually verified by Renren’s security team.

The dataset summary is shown in Table 1. In total,
our dataset includes 1,008,031 and 5,856,941 clicks for
Sybils and normal users, respectively. Each click is char-
acterized by a timestamp, an anonymized userID, and an
activity. The activity is derived from the request URL,
and describes the action the user is undertaking. For ex-
ample, the “friend request” activity corresponds to a user
sending a friend request to another user. We discuss the
different categories of activities in detail in Section 3.2.

Each user’s clickstream can be divided into sessions,
where a session represents the sequence of a user’s clicks
during a single visit to Renren. Unfortunately, users do
not always explicitly end their session by logging out of
Renren. As in prior work, we assume that a user’s ses-
sion is over if they do not make any requests for 20 min-
utes [6]. Session duration is calculated as the time in-
terval between the first and last click within a session.
Overall, our traces contain 113,595 sessions for Sybils
and 467,179 sessions for normal users.

3 Preliminary Clickstream Analysis

We begin the analysis of our data by looking at the high-
level characteristics of Sybil and normal users on Ren-

ren. Our goals are to provide an overview of the dataset,
and to motivate the use of clickstreams as a rich data
source for uncovering malicious behavior. Towards these
ends, we analyze our data in four ways: first, we exam-
ine session-level characteristics. Second, we analyze the
activities users engage in during each session. Third, we
construct a state-based Markov Chain model to charac-
terize the transitions between clicks during sessions. Fi-
nally, we use a Support Vector Machine (SVM) approach
to learn the important features that distinguish Sybil and
normal user clickstreams.

3.1 Session-level Characteristics
In this section, we seek to determine the session-level
differences between normal and Sybil accounts in our
dataset. First, we examine the total number of sessions
from each user. As shown in Figure 1, >50% of Sybils
have only a single session; far fewer than normal users.
It is likely that these Sybils sent spam during this sin-
gle session and were banned shortly thereafter. A small
portion of Sybils are very active and have >100 sessions.

Next, we examine when Sybils and normal users are
active each day. Figure 2 shows that all users exhibit a
clear diurnal pattern, with most sessions beginning dur-
ing daytime. This indicates that at least a significant por-
tion of Sybils in our dataset could be controlled by real
people exhibiting normal behavioral patterns.

Next, we investigate the number of sessions per user
per day. Figure 3 shows that 80% of Sybils only login to
Renren once per day or less, versus 20% of normal users.
The duration of Sybil sessions is also much shorter, as
shown in Figure 4: 70% of Sybil session are <100 sec-
onds long, versus 10% of normal sessions. The vast ma-

244 22nd USENIX Security Symposium USENIX Association

jority of normal sessions last several minutes.
Figure 5 shows the number of clicks per session per

user. Almost 60% of Sybil sessions only contain one
click, whereas 60% of normal user sessions have ≥10
clicks. Not only do Sybil sessions tend to be shorter,
but Sybils also click much faster than normal users. As
shown in Figure 6, the average inter-arrival time between
Sybil clicks is an order of magnitude shorter than for nor-
mal clicks. This indicates that Sybils do not linger on
pages, and some of their activities may be automated.

The observed session-level Sybil characteristics are
driven by attacker’s attempts to circumvent Renren’s se-
curity features. Renren limits the number of actions each
account can take, e.g. 50 friend requests per day, and 100
profiles browsed per hour. Thus, in order to maximize
efficiency, attackers create many Sybils, quickly login to
each one and perform malicious activities (e.g. sending
unsolicited friend requests and spam), then logout and
move to the next Sybil. As shown in Table 2, Sybils
spend a great deal of clicks sending friend requests and
browsing profiles, despite Renren’s security restrictions.

3.2 Clicks and Activities

Having characterized the session-level characteristics of
our data, we now analyze the type and frequency clicks
within each session. As shown in Table 2, we organize
clicks into categories that correspond to high-level OSN
features. Within each category there are activities that
map to particular Renren features. In total, we observe 55
activities that can be grouped into 8 primary categories.
These categories are:

• Friending: Includes sending friend requests, accept-
ing or denying those requests, and un-friending.

• Photo: Includes uploading photos, organizing al-
bums, tagging friends, browsing friend’s photos, and
writing comments on photos.

• Profile: This category encompasses browsing user
profiles. Like Facebook, profiles on Renren can be
browsed by anyone, but the information that is dis-
played is restricted by the owner’s privacy settings.

• Share: Refers to users posting hyperlinks on their
wall. Common examples include links to videos and
news stories on external websites, or links to blog
posts and photo albums on Renren.

• Message: Includes status updates, wall posts, and
real-time instant-messages (IM).

• Blog: Encompasses writing blogs, browsing blog ar-
ticles, and leaving comments on blogs.

• Notification: Refers to clicks on Renren’s notifica-
tion mechanism that alerts users to comments or likes
on their content.

Category Description Sybil Clks Nrml Clks
(K) % # (K) %

Friending
Send request 417 41 16 0
Accept invitation 20 2 13 0
Invite from guide 16 2 0 0

Photo Visit photo 242 24 4,432 76
Visit album 25 2 330 6

Profile Visit profiles 160 16 214 4
Share Share content 27 3 258 4
Message Send IM 20 2 99 2
Blog Visit/reply blog 12 1 103 2
Notification Check notification 8 1 136 2

Table 2: Clicks from normal users and Sybils on different
Renren activities. # of clicks are presented in thousands.
Activities with <1% of clicks are omitted for brevity.

• Like: Corresponds to the user liking (or unliking)
content on Renren.

Table 2 displays the most popular activities on Ren-
ren. The number of clicks on each activity is shown (in
thousands), as well as the percent of clicks. Percentages
are calculated for Sybils and normal users separately, i.e.
each “%” column sums to 100%. For the sake of brevity,
only activities with ≥1% of clicks for either Sybils or
normal users are shown. The “Like” category has no ac-
tivity with ≥1% of clicks, and is omitted from the table.

Table 2 reveals contrasting behavior between Sybils
and normal users. Unsurprisingly, normal users’ clicks
are heavily skewed toward viewing photos (76%), al-
bums (6%), and sharing (4%). In contrast, Sybils ex-
pend most of their clicks sending friend requests (41%),
viewing photos (24%), and browsing profiles (16%). The
photo browsing and profile viewing behavior are related:
these Sybils crawl Renren and download users’ personal
information, including profile photos.

Sybils’ clicks are heavily skewed toward friending
(41% for Sybils, 0.3% for normal users). This behavior
supports one particular attack strategy on Renren: friend-
ing normal users and then spamming them. However,
given that other attacks are possible (e.g. manipulating
trending topics [16], passively collecting friends [32]),
we cannot rely on this feature alone to identify Sybils.

Normal users and Sybils share content (4% and 3%,
respectively) as well as send messages (2% and 2%)
at similar rates. This is an important observation, be-
cause sharing and messaging are the primary channels
for spam dissemination on Renren. The similar rates
of legitimate and illegitimate sharing/messaging indicate
that spam detection systems cannot simply leverage nu-
meric thresholds to detect spam content.

USENIX Association 22nd USENIX Security Symposium 245

Friend Invitation

PhotoINITIAL

Profile

FINAL

0.89

0.06

0.38

0.57

0.91

0.04

0.07

0.05

0.44 0.34

(a) State transitions for a Sybil account.

Profile

PhotoINITIAL

Share

FINAL

Blog

0.39

0.13

0.33

0.46

0.31

0.17

0.93

0.04

0.16

0.47

0.31
0.16

0.21

0.11
0.25

Notification

0.42

0.14
0.19

0.07

0.31

(b) State transitions for a real user.

Figure 7: Categories and transition probabilities in the clickstream models of Sybils and normal users.

3.3 Click Transitions
Sections 3.1 and 3.2 highlight some of the differences
between Sybils and normal users. Next, we examine dif-
ferences in click ordering, i.e. how likely is it for a user
to transition from activity A to activity B during a single
session?

We use a Markov Chain model to analyze click tran-
sitions. In this model, each state is a click category, and
edges represent transitions between categories. We add
two abstract states, initial and final, that mark the begin-
ning and end of each click session. Figure 7 shows the
category transition probabilities for both Sybils and nor-
mal users. The sum of all outgoing transitions from each
category is 1.0. To reduce the complexity of the Figure,
edges with probability <5% have been pruned (except
for transitions to the final state). Categories with no in-
coming edges after this pruning process are also omitted.
Figure 7(a) demonstrates that Sybils follow a very reg-

imented set of behaviors. After logging-in Sybils imme-
diately begin one of three malicious activities: friend in-
vitation spamming, spamming photos, or profile brows-
ing. The profile browsing path represents crawling be-
havior: the Sybil repeatedly views user profiles until their
daily allotment of views is exhausted.
Compared to Sybils, normal users (Figure 7(b)) en-

gage in a wider range of activities, and the transitions
between states are more diverse. The highest centrality
category is photos, and it is also the most probable state
after login. Intuitively, users start from their newsfeed,
where they are likely to see and click on friends’ recent
photos. The second most probable state after login is
checking recent notifications. Sharing and messaging are
both low probability states. This makes sense, given that
studies of interactions on OSNs have shown that users
generate new content less than once per day [41, 17].
It is clear from Figure 7 that currently, Sybils on Ren-

ren are not trying to precisely mimic the behavior of nor-
mal users. However, we do not feel that this type of
modeling represents a viable Sybil detection approach.

Simply put, it would be trivial for Sybils to modify
their behavior in order to appear more like normal users.
If Sybils obfuscated their behavior by decreasing their
transition probability to friending and profile browsing
while increasing their transition probability to photos and
blogs, then distinguishing between the two models would
be extremely difficult.

3.4 SVM Classification
The above analysis shows that Sybil sessions have very
different characteristics compared to normal user ses-
sions. Based on these results, we explore the possibil-
ity of distinguishing normal and Sybil sessions using a
Support Vector Machine (SVM) [26]. For our SVM ex-
periments, we extract 4 features from session-level infor-
mation and 8 features from click activities:

• Session Features: We leverage 4 features extracted
from user sessions: average clicks per session, aver-
age session length, average inter-arrival time between
clicks, and average sessions per day.

• Click Features: As mentioned in Section 3.2, there
are 8 categories of clicks activities on Renren. For
each user, we use the percentage of clicks in each
category as a feature.

We computed values for all 12 features for all users in
our dataset, input the data to an SVM, and ran 10 fold
cross-validation. The resulting classification accuracy
was 98.9%, with 0.8% false positives (i.e. classify nor-
mal users as Sybils) and 0.13% false negatives (i.e. clas-
sify Sybils as normal users). Table 3 shows the weights
assigned to the top 5 features. Features with positive
weight values are more indicative of Sybils, while fea-
tures with negative weights indicate they are more likely
in normal users. Overall, higher absolute value of the
weights corresponds to features that more strongly indi-
cate either Sybils or normal users. These features agree
with our ad-hoc observations in previous sections.

246 22nd USENIX Security Symposium USENIX Association

Feature Weight
% of clicks under Friending +5.65
% of clicks under Notification -3.68
Time interval of clicks (TBC) -3.73
Session length (SL) +1.34
% of clicks under Photo +0.93

Table 3: Weight of features generated by SVM.

While our SVM results are quite good, an SVM-based
approach is still a supervised learning tool. In practice,
we would like to avoid using any ground truth datasets
to train detection models, since they can introduce un-
known biases. Later, we will describe our unsupervised
detection techniques in detail.

3.5 Discussion

In summary, we analyze the Renren clickstream data to
characterize user behavior from three angles: sessions,
click activities, and click transitions. SVM analysis of
these basic features demonstrates that clickstreams are
useful for identifying Sybils on social networks.

However, these basic tools (session distributions,
Markov Chain models, SVM) are of limited use in prac-
tice: they require training on large samples of ground-
truth data. For a practical Sybil detection system, we
must develop clickstream analysis techniques that lever-
age unsupervised learning on real-time data samples, i.e.
require zero or little ground-truth. In the next section, we
will focus on developing clickstreams models for real-
time, unsupervised Sybil detection.

4 Clickstream Modeling and Clustering

In Section 3, we showed that clickstream data for Sybils
and normal users captured the differences in their behav-
ior. In this section, we build models of user activity pat-
terns that can effectively distinguish Sybils from normal
users. Our goal is to cluster similar clickstreams together
to form general user “profiles” that capture specific activ-
ity patterns. We then leverage these clusters (or profiles)
to build a Sybil detection system.
We begin by defining three models to represent a

user’s clickstream. For each model, we describe similar-
ity metrics that allow us to cluster similar clickstreams
together. Finally, we use our ground-truth data to eval-
uate the efficacy of each model in distinguishing Sybils
from normal users. We build upon these results later to
develop practical Sybil detection systems based on click-
stream analysis.

4.1 Clickstream Models
We define three models to capture a user’s clickstream.
Click Sequence Model. We start with the
most straightforward model, which only considers click
events. As shown in Section 3, Sybils and normal users
exhibit different click transition patterns and focus their
energy on different activities. The Click Sequence (CS)
Model treats each user’s clickstream as a sequence of
click events, sorted by order of arrival.
Time-based Model. As shown in Figure 6,
Sybils and normal users generate click events at different
speeds. The Time-based Model focuses on the distribu-
tion of gaps between events: each user’s clickstream is
represented by a list of inter-arrival times [t1, t2, t3, ..., tn]
where n is the number of clicks in a user’s clickstream.
Hybrid Model. The Hybrid Model combines click
types and click inter-arrival times. Each user’s click-
stream is represented as an in-order sequence of clicks
along with inter-event gaps between clicks. For exam-
ple: a(t1)c(t2)a(t3)d(t4)b where a,b,c,d are click types,
and ti is the time interval between the ith and (i+ 1)th

event.
Click Types. Both the Click Sequence Model and the

Hybrid Model represent each event in the sequence by
its click event type. We note that we can control how
granular the event types are in our sequence representa-
tion. One approach is to encode clicks based on their
specific activity. Renren’s logs define 55 unique activi-
ties. Another option is to encode click events using their
broader category. In our dataset, our 55 activities fall un-
der 8 click categories (see Section 3.2). Our experimental
analysis evaluates both representations to understand the
impact of granularity on model accuracy.

4.2 Computing Sequence Similarity
Having defined three models of clickstream sequences,
we now move on to investigating methods to quantify the
similarity between clickstreams. In other words, we want
to compute the distance between pairs of clickstreams.
First, we discuss general approaches to computing the
distance between sequences. Then we discuss how to
apply each approach to our three clickstream models.

4.2.1 Defining Distance Functions

Common Subsequences. The first distance met-
ric involves locating the common subsequences of vary-
ing lengths between two clickstreams. We formalize
a clickstream as a sequence S = (s1s2...si...sn), where
si is the ith element in the sequence. We then de-
fine Tk as the set of all possible k-grams (k consecu-

USENIX Association 22nd USENIX Security Symposium 247

tive elements) in sequence S: Tk(S) = {k-gram|k-gram=

(sisi+1...si+k−1), i ∈ [1,n+ 1− k]}. Simply put, each k-
gram in Tk(S) is a subsequence of S. Finally, the distance
between two sequences can then be computed based on
the number of common subsequences shared by the two
sequences. Inspired by the Jaccard Coefficient [19], we
define the distance between sequences S1 and S2 as:

Dk(S1,S2) = 1−
|Tk(S1)∩Tk(S2)|

|Tk(S1)∪Tk(S2)|
(1)

We will discuss the choice of k in Section 4.2.2.
Common Subsequences With Counts. The com-
mon subsequence metric defined above only measures
distinct common subsequences, i.e. it does not consider
the frequency of common subsequences. We propose a
second distance metric that rectifies this by taking the
count of common subsequences into consideration. For
sequences S1, S2 and a chosen k, we first compute the
set of all possible subsequences from both sequences as
T = Tk(S1)∪ Tk(S2). Next, we count the frequency of
each subsequence within each sequence i (i = 1,2) as ar-
ray [ci1,ci2, ...,cin] where n = |T |. Finally, the distance
between S1 and S2 can be computed as the normalized
Euclidean Distance between the two arrays:

D(S1,S2) =
1
√

2

√

n

∑
j=1

(c1 j − c2 j)2 (2)

Distribution-based Method. Unfortunately, the
prior metrics cannot be applied to sequences of contin-
uous values (i.e. the Time-based Model). Instead, for
continuous value sequences S1 and S2, we compute the
distance by comparing their value distribution using a
two-sample KolmogorovSmirnov test (K-S test). A two-
sample K-S test is a general nonparametric method for
comparing two empirical samples. It is sensitive to dif-
ferences in location and shape of the empirical Cumu-
lative Distribution Functions (CDF) of the two samples.
We define the distance function using K-S statistics:

D(S1,S2) = supt |Fn,1(t)−Fn′,2(t)| (3)

where Fn,i(t) is the CDF of values in sequence Si.

4.2.2 Applying Distances Functions to Clickstreams

Having defined three distance functions for computing
sequence similarity, we now apply these metrics to our
three clickstream models. Table 4 summarizes the dis-
tance metrics we apply to each of our models. The Time-
based Model is the simplest case, because it only has one
corresponding distance metric (K-S Test). For the Click
Sequence and Hybrid Models, we use several different
parameterizations of our distance metrics.

Model Distance Metrics

Click Sequence Model unigram, unigram+count,
10gram, 10gram+count

Time-based Model K-S test
Hybrid Model 5gram, 5gram+count

Table 4: Summary of distance functions.

Click Sequence Model. We use the common subse-
quence and common subsequence with counts metrics to
compute distances in the CS model. However, these two
metrics require that we choose k, the length of k-gram
subsequences to consider. We choose two values for k: 1
and 10, which we refer to as unigram and 10gram. Un-
igram represents the trivial case of comparing common
click events in two clickstreams, while ignoring the or-
dering of clicks. 10gram includes all unigrams, as well as
bigrams, trigrams, etc. As shown in Table 4, we also in-
stantiate unigram+count and 10gram+count, which in-
clude the frequency counts of each unique subsequence.

Although values of k > 10 are possible, we limit our
experiments to k = 10 for two reasons. First, when k = n
(where n is the length of a clickstream), the computa-
tional complexity becomes O(n2

). This overhead is sig-
nificant when you consider that O(n2

) subsequences will
be computed for every user in a clickstream dataset. Sec-
ond, long subsequences have diminishing utility, because
they are likely to be unique for a particular user. In our
tests, we found k = 10 to be a good limit on computa-
tional overhead and subsequence over-specificity.

Hybrid Model. Like the Click Sequence Model, dis-
tances between sequences in the Hybrid Model can also
be computed using the common subsequence and com-
mon subsequence plus count metrics. The only change
between the Click Sequence and Hybrid Models is that
we must discretize the inter-arrival times between clicks
so they can be encoded into the sequence. We do this
by placing inter-arrival times into log-scale buckets (in
seconds): [0,1], [1,10], [10,100], [100,1000], [1000,∞].
Based on Figure 6, the inter-arrival time distribution is
highly skewed, so log-scale buckets are better suited than
linear buckets to evenly encode the times.

After we discretize the inter-arrival times and insert
them into the clickstream, we use k = 5 as the parameter
for configuring the two distance metrics. Further increas-
ing k offers little improvement in the model but intro-
duces extra computation overhead. As shown in Table 4,
we refer to these metrics as 5gram and 5gram+count.
Thus, each 5gram contains three consecutive click events
along with two tokens representing inter-arrival time
gaps between them.

248 22nd USENIX Security Symposium USENIX Association

 0

 2

 4

 6

 8

 10

CS Hybrid CS Hybrid Time

Er
ro

r R
at

e
(%

)

Models

(Activities)

(Categories)

False Positive
False Negative

Figure 8: Error rate of three models.

 0
 1
 2
 3
 4
 5
 6
 7

unigram
unigram-c

10gram
10gram-c

5gram
5gram-c

Er
ro

r R
at

e
(%

)

Distance Functions

(CS Model) (Hybrid Model)

False Positive
False Negative

Figure 9: Error rate using different
distance functions.

 0
 1
 2
 3
 4
 5
 6

10 20 30 40 50 60 70 80 90 100

Er
ro

r R
at

e
(%

)

of Clusters (Hybrid Model)

False Positive
False Negative

Figure 10: Impact of number of clus-
ters (K).

4.3 Sequence Clustering

At this point we have defined models of clickstreams
as well as metrics for computing the distance between
them. Our next step is to cluster users with similar click-
streams together. As shown in Section 3, Sybil and nor-
mal users exhibit very different behaviors, and should
naturally form distinctive clusters.

To achieve our goal, we build and then partition a
sequence similarity graph. Each user’s clickstream is
represented by a single node. The sequence similarity
graph is complete, i.e. every pair of nodes is connected
by a weighted edge, where the weight is the similarity
distance between the sequences. Partitioning this graph
means producing the desired clusters while minimizing
the total weight of cut edges: users with similar activi-
ties (high weights between them) will be placed in the
same cluster, while users with dissimilar activities will
be placed in different clusters. Thus the clustering pro-
cess separates Sybil and normal users. Note that not all
Sybils and normal users exhibit homogeneous behavior;
thus, we expect there to be multiple, distinct clusters of
Sybils and normal users.

Graph Clustering. To cluster sequence similarity
graphs, we use METIS [18], a widely used multilevel k-
way partitioning algorithm. The objective of METIS is
to minimize the weight of edges that cross partitions. In
the sequence similarity graph, longer distances (i.e. dis-
similar sequences) have lower weights. Thus, METIS
is likely to place dissimilar sequences in different parti-
tions. METIS requires a parameter K that specifies the
number of partitions desired. We will assess the impact
of K on our system performance in Section 4.4.

Cluster Quality. A key question when evaluat-
ing our methodology is assessing the quality of clus-
ters produced by METIS. In Section 4.4, we leverage
our ground-truth data to evaluate false positives and
negatives after clustering the sequence similarity graph.
We label each cluster as “Sybil” or “normal” based on
whether the majority of nodes in the cluster are Sybils
or normal users. Normal users that get placed into Sybil
clusters are false positives, while Sybils placed in normal

clusters are false negatives. We use these criteria to eval-
uate different clickstream models and distance functions.

4.4 Model Evaluation
We now evaluate our clickstream models and distance
functions to determine which can best distinguish Sybil
activity patterns from those of normal users. We examine
four different variables: 1) choice of clickstream model,
2) choice of distance function for each model, 3) what
representation of clicks to use (specific activities or cat-
egories), and 4) K, the number of desired partitions for
METIS.
Experiment Setup. The experimental dataset con-
sists of 4000 normal users and 4000 Sybils randomly se-
lected from our dataset. In each scenario, we build click
sequences for each user (based on a given clickstream
model and click representation), compute all distances
between each pair of sequences, and then cluster the re-
sulting sequence similarity graph for a given value of K.
Finally, each experimental run is evaluated based on the
false positive and negative error rates.
Model Analysis. First, we examine the error rates
of different clickstream models and click representations
in Figure 8. For the CS and Hybrid models, we en-
code clicks based on activities as well as categories.
In the Time model, all clicks are encoded as inter-
arrival times. In this experiment, we use 10gram+count,
5gram+count, and K-S as the distance function for CS,
Hybrid, and Time, respectively. We fix K = 100. We in-
vestigate the impact of distance functions and K in sub-
sequent experiments.
Two conclusions can be drawn from Figure 8. First,

the CS and Hybrid models significantly outperform the
Time-based model, especially in false negatives. This
demonstrates that click inter-arrival times alone are in-
sufficient to disambiguate Sybils from normal users.
Manual inspection of false negative Sybils from the Time
experiment reveals that these Sybils click at the same rate
as normal users. Thus these Sybils are either operated by
real people, or the software that controls them has been
intentionally rate limited.

USENIX Association 22nd USENIX Security Symposium 249

The second conclusion from Figure 8 is that encod-
ing clicks based on category outperforms encoding by
activity. This result confirms findings from the existing
literatures on web usage mining [3]: representing clicks
using high-level categories (or concepts) instead of raw
click types better exposes the browsing patterns of users.
A possible explanation is that high-level categories have
better tolerance for noise in the clickstream log. In the
rest of our paper, we use categories to encode clicks.

Next, we examine the error rate of different distance
functions for the CS and Hybrid models. As shown in
Figure 9, we evaluate the CS model using the unigram
and 10gram functions, as well as counting versions of
those functions. We evaluate the Hybrid model using the
5gram and 5gram+count functions.

Several conclusions can be drawn from Figure 9. First,
the unigram functions have the highest false negative
rates. This indicates that looking at clicks in isolation
(i.e. without click transitions) is insufficient to discover
many Sybils. Second, the counting versions of all three
distance functions produce low false positive rates. This
demonstrates that the repeat frequency of sequences is
important for identifying normal users. Finally, we ob-
serve that CS 10gram+count and Hybrid have similar ac-
curacy. This shows that click inter-arrival times are not
necessary to achieve low error rates.

Finally, we examine the impact of the number of clus-
ters K on detection accuracy. Figure 10 shows the error
rate of Hybrid 5gram+count as we vary K. The overall
trend is that larger K produces lower error rates. This
is because larger K grants METIS more opportunities to
partition weakly connected sequences. This observation
is somewhat trivial: if K = N, where N is the number
of sequences in the graph, then the error rate would be
zero given our evaluation methodology. In Section 6, we
discuss practical reasons why K must be kept ≈100.
Summary. Our evaluation shows that the Click
Sequence and Hybrid models perform best at disam-
biguating Sybils and normal users. 10gram+count and
5gram+count are the best distance functions for each
model, respectively. We find that accuracy is highest
when clicks are encoded based on categories, and when
the number of partitions K is large. In the following sec-
tions, we will use these parameters when building our
Sybil detection system.

5 Incremental Sybil Detection

Our results in Section 4 showed that our models can ef-
fectively distinguish between Sybil clickstreams and nor-
mal user clickstreams. In this section, we leverage this
methodology to build a real-time, incremental Sybil de-
tector. This system works in two phases: first, we cre-
ate clusters of Sybil and normal users based on ground-

truth data, as we did in Section 4. Second, we compute
the position of unclassified clickstreams in our sequence
similarity graph. If an unclassified clickstream falls into
a cluster representing clickstreams from ground-truth
Sybils, we conclude the new clickstream is a Sybil. Oth-
erwise, it is benign.

5.1 Incremental Detection
To classify a new clickstream given an existing clustered
sequence similarity graph, we must determine how to
“re-cluster” new sequences into the existing graph. We
investigate three algorithms.
The first is K Nearest Neighbor (KNN). For a given

unclassified sequence, we find the top-K nearest se-
quences in the ground-truth data. If the majority of these
sequences are located in Sybil clusters, then the new se-
quence is classified as a Sybil sequence.

The second algorithm is Nearest Cluster (NC). We
compute the average distance from an unclassified se-
quence to all sequences in each cluster. The unclassified
sequence is then added to the cluster with the closest av-
erage distance. The new sequence is classified as Sybil
or normal based on the cluster it is placed in.

The third algorithm is a less computationally-intensive
version of Nearest Cluster that we refer to as Nearest
Cluster-Center (NCC). NC and KNN require comput-
ing the distance from an unclassified sequence to all se-
quences in the ground-truth clusters. We can streamline
NC’s classification process by precomputing centers for
each cluster. In NCC, we only need to compute the dis-
tance from an unclassified sequence to the center of each
existing cluster.

For each existing cluster, the center is chosen by close-
ness centrality. Intuitively, the center sequence is the one
that has the shortest distance to all the other sequences
in the same cluster. To be more robust, we precompute
three centers for each cluster, that is, the three sequences
with highest closeness centrality.

5.2 System Evaluation
In this section, we evaluate our incremental Sybil detec-
tion system using our ground-truth clickstream dataset.
We start by evaluating the basic accuracy of the system at
classifying unknown sequences. Next, we evaluate how
quickly the system can identify Sybils, in terms of num-
ber of clicks in their clickstream. Finally, we explore
how long the system can remain effective before it needs
to be retrained using updated ground-truth data.
Detection Accuracy. We start with a basic evaluation
of system accuracy using our ground-truth dataset. We
split the dataset into training data and testing data. Both
datasets include 3000 Sybils and 3000 normal users. We
build sequence similarity graphs from the training data

250 22nd USENIX Security Symposium USENIX Association

 0

 1

 2

 3

 4

 5

KNN NC NCC

Er
ro

r R
at

e
(%

)

Detection Algorithm

False Positive
False Negative

Figure 11: Error rate of three reclus-
tering algorithms.

 0
 1
 2
 3
 4
 5
 6

50 100 All 50 100 All 50 100 All

Er
ro

r R
at

e
(%

)

of Clicks

(KNN) (NC) (NCC)

False Positive
False Negative

Figure 12: Error rate vs. maximum #
of clicks in each sequence.

 0

 1

 2

 3

 4

 5

KNN NC NCC

Er
ro

r R
at

e
(%

)

Detection Algorithm

False Positive
False Negative

Figure 13: Detection accuracy when
training data is two weeks old.

using Hybrid Model with 5gram+count as distance func-
tion. The number of clusters K = 100. In each sequence
similarity graph, we label the Sybil and normal clusters.

Next, we examine the error rates of the incremental
detector when unclassified users (3000 Sybils and 3000
normal users) are added to the sequence similarity graph.
We perform this experiment three times, once for each
of the proposed reclustering algorithms (KNN, NC and
NCC). As shown in Figure 11, the error rates for all three
reclustering algorithms are very similar, and all three
have <1% false positives. NC has slightly fewer false
positives, while NCC has the fewest false negatives.

Detection Speed. The next question we want to ad-
dress is: what is the minimum number of clicks neces-
sary to accurately classify clickstreams? Another way to
frame this question is in terms of detection speed: how
quickly (in terms of clicks) can our system accurately
classify clickstreams? To identify and respond to Sybils
quickly, we must detect Sybils using the minimal number
of click events.

Figure 12 shows the results of our evaluation when the
maximum number of clicks in all sequences are capped.
The “All” results refer to a cap of infinity, i.e. all clicks
in our dataset are considered. Note that not all sequences
in our dataset have 50 or 100 clicks: some Sybils were
banned before they produced this may clicks. Hence, the
caps are upper bounds on sequence length.

Surprisingly, the “All” results are not the most accurate
overall. As shown in Figure 12, using all clicks results
in more false negatives. This occurs due to overfitting:
given a large number of very long clickstreams from nor-
mal users, it is likely that they will occasionally exhibit
unusual, Sybil-like behavior. However, this problem is
mitigated if the sequence length is capped, since this nat-
urally excludes these infrequent, aberrant clickstreams.

In contrast to the “All” results, the results from the
≤ 50 click experiments produce the most false posi-
tives. This demonstrates that there is a minimum se-
quence length necessary to perform accurate classifica-
tion of clickstreams. We repeated these experiments us-
ing CS/10gram+count and received similar result, which
we omit for brevity.

There are two additional, practical take-aways from
Figure 12. First, the NCC algorithm performs equally
well versus NC and KNN. This is a positive result,
since the computational complexity of NCC is dramat-
ically lower than NC and KNN. Second, we observe that
our system can produce accurate results (false positives
<1%, false negatives <3%) when only considering short
sequences. This means that the system can make classifi-
cations quickly, without needing to store very long click-
streams in memory.

Accuracy Over Time. In order for our incremen-
tal detection system to be practically useful, its accuracy
should remain high for long periods of time. Put an-
other way, sequence similarity graphs trained with old
data should be able to detect fresh Sybil clickstreams. To
evaluate the accuracy of our system over time, we split
our dataset based on date. We train our detector using
the early data, and then apply the detector to the later
data. We restrict our analysis to data from April 2011;
although we have Sybil data from March 2011, we do not
have corresponding data on normal users for this month.

Figure 13 shows the accuracy of the detector when it is
trained on data from March 31-April 15, then applied to
data from April 16-30. As the results show, the detector
remains highly accurate for at least two weeks after it has
been trained using the NCC reclustering algorithm. Un-
fortunately, the limited duration of our dataset prevents
us from examining accuracy at longer time intervals.

We repeated this experiment using only one week of
training data, but the false negative rate of the detector
increased to ≈10%. This shows that the detector needs
to be trained on sufficient data to provide accurate results.

6 Unsupervised Sybil Detection

Our incremental Sybil detection system from Section 5
has a serious shortcoming: it must be trained using large
samples of ground-truth data. In this section, we de-
velop an unsupervised Sybil detection system that re-
quires only a small, constant amount of ground-truth.
The key idea is to build a clustered sequence similarity
graph as before. But instead of using full ground-truth

USENIX Association 22nd USENIX Security Symposium 251

Known Good

Users

Uncolored ClusterColored Clusters

METIS

Partitions

Figure 14: Unsupervised clustering
with coloring.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250N
or

m
al

 C
lu

st
er

 C
ov

er
ag

e
(%

)

Number of Seeds

20 Clusters
50 Clusters

100 Clusters

Figure 15: # of seeds vs. % of cor-
rectly colored normal user clusters.

 0

 20

 40

 60

 80

 100

March(1-15) March(16-31) April(1-15) April(16-30)N
or

m
al

 C
lu

st
er

 C
ov

er
ag

e
(%

)

Time of Datasets

600 Seeds
450 Seeds
300 Seeds

Figure 16: Consistency over time of
normal seeds for coloring.

of all clickstreams to mark a cluster as Sybil or normal,
we only need a small number of clickstreams of known
real users as “seeds” that color the clusters they reside
in. These seeds can be manually verified as needed. We
color all clusters that include a seed sequence as “nor-
mal,” while uncolored clusters are assumed to be “Sybil.”
Since normal users are likely to fall under a small number
of behavioral profiles (clusters in the graph), we expect a
small fixed number of seeds will be sufficient to color all
clusters of normal user clickstreams.

Figure 14 depicts our unsupervised approach, showing
how METIS partitions nodes into clusters which are then
colored if they contain seed users. Once the system is
trained in this manner, it can be used incrementally to
detect more Sybils over time, as described in Section 5.

In this section, we discuss the design of our unsuper-
vised system and evaluate its performance. We begin by
analyzing the number and composition of seeds that are
necessary to ensure high accuracy of the system. Next,
we evaluate the performance of the system by compar-
ing its accuracy to our ground-truth data. Finally, we
examine how the ratio of Sybils to normal users in the
unclassified data impacts system accuracy.

6.1 Seed Selection and Composition

Number of Seeds. The most important parameter in
our unsupervised Sybil detection system is the number
of seeds. On one hand, the number of seeds needs to be
large and diverse enough to color all “normal” clusters.
Normal clusters that remain uncolored are potential false
positives. On the other hand, the seed set needs to be
small enough to be practical. If the size of the seed set
is large, it is equivalent to having ground-truth about the
dataset, which is the situation we are trying to avoid.

We now conduct experiments to determine how many
seeds are necessary to color the clusters. We choose
3000 Sybils and 3000 normal users at random from our
dataset to be the unclassified dataset. We also randomly
choose some number of additional normal users to be the
seeds. As in Section 5, we use the Hybrid Model with
the 5gram+count distance function. We also conducted

experiments with CS/10gram+count, but the results are
very similar and we omit them for brevity.

Figure 15 depicts the percentage of normal of clus-
ters that are correctly colored for different values of K
(number of METIS partitions) as the number of seeds is
varied. As expected, fewer seeds are necessary when K
is small because there are fewer clusters (and thus each
cluster includes more sequences). When K = 100, 250
seeds (or 4% of all normal users in the experiment) are
able to color 99% of normal clusters.
Seed Consistency Over Time. Next, we examine
whether a set of seeds chosen at an early date are equally
effective at coloring clusters based on later data. In other
words, we want to know if the seeds are consistent over
time. If this is not the case, it would represent additional
overhead on the deployment of our system.

To test seed consistency over time, we divide our two
months of Sybil clickstream data into four, two-week
long datasets. We add an equal number of randomly
selected normal users to each of the four datasets. Fi-
nally, we select an additional x random normal users to
act as seeds. We verify (for each value of x) that these
seeds color 100% of the normal clusters in the first tem-
poral dataset. We then evaluate what percentage of nor-
mal clusters are colored in the subsequent three tempo-
ral datasets. In all experiments, we set K = 100, i.e. the
worst case scenario for our graph coloring approach.

The results of the temporal consistency experiments
are shown in Figure 16. In general, even though the Sybil
and normal clickstreams change over time, the vast ma-
jority of normal clusters are successfully colored. Given
600 seeds, 99% of normal clusters are colored after 4
weeks, although the percentage drops to 83% with 300
seeds. These results demonstrate that the seed set does
not need to be drastically altered over time.

6.2 Coloring Evaluation
We now evaluate the overall effectiveness of our Sybil
detection system when it leverages unsupervised train-
ing. In these experiments, we use our entire clickstream
dataset. We choose x random normal users as seeds,

252 22nd USENIX Security Symposium USENIX Association

build and cluster the sequence similarity graph using Hy-
brid/5gram+count, and then color the clusters that con-
tain the seeds. Finally, we calculate the false positive
and negative rates using the same methodology as in Sec-
tion 5, i.e. by comparing the composition of the colored
clusters to ground-truth.
The results are shown in Figure 17. As the num-

ber of seeds increases, the false positive rate decreases.
This is because more seeds mean more normal clusters
are correctly colored. With just 400 seeds, the false
positive rate drops to <1%. Unfortunately, relying on
unsupervised training does increase the false negative
rate of our system by 2% versus training with ground-
truth data. However, in cases where ground-truth data
is unavailable, we believe that this is a reasonable trade-
off. Note that we also repeated these experiment with
CMS/10gram+count, and it produced slightly higher
false positive rates, although they were still <1%.

Unbalanced Training Dataset. Next, we evaluate
the impact of having an unbalanced training dataset (e.g.
more normal users than Sybils) on the accuracy of our
system. Thus far, all of our experiments have assumed
a roughly equal percentage of Sybils and normal users
in the data. However, in practice it is likely that normal
users will outnumber Sybils when unsupervised learning
is used. For example, Facebook suspects that 8.7% of its
user base is illegitimate, out of >1 billion total users [1].

We now evaluate how detection accuracy changes
when we decrease the percentage of Sybils in the train-
ing data. In these experiments, we construct training sets
of 6000 total users with different normal-to-Sybil ratios.
We then run unsupervised training with 500 seeds. Fi-
nally, we incrementally add an additional 3000 Sybils
and 3000 normal users to the colored similarity graph
using the NCC algorithm (see Section 5.1). We ran ad-
ditional tests using the NC and KNN algorithms, but the
results were very similar and we omit them for brevity.
Figure18 shows the final error rate of the system (i.e.

after 6000 users have been incrementally added) for
varying normal-to-Sybil ratios. The false positive rate
remains ≤1.2% regardless of the normal-to-Sybil ratio.
This is a very good result: even with highly skewed
training data, the system is unlikely to penalize normal
users. Unfortunately, the false negative rate does rise as
the number of Sybils in the training data falls. This result
is to be expected: the system cannot adequately classify
Sybil clickstreams if it is trained on insufficient data.

Handling False Positives. The above analy-
sis demonstrates that our system achieves high accuracy
with a false positive rate of 1% or less. Through man-
ual inspection, we find that “false positives” generated
by our detector exhibit behaviors generally attributed to
Sybils, including aggressively sending friend requests or

browsing profiles. In real-world OSNs, suspicious users
identified by our system could be further verified via ex-
isting complementary systems that examines other as-
pects of users. For example, this might include systems
that classify user profiles [32, 43], systems that verify
user real-world identity [2], or even Sybil detection sys-
tems using crowdsourced human inspection [38]. These
efforts could further protect benign users from misclassi-
fication.

7 Practical Sybil Detection

In this section, we examine the practical performance of
our proposed Sybil detection system. First, we shipped
our code to the security teams at Renren and LinkedIn,
where it was evaluated on fresh data in a production en-
vironment. Both test results are very positive, and we
report them here. Second, we discuss the fundamental
limits of our approach, by looking at our impact on Sybil
accounts that can perfectly mimic the clickstream pat-
terns of normal users.

7.1 Real-world Sybil Detection
With the help of supportive collaborators at both Ren-
ren and LinkedIn, we were able to ship prototype code
to the security teams at both companies for internal test-
ing on fresh data. We configured our system to use un-
supervised learning to color clusters. Sequence similar-
ity graphs are constructed using the Hybrid Model and
the 5gram+count distance function, and the number of
METIS partitions K is 100.
Renren. Renren’s security team trained our system
using clickstreams from 10K users, of which 8K were
randomly selected, and 2K were previously identified
as suspicious by the security team. These clickstreams
were collected between January 17–27, 2013. 500 hon-
est users that have been manually verified by Renren’s
security team were used as seeds. Once trained, our sys-
tem was fed clickstreams from 1 million random users
(collected in early February, 2013) for classification as
normal or suspicious. In total, our system identified 22K
potential Sybil accounts. These accounts are now being
investigated by the security team.

While corporate privacy policies prevented Renren
from sharing detailed results with us, their feedback was
very positive. They also indicated that our system identi-
fied a new attack performed by a large cluster of users
whose clickstream behavior focused heavily on photo
sharing. Manual inspection revealed that these photos
used embedded text to spread spam for brands of clothes
and shoes. Traditional text analysis-based spam detec-
tors and URL blacklists were unable to catch this new
attack, but our system identified it immediately.

USENIX Association 22nd USENIX Security Symposium 253

 0

 2

 4

 6

 8

 10

300 400 500 600

Er
ro

r R
at

e
(%

)

Number of Seeds

False Positive
False Negative

Figure 17: Detection accuracy versus
number of seeds.

 0
 2
 4
 6
 8

 10
 12
 14

1 2 5 10

Er
ro

r R
at

e
(%

)

Normal-Sybil Ratio

False Positive
False Negative

Figure 18: Detection accuracy versus
Normal-Sybil ratio.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
D

F
(%

)

Clicks Per Day

Friending
Messages

Profiles

Figure 19: Clicks per day by outlier
normal users.

LinkedIn. LinkedIn’s security team used our soft-
ware to analyze the clickstreams of 40K users, of which
36K were randomly sampled, and 4K were previously
identified as suspicious by the security team. These
clickstreams were gathered in February, 2013. Again,
our feedback was very positive, but did not include pre-
cise statistics. However, we were told that our system
confirmed that ≈1700 of the 4000 suspicious accounts
are likely to be Sybils. Our system also detected an ad-
ditional 200 previously unknown Sybils.

A closer look at the data shows that many of the ac-
counts not detected by our system were borderline ac-
counts with specific flags popping up in their profiles.
For example, some accounts had unusual names or oc-
cupational specialties, while others had suspicious URLs
in their profiles. These results remind us that a behavior
model is clearly only a part of the equation, and should
be used in conjunctionwith existing profile analysis tools
and spam detectors [5, 10, 37, 38, 44].
Ongoing Collaboration. In summary, the security
teams at both Renren and LinkedIn were very pleased
with the initial results of our system. We plan to con-
tinue collaborating with both groups to improve our sys-
tem and implement it in production.

7.2 Limits of Sybil Detection
Finally, we wish to discuss the worst case scenario for
our system, i.e. a scenario where attackers have full
knowledge of the clickstream patterns for real users,
and are able to instrument the behavior of their Sybils
to mimic them precisely. In this attack model, the at-
tacker’s goal is to have Sybils carry out malicious actions
(e.g. sending spam) without being detected. However, to
evade detection, these Sybils must limit themselves to
behavior consistent with that of normal users.

We can thus bound the capabilities of Sybils that avoid
detection in this attack model. First, the Sybil’s click-
stream must remain inside the “normal” clusters pro-
duced by our detector. Second, the most aberrant behav-
ior within a given “normal” cluster is exhibited by real
users within the cluster who are farthest from the center.

The activities performed by these outliers serve as effec-
tive bounds on Sybil behavior. Sybil clickstreams cannot
deviate from the center of the cluster more than these
outliers, otherwise they will be excluded from the clus-
ter and risk detection. Thus, we can estimate the maxi-
mum amount of malicious activity a Sybil could perform
(without getting caught) by studying these outliers.

We now examine the behavior of outliers. We cali-
brate our system to produce clusters with false positive
rate <1% using Hybrid/5gram+count, and K = 100. In
this configuration, the detector outputs 40 Sybil and 60
normal clusters when run on our full dataset. Next, we
identify the two farthest outliers in each normal cluster.
Finally, we plot the clicks per day in three activities from
the 120 outliers in Figure 19. We focus on clicks for
sending friend requests, posting status updates/wall mes-
sages, and viewing user profiles. These activities corre-
spond to the three most common attacks we observe in
our ground-truth data, i.e. sending friend request spam,
status/wall spam, and profile crawling.

As shown in Figure 19, 99% of outliers generate ≤10
clicks per day in the target activities. In the vast ma-
jority of cases, even the outliers generate <2 clicks per
day. These results show that the effective bound on Sybil
behavior is very tight, i.e. to avoid detection, Sybils can
barely generate any clicks each day. These bounds sig-
nificantly increase the cost for attackers, since they will
need many more Sybils to maintain the same level of
spam generation capacity.

8 Related Work

Sybil Detection on OSNs. Studies have shown
that Sybils are responsible for large amounts of spam
on Facebook [10], Twitter [11, 32], and Renren [43].
Various systems have been proposed by the research
community to detect and mitigate these Sybils. One
body of work leverages social graphs to detect Sybils.
These systems detect tight-knit Sybil communities that
have a small quotient-cut from the honest region of the
graph [46, 45, 34, 36, 8, 7]. However, recent studies have
demonstrated the limitations of this approach. Yang et al.

254 22nd USENIX Security Symposium USENIX Association

show that Sybils on Renren blend into the social graph
rather than forming tight communities [43]. Mohaisen
et al. show that many social graphs are not fast-mixing,
which is a necessary precondition for community-based
Sybil detectors to be effective [21].

A second body of work has used machine learning to
detect Sybil behavior on Twitter [44, 5, 37] and Face-
book [31]. However, relying on specific features makes
these systems vulnerable to Sybils with different attack
strategies. Finally, one study proposes using crowd-
sourcing to identify Sybils [38].

Web Usage Mining. Researchers have studied the
usage patterns of web services for the last decade [30].
Several studies focus on session-level analysis to learn
user’s browsing habits [14, 13, 24]. Others develop ses-
sion clustering techniques [4, 42, 40, 33, 25], Markov
Chain models [20, 28], and tree-based models [12] to
characterize user browsing patterns. We also leverage
a Markov Chain model and clustering in our work. Two
studies have focused specifically on characterizing click-
streams from OSNs [6, 29].

The vast majority of the web usage mining litera-
ture focuses on characterizing the behavior of normal
users. To the best of our knowledge, there are only
two studies that leverage clickstreams for anomaly de-
tection [15, 28]. Both of these studies use session-
level features to identify crawlers, one focusing on e-
commerce and the other on search engines. Their tech-
niques (e.g. session distributions, Markov Chain models)
require training on large samples of ground-truth data,
and cannot scale to today’s large social networks.

9 Conclusion
To the best of our knowledge, this is the first work
to leverage clickstream models for detecting malicious
users in OSNs. Our results show that we can build an
accurate Sybil detector by identifying and coloring clus-
ters of “similar” clickstreams. Our system has been val-
idated on ground-truth data, and a prototype has already
detected new types of image-spam attacks on Renren.

We believe clickstream models can be a powerful tech-
nique for user profiling in contexts outside of OSNs. In
our ongoing work, we are studying ways to extend click-
stream models to detect malicious crowdsourcing work-
ers and forged online product and travel reviews.

IRB Protocol
This work was carried out under an approved IRB pro-
tocol. All data was anonymized by Renren prior to our
use. The clickstreams are old enough that the events they
describe are no longer accessible via the current website.
All experiments run on recent user data were conducted

on-site at Renren and LinkedIn respectively, and all re-
sults remain on-site.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback, and Yanjie Liang (Renren) and David
Freeman (LinkedIn) for their assistant in experiments.
This work is supported in part by NSF grants CNS-
1224100 and IIS-0916307 and DARPAGRAPHS (BAA-
12-01). Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
funding agencies.

References

[1] Facebook has more than 83 million illegitimate accounts.
BBC News, August 2012.

[2] Verify facebook account. https://www.facebook.

com/help/398085743567023/, 2013.

[3] BANERJEE, A., AND GHOSH, J. Concept-based cluster-
ing of clickstream data. In Proc. of ICIT (2000).

[4] BANERJEE, A., AND GHOSH, J. Clickstream clustering
using weighted longest common subsequences. In Proc.
of the Web Mining Workshop, SIAM Conference on Data
Mining (2001).

[5] BENEVENUTO, F., MAGNO, G., RODRIGUES, T., AND
ALMEIDA, V. Detecting spammers on twitter. In Proc. of
CEAS (2010).

[6] BENEVENUTO, F., RODRIGUES, T., CHA, M., AND
ALMEIDA, V. Characterizing user behavior in online so-
cial networks. In Proc. of IMC (2009).

[7] CAO, Q., SIRIVIANOS, M., YANG, X., AND
PREGUEIRO, T. Aiding the detection of fake accounts
in large scale social online services. In Proc. of NSDI
(2012).

[8] DANEZIS, G., AND MITTAL, P. Sybilinfer: Detect-
ing sybil nodes using social networks. In Proc of NDSS
(2009).

[9] DOUCEUR, J. R. The Sybil attack. In Proc. of IPTPS
(2002).

[10] GAO, H., HU, J., WILSON, C., LI, Z., CHEN, Y., AND
ZHAO, B. Y. Detecting and characterizing social spam
campaigns. In Proc. of IMC (2010).

[11] GRIER, C., THOMAS, K., PAXSON, V., AND ZHANG,
M. @spam: the underground on 140 characters or less.
In Proc. of CCS (2010).

[12] GÜNDÜZ, C., AND ÖZSU, M. T. A web page prediction
model based on click-stream tree representation of user
behavior. In Proc. of SIGKDD (2003).

USENIX Association 22nd USENIX Security Symposium 255

[13] HEER, J., AND CHI, E. H. Mining the structure of
user activity using cluster stability. In Proc. of the Work-
shop on Web Analytics, SIAM Conference on Data Mining
(2002).

[14] HEER, J., AND CHI, E. H. Separating the swarm: cate-
gorization methods for user sessions on the web. In Proc.
of CHI (2002).

[15] HOFGESANG, P. I., AND KOWALCZYK, W. Analysing
clickstream data: From anomaly detection to visitor pro-
filing. In Proc. of ECML/PKDD Discovery Challenge
(2005).

[16] IRANI, D., BALDUZZI, M., BALZAROTTI, D., KIRDA,
E., AND PU, C. Reverse social engineering attacks in
online social networks. In Proc of DIMVA (2011).

[17] JIANG, J., WILSON, C., WANG, X., HUANG, P., SHA,
W., DAI, Y., AND ZHAO, B. Y. Understanding latent
interactions in online social networks. In Proc. of IMC
(2010).

[18] KARYPIS, G., KUMAR, V., AND KUMAR, V. Multilevel
k-way partitioning scheme for irregular graphs. Journal
of Parallel and Distributed Computing 48 (1998), 96–
129.

[19] LEVANDOWSKY, M., AND WINTER, D. Distance be-
tween sets. Nature 234 (1971), 34–35.

[20] LU, L., DUNHAM, M., AND MENG, Y. Mining signif-
icant usage patterns from clickstream data. In Proc. of
WebKDD (2005).

[21] MOHAISEN, A., YUN, A., AND KIM, Y. Measuring the
Mixing Time of Social Graphs. In Proc. of IMC (2010).

[22] MOTOYAMA, M., LEVCHENKO, K., KANICH, C., MC-
COY, D., VOELKER, G. M., AND SAVAGE, S. Re:
Captchas – understanding captcha-solving from an eco-
nomic context. In Proc. of USENIX Security (2010).

[23] MOTOYAMA, M., MCCOY, D., LEVCHENKO, K., SAV-
AGE, S., AND VOELKER, G. M. Dirty jobs: The role of
freelance labor in web service abuse. In Proc. of Usenix
Security (2011).

[24] OBENDORF, H., WEINREICH, H., HERDER, E., AND
MAYER, M. Web page revisitation revisited: implications
of a long-term click-stream study of browser usage. In
Proc. of CHI (2007).

[25] PETRIDOU, S. G., KOUTSONIKOLA, V. A., VAKALI,
A. I., AND PAPADIMITRIOU, G. I. Time-aware web
users’ clustering. IEEE Trans. on Knowl. and Data Eng.
(2008), 653–667.

[26] PLATT, J. C. Advances in kernel methods. MIT Press,
1999, ch. Fast training of support vector machines using
sequential minimal optimization, pp. 185–208.

[27] Russian twitter political protests ’swamped by spam’.
BBC News, December 2011.

[28] SADAGOPAN, N., AND LI, J. Characterizing typical and
atypical user sessions in clickstreams. In Proc. of WWW
(2008).

[29] SCHNEIDER, F., FELDMANN, A., KRISHNAMURTHY,
B., AND WILLINGER, W. Understanding online social
network usage from a network perspective. In Proc. of
IMC (2009).

[30] SRIVASTAVA, J., COOLEY, R., DESHPANDE, M., AND
TAN, P. N. Web usage mining: discovery and applica-
tions of usage patterns from Web data. SIGKDD Explor.
Newsl. 1, 2 (2000), 12–23.

[31] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. De-
tecting spammers on social networks. In Proc. of ACSAC
(2010).

[32] THOMAS, K., ET AL. Suspended accounts in retrospect:
An analysis of twitter spam. In Proc. of IMC (2011).

[33] TING, I.-H., KIMBLE, C., AND KUDENKO, D. Ubb
mining: Finding unexpected browsing behaviour in click-
stream data to improve a web site’s design. In Proc. of
International Conference on Web Intelligence (2005).

[34] TRAN, N., MIN, B., LI, J., AND SUBRAMANIAN, L.
Sybil-resilient online content voting. In Proc. of NSDI
(2009).

[35] VEGA, C. Yelp outs companies that pay for positive re-
views. ABC News, November 2012. http://abcnews.
go.com/blogs/business/2012/11/yelp-outs-

companies-that-pay-for-positive-reviews.

[36] VISWANATH, B., POST, A., GUMMADI, K. P., AND
MISLOVE, A. An analysis of social network-based sybil
defenses. In Proc. of SIGCOMM (2010).

[37] WANG, A. H. Don’t follow me: Spam detection on twit-
ter. In Proc. of SECRYPT (2010).

[38] WANG, G., MOHANLAL, M., WILSON, C., WANG, X.,
METZGER, M., ZHENG, H., AND ZHAO, B. Y. Social
turing tests: Crowdsourcing sybil detection. In Proc. of
NDSS (2013).

[39] WANG, G., WILSON, C., ZHAO, X., ZHU, Y., MOHAN-
LAL, M., ZHENG, H., AND ZHAO, B. Y. Serf and turf:
crowdturfing for fun and profit. In Proc. of WWW (2012).

[40] WANG, W., AND ZAÏANE, O. R. Clustering web ses-
sions by sequence alignment. In Proc. of DEXA (2002).

[41] WILSON, C., BOE, B., SALA, A., PUTTASWAMY, K.
P. N., AND ZHAO, B. Y. User interactions in social net-
works and their implications. In Proc. of EuroSys (2009).

[42] XIAO, J., AND ZHANG, Y. Clustering of web users using
session-based similarity measures. In Proc. of ICCNMC
(2001).

[43] YANG, Z., WILSON, C., WANG, X., GAO, T., ZHAO,
B. Y., AND DAI, Y. Uncovering social network sybils in
the wild. In Proc. of IMC (2011).

[44] YARDI, S., ROMERO, D., SCHOENEBECK, G., AND
BOYD, D. Detecting spam in a twitter network. First
Monday 15, 1 (2010).

[45] YU, H., GIBBONS, P. B., KAMINSKY, M., AND XIAO,
F. Sybillimit: A near-optimal social network defense
against sybil attacks. In Proc. of IEEE S&P (2008).

[46] YU, H., KAMINSKY, M., GIBBONS, P. B., AND FLAX-
MAN, A. Sybilguard: defending against sybil attacks via
social networks. In Proc. of SIGCOMM (2006).

USENIX Association 22nd USENIX Security Symposium 257

Alice in Warningland:
A Large-Scale Field Study of Browser Security Warning Effectiveness

Devdatta Akhawe
University of California, Berkeley∗

devdatta@cs.berkeley.edu

Adrienne Porter Felt
Google, Inc.

felt@google.com

Abstract
We empirically assess whether browser security warn-

ings are as ineffective as suggested by popular opinion
and previous literature. We used Mozilla Firefox and
Google Chrome’s in-browser telemetry to observe over
25 million warning impressions in situ. During our field
study, users continued through a tenth of Mozilla Fire-
fox’s malware and phishing warnings, a quarter of Google
Chrome’s malware and phishing warnings, and a third of
Mozilla Firefox’s SSL warnings. This demonstrates that
security warnings can be effective in practice; security
experts and system architects should not dismiss the goal
of communicating security information to end users. We
also find that user behavior varies across warnings. In con-
trast to the other warnings, users continued through 70.2%
of Google Chrome’s SSL warnings. This indicates that
the user experience of a warning can have a significant
impact on user behavior. Based on our findings, we make
recommendations for warning designers and researchers.

1 Introduction

An oft-repeated maxim in the security community is the
futility of relying on end users to make security decisions.
Felten and McGraw famously wrote, “Given a choice
between dancing pigs and security, the user will pick
dancing pigs every time [21].” Herley elaborates [17],

Not only do users take no precautions against
elaborate attacks, they appear to neglect even
basic ones. For example, a growing body of
measurement studies make clear that ...[users]
are oblivious to security cues [27], ignore cer-
tificate error warnings [31] and cannot tell legit-
imate web-sites from phishing imitations [11].1

∗The Mozilla Firefox experiments were implemented while the au-
thor was an intern at Mozilla Corporation.

1Citations updated to match our bibliography.

The security community’s perception of the “oblivious”
user evolved from the results of a number of laboratory
studies on browser security indicators [5, 11, 13, 15, 27,
31, 35]. However, these studies are not necessarily rep-
resentative of the current state of browser warnings in
2013. Most of the studies evaluated warnings that have
since been deprecated or significantly modified, often in
response to criticisms in the aforementioned studies. Our
goal is to investigate whether modern browser security
warnings protect users in practice.

We performed a large-scale field study of user deci-
sions after seeing browser security warnings. Our study
encompassed 25,405,944 warning impressions in Google
Chrome and Mozilla Firefox in May and June 2013. We
collected the data using the browsers’ telemetry frame-
works, which are a mechanism for browser vendors to
collect pseudonymous data from end users. Telemetry
allowed us to unobtrusively measure user behavior during
normal browsing activities. This design provides realism:
our data reflects users’ actual behavior when presented
with security warnings.

In this paper, we present the rates at which users click
through (i.e., bypass) malware, phishing, and SSL warn-
ings. Low clickthrough rates are desirable because they
indicate that users notice and heed the warnings. Click-
through rates for the two browsers’ malware and phish-
ing warnings ranged from 9% to 23%, and users clicked
through 33.0% of Mozilla Firefox’s SSL warnings. This
demonstrates that browser security warnings can effec-
tively protect most users in practice.

Unfortunately, users clicked through Google Chrome’s
SSL warning 70.2% of the time. This implies that the
user experience of a warning can have a significant impact
on user behavior. We discuss several factors that might
contribute to this warning’s higher clickthrough rates. Our
positive findings for the other five warnings suggest that
the clickthrough rate for Google Chrome’s SSL warning
can be improved.

258 22nd USENIX Security Symposium USENIX Association

We also consider user behaviors that are indicative of
attention to warnings. We find that Google Chrome’s
SSL clickthrough rates vary by the specific type of error.
In Mozilla Firefox, a fifth of users who choose to click
through an SSL warning remove a default option, showing
they are making cognitive choices while bypassing the
warning. Together, these results contradict the stereotype
of the wholly oblivious user with no interest in security.

We conclude that users can demonstrate agency when
confronted with browser security warnings. Users do not
always ignore security warnings in favor of their desired
content. Consequently, security experts and platform
designers should not dismiss the role of the user. We
find that the user experience of warnings can have an
enormous impact on user behavior, justifying efforts to
build usable warnings.

Contributions. We make the following contributions:

• To our knowledge, we present the first in-depth,
large-scale field study of browser security warnings.

• We survey prior laboratory studies of browser secu-
rity warnings and discuss why our field study data
differs from prior research.

• We analyze how demographics (operating system
and browser channel), warning frequency, and warn-
ing complexity affect users’ decisions. Notably,
we find evidence suggesting that technically skilled
users ignore warnings more often, and warning fre-
quency is inversely correlated with user attention.

• We provide suggestions for browser warning design-
ers and make recommendations for future studies.

2 Background

Web browsers show warnings to users when an attack
might be occurring. If the browser is certain that an attack
is occurring, it will show an error page that the user cannot
bypass. If there is a chance that the perceived attack is a
false positive, the browser will show a bypassable warning
that discourages the user from continuing. We study only
bypassable warnings because we focus on user decisions.

A user clicks through a warning to dismiss it and pro-
ceed with her original task. A user leaves the warning
when she navigates away and does not continue with her
original task. A clickthrough rate describes the proportion
of users who clicked through a warning type. When a
user clicks through a warning, the user has (1) ignored
the warning because she did not read or understand it or
(2) made an informed decision to proceed because she be-
lieves that the warning is a false positive or her computer
is safe against these attacks (e.g., due to an antivirus).

Figure 1: Malware warning for Google Chrome

Figure 2: Malware warning for Mozilla Firefox

Figure 3: SSL warning for Google Chrome. The first paragraph
changes depending on the specific SSL error.

Figure 4: SSL warning for Mozilla Firefox

USENIX Association 22nd USENIX Security Symposium 259

Figure 5: SSL Add Exception Dialog for Mozilla Firefox

We focus on three types of browser security warnings:
malware, phishing, and SSL warnings. At present, all
three types of warnings are full-page, interstitial warnings
that discourage the user from proceeding.

2.1 Malware and Phishing Warnings

Malware and phishing warnings aim to prevent users from
visiting websites that serve malicious executables or try
to trick users. Google Chrome and Mozilla Firefox rely
on the Google Safe Browsing list [26] to identify mal-
ware and phishing websites. The browsers warn users
away from the sites instead of blocking them because the
Safe Browsing service occasionally has false positives,
although the false positive rate is very low [26].

Clickthrough Rate. If a malware or phishing warning
is a true positive, clicking through exposes the user to a
dangerous situation. Nearly all Safe Browsing warnings
are true positives; the false positive rate is low enough
to be negligible. The ideal clickthrough rate for malware
and phishing warnings is therefore close to 0%.

Warning Mechanisms. The browsers routinely fetch a
list of suspicious (i.e., malware or phishing) sites from
Safe Browsing servers. If a user tries to visit a site that
is on the locally cached list, the browser checks with the
Safe Browsing service that the URL is still on the malware
or phishing list. If the site is still on one of the lists, the
browser presents a warning.

The two browsers behave differently if a page loads
a third-party resource (e.g., a script) from a URL on the
Safe Browsing list. Google Chrome stops the page load
and replaces the page with a warning. Mozilla Firefox
blocks the third-party resource with no warning. As a
result, Mozilla Firefox users can see fewer warnings than
Google Chrome users, despite both browsers using the
same Safe Browsing list.

Warning Design. Figures 1 and 2 show the Google
Chrome and Mozilla Firefox warnings. Their phishing
warnings are similar to their respective malware warn-
ings. When a browser presents the user with a malware or
phishing warning, she has three options: leave the page
via the warning’s escape button, leave the page by closing
the window or typing a new URL, or click through the
warning and proceed to the page. The warnings also allow
the user to seek more information about the error.

Click Count. Mozilla Firefox users who want to bypass
the warning need to click one button: the “Ignore this
warning” link at the bottom right. On the other hand,
Chrome users who want to bypass the warning need to
click twice: first on the “Advanced” link, and then on
“Proceed at your own risk.”

2.2 SSL Warnings
The Secure Sockets Layer (SSL/TLS) protocol provides
secure channels between browsers and web servers, mak-
ing it fundamental to user security and privacy on the
web. As a critical step, the browser verifies a server’s
identity by validating its public-key certificate against a
set of trusted root authorities. This validation will fail in
the presence of a man-in-the-middle (MITM) attack.

Authentication failures can also occur in a wide vari-
ety of benign scenarios, such as server misconfigurations.
Browsers usually cannot distinguish these benign scenar-
ios from real MITM attacks. Instead, browsers present
users with a warning; users have the option to bypass the
warning, in case the warning is a false positive.

Clickthrough Rate. We hope for a 0% clickthrough rate
for SSL warnings shown during MITM attacks. However,
many SSL warnings may be false positives (e.g., server
misconfigurations). There are two competing views re-
garding SSL false positives. In the first, warning text
should discourage users from clicking through both true
and false positives, in order to incentivize developers
to get valid SSL certificates. In the other, warning text
should provide users with enough information to correctly
identify and dismiss false positives. The desired click-
through rates for false-positive warnings would be 0%
and 100%, respectively. In either case, false positives are
undesirable for the user experience because we do not
want to annoy users with invalid warnings. Our goal is
therefore a 0% clickthrough rate for all SSL warnings:
users should heed all valid warnings, and the browser
should minimize the number of false positives.

Warning Design. Figures 3 and 4 present Google Chrome
and Mozilla Firefox’s SSL warnings. The user can leave
via the warning’s escape button, manually navigate away,
or click through the warning. In Mozilla Firefox, the
user must also click through a second dialog (Figure 5) to
bypass the warning.

260 22nd USENIX Security Symposium USENIX Association

The browsers differ in their presentation of the techni-
cal details of the error. Google Chrome places information
about the specific error in the main warning (Figure 3, first
paragraph), whereas Firefox puts the error information
in the hidden “Technical Details” section and the second
“Add Exception” dialog (Figure 5).

Click Count. Mozilla Firefox’s SSL warning requires
more clicks to bypass. Google Chrome users click
through a single warning button to proceed. On the other
hand, Mozilla Firefox’s warning requires three clicks:
(1) click on “I Understand The Risks,” (2) click on the
“Add Exception” button, which raises a second dialog,
(3) click on “Confirm Security Exception” in the second
dialog. By default, Firefox permanently remembers the
exception and will not show the warning again if the user
reencounters the same certificate for that website. In
contrast, Chrome presents the warning every time and
does not remember the user’s past choices.

2.3 Browser Release Channels
Mozilla and Google both follow rapid release cycles.
They release official versions of their browsers every six
or seven weeks, and both browsers update automatically.
The official, default version of a browser is referred to as
“stable” (Google Chrome) or “release” (Mozilla Firefox).

If users are interested in testing pre-release browser
versions, they can switch to a different channel. The sta-
ble/release channel is the recommended channel for end
users, but a minority of users choose to use earlier chan-
nels to test cutting-edge features. The “Beta” channel is
several weeks ahead of the stable/release channel. The
“developer” (Google Chrome) or “Aurora” (Mozilla Fire-
fox) channel is delivered even earlier. Both browsers also
offer a “nightly” (Mozilla Firefox) or “Canary” (Google
Chrome) release channel, which updates every day and
closely follows the development repository.

The pre-release channels are intended for advanced
users who want to experience the latest-and-greatest fea-
tures and improvements. They give website, extension,
and add-on developers time to test their code on upcom-
ing versions before they are deployed to end users. The
early channels are not recommended for typical end users
because they can have stability issues, due to being un-
der active development. The rest of this paper assumes
a positive correlation between pre-release channels use
and technical ability. While this matches the intention
of browser developers, we did not carry out any study to
validate this assumption.

3 Prior Laboratory Studies

We survey prior laboratory studies of SSL and phishing
warnings. The body of literature paints a grim picture
of browser security warnings, but most of the warnings
have since been deprecated or modified. In some cases,
warnings were changed in response to these studies.

Only two studies evaluated warnings that are similar
to the modern (June 2013) browser warnings that we
study in this paper. Sunshine et al. and Sotirakopoulos
et al. reported clickthrough rates of 55% to 80% for the
Firefox 3 and 3.5 SSL warnings, which are similar but
not identical to the current Firefox SSL warning [30, 31].
However, Sotirakopoulos et al. concluded that laboratory
biases had inflated both studies’ clickthrough rates [30].

3.1 SSL Warnings

SSL warnings are the most studied type of browser warn-
ing. Usability researchers have evaluated SSL warnings
in both SSL-specific studies and phishing studies because
SSL warnings and passive indicators were once viewed
as a way to identify phishing attacks.2

Dhamija et al. performed the first laboratory study of
SSL warnings in 2006. They challenged 22 study partic-
ipants to differentiate between phishing and legitimate
websites in Mozilla Firefox 1.0.1 [11]. In this version,
the warning was a modal dialog that allowed the user to
permanently accept, temporarily accept, or reject the cer-
tificate. When viewing the last test website, participants
encountered an SSL warning. The researchers reported
that 15 of their 22 subjects (68%) quickly clicked through
the warning without reading it. Only one user was later
able to tell the researchers what the warning had said.
The authors considered the clickthrough rate of 68% a
conservative lower bound because participants knew that
they should be looking for security indicators.

In 2007, Schechter et al. studied user reactions to Inter-
net Explorer 7’s SSL warning, which is the same one-click
interstitial that is present in all subsequent versions of In-
ternet Explorer [27]. Participants encountered the warning
while logging into a bank website to look up information.
The researchers were aware of ecological validity con-
cerns with laboratory studies and split their participants
into three groups: participants who entered their own cre-
dentials, a role-playing group that entered fake passwords,
and a security-primed role-playing group that entered
fake passwords. Overall, 53% of the total 57 participants
clicked through. However, only 36% of the non-role-
playing group clicked through. The difference between
the role-playing participants and non-role-playing partic-

2There is evidence that modern phishing sites can have valid SSL
certificates [24].

USENIX Association 22nd USENIX Security Symposium 261

ipants was statistically significant, illustrating one chal-
lenge of experiments in artificial environments.

Sunshine et al. performed multiple studies of SSL warn-
ings in 2009 [31]. First, they conducted an online survey.
They asked 409 people about Firefox 2, Firefox 3, and
Internet Explorer 7 warnings. Firefox 2 had a modal dia-
log like Firefox 1.0.1, and Firefox 3’s warning is similar
but not identical to the current Firefox warning. Less
than half of respondents said they would continue to the
website after seeing the warning. As a follow-up, Sun-
shine et al. also conducted a laboratory study that exposed
100 participants to SSL warnings while completing infor-
mation lookup tasks. The clickthrough rates were 90%,
55%, and 90% when participants tried to access their bank
websites in Firefox 2, Firefox 3, and Internet Explorer
7, respectively. The clickthrough rates increased to 95%,
60%, and 100% when participants saw an SSL warning
while trying to visit the university library website.

Sotirakopoulos et al. replicated Sunshine’s laboratory
SSL study with a more representative population sam-
ple [30]. In their study, 80% of participants using Firefox
3.5 and 72% of participants using Internet Explorer 7
clicked through an SSL warning on their bank website.
More than 40% of their participants said that the labora-
tory environment had influenced them to click through
the warnings, either because they felt safe in the study
environment or were trying to complete the experimental
task. Sotirakopoulos et al. concluded that the laboratory
environment biased their results, and they suspect that
these biases are also present in similar laboratory studies.

Bravo-Lillo et al. interviewed people about an SSL
warning from an unspecified browser [5]. They asked 20
participants about the purpose of the warning, what would
happen if a friend were to click through, and whether a
friend should click through the warning. Participants
were separated into “advanced” and “novice” browser
users. “Advanced” participants said they would not click
through an SSL warning on a bank website, but “novice”
participants said they would.

Passive Indicators. Some studies focused on passive
SSL indicators, which non-interruptively show the status
of the HTTP(S) connection in the browser UI. Although
browsers still have passive SSL indicators, interruptive
SSL and phishing warnings are now the primary tool for
communicating security information to users.

Friedman et al. asked participants whether screenshots
of websites depicted secure connections; many partici-
pants could not reliably determine whether a connection
was secure [15]. Whalen and Inkpen used eye-tracking
software to determine that none of their 16 participants
looked at the lock or key icon in the URL bar, HTTP(S)
status in the URL bar, or the SSL certificate when asked to
browse websites “normally” [34]. Some browsers modify

the lock icon or color of the URL bar to tell the user when
a website has an Extended Validation (EV) SSL certifi-
cate. Jackson et al. asked 27 study subjects to classify
12 websites as either phishing or legitimate sites, but the
EV certificates did not help subjects identify the phish-
ing sites [19]. In a follow-up study, Sobey et al. found
that none of their 28 subjects clicked on the EV indica-
tors, and the presence of EV indicators did not affect
decision-making [29]. Similarly, Biddle et al. found that
study participants did not understand Internet Explorer’s
certificate summaries [3].

In 2012, a Google Chrome engineer mentioned high
clickthrough rates for SSL warnings on his blog [20]. We
expand on this with a more accurate and detailed view of
SSL clickthrough rates in Google Chrome.

3.2 Phishing Warnings

Phishing warnings in contemporary browsers are active,
interstitial warnings; in the past, they have been passive
indicators in toolbars. Researchers have studied whether
they are effective at preventing people from entering their
credentials into phishing websites.

Wu et al. studied both interstitial and passive phish-
ing warnings [35]. Neither of the warnings that they
evaluated are currently in use in browsers. First, they
launched phishing attacks on 30 participants. The par-
ticipants role-played during the experiment while using
security toolbars that display passive phishing warnings.
Despite the toolbars, at least one attack fooled 20 out
of 30 participants. In their next experiment, they asked
10 study participants to perform tasks on PayPal and a
shopping wish list website; they injected modal phishing
warnings into the websites. None of the subjects entered
the credentials into the PayPal site, but the attack on the
wish list site fooled 4 subjects. The authors do not report
the warning clickthrough rates.

Egelman et al. subjected 60 people to simulated phish-
ing attacks in Internet Explorer 7 or Mozilla Firefox
2.0 [13]. Firefox 2.0 had a modal phishing dialog that is
not comparable to the current Mozilla Firefox phishing
dialog, and Internet Explorer had both passive and active
warnings. Participants believed that they were taking part
in a laboratory study about shopping. The researchers
asked participants to check their e-mail, which contained
both legitimate shopping confirmation e-mails and similar
spear phishing e-mails sent by the researchers. Users who
clicked on the links in the phishing e-mails saw a phishing
warning. Participants who saw Mozilla Firefox’s active
warning, Internet Explorer’s active warning, or Internet
Explorer’s passive warning were phished 0%, 45%, and
90% of the time, respectively. The clickthrough rates
were an unspecified superset of the rates at which people
fell for the phishing attacks.

262 22nd USENIX Security Symposium USENIX Association

3.3 Malware Download Warnings
Google Chrome and Microsoft Internet Explorer also dis-
play non-blocking warning dialogs when users attempt
to download malicious executables. In a blog post, a Mi-
crosoft employee stated that the clickthrough rate for Inter-
net Explorer’s SmartScreen warning was under 5% [16].
We did not study this warning for Google Chrome, and
Mozilla Firefox does not have this warning.

4 Methodology

We rely on the telemetry features implemented in Mozilla
Firefox and Google Chrome to measure clickthrough rates
in situ. Telemetry is a mechanism for browser vendors to
collect pseudonymous data from end users who opt in to
statistics reporting. Google Chrome and Mozilla Firefox
use similar telemetry platforms.

4.1 Measuring Clickthrough Rates
We implemented metrics in both browsers to count the
number of times that a user sees, clicks through, or leaves
a malware, phishing, or SSL warning. Based on this data,
we can calculate clickthrough rates for each warning type.
As discussed in Section 2, we report only the clickthrough
rates for warnings that the user can bypass. We measured
the prevalence of non-bypassable warnings separately. To
supplement the clickthrough rates, we recorded whether
users clicked on links like “Help me understand,” “View,”
or “Technical Details.”

Bypassing some warnings takes multiple clicks, and
our clickthrough rates for these warnings represent the
number of users who completed all of the steps to proceed
to the page. For Mozilla Firefox’s SSL warning (which
takes three clicks to proceed), we recorded how often
users perform two intermediate clicks (on “Add Excep-
tion” or “Confirm Security Exception”) as well as the
overall clickthrough rate.

We also measured how often users encounter and click
through specific SSL errors. In addition to the overall
clickthrough rates for the warnings, we collected click-
through data for each type of Mozilla Firefox SSL error
and the three most common Google Chrome SSL errors.

Our Mozilla Firefox data set does not allow us to track
specific telemetry participants. In Google Chrome, we
can correlate warning impressions with psuedonymous
browser client IDs; however, the sample size for most
individual users is too small to draw conclusions. We
therefore report the results of measurements aggregated
across all users unless otherwise specified. The telemetry
frameworks do not provide us with any personal or demo-
graphic information except for the operating system and
browser version for each warning impression.

4.2 Measuring Time Spent on Warnings
We also used the Google Chrome telemetry framework to
observe how much time Google Chrome users spent on
SSL warnings. Timing began as soon as an SSL warning
came to the foreground in a tab. In particular,

• We recorded the time spent on a warning and associ-
ated it with the outcome (click through or leave).

• We recorded the time spent on a warning and associ-
ated it with the error type, if it was one of the three
most common error types (untrusted authority, name
mismatch, and expired certificate).

Together, these correspond to five timing measurements
(two for outcome and three for error type). For scalability,
the telemetry mechanism in Google Chrome only allows
timing measurements in discrete buckets. As a result, our
analysis also treats time as a discrete, ordinal variable.

We used log-scaled bucket sizes (e.g., the first bucket
size is 45ms but the last is 90,279ms) with 50 buckets,
ranging from 0ms to 1,200,000ms, for the two outcome
histograms. The three error type histograms had 75 buck-
ets each, ranging from 0ms to 900,000ms. We used more
buckets for the error histograms because we anticipated
that they would be more similar to each other.

4.3 Ethics
We collected data from users who participate in their
browsers’ broad, unpaid user metrics programs. At first
run of a browser, the browser asks the user to share usage
data. If the user consents, the browser collects data on
performance, features, and stability. In some pre-release
developer channels, data collection is enabled by default.
The browser periodically sends this pseudonymous data
over SSL to the central Mozilla or Google servers for
analysis. The servers see the IP addresses of clients by
necessity, but they are not attached to telemetry data. All
telemetry data is subject to strict privacy policies and
participants can opt out by changing their settings [7, 23].
Multiple Google Chrome committers and Mozilla Firefox
contributors reviewed the data collection code to ensure
that the metrics did not collect any private data.

This work is not considered human subjects research by
UC Berkeley because the student did not have access to
database identifiers or personally identifying information.

4.4 Data Collection

Collection Period. Google Chrome’s malware and phish-
ing measurement code was in place in Chrome 24 prior
to our work, and our SSL measurement code was added
to Google Chrome 25. The Google Chrome data in this

USENIX Association 22nd USENIX Security Symposium 263

paper was collected April 28 - May 31, 2013. Our Mozilla
Firefox measurement code was added to Firefox 17, and
a bug in the SSL measurement code was fixed in Firefox
23. The data on the Firefox malware warning, phishing
warning, and SSL “Add Exception” dialog was collected
May 1-31, 2013. The data on Firefox SSL warnings was
collected June 1 - July 5, 2013, as the Firefox 23 fix
progressed through the various release channels.

Sample Sizes. In Google Chrome, we recorded 6,040,082
malware warning impressions, 386,350 phishing warning
impressions, and 16,704,666 SSL warning impressions.
In Mozilla Firefox, we recorded 2,163,866 malware warn-
ing impressions, 100,004 phishing warning impressions,
and 10,976 SSL warning impressions. Appendix A fur-
ther breaks downs these sample sizes by OS and channel.

Number of Users. For Mozilla Firefox, we recorded
warning impressions from the approximately 1% of Fire-
fox users who opt in to share data with Mozilla via teleme-
try. In Google Chrome, we observed malware, phishing,
and SSL warning impressions on 2,148,026; 204,462; and
4,491,767 clients (i.e., browser installs), respectively.

4.5 Method Limitations

Private Data. Due to privacy constraints, we could not
collect information about users’ personal demographics
or browsing habits. Consequently, we cannot measure
whether user behavior differs based on personal character-
istics, the target site, or the source of the link to the site.
We also cannot identify SSL false positives due to captive
portals, network proxies, or server misconfigurations.

Sampling Bias. The participants in our field study are not
a random population sample. Our study only represents
users who opt in to browser telemetry programs. This
might present a bias. The users who volunteered might be
more likely to click through dialogs and less concerned
about privacy. Thus, the clickthrough rates we measure
could be higher than population-wide rates. Given that
most of our observed rates are low, this bias augments our
claim that clickthrough rates are lower than anticipated.

Overrepresentation. We present clickthrough rates
across all warnings shown to all users. A subset of users
could potentially be overrepresented in our analysis.
Within the Google Chrome data set, we identified and
removed a small number of overrepresented clients who
we believe are either crawlers or malware researchers.
We were unable to remove individual clients from the
Mozilla Firefox set, but we do not believe this represents
a bias because we know that the overrepresented clients
in Chrome still contributed fewer than 1% of warning
impressions. Some clients experienced multiple types
of warning impressions; we investigated this in Chrome

and found that the clickthrough rates do not differ if
we remove non-independent clients. Our large sample
sizes and small critical value (α = 0.001) should further
ameliorate these concerns.

Frames. Our original measurement for Mozilla Firefox
did not differentiate between warnings shown in top-level
frames (i.e., warnings that fill the whole tab) and warnings
shown in iframes. In contrast, Google Chrome always
shows malware and phishing warnings in the top-level
frame and does not render any warning type in iframes.
Since users might not notice warnings in iframes, the two
metrics are not necessarily directly comparable.

Upon discovering this issue, we modified our Firefox
measurement implementation to take frame level into
account. Our new implementation is not available to all
Firefox users yet, but we have data for recent pre-release
channels. For malware and phishing warning impressions
collected from the beta channel, the clickthrough rate for
the top-level frame is within two percentage points of
the overall clickthrough rate. This is due to the relative
infrequency of malware and phishing warnings in iframes
and the low overall clickthrough rate. Since the frame
level does not make a notable difference for malware and
phishing warnings, we present the overall rates (including
both top-level frames and iframes) for the full sample
sizes in Section 5.1. The difference is more important
for SSL warnings: the clickthrough rate for top-level
frames is 28.7 percentage points higher than the overall
clickthrough rate of 4.3%. Consequently, Section 5.2
presents only the top-level frame rate for SSL warnings,
although it limits our sample to pre-release users.

5 Clickthrough Rates

We present the clickthrough data from our measurement
study. Section 5.1 discusses malware and phishing warn-
ings together because they share a visual appearance. We
then present rates for SSL warnings in Section 5.2.

5.1 Malware and Phishing Warnings

The clickthrough rates for malware warnings were 7.2%
and 23.2% in stable versions of Mozilla Firefox and
Google Chrome, respectively. For phishing warnings,
we found clickthrough rates of 9.1% and 18.0%. In this
section, we discuss the effects of warning type, demo-
graphics, and browser on the clickthrough rates.

5.1.1 Malware Rates by Date

The malware warning clickthrough rates for Google
Chrome vary widely by date. We have observed click-
through rates ranging from 11.2% to 24.9%, depending

264 22nd USENIX Security Symposium USENIX Association

Operating Malware Phishing
System Firefox Chrome Firefox Chrome

Windows 7.1% 23.5% 8.9% 17.9%
MacOS 11.2% 16.6% 12.5% 17.0%
Linux 18.2% 13.9% 34.8% 31.0%

Table 1: User operating system vs. clickthrough rates for mal-
ware and phishing warnings. The data comes from stable (i.e.,
release) versions.

Channel Malware Phishing
Firefox Chrome Firefox Chrome

Stable 7.2% 23.2% 9.1% 18.0%
Beta 8.7% 22.0% 11.2% 28.1%
Dev 9.4% 28.1% 11.6% 22.0%
Nightly 7.1% 54.8% 25.9% 20.4%

Table 2: Release channel vs. clickthrough rates for malware and
phishing warnings, for all operating systems.

on the week, since the current version of the warning
was released in August 2012. In contrast, the Mozilla
Firefox malware warning clickthrough rate across weeks
stays within one percentage point of the month-long
average. We did not observe similar temporal variations
for phishing or SSL warnings.

Recall from Section 2.1 that Google Chrome and
Mozilla Firefox’s malware warnings differ with respect
to secondary resources: Google Chrome shows an
interstitial malware warning if a website includes
secondary resources from a domain on the Safe Browsing
list, whereas Mozilla Firefox silently blocks the resource.
We believe that this makes Google Chrome’s malware
clickthrough rates more sensitive to the contents of the
Safe Browsing list. For example, consider the case where
a well-known website accidentally loads an advertisement
from a malicious domain. Google Chrome would show
a warning, which users might not believe because they
trust the website. Mozilla Firefox users would not see
any warning. Furthermore, Chrome phishing warnings
are less likely to be due to secondary resources, and that
warning’s clickthrough rates do not vary much by time.

5.1.2 Malware/Phishing Rates by Warning Type

In Mozilla Firefox, we find a significantly higher click-
through rate for phishing warnings than malware warn-
ings (χ2 test: p(1) < 0.0001). This behavior is rational:
a malware website can infect the user’s computer without
any action on the user’s part, but a phishing website can
only cause harm by tricking the user at a later point in
time. Mozilla Firefox makes this priority ordering explicit
by choosing to display the malware warning if a website

is listed as both malware and phishing.3 However, the
practical difference is small: 7.2% vs. 9.1%.

In Google Chrome, the average malware clickthrough
rate is higher than the phishing clickthrough rate. How-
ever, the malware clickthrough rate fluctuates widely (Sec-
tion 5.1.1); the malware clickthrough rate is sometimes
lower than the phishing clickthrough rate.

5.1.3 Malware/Phishing Rates by Demographics

We consider whether users of different operating systems
and browser release channels react differently to warn-
ings. As Table 1 depicts, Linux users have significantly
higher clickthrough rates than Mac and Windows users
combined for the Firefox malware warning, Firefox phish-
ing warning, and Chrome phishing warning (χ2 tests:
p(1) < 0.0001). While the low prevalence of malware
for Linux could explain the higher clickthrough rates for
the Firefox malware warning, use of Linux does not pro-
vide any additional protection against phishing attacks.
The Chrome malware warning does not follow the same
pattern: Windows users have a significantly higher click-
through rate (χ2 tests: p(1) < 0.0001).

We also see differences between software release
channels (Table 2). Nightly users click through Google
Chrome malware and Firefox phishing warnings at much
higher rates than stable users, although they click through
Firefox malware and Google Chrome phishing warnings
at approximately the same rates.

In several cases, Linux users and early adopters click
through malware and phishing warnings at higher rates.
One possible explanation is that a greater degree of tech-
nical skill – as indicated by use of Linux or early-adopter
versions of browsers – corresponds to reduced risk aver-
sion and an increased willingness to click through warn-
ings. This does not hold true for all categories and warn-
ings (e.g., nightly and stable users click through the Fire-
fox malware warning at the same rate), suggesting the
need for further study.

5.1.4 Malware/Phishing Rates by Browser

Google Chrome stable users click through phishing warn-
ings more often than Mozilla Firefox stable users. This
holds true even when we account for differences in how
the browsers treat iframes (Section 4.5). Mozilla Fire-
fox’s beta channel users still click through warnings at a
lower rate when we exclude iframes: 9.6% for malware
warnings, and 10.8% for phishing warnings.

One possibility is that Mozilla Firefox’s warnings are
more frightening or more convincing. Another possi-

3Google Chrome will display both warnings. To preserve inde-
pendence, our measurement does not include any warnings with both
phishing and malware error messages. Dual messages are infrequent.

USENIX Association 22nd USENIX Security Symposium 265

bility is that the browsers have different demographics
with different levels of risk tolerance, which is reflected
in their clickthrough rates. There might be differences
in technical education, gender, socioeconomic status, or
other factors that we cannot account for in this study. In
support of this theory, we find that differences between
the browsers do not hold steady across operating systems
or channels. The gap between the browsers narrows or
reverses for some categories of users, such as Linux users
and nightly release users.

5.2 SSL Warnings
The clickthrough rates for SSL warnings were 33.0% and
70.2% for Mozilla Firefox (beta channel) and Google
Chrome (stable channel), respectively.

5.2.1 SSL Rates by Demographic

In Section 5.1, we observed that malware and phishing
clickthrough rates differed across operating systems and
channels. For SSL, the differences are less pronounced.

As with the malware and phishing warnings, nightly
users click through SSL warnings at a higher rate for both
Firefox and Chrome (χ2 tests: p < 0.0001).

The effect of users’ operating systems on SSL click-
through rates differs for the two browsers. In Firefox,
Linux users are much more likely to click through SSL
warnings than Windows and Mac users combined (χ2 test:
p < 0.0001), although it is worth noting that the Firefox
Linux sample size is quite small (58). In Chrome, Win-
dows users are very slightly more likely to click through
SSL warnings than Linux and Mac users combined (χ2

test: p < 0.0001).

5.2.2 SSL Rates by Browser

We find a large difference between the Mozilla Firefox
and Google Chrome clickthrough rates: Google Chrome
users are 2.1 times more likely to click through an SSL
warning than Mozilla Firefox users. We explore five
possible causes.

Number of Clicks. Google Chrome users click one but-
ton to dismiss an SSL warning, but Mozilla Firefox users
need to click three buttons. It is possible that the addi-
tional clicks deter people from clicking through. However,
we do not believe this is the cause of the rate gap.

First, the number of clicks does not appear to affect
the clickthrough rates for malware and phishing warn-
ings. Mozilla Firefox’s malware and phishing warnings
require one click to proceed, whereas Google Chrome’s
malware and phishing warnings require two. The Google
Chrome malware and phishing warnings with two clicks
do not have lower clickthrough rates than the Mozilla
Firefox warnings with one click. Second, as we discuss
in Section 5.2.3, 84% of users who perform the first two

Operating SSL Warnings
System Firefox Chrome

Windows 32.5% 71.1%
MacOS 39.3% 68.8%
Linux 58.7% 64.2%
Android NC 64.6%

Table 3: User operating system vs. clickthrough rates for SSL
warnings. The Google Chrome data is from the stable channel,
and the Mozilla Firefox data is from the beta channel.

Channel SSL Warnings
Firefox Chrome

Release NC 70.2%
Beta 32.2% 73.3%
Dev 35.0% 75.9%
Nightly 43.0% 74.0%

Table 4: Channel vs. clickthrough rates for SSL warnings.

clicks in Mozilla Firefox also perform the third. This
indicates that the extra click is not a determining deci-
sion point. Unfortunately, we do not have data on the
difference between the first and second clicks.

Warning Appearance. The two warnings differ in sev-
eral ways. Mozilla Firefox’s warning includes an image
of a policeman and uses the word “untrusted” in the title.
These differences likely contribute to the rate gap. How-
ever, we do not think warning appearance is the sole or
primary factor; the browsers’ malware and phishing warn-
ings also differ, but there is only about a 10% difference
between browsers for these warnings.

Certificate Pinning. Google Chrome ships with a list
of “pinned” certificates and preloaded HTTP Strict Trans-
port Security (HSTS) sites. Users cannot click through
SSL warnings on sites protected by these features. Certifi-
cate pinning and HSTS cover some websites with impor-
tant private data such as Google, PayPal, and Twitter [8].
In contrast, Mozilla Firefox does not come with many
preloaded “pinned” certificates or any pre-specified HSTS
sites. As a result, Chrome shows more non-bypassable
warnings: our field study found that 20% of all Google
Chrome SSL warning impressions are non-bypassable, as
compared to 1% for Mozilla Firefox.

Based on this, we know that Mozilla Firefox users see
more warnings for several critical websites. If we assume
that users are less likely to click through SSL warnings
on these critical websites, then it follows that Mozilla
Firefox’s clickthrough rate will be lower. This potential
bias could account for up to 15 points of the 37-point gap
between the two clickthrough rates, if we were to assume
that Google Chrome users would never click through SSL
errors on critical websites if given the chance.

266 22nd USENIX Security Symposium USENIX Association

Remembering Exceptions. Due to the “permanently
store this exception” feature in Mozilla Firefox, Mozilla
Firefox users see SSL warnings only for websites without
saved exceptions. This means that Mozilla Firefox users
might ultimately interact with websites with SSL errors
at the same rate as Google Chrome users despite having
lower clickthrough rates. For example, imagine a user
that encounters two websites with erroneous SSL config-
uration: she leaves the first after seeing a warning, but
visits the second website nine times despite the warning.
This user would have a 50% clickthrough rate in Mozilla
Firefox but a 90% clickthrough rate in Google Chrome,
despite visiting the second website at the same rate.

We did not measure how often people revisit websites
with SSL errors. However, we suspect that people do
repeatedly visit sites with warnings (e.g., a favorite site
with a self-signed certificate). If future work were to
confirm this, there could be two implications. First, if
users are repeatedly visiting the same websites with errors,
the errors are likely false positives; this would mean that
the lack of an exception-storing mechanism noticably
raises the false positive rate in Google Chrome. Second,
warning fatigue could be a factor. If Google Chrome users
are exposed to more SSL warnings because they cannot
save exceptions, they might pay less attention to each
warning that they encounter.

Demographics. It’s possible that the browsers have dif-
ferent demographics with different levels of risk toler-
ance. However, this factor likely only accounts for a
few percentage points because the same demographic ef-
fect applies to malware and phishing warnings, and the
difference between browsers for malware and phishing
warnings is much smaller.

5.2.3 SSL Rates by Certificate Error Type

To gain insight into the factors that drive clickthrough
rates, we study whether the particular certificate error
affects user behavior.

Google Chrome. Google Chrome’s SSL warning in-
cludes a short explanation of the particular error, and
clicking on “Help me understand” will open a more-
detailed explanation. In case a certificate has multiple
errors, Google Chrome only shows the first error out of
untrusted issuer error, name mismatch error, and certifi-
cate expiration error, respectively.

Table 5 presents the clickthrough rates by error types
for Google Chrome. If Google Chrome users are paying
attention to and understanding the warnings, one would
expect different clickthrough rates based on the warning
types. We find a 24.4-point difference between the click-
through rates for untrusted issuer errors and expired certifi-
cate errors. One explanation could be that untrusted issuer

Certificate Error Percentage
of Total

Clickthrough
Rate

Untrusted Issuer 56.0% 81.8%
Name Mismatch 25.0% 62.8%
Expired 17.6% 57.4%
Other Error 1.4% –
All Error Types 100.0% 70.2%

Table 5: Prevalence and clickthrough rates of error types for the
Google Chrome SSL warning. Google Chrome only displays
the most critical warning; we list the error types in order, with
untrusted issuer errors as the most critical. Data is for the stable
channel across all operating systems.

errors appear on unimportant sites, leading to higher click-
through rates without user attention or comprehension;
however, the Mozilla Firefox data suggests otherwise.
An alternative explanation could be that expired certifi-
cates, which often occur for websites with previously
valid certificates [1], surprise the user. In contrast, un-
trusted certificate errors always occur for a website and
conform with expectations.

Mozilla Firefox. Mozilla Firefox’s SSL warning does not
inform the user about the particular SSL error by default.4

Instead, the secondary “Add Exception” dialog presents
all errors in the SSL certificate. The user must confirm
this dialog to proceed.

Table 6 presents the rates at which users confirm the
“Add Exception” dialog in Mozilla Firefox. The error
types do not greatly influence the exception confirmation
rate. This indicates that the “Add Exception” dialog does
not do an adequate job of explaining particular error cate-
gories and their meaning to the users. Thus, users ignore
the categories and click through errors at the same rate.
This finding also suggests that the differences in click-
through rates across error types in Google Chrome cannot
be attributed to untrusted issuer errors corresponding to
unimportant websites; if that were the case, we would
expect to see the same phenomenon in Firefox.

Error Prevalence. The frequency of error types
encountered by users in our field study also indicates the
base rate of SSL errors on the web. Our Google Chrome
data contradicts a previous network telemetry study,
which suggested that untrusted issuer errors correspond
to 80% of certificate errors seen on the wire [18]. Also,
Google Chrome users see fewer untrusted issuer errors
than Mozilla Firefox users; this may be because Mozilla
Firefox users are more likely to click on the “Add
Exception” dialog for untrusted issuer errors. Recall that
we collect the Mozilla Firefox error type statistics only
after a user clicks on the “Add Exception” button.

4This information is available under the “Technical details” link, but
our measurements indicate that it is rarely opened (Section 5.2.4).

USENIX Association 22nd USENIX Security Symposium 267

Certificate Error Percentage
of Total

Confirmation
Rate

Untrusted Issuer 38% 87.1%
Untrusted and Name
Mismatch

26.4% 87.9%

Name Mismatch 15.7% 80.3%
Expired 10.2% 80.7%
Expired, Untrusted and
Name Mismatch

4.7% 87.6%

Expired and Untrusted 4.1% 83.6%
Expired and Name Mis-
match

0.7% 85.2%

None of the above <0.1% 77.9%
All error types 100.0% 85.4%

Table 6: Prevalence and confirmation rates of error types for
the Mozilla Firefox “Add Exception” dialog. The confirmation
rate measures the percentage of users who click on “Confirm
Security Exception” (Figure 5). The Mozilla Firefox dialog lists
all the errors that occur for a certificate. Data is for the release
channel across all operating systems; we did not need to limit
it to the beta channel because frame level issues do not affect
clickthrough rates inside the “Add Exception” dialog.

The high frequency of untrusted issuer errors high-
lights the usability benefits of “network view” SSL cer-
tificate verification systems like Perspectives and Conver-
gence [10,33], which do not need certificates from trusted
authorities. All of the untrusted certificate warnings—
between 38% and 56% of the total—would disappear.
Warnings with other errors in addition to an untrusted cer-
tificate error would remain. Nonetheless, our study also
shows that these mechanisms are not a panacea: name
mismatch errors constitute a large fraction of errors, and
new systems like Perspectives and Convergence still per-
form this check.5

5.2.4 Additional SSL Metrics

We collected several additional metrics to complement
the overall clickthrough rates.

More Information. Google Chrome and Mozilla Firefox
both place additional information about the warning be-
hind links. However, very few users took the opportunity
to view this extra information. The “Help me understand”
button was clicked during 1.6% of Google Chrome SSL
warning impressions. For Mozilla Firefox warnings, 0
users clicked on “Technical Details,” and 3% of viewers
of the “Add Exception” dialog clicked on “View Certifi-
cate.” This additional content therefore has no meaningful
impact on the overall clickthrough rates.

Add Exception Cancellation. Not all Mozilla Firefox

5Convergence does not check the certificate issuer, relying on net-
work views instead. However, it performs name checks [10].

Milliseconds Proceed Don’t
Proceed

0
400
473
559
660
780
922
1089
1287
1521
1797
2123
2508
2963
3501
4136
4887
5774
6822
8060
9523
11251
13293
15705
18555
21922
25901
30602
36156
42718
50471
59631
70453
83239
98346
116194
137282
162197
191633
226412
267502
316050
373408
441176
521243
615841
727607
859657
1015671
1200000

199774 70261 0.0186445131 0.021408557

5994 14352 0.0005594082 0.0043730606

10075 20206 0.0009402799 0.0061567769

23140 27289 0.0021596105 0.0083149701

80848 37879 0.0075453843 0.0115417476

282062 51828 0.0263242897 0.0157920139

680478 70520 0.0635076685 0.0214874744

1128250 100089 0.1052973454 0.0304971614

1363312 139722 0.1272352179 0.0425733536

1318852 178562 0.1230858539 0.0544079183

1119848 203459 0.1045132033 0.0619940449

900719 212131 0.0840623263 0.0646364071

711590 209503 0.0664112901 0.0638356543

556981 200574 0.0519819373 0.0611149842

434936 189304 0.0405917184 0.0576810103

341933 176668 0.0319119319 0.0538308157

270189 164303 0.025216206 0.0500631949

213619 151076 0.0199366396 0.0460329223

169926 138836 0.0158588582 0.042303389

136820 126655 0.0127691405 0.0385918331

111645 114267 0.0104196075 0.0348172041

92590 103704 0.0086412419 0.0315986535

77384 95096 0.007222096 0.0289757922

65378 90998 0.0061015997 0.0277271298

56332 86081 0.0052573544 0.0262289178

47889 75766 0.0044693858 0.0230859328

41403 66391 0.0038640603 0.0202293663

35884 60753 0.0033489829 0.0185114653

30733 55351 0.0028682502 0.0168654735

26709 47934 0.0024926982 0.0146055104

22757 43018 0.0021238659 0.0131076031

19634 38047 0.0018324025 0.0115929373

16508 32494 0.0015406591 0.0099009358

13966 27680 0.0013034192 0.0084341079

11882 24022 0.0011089236 0.0073195137

10305 20621 0.0009617453 0.0062832276

8998 17888 0.0008397656 0.0054504813

7557 14961 0.0007052799 0.0045586231

6680 13286 0.0006234312 0.0040482499

5935 11925 0.0005539018 0.0036335526

5211 10694 0.0004863323 0.0032584664

4621 9884 0.0004312688 0.0030116591

4094 8785 0.0003820849 0.0026767933

3637 8363 0.000339434 0.0025482097

3525 7824 0.0003289813 0.0023839762

3125 7306 0.0002916501 0.0022261413

2751 6811 0.0002567454 0.0020753146

2625 6599 0.0002449861 0.0020107181

2358 6212 0.0002200675 0.0018927991

23433 78358 0.0021869556 0.0238757164

0%

2.5%

5%

7.5%

10%

12.5%

15%

0

55
9

92
2

15
21

25
08

41
36

68
22

11
25

1

18
55

5

30
60

2

50
47

1

Chart 1

Proceed
Don’t Proceed

Figure 6: Google Chrome SSL clickthrough times (ms), by out-
come. The graph shows the percent of warning impressions that
fall in each timing bucket. The x-axis increases logarithmically,
and we cut off the distribution at 90% due to the long tail.

users proceed to the page after opening the “Add Excep-
tion” dialog: 14.6% of the time that a dialog is opened,
the user cancels the exception. These occurrences indi-
cate that at least a minority of users consider the text in
the dialog before confirming the exception.

Remember Exception. By default, the “Remember Ex-
ception” checkbox is checked in the Mozilla Firefox “Add
Exception” dialog. Our measurements found that 21.3%
of the time that the dialog is opened, the user un-ticks the
checkbox. We hypothesize that these users are still wary
of the website even if they choose to proceed.

6 Time Spent On SSL Warnings

In addition to MITM attacks, SSL warnings can occur
due to server misconfigurations. Previous work found that
20% of the thousand most popular SSL sites triggered a
false warning due to such misconfigurations [31]. Con-
sequently, it may be safe and rational to click through
such false warnings. The prevalence of a large number of
such false warnings can potentially train users to consider
all SSL warnings false alarms and click through them
without considering the context.

In order to determine whether users examine SSL warn-
ings before making a decision, we measured how much
time people spent on SSL warning pages. In this section,
we compare the click times by outcome (clickthrough or
leave) and error type to gain insight into user attention.
Our timing data is for all operating systems and channels.

6.1 Time by Outcome
Figure 6 presents the click times for different outcomes.
Users who leave spend more time on the warning than

268 22nd USENIX Security Symposium USENIX Association

Date Invalid Name Invalid Authority
Invalid

Untrusted
Issuer

Name
Mismatch

Expired

0
400
445
495
550
611
679
755
839
933
1037
1153
1282
1425
1584
1761
1957
2175
2418
2688
2988
3321
3691
4103
4560
5068
5633
6261
6959
7735
8597
9556
10621
11805
13121
14584
16210
18017
20026
22259
24741
27499
30565
33973
37761
41971
46650
51851
57632
64058
71200
79138
87961
97768
108669
120785
134252
149220
165857
184349
204903
227748
253140
281363
312733
347601
386356
429432
477311
530528
589678
655423
728498
809721
900000

29726 57841 181330 0.0195129206 0.0172819263 0.0186663887

1162 2575 8338 0.0008972521 0.0007693671 0.0007296758

1488 3179 10348 0.0011135482 0.0009498322 0.0009343869

2048 4330 13327 0.0014341184 0.0012937318 0.0012860379

2586 6129 17672 0.0019016838 0.001831243 0.0016238741

3679 9237 26943 0.0028993361 0.0027598616 0.0023102215

5722 16407 49754 0.0053540277 0.004902138 0.0035931197

9773 31289 98207 0.0105680549 0.0093486314 0.0061369379

17250 56722 189550 0.0203974747 0.0169475877 0.0108321067

28694 91402 318968 0.0343241452 0.0273093934 0.0180183461

41621 131258 468412 0.0504058134 0.0392177016 0.0261358327

56998 167760 594135 0.063934865 0.0501238905 0.0357917925

69097 190512 671696 0.0722812039 0.0569218087 0.0433893379

78215 199358 691696 0.0744334038 0.059564846 0.0491149698

83027 196592 667097 0.0717863055 0.0587384113 0.0521366566

82860 186615 604480 0.0650480904 0.0557574501 0.0520317893

80363 175240 536431 0.0577253378 0.0523587898 0.0504638026

76433 161351 471226 0.050708628 0.0482089882 0.0479959661

72087 146299 412341 0.0443720134 0.0437117016 0.0452669031

67063 132085 356626 0.0383765224 0.0394647954 0.0421120913

61199 118225 310620 0.033425817 0.0353236585 0.0384298029

55696 106502 271295 0.0291940539 0.0318210216 0.0349742039

50183 97773 237722 0.0255812635 0.029212942 0.0315123254

45687 87280 207645 0.0223446776 0.0260778086 0.0286890702

40904 81185 182721 0.0196626061 0.0242567242 0.0256855939

36318 75563 160877 0.0173119733 0.0225769643 0.0228058233

33073 70029 141367 0.0152125023 0.0209234974 0.0207681314

29324 64795 124313 0.0133773214 0.0193596655 0.0184139535

26578 60270 110218 0.0118605585 0.018007671 0.0166896077

24143 55668 97779 0.0105219978 0.0166326701 0.0151605538

21750 52553 87571 0.009423515 0.01570196 0.0136578737

19838 48189 78589 0.008456962 0.0143980696 0.0124572367

17971 44742 70654 0.0076030767 0.0133681635 0.0112848574

16648 40896 64167 0.0069050106 0.0122190428 0.0104540819

15652 37736 59229 0.0063736325 0.0112748875 0.0098286455

14865 34761 55095 0.0059287727 0.0103860071 0.0093344502

14425 32274 52055 0.0056016383 0.009642933 0.009058153

13620 29410 50314 0.0054142893 0.0087872176 0.0085526547

13533 26744 47125 0.0050711211 0.0079906612 0.0084980232

13308 23974 41911 0.0045100425 0.0071630314 0.0083567349

13388 21045 38018 0.0040911168 0.0062878951 0.0084069707

13141 18499 34747 0.0037391245 0.0055271927 0.0082518675

13373 16232 32779 0.0035273481 0.0048498509 0.0083975515

13463 14308 30413 0.0032727428 0.0042749918 0.0084540668

13537 12399 28010 0.003014156 0.0037046144 0.008500535

12989 11176 25100 0.0027010109 0.0033392024 0.0081564194

13014 9665 22125 0.0023808712 0.0028877408 0.0081721181

12640 8486 20483 0.0022041755 0.0025354753 0.0079372655

11783 7531 19297 0.0020765501 0.0022501372 0.0073991138

10720 6725 17605 0.001894474 0.0020093179 0.0067316049

9677 5985 15860 0.0017066945 0.0017882182 0.0060766549

8442 5512 14535 0.0015641113 0.0016468937 0.0053011388

7709 4859 13183 0.0014186226 0.0014517882 0.0048408528

7036 4433 12065 0.0012983146 0.0013245065 0.0044182437

6123 4100 10953 0.0011786523 0.0012250116 0.0038449269

5295 3751 10454 0.0011249549 0.0011207362 0.0033249858

4576 3417 9439 0.0010157308 0.0010209426 0.002873491

4073 3169 8936 0.0009616029 0.0009468444 0.0025576331

3315 2866 8059 0.000867229 0.000856313 0.0020816483

2981 2658 7711 0.0008297807 0.0007941661 0.0018719136

2619 2626 7004 0.0007537004 0.000784605 0.0016445964

2275 2370 6777 0.0007292729 0.0007081165 0.0014285822

2101 2174 6307 0.0006786962 0.0006495549 0.0013193192

1817 2129 6049 0.0006509329 0.0006361097 0.0011409819

1567 2080 5759 0.000619726 0.0006214693 0.0009839949

1409 1840 5464 0.000587981 0.0005497613 0.000884779

1258 1765 5189 0.0005583883 0.0005273526 0.0007899589

1131 1654 4816 0.0005182497 0.0004941876 0.0007102094

1085 1582 4793 0.0005157747 0.0004726752 0.0006813238

1089 1558 4535 0.0004880113 0.0004655044 0.0006838356

885 1532 4442 0.0004780036 0.0004577361 0.0005557342

851 1416 4200 0.000451962 0.0004230772 0.0005343839

766 1322 4037 0.0004344216 0.0003949916 0.0004810083

741 1293 3829 0.0004120387 0.0003863268 0.0004653096

11012 24265 81127 0.0087300761 0.0072499774 0.0069149658

0%

1%

2%

3%

4%

5%

6%

7%

8%

0

55
0

83
9

12
82

19
57

29
88

45
60

69
59

10
62

1

16
21

0

24
74

1

37
76

1

Chart 2

Untrusted Issuer
Name Mismatch
Expired

Figure 7: Google Chrome SSL clickthrough times (ms), by error
type. The graph shows the percent of warning impressions that
fall in each timing bucket. The x-axis increases logarithmically,
and we cut off the distribution at 90% due to the long tail.

users who click through and proceed to the page. 47% of
users who clicked through the warning made the decision
within 1.5s, whereas 47% of users who left the page did so
within 3.5s. We interpret this to mean that users who click
through the warning often do so after less consideration.

6.2 Time by Error Type
Figure 7 depicts the click times for three error types (un-
trusted authority, name mismatch, and expired certificate
errors). Users clicked through 49% of untrusted issuer
warning impressions within 1.7s, but clicked through 50%
of name and date errors within 2.2s and 2.7s, respectively.
We believe that this data is indicative of warning fatigue:
users click through more-frequent errors more quickly.
The frequency and clickthrough rate of each error type
(as reported in Section 5.2) are inversely correlated with
that error type’s timing variance and mode (Figure 7).

7 Implications

Our primary finding is that browser security warnings can
be effective security mechanisms in practice, but their
effectiveness varies widely. This should motivate more
attention to improving security warnings. In this section,
we summarize our findings and their implications, present
suggestions for warning designers, and make recommen-
dations for future warning studies.

7.1 Warning Effectiveness
7.1.1 Clickthrough Rates

Popular opinion holds that browser security warnings are
ineffective. However, our study demonstrates that browser

security warnings can be highly effective at preventing
users from visiting websites: as few as a tenth of users
click through Firefox’s malware and phishing warnings.
We consider these warnings very successful.

We found clickthrough rates of 18.0% and 23.2% for
Google Chrome’s phishing and malware warnings, re-
spectively, and 31.6% for Firefox’s SSL warning. These
warnings prevent 70% (or more) of attempted visits to
potentially dangerous websites. Although these warnings
could be improved, we likewise consider these warnings
successful at persuading and protecting users.

Google Chrome’s SSL warning had a clickthrough rate
of 70.2%. Such a high clickthrough rate is undesirable:
either users are not heeding valid warnings, or the browser
is annoying users with invalid warnings and possibly caus-
ing warning fatigue. Our positive findings for the other
warnings demonstrate that this warning has the poten-
tial for improvement. We hope that this study motivates
further studies to determine and address the cause of its
higher clickthrough rate. We plan to test an exception-
remembering feature to investigate the influence of repeat
exposures to warnings. At Google, we have also begun a
series of A/B tests in the field to measure the impact of a
number of improvements.

7.1.2 User Attention

Although we did not directly study user attention, two
results of our study suggest that at least a minority of
users pay attention to browser security warnings.

• There is a 24.4-point difference between the click-
through rates for untrusted issuer errors (81.8%) and
expired certificate errors (57.4%) in Google Chrome.

• 21.3% of the time that Mozilla Firefox users viewed
the “Add Exception” dialog, they un-checked the
default “Permanently store this exception” option.

These results contradict the stereotype of wholly obliv-
ious users with no interest in security.

7.2 Comparison with Prior Research
As Bravo-Lillo et al. wrote [5]:

Evidence from experimental studies indicates
that most people don’t read computer warnings,
don’t understand them, or simply don’t heed
them, even when the situation is clearly haz-
ardous.

In contrast, a majority of users heeded five of the six
types of browser warnings that we studied. This section
explores why our results differ from prior research.

Browser Changes. Most prior browser research was con-
ducted between 2002 and 2009. Browsers were rapidly

USENIX Association 22nd USENIX Security Symposium 269

changing during this time period; some changes were
directly motivated by published user studies. Notably,
passive indicators are no longer considered primary secu-
rity tools, and phishing toolbars have been replaced with
browser-provided, full-page interstitial warnings. As a re-
sult, studies of passive indicators and phishing toolbars no
longer represent the state of modern browser technology.

Two studies tested an older version of the Mozilla Fire-
fox SSL warning, in which the warning was a modal
(instead of full-page) dialog. Dhamija et al. observed
a 68% clickthrough rate, and Sunshine et al. recorded
clickthrough rates of 90%-95% depending on the type of
page [11, 31]. The change in warning design could be
responsible for our lower observed clickthrough rates.

Ecological Invalidity. Sunshine et al. and Sotirakopoulos
et al. recorded 55%-60% and 80% clickthrough rates, re-
spectively, for a slightly outdated version of the Mozilla
Firefox SSL warning [30, 31]. They evaluated the Fire-
fox 3 and 3.5 warnings, which had the same layout and
appearance as the current (Firefox 4+) warning but with
different wording. It’s possible that changes in word-
ing caused clickthrough rates to drop from 55%-80% to
33.0%. However, during an exit survey, 46% of Soti-
rakopoulos’s subjects said they clicked through the warn-
ing because they either felt safe in the laboratory envi-
ronment or wanted to complete the task [30]. Since their
study methodology was intentionally similar to the Sun-
shine study, Sotirakopoulos et al. concluded that both
studies suffered from biases that raised their clickthrough
rates [30]. We therefore attribute some of the discrepancy
between our field study data and these two laboratory
studies to the difficulty of establishing ecological validity
in a laboratory environment.

In light of this, we recommend a renewed emphasis
on field techniques for running and confirming user stud-
ies of warnings. Although we used in-browser telemetry,
there are other ways of obtaining field data. For exam-
ple, experience sampling is a field study methodology
that asks participants to periodically answer questions
about a topic [2, 6, 9, 28]. Researchers could install a
browser extension on participants’ computers to observe
their responses to normally occurring warnings and dis-
play a survey after each warning. This technique allows
researchers to collect data about participants’ emotions,
comprehension, and demographics. Participants may be-
come more cautious or attentive to warnings if the pur-
pose of the study is apparent, so researchers could obscure
the purpose by surveying subjects about other browser
topics. Network-based field measurements also provide
an alternative methodology with high ecological validity.
A network monitor could maintain its own copy of the
Safe Browsing list and identify users who click through
warnings. If the monitor can associate network flows

with specific demographics (e.g., students), it can help
understand the impact of these factors on user behavior.
Similar studies could help understand SSL clickthrough
rates; recent work addressed how to reproduce certificate
validation at the network monitor [1].

270 22nd USENIX Security Symposium USENIX Association

7.3 Demographics

We found that clickthrough rates differ by operating sys-
tem and browser channel. Our findings suggest that higher
technical skill (as indicated by use of Linux and pre-
release channels) may predispose users to click through
some types of warnings. We recommend further inves-
tigation of user demographics and their impact on user
behavior. Large-scale demographic studies might uncover
additional demographic factors that we were unable to
study with our methodology. If so, can warning design
address and overcome those demographic differences?

Technically advanced users might feel more confident
in the security of their computers, be more curious about
blocked websites, or feel patronized by warnings. Studies
of these users could help improve their warning responses.

7.4 Number of Clicks

Our data suggests that the amount of effort (i.e., number
of clicks) required to bypass a warning does not always
have a large impact on user behavior. To bypass Google
Chrome’s malware and phishing warnings, the user must
click twice: once on a small “Advanced” link, and then
again to “proceed.” Despite the hidden button, users click
through Google Chrome’s malware/phishing warning at a
higher rate than Mozilla Firefox’s simpler warning. Fur-
thermore, 84% of users who open Mozilla Firefox’s “Add
Exception” dialog proceed through it.

We find this result surprising. Common wisdom in
e-commerce holds that extra clicks decrease clickthrough
rates (hence, one-click shopping) [12, 32]. Google
Chrome’s warning designers introduced the extra step in
the malware/phishing warning because they expected it
to serve as a strong deterrent. One possible explanation is
that users make a single cognitive decision when faced
with a warning. The decision might be based on the URL,
warning appearance, or warning message. Once the user
has decided to proceed, additional clicks or information
is unlikely to change his or her decision.

Our data suggests that browser-warning designers
should not rely on extra clicks to deter users. However,
we did not explicitly design our study to examine the
effects of multiple clicks. Future studies on multi-click
warnings could shed light on user decision models and
impact security warning design. It is possible that extra
clicks do not serve as a deterrent until they reach some
threshold of difficulty.

7.5 Warning Fatigue

We observed behavior that is consistent with the theory of
warning fatigue. In Google Chrome, users click through
the most common SSL error faster and more frequently

than other errors. Our findings support recent literature
that has modeled user attention to security warnings as
a finite resource [4] and proposed warning mechanisms
based on this constraint [14].

Based on this finding, we echo the recommendation
that security practitioners should limit the number of warn-
ings that users encounter. Designers of new warning
mechanisms should always perform an analysis of the
number of times the system is projected to raise a warn-
ing, and security practitioners should consider the effects
that warning architectures have on warning fatigue.

7.6 “More Information”
Users rarely click on the explanatory links such as “More
Information” or “Learn More” (Section 5.2.4). Designers
who utilize such links should ensure that they do not hide
a detail that is important to the decision-making process.

Mozilla Firefox places information about SSL errors
under “Technical Details” and in the “Add Exception”
dialog instead of the primary warning. Thus, the error
type has little impact on clickthrough rates. In contrast,
Google Chrome places error details in the main text of
its SSL warning, and the error has a large effect on user
behavior. It is possible that moving this information into
Mozilla Firefox’s primary warning could reduce their
clickthrough rates even further for some errors.

8 Conclusion

We performed a field study with Google Chrome and
Mozilla Firefox’s telemetry platforms, allowing us to col-
lect data on 25,405,944 warning impressions. We find
that browser security warnings can be successful: users
clicked through fewer than a quarter of both browser’s
malware and phishing warnings and a third of Mozilla
Firefox’s SSL warnings. We also find clickthrough rates
as high as 70.2% for Google Chrome SSL warnings, in-
dicating that the user experience of a warning can have a
tremendous impact on user behavior. However, warning
effectiveness varies between demographic groups. Our
findings motivate more work on browser security warn-
ings, with particular attention paid to demographics. At
Google, we have begun experimenting with new warning
designs to further improve our warnings.

USENIX Association 22nd USENIX Security Symposium 271

Acknowledgements

We thank the participants in Google and Mozilla’s teleme-
try programs for providing us with valuable insight into
our warnings. At Google, we would like to thank Matt
Mueller for setting up the malware and phishing measure-
ments, Adam Langley for making suggestions about how
to implement SSL measurements, and many others for
providing insightful feedback. At Mozilla, we would like
to thank Sid Stamm for his mentorship and help collecting
telemetry data, Dan Veditz for gathering data from Fire-
fox 23, Brian Smith for providing information about the
telemetry mechanisms, and the Mozilla contributors who
reviewed our code and helped land this telemetry [22].
We also thank David Wagner, Vern Paxson, Serge Egel-
man, Stuart Schechter, and the anonymous reviewers for
providing feedback on drafts of the paper.

References
[1] AKHAWE, D., AMANN, B., VALLENTIN, M., AND SOMMER,

R. Here’s My Cert, So Trust Me, Maybe? Understanding TLS
Errors on the Web. In Proceedings of the 2013 World Wide Web
Conference (2013).

[2] BEN ABDESSLEM, F., PARRIS, I., AND HENDERSON, T. Mobile
Experience Sampling: Reaching the Parts of Facebook Other
Methods Cannot Reach. In Privacy and Usability Methods Pow-
wow (2010).

[3] BIDDLE, R., VAN OORSCHOT, P. C., PATRICK, A. S., SOBEY,
J., AND WHALEN, T. Browser interfaces and extended validation
SSL certificates: an empirical study. In Proceedings of the ACM
Workshop on Cloud Computing Security (2009).

[4] BÖHME, R., AND GROSSKLAGS, J. The Security Cost of Cheap
User Interaction. In Proceedings of the New Security Paradigms
Workshop (NSPW) (2011).

[5] BRAVO-LILLO, C., CRANOR, L. F., DOWNS, J. S., AND KO-
MANDURI, S. Bridging the Gap in Computer Security Warnings:
A Mental Model Approach. In IEEE Security and Privacy (March
2011), vol. 9.

[6] CHRISTENSEN, T., BARRETT, L., BLISS-MOREAU, E., LEBO,
K., AND KASCHUB, C. A Practical Guide to Experience-
Sampling Procedures. In Journal of Happiness Studies (2003),
vol. 4.

[7] Google Chrome Privacy Notice. http://www.google.com/
chrome/intl/en/privacy.html.

[8] CHROMIUM AUTHORS. HSTS Preload and Certificate Pinning
List. https://src.chromium.org/viewvc/chrome/
trunk/src/net/base/transport_security_
state_static.json.

[9] CONSOLVO, S., AND WALKER, M. Using the Experience Sam-
pling Method to Evaluate Ubicomp Applications. In Pervasive
Computing (2003).

[10] Convergence. http://www.convergence.io.

[11] DHAMIJA, R., TYGAR, J. D., AND HEARST, M. Why phishing
works. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2006).

[12] DUTTA, R., JARVENPAA, S., AND TOMAK, K. Impact of Feed-
back and Usability of Online Payment Processes on Consumer
Decision Making. In Proceedings of the International Conference
on Information Systems (2003).

[13] EGELMAN, S., CRANOR, L. F., AND HONG, J. You’ve Been
Warned: An Empirical Study of the Effectiveness of Web Browser
Phishing Warnings. In Proceedings of the ACM CHI Conference
on Human Factors in Computing Systems (2008).

[14] FELT, A. P., EGELMAN, S., FINIFTER, M., AKHAWE, D., AND
WAGNER, D. How to ask for permission. In Proceedings of the
USENIX Conference on Hot Topics in Security (HotSec) (2012).

[15] FRIEDMAN, B., HURLEY, D., HOWE, D. C., FELTEN, E., AND
NISSENBAUM, H. Users’ Conceptions of Web Security: A Com-
parative Study. In CHI Extended Abstracts on Human Factors in
Computing Systems (2002).

[16] HABER, J. Smartscreen application reputa-
tion in ie9, May 2011. http://blogs.
msdn.com/b/ie/archive/2011/05/17/
smartscreen-174-application-reputation-in-ie9.
aspx.

[17] HERLEY, C. The plight of the targeted attacker in a world of scale.
In Proceedings of the Workshop on the Economics of Information
Security (WEIS) (2010).

272 22nd USENIX Security Symposium USENIX Association

[18] HOLZ, R., BRAUN, L., KAMMENHUBER, N., AND CARLE, G.
The ssl landscape: a thorough analysis of the x.509 pki using
active and passive measurements. In Proceedings of the ACM
SIGCOMM Internet Measurement Conference (IMC) (2011).

[19] JACKSON, C., SIMON, D. R., TAN, D. S., AND BARTH, A. An
evaluation of extended validation and picture-in-picture phishing
attacks. In Proceedings of the Workshop on Usable Security
(USEC) (2007).

[20] LANGLEY, A. SSL Interstitial Bypass Rates, February
2012. http://www.imperialviolet.org/2012/07/
20/sslbypassrates.html.

[21] MCGRAW, G., FELTEN, E., AND MACMICHAEL, R. Securing
Java: getting down to business with mobile code. Wiley Computer
Pub., 1999.

[22] MOZILLA BUGZILLA. Bug 767676: Implement Security UI
Telemetry. https://bugzil.la/767676.

[23] Mozilla firefox privacy policy. http://www.mozilla.org/
en-US/legal/privacy/firefox.html#telemetry.

[24] NETCRAFT. Phishing on sites using ssl cer-
tificates, August 2012. http://news.
netcraft.com/archives/2012/08/22/
phishing-on-sites-using-ssl-certificates.
html.

[25] PATERIYA, P. K., AND KUMAR, S. S. Analysis of Man in
the Middle Attack on SSL. International Journal of Computer
Applications 45, 23 (2012).

[26] PROVOS, N. Safe Browsing - Protecting Web Users for 5
Years and Counting. Google Online Security Blog. http:
//googleonlinesecurity.blogspot.com/2012/
06/safe-browsing-protecting-web-users-for.
html, June 2012.

[27] SCHECHTER, S. E., DHAMIJA, R., OZMENT, A., AND FISCHER,
I. The Emperor’s New Security Indicators. In Proceedings of the
IEEE Symposium on Security and Privacy (2007).

[28] SCOLLON, C. N., KIM-PRIETO, C., AND DIENER, E. Experi-
ence Sampling: Promises and Pitfalls, Strengths and Weaknesses.
In Journal of Happiness Studies (2003), vol. 4.

[29] SOBEY, J., BIDDLE, R., VAN OORSCHOT, P., AND PATRICK,
A. S. Exploring user reactions to new browser cues for extended
validation certificates. In Proceedings of the European Symposium
on Research in Computer Security (2008).

[30] SOTIRAKOPOULOS, A., HAWKEY, K., AND BEZNOSOV, K. On
the Challenges in Usable Security Lab Studies: Lessons Learned
from Replicating a Study on SSL Warnings. In Proceedings of the
Symposium on Usable Privacy and Security (2011).

[31] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,
AND CRANOR, L. F. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In Proceedings of the USENIX Security
Symposium (2009).

[32] TILSON, R., DONG, J., MARTIN, S., AND KIEKE, E. Factors
and Principles Affecting the Usability of Four E-commerce Sites.
In Our Global Community Conference Proceedings (1998).

[33] WENDLANDT, D., ANDERSEN, D. G., AND PERRIG, A. Perspec-
tives: Improving SSH-style Host Authentication with Multi-Path
Probing. In USENIX Annual Technical Conference (2008).

[34] WHALEN, T., AND INKPEN, K. M. Gathering evidence: Use
of visual security cues in web browsers. In Proceedings of the
Graphics Interface Conference (2005).

[35] WU, M., MILLER, R. C., AND GARFINKEL, S. L. Do Security
Toolbars Actually Prevent Phishing Attacks? In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems
(2006).

A Sample Sizes

Malware Phish- SSL Add
ing Exception

Release 1,968,707 89,948 NC 1,805,928
Beta 74,782 3,058 10,976 66,694
Dev 61,588 2,759 15,560 53,001
Nightly 58,789 4,239 18,617 64,725

Table 7: Warning impression sample sizes for Mozilla Firefox
warnings, by channel, for all operating systems.

Malware Phish- SSL Add
ing Exception

Mac 71,371 3,951 534 154,129
Win 1,892,285 85,598 10384 1,634,193
Linux 1,750 112 58 17,606

Table 8: Warning impression sample sizes for Mozilla Firefox
warnings, by operating system. The malware, phishing, and the
“Add Exception” samples are from the release channel, whereas
the SSL samples are from the beta channel. The frame issue
does not affect statistics that pertain only to the “Add Exception”
dialog.

Malware Phishing SSL
Stable 5,946,057 381,027 16,363,048
Beta 44,742 3,525 232,676
Dev 14,022 1,186 66,922
Canary 35,261 612 42,020

Table 9: Warning impression sample sizes for Google Chrome
warnings, by channel, for all operating systems.

Malware Phishing SSL
Mac 598,680 20,623 947,971
Windows 9,775,104 333,522 13,399,820
Linux 15,456 577 515,319
Android NC NC 1,499,938

Table 10: Warning impression sample sizes for Google Chrome
warnings, by operating system, for the stable channel.

In Google Chrome, we recorded 6,040,082 malware
warning impressions, 386,350 phishing warning impres-
sions, and 16,704,666 SSL warning impressions. In
Mozilla Firefox, we recorded 2,163,866 malware warning
impressions, 100,004 phishing warning impressions, and
45,153 SSL warning impressions. Tables 7, 8, 9, and 10
further separate the sample sizes based on OS and release
channel.

USENIX Association 22nd USENIX Security Symposium 273

An Empirical Study of Vulnerability Rewards Programs

Matthew Finifter, Devdatta Akhawe, and David Wagner
University of California, Berkeley

\{ finifter, devdatta, daw\} @cs.berkeley.edu

Abstract
We perform an empirical study to better understand two
well-known vulnerability rewards programs, or VRPs,
which software vendors use to encourage community
participation in finding and responsibly disclosing soft-
ware vulnerabilities. The Chrome VRP has cost approx-
imately $580,000 over 3 years and has resulted in 501
bounties paid for the identification of security vulnerabili-
ties. The Firefox VRP has cost approximately $570,000
over the last 3 years and has yielded 190 bounties. 28%
of Chrome’s patched vulnerabilities appearing in secu-
rity advisories over this period, and 24% of Firefox’s,
are the result of VRP contributions. Both programs ap-
pear economically efficient, comparing favorably to the
cost of hiring full-time security researchers. The Chrome
VRP features low expected payouts accompanied by high
potential payouts, while the Firefox VRP features fixed
payouts. Finding vulnerabilities for VRPs typically does
not yield a salary comparable to a full-time job; the com-
mon case for recipients of rewards in either program is
that they have received only one reward. Firefox has far
more critical-severity vulnerabilities than Chrome, which
we believe is attributable to an architectural difference
between the two browsers.

1 Introduction
Some software vendors pay security researchers for the re-
sponsible disclosure of a security vulnerability. Programs
implementing the rules for this exchange are known as
vulnerability rewards programs (VRPs) or bug bounty
programs. The last couple of years have seen an upsurge
of interest in VRPs, with some vendors expanding their
existing programs [1, 19], others introducing new pro-
grams [3, 34, 38], and some companies offering to act as
an intermediary between security researchers and vendors
offering VRPs [53].

VRPs offer a number of potential attractions to software
vendors. Offering adequate incentives entices security re-
searchers to look for vulnerabilities, and this increased
attention improves the likelihood of finding latent vulner-
abilities.1 Second, coordinating with security researchers
allows vendors to more effectively manage vulnerability
disclosures, reducing the likelihood of unexpected and

1For instance, Linus’s Law suggests “Given enough eyeballs, all
bugs are shallow.” [48]

costly zero-day disclosures. Monetary rewards provide an
incentive for security researchers not to sell their research
results to malicious actors in the underground economy
or the gray world of vulnerability markets. Third, VRPs
may make it more difficult for black hats to find vulnera-
bilities to exploit. Patching vulnerabilities found through
a VRP increases the difficulty and therefore cost for mali-
cious actors to find zero-days because the pool of latent
vulnerabilities has been diminished. Additionally, expe-
rience gained from VRPs (and exploit bounties [23, 28])
can yield improvements to mitigation techniques and help
identify other related vulnerabilities and sources of bugs.
Finally, VRPs often engender goodwill amongst the com-
munity of security researchers. Taken together, VRPs
provide an attractive tool for increasing product security
and protecting customers.

Despite their potential benefits, there is an active de-
bate over the value and effectiveness of VRPs. A number
of vendors, notably Microsoft,2 Adobe, and Oracle, do
not maintain a VRP, with Microsoft arguing that VRPs
do not represent the best return on investment on a per-
bug basis [26]. Further, it is also not clear if the boun-
ties awarded are a sufficient attraction for security re-
searchers motivated by money—underground economy
prices for vulnerabilities are far higher than those offered
by VRPs [20, 37].

Given the emergence of VRPs as a component of the
secure development lifecycle and the debate over the effi-
cacy of such programs, we use available data to better un-
derstand existing VRPs. We focus on the Google Chrome
and Mozilla Firefox web browsers, both of which are
widely considered to have mature VRPs, as case studies.
We analyze these VRPs along several dimensions with
the intention of better understanding the characteristics,
metrics, and trajectory of a VRP.

We make the following contributions:

• We collect and analyze data on vulnerability rewards
over the last 3 years for the Google Chrome VRP
and the Mozilla Firefox VRP (Section 3).

• We assess the state of these VRPs along several
dimensions, including costs, benefits, popularity, and

2On June 19, 2013, during final preparation of this manuscript,
Microsoft announced a month-long VRP for the IE11 developer pre-
view [54].

1

274 22nd USENIX Security Symposium USENIX Association

efficacy (Section 4), finding that these VRPs appear
both effective and cost-effective.

• We make concrete recommendations for software
vendors aiming to start or evolve their own VRP
(Section 5.2).

• We generate hypotheses, which identify opportuni-
ties for future research on VRPs and secure software
development.

2 Background
A secure software development lifecycle (SDLC) aims to
address software security throughout the entire software
development process, from before specifications are de-
veloped to long after software has been released [15]. A
vulnerability remediation strategy is any systematic ap-
proach whose goal is to reduce the number of software
vulnerabilities [57]. Vulnerability remediation strategies
are one important part of an SDLC, complemented by
things like incident response [32], operational security
considerations [46], and defense in depth [16].

Potential vulnerability remediation strategies include:

• Code reviews. These can range from informal, as-
needed requests for code review to systematized, for-
mal processes for mandatory code inspection. Typi-
cally, SDLCs also include an extra security review
for security critical features.

• Penetration testing. Software vendors may perform
in-house penetration testing or may hire external
companies who specialize in this service. Penetra-
tion testing ranges from manual to automated.

• Use of dynamic and static analysis tools. Special-
ized tools exist for catching a wide range of flaws,
e.g., memory safety vulnerabilities, configuration
errors, and concurrency bugs.

• Vulnerability rewards programs. The focus of
our study, VRPs have recently received increased
attention from the security community.

How such strategies are systematized and realized
varies widely between software vendors. One company
might require mandatory code reviews before code check-
in, while another might hire outside penetration testing
experts a month before product release. Vendors often
combine or innovate on existing strategies.

Vulnerability rewards programs (VRPs) appear to be
emerging as a viable vulnerability remediation strategy.
Many companies have them, and their popularity contin-
ues to grow [6,9]. But VRPs have gone largely unstudied.
For a company considering the use of a VRP in their
SDLC, guidance is limited.

By studying mature, high-profile VRPs, we aim to
provide guidance on the development of new VRPs and
the evolution and maturation of existing VRPs. Vendors
looking to grow their VRPs can benefit from an improved
understanding of those VRPs we study.

Toward this end, we measure, characterize, and dis-
cuss the Google Chrome and Mozilla Firefox VRPs. We
choose these VRPs in particular because browsers are a
popular target for malicious actors today. Their ubiqui-
tous nature and their massive, complex codebase with
significant legacy components make them especially vul-
nerable. Complex, high-performance components with a
large attack surface such as JavaScript JITs also provide
an alluring target for malicious actors. For the same rea-
sons, they are also widely studied by security researchers;
they therefore provide a large sample size for our study.
In addition, browser vendors were among the first to of-
fer rewards for vulnerabilities: Mozilla’s VRP started in
2004 and Google introduced the Chrome VRP in 2010,
before the security community at large adopted VRPs as
a vulnerability remediation strategy.

2.1 Goals

We intend to improve our understanding of the following
characteristics of a mature VRP: (1) Expected cost, (2)
expected benefits, (3) incentive levels effective for encour-
aging and sustaining community participation, and (4)
volume of VRP activity (e.g., number of patches coming
out of VRP reports).

We do so by studying available data coming out of two
exemplars of well-known, mature VRPs, that of Google
Chrome and Mozilla Firefox. Understanding these VRPs
will allow these vendors to evaluate and improve their
programs, and it will suggest targets for other vendors
to strive toward with their VRPs. At minimum, we hope
to arrive at a better understanding of the current state
of VRPs and how they have evolved. At best, we aim
to make concrete suggestions for the development and
improvement of VRPs.

2.2 Google Chrome VRP

The Google Chrome VRP3 is widely considered an ex-
emplar of a mature, successful VRP. When first intro-
duced in January 2010, the Google Chrome VRP offered
researchers rewards ranging from $500 for high- and
critical-severity bugs, with a special $1337 reward for
particularly critical or clever bugs. Over time, the typical
payout increased to a $1000 minimum with a maximum
payout of $3133.7 for high-impact vulnerabilities. Addi-
tionally, the Chrome team, has provided rewards of up to
$31,336 for exceptional vulnerability reports [21].

3The program is officially the Chromium VRP with prizes sponsored
by Google. We refer to it as the Google Chrome VRP for ease of
exposition.

2

USENIX Association 22nd USENIX Security Symposium 275

Google also sponsors a separate, semi-regular exploit
bounty called the “pwnium” competition [23]. This pro-
gram focuses on full exploits; a mere vulnerability is not
enough. In return, it awards higher bounties (as high as
$150,000) for these exploits [8]. Reliable exploits for
modern browsers typically involve multiple vulnerabili-
ties and significant engineering effort. For example, the
two winning entries in a recent “pwnium” contest required
six and ten vulnerabilities in addition to “impressive” en-
gineering in order to achieve a successful exploit [7, 45].
Our focus is on programs that provide bounties for vul-
nerabilities; we do not consider exploit bounties in this
work.

The severity of a vulnerability plays a key role in decid-
ing reward amounts. Google Chrome uses a clear guide-
line for deciding severity [12]. In short, a critical vulnera-
bility allows an attacker to run arbitrary native code on the
user’s machine; for instance, web-accessible memory cor-
ruption vulnerabilities that appear in the Chrome kernel4

are typically critical severity. A high-severity vulnerabil-
ity is one that allows an attacker to bypass the same-origin
policy, e.g., via a Universal XSS vulnerability (which en-
ables an attacker to mount an XSS attack on any web site)
or a memory corruption error in the sandbox. A vulner-
ability is of medium severity if achieving a high/critical
status requires user interaction, or if the vulnerability only
allows limited disclosure of information. Finally, a low-
severity vulnerability refers to all the remaining security
vulnerabilities that do not give the attacker control over
critical browser features. Medium-severity vulnerabili-
ties typically receive rewards of $500, and low-severity
vulnerabilities typically do not receive rewards.

2.3 Mozilla Firefox VRP

Mozilla’s VRP is, to the best of our knowledge, one of the
oldest VRPs in the industry. It was first started in 2004 and
based on a similar project at Netscape in 1995 [41]. The
Mozilla VRP initially awarded researchers $500 for high-
or critical-severity security bugs. Starting July 1, 2010
Mozilla expanded its program to award all high/critical
vulnerabilities $3000 [1].

Mozilla’s security ratings are similar to that of Chrome.
Critical vulnerabilities allow arbitrary code execution on
the user’s computer. Vulnerabilities that allow an attacker
to bypass the same-origin policy or access confidential
information on the user’s computer are high severity.
Due to the absence of privilege separation in the Fire-
fox browser, all memory corruption vulnerabilities are
critical, regardless of the component affected. Mozilla
is currently investigating a privilege-separated design for
Firefox [17, 36, 39].

Mozilla’s VRP also qualitatively differs from the

4Chrome follows a privilege-separated design [4]. The Chrome
kernel refers to the privileged component.

Google program. First, Mozilla awards bounties even
if the researcher publicly discusses the vulnerability
instead of reporting it to Mozilla.5 Second, Mozilla also
explicitly awards vulnerabilities discovered in “nightly”
(or “trunk”) versions of Firefox. In contrast, Google
discourages researchers from using “canary” builds and
only awards bounties in canary builds if internal testing
would miss those bugs [55].

3 Methodology
For both browsers, we collect all bugs for which rewards
were issued through the browser vendor’s VRP. To evalu-
ate the impact of the VRP as a component of the SDLC,
we also collected all security bugs affecting stable releases.
We chose to look only at bugs affecting stable releases to
ignore the impact of transient bugs and regressions caught
by internal testing.

For each bug in the above two datasets, we gathered
the following details: (1) severity of the bug, (2) reward
amount, (3) reporter name, (4) report date. For bugs
affecting stable releases, we also aimed to gather the date
a release patching the bug became available for download.
As we discuss below, we were able to gather this data for
only a subset of all bugs.

For all bugs, we mark a bug as internally or externally
reported via a simple heuristic: if a reward was issued,
the reporter was external, and otherwise the reporter was
internal. Because low and medium severity vulnerabil-
ities usually do not receive bounties, we only look at
critical/high vulnerabilities when comparing internal and
external bug reports. While all high/critical vulnerabilities
are eligible for an award, a researcher can still refuse an
award, in which case, our heuristic falsely marks the bug
“internal.” We are aware of a handful of such instances,
but there are not enough of these in our dataset to affect
our analysis.

We are also aware of some researchers who transitioned
from external to internal over the course of our study pe-
riod. Because our heuristic operates on a per-bug basis
(as opposed to marking each person as internal or exter-
nal), the same person may be (intentionally) considered
internal for one bug and external for another.

In this section, we present how we gathered this dataset
for Chrome and Firefox. We first discuss how we identify
the list of bugs affecting stable releases and bugs awarded
bounties, followed by a discussion on how we identified,
for each bug, other details such as severity. Finally, we
discuss threats to the validity of our measurement study.

3.1 Gathering the Google Chrome dataset

We gathered data from the official Chromium bug
tracker [13] after confirming with Google employees that

5But Mozilla reports that this was a rare occurrence over the period of
time we consider, possibly because the VRP became widely known [56].

3

276 22nd USENIX Security Symposium USENIX Association

the bug tracker contained up-to-date, authoritative data
on rewards issued through their VRP. We search the bug
tracker for bugs marked with the special “Reward” label
to collect bugs identified through the VRP. Next, we
searched the bug tracker for bugs marked with the special
“Security-Impact: Stable” to collect bugs affecting stable
releases. Next, we remove the special Pwnium [23]
rewards from all datasets because Pwnium rewards
exploits instead of vulnerabilities as in the regular VRP.
This provides us with 501 bugs identified through the
VRP and 1347 bugs affecting stable releases.

The Chromium Bug tracker provides a convenient in-
terface to export detailed bug metadata, including severity,
reporter, and report date, into a CSV file, which we use
to appropriately populate our dataset. We identify the
reward amounts using the “Reward” label.

Unfortunately, the Chromium bug tracker does not in-
clude the release date of bug fixes. Instead, we gather
this data from the Google Chromium release blog [27].
For each stable release of the Chromium browser, Google
releases a blog post listing security bugs fixed in a release.
For the subset of bugs mentioned in these release notes,
we extract the release date of the stable version of Chrome
that patches the bug.

3.2 Gathering the Mozilla Firefox dataset

Similar to Google Chrome, we searched Bugzilla, the
Firefox bug tracker, for an attachment used to tag a bug
bounty.6 We identified 190 bugs via this search.

Unlike the Chrome bug tracker, Bugzilla does not pro-
vide a convenient label to identify bugs affecting stable
releases. Instead, Mozilla releases Mozilla Foundation
Security Advisories (MFSA) with every stable release of
Mozilla Firefox [40]. We scraped these advisories for
a list of bugs affecting stable releases. We also use the
MFSAs to identify the release date of a patched, stable
version of Firefox. We gathered 613 unique bugs from the
MFSA advisories dating back to March 22, 2010 (Firefox
3.6).

Similar to the Chromium Bug tracker, the Bugzilla
website provides a convenient interface to export detailed
bug data into a CSV file for further analysis. We used
Bugzilla to collect, for each bug above, the bug reporter,
the severity rating, and the date reported. The security
severity rating for a bug is part of the Bugzilla keywords
field and not Bugzilla’s severity field. We do not sep-
arately collect the amount paid because, as previously
discussed, Mozilla’s expanded bounty program awards
$3,000 for all critical/high vulnerabilities.

6The existence of this attachment is not always visible to the public.
We acknowledge the support of Mozilla contributor Dan Veditz for his
help gathering this data.

Severity Chrome Firefox
Stable Bounty Stable Bounty

Low 226 1 16 1
Medium 288 72 66 9
High 793 395 79 38
Critical 32 20 393 142
Unknown 8 13 59 0
Total 1347 501 613 190

Table 1: Number of observations in our dataset.

3.3 Dataset

Table 1 presents information about the final dataset we
used for our analysis. We have made our dataset available
online for independent analysis [33].

3.4 Threats to validity

In this section, we document potential threats to validity
so readers can better understand and take into account the
sources of error and bias in our study.

It is possible that our datasets are incomplete, i.e., there
exist patched vulnerabilities that do not appear in our
data. For example, for both Chrome and Firefox, we rely
heavily on the keyword/label metadata to identify bugs;
since this labeling is a manual process, it is possible that
we are missing bugs. To gather the list of bugs affecting
stable releases, we use the bug tracker for Chrome but
use security advisories for Mozilla, which could be in-
complete. Given the large number of vulnerabilities we
do have in our datasets, we expect that a small number of
missing observations would not materially influence the
conclusions we draw.

We treat all rewards in the Firefox VRP as $3,000
despite knowing that 8% of the rewards were for less
than this amount [56]. Data on which rewards were for
less money and what those amounts were is not publicly
available. Any results we present regarding amounts paid
out for Firefox vulnerabilities may therefore have as much
as 8% error, though we expect a far lower error, if any. We
do not believe this affects the conclusions of our analysis.

Parts of our analysis also compare Firefox and Chrome
VRPs in terms of number of bugs found, which assumes
that finding security vulnerabilities in these browsers re-
quires comparable skills and resources. It could be the
case that it is just easier to find bugs in one over the
other, or one browser has a lower barrier to entry for
vulnerability researchers. For example, the popular Ad-
dress Sanitizer tool worked only on Google Chrome until
Mozilla developers tweaked their build infrastructure to
enable support for the same [31]. Another confound is
the possibility that researchers target a browser based on
personal factors beyond VRPs. For example, researchers
could look for vulnerabilities only in the browser they
personally use.

Assigning bug severity is a manual process. While

4

USENIX Association 22nd USENIX Security Symposium 277

the severity assignment guidelines for both browsers are
similar, it is possible that vendors diverge in their actual
severity assignment practices. As a result, the bug severi-
ties could be incomparable across the two browsers.

We study only two VRPs; our results do not necessarily
generalize to any other VRPs. We caution the reader to
avoid generalizing to other VRPs, but instead take our
results as case studies of two mature, well-known VRPs.

4 Results
We study VRPs from the perspectives of three interested
parties: the software vendor, the independent security
researcher, and the security researcher employed full-time
by the software vendor.

4.1 Software vendor

We model the software vendor’s goal as follows: to in-
crease product security as much as possible while spend-
ing as little money as possible. There are many potential
strategies for working toward this goal, but in this paper
we consider the strategy of launching a VRP. We present
data on costs and benefits for two VRPs, and generate
hypotheses from this data. The software vendor’s motiva-
tion can also include publicity and engaging the security
research community. We do not measure the impact of
VRPs on these.

4.1.1 Number of vulnerabilities

The intended benefit of a VRP is to improve product se-
curity. A reduction in the number of latent vulnerabilities
is one way of improving product security. We find that
the Chrome VRP uncovers about 2.6 times as many vul-
nerabilities as that of Firefox (501 vs. 190), despite the
fact that Chrome’s total number of security vulnerabilities
in our dataset is only 2.2 times that of Firefox (Table 1).
27.5% of bugs affecting Chrome releases originate from
VRP contributions (371 of 1347), and 24.1% of bugs af-
fecting Firefox releases (148 of 613) result from VRP
contributions.

Discussion Both VRPs yield a significant fraction of
the total number of security advisories, which is a clear
benefit. Chrome is seeing approximately 1.14 times the
benefit of Firefox by our metric of fraction of advisories
resulting from VRP contributions. We only study bugs af-
fecting stable releases in this metric and caution the reader
from assuming that VRPs are competitive with internal
researchers. For both browsers, internal researchers find
far more bugs during the months of testing that precede
a typical browser release. For example, from January to
May 2013, across all release channels, Google researchers
found 140 high or critical vulnerabilities in Chrome, while
the Chrome VRP only found 40 vulnerabilities in the same
time period.

0
.2

.4
.6

.8
Fr

ac
tio

n
vu

ln
s

in
 c

ur
re

nt
 p

lu
s

la
st

 5
 m

on
th

s

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

Low Medium
High Critical

(a) Chrome

0
.2

.4
.6

.8
Fr

ac
tio

n
vu

ln
s

in
 c

ur
re

nt
 p

lu
s

la
st

 5
 m

on
th

s

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

Low Medium
High Critical

(b) Firefox

Figure 1: Moving average over the current plus 5 previous
months of the percentage of vulnerabilities at each severity level
(low is blue solid line, medium is red long-dashed line, high is
green short-dashed line, and critical is yellow dash-dotted line).
In this and subsequent line graphs, the data are aggregated by
month to improve graph readability, and the x-axis represents
the open date of the bug.

4.1.2 Vulnerability severity

Another measure of improvement to product security is
change in vulnerability severity over time. It is a good
sign, for example, if the percentage of critical-severity
vulnerabilities has decreased over time.

Table 1 lists the total number of vulnerabilities by sever-
ity for Firefox and Chrome. Figure 1 plots the fraction of
vulnerabilities at each severity level over the current plus
5 previous months.

Discussion Firefox has a much higher ratio of criti-
cal vulnerabilities to high vulnerabilities than Chrome.
We expect that many of Firefox’s critical vulnerabilities
would instead be high severity if, like Chrome, it also had
a privilege-separated architecture. The lack of such an
architecture means that any memory corruption vulnera-

5

278 22nd USENIX Security Symposium USENIX Association

bility in Firefox is a critical vulnerability. We therefore
hypothesize that:

Hypothesis 1 This architectural difference between
Chrome and Firefox—that the former is privilege-
separated and the latter is not—is the most influential
factor in causing such a large difference in vulnerability
severity classification.

The fraction of critical severity bugs has remained rela-
tively constant for Chrome. We also notice the start of a
trend in Chrome—the fraction of high severity vulnera-
bilities is declining and the fraction of medium severity
vulnerabilities is increasing.

Chrome’s privilege-separated architecture means that a
critical vulnerability indicates malicious code execution
in the privileged process. We see that there continue to
be new bugs resulting in code execution in the privileged
process. Further investigation into these bugs can help
understand how and why they continue to surface.

Low-severity vulnerabilities in Google Chrome make
up a significant fraction of all vulnerabilities reported.
In contrast, the fraction of low- and medium-severity
vulnerabilities in Firefox remains negligible.

Note that our dataset does not allow us to attribute
any change in vulnerability severity over time to the use
or success of a VRP. However, severity over time is a
metric worth tracking for a software vendor because it can
indicate trends in the overall efforts to improve product
security, of which a VRP may be one component.

4.1.3 Community engagement

One advantage of VRPs is engagement with the broader
security community. We studied this engagement along
two axes: (1) the contribution of internal and external
researchers towards identifying security vulnerabilities,
and (2) the number of external participants in each VRP.

Figure 2 depicts the cumulative number of high- and
critical-severity vulnerabilities patched and Figure 3 de-
picts the same, but for only critical vulnerabilities. Table 2
shows the distribution of the total number of vulnerabil-
ities reported by each external participant in each of the
two VRPs. Although a few external participants submit
many bugs, there is a clear long tail of participants in
both VRPs. Table 3 shows the same distribution, but for
internal (i.e., employee) reporters of vulnerabilities.

Discussion For both browsers, internal contributions
for high- and critical-severity vulnerabilities have consis-
tently yielded the majority of patches. The number of
external contributions to Chrome has nearly caught up
with the number of internal contributions (i.e., around
4/11 and 3/12, in Figure 2a) at various times, and as of
the end of our study, these two quantities are comparable.
Considering only critical-severity vulnerabilities, external
contributions have exceeded internal contributions as of

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

N
u
m

b
e
r

h
ig

h
+

c
ri
ti
c
a
l
v
u
ln

s
 o

p
e
n
e
d
 (

c
u
m

u
la

ti
v
e
)

1/09 7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

(a) Chrome

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

N
u
m

b
e
r

h
ig

h
+

c
ri
ti
c
a
l
v
u
ln

s
 o

p
e
n
e
d
 (

c
u
m

u
la

ti
v
e
)

1/07 1/08 1/09 1/10 1/11 1/12 1/13

(b) Firefox

Figure 2: Number of high- plus critical-severity vulnerabilities
reported over time, discovered internally (blue long-dashed line),
externally (red short-dashed line), and total (green solid line).

the end of our study. For Firefox, on the other hand, the
number of external contributions has consistently been
far lower than the number of internal contributions.

We observe an increase in the rate of external contri-
butions to Chrome starting around July 2010, six months
after the inception of the VRP. As seen in Figure 3a,
this is more pronounced when considering only critical-
severity vulnerabilities. We conjecture that this change
corresponds to increased publicity for the Chrome VRP
after Google increased reward amounts [19].

Linus’s Law, defined by Eric Raymond as “Given
enough eyes, all bugs are shallow,” suggests that it is
in the interests of the software vendor to encourage more
people to participate in the search for bugs. The distribu-
tions of bugs found by external participants indicate that
both VRPs have been successful in encouraging broad
community participation. The existence of a long tail
of contributors holds for internal contributors as well as
external contributors.

6

USENIX Association 22nd USENIX Security Symposium 279

0
1
0

2
0

3
0

4
0

N
u
m

b
e
r

c
ri
ti
c
a
l
v
u
ln

s
 o

p
e
n
e
d
 (

c
u
m

u
la

ti
v
e
)

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

(a) Chrome

0
1
0
0

2
0
0

3
0
0

4
0
0

N
u
m

b
e
r

c
ri
ti
c
a
l
v
u
ln

s
 o

p
e
n
e
d
 (

c
u
m

u
la

ti
v
e
)

1/07 1/08 1/09 1/10 1/11 1/12 1/13

(b) Firefox

Figure 3: Number of critical-severity vulnerabilities reported
over time, discovered internally (blue long-dashed line), exter-
nally (red short-dashed line), and total (green solid line).

4.1.4 Diversity

There is the potential benefit that the wide variety of
external participants may find different types of vulner-
abilities than internal members of the security team. A
few pieces of anecdotal evidence support this. Chrome
has awarded bounty amounts that include $1,337, $2,337,
$3,133.7, and $7,331 for bugs that they considered clever
or novel [21], and our dataset contains 31 such awards.
Additionally, one of PinkiePie’s Pwnium exploits led to
a full review of the Chrome kernel file API, which re-
sulted in the discovery of several additional vulnerabili-
ties [21, 51]. The Chrome security team missed all these
issues until PinkiePie discovered and exploited one such
issue [14]. We therefore hypothesize that:

Hypothesis 2 An increase in the number of researchers
looking for vulnerabilities yields an increase in the diver-
sity of vulnerabilities discovered.

Bugs Freq.

1 45
3 2
4 1
6 1

10 1
12 2
13 3
16 1
17 1
22 1
24 1
27 1
35 1
48 1
92 1

Total 63

(a) Chrome

Bugs Freq.

1 46
2 9
3 4
5 1
6 1
9 1

10 1
12 1
14 1
47 1

Total 66

(b) Firefox

Table 2: Frequency distribution of number of high- or critical-
severity vulnerabilities found by external contributors.

Bugs Freq.

1 67
2 10
3 10
4 2
5 2

14 1
20 2
67 1

263 1
Total 96

(a) Chrome

Bugs Freq.

1 43
2 10
3 7
4 3
5 2
6 2
7 1

12 1
13 1
15 1
17 2
18 1
21 1
23 1
44 1

Total 77

(b) Firefox

Table 3: Frequency distribution of number of high- or critical-
severity bugs found by internal contributors.

4.1.5 Cost of rewards

Though the number of bounties suggests that VRPs pro-
vide a number of benefits, a thorough analysis necessarily
includes an analysis of the costs of these programs. In
this section, we examine whether VRPs provide a cost-
effective mechanism for software vendors. We analyze
one ongoing cost of the VRP: the amount of money paid
to researchers as rewards for responsible disclosure. Run-
ning a VRP has additional overhead costs that our dataset
does not provide any insight into.

Figure 4 displays the total cost of paying out rewards
for vulnerabilities affecting stable releases. We find that
over the course of three years, the costs for Chrome and
Firefox are similar: approximately $400,000.

7

280 22nd USENIX Security Symposium USENIX Association

0
1

2
3

4
5

C
u
m

u
la

ti
v
e
 r

e
w

a
rd

s
 p

a
id

 (
$
1
0
0
k
)

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

Figure 4: Cumulative rewards paid out for Chrome (blue solid
line) and Firefox (red dashed line), excluding rewards for vul-
nerabilities not affecting stable versions.

Rewards for Development Releases Both Firefox and
Chrome issue rewards for vulnerabilities that do not af-
fect stable release versions, increasing the total cost of
the VRP beyond the cost of rewarding vulnerabilities af-
fecting stable releases. One potential drawback of such
rewards is that the VRPs awards transient bugs that may
never make their way into a user-facing build in the first
place. On the other hand, such rewards could catch bugs
earlier in the development cycle, reducing the likelihood
of expensive out-of-cycle releases.

Figure 5 shows the cumulative rewards issued by each
of the two VRPs for vulnerabilities affecting stable re-
leases, vulnerabilities not affecting stable releases, and
the sum of the two. We observe that the Chrome VRP has
paid out $186,839, 32% of its total cost of $579,605 over
the study period for vulnerabilities not affecting a stable
release. The Firefox VRP has paid out $126,000, 22% of
its total cost of $570,000, over the study period for such
vulnerabilities.

Discussion The total cost of each of the two VRPs is
remarkably similar. Both spend a significant fraction
of the total cost on vulnerabilities not present in stable
release versions.

4.1.6 Average daily cost

Figure 6 plots the average daily cost to date of each VRP
over time. We see that Chrome’s VRP has cost $485 per
day on average, and that of Firefox has cost $658 per day.

Discussion If we consider that an average North Amer-
ican developer on a browser security team (i.e., that of
Chrome or Firefox) would cost the vendor around $500
per day (assuming a $100,000 salary with a 50% over-
head), we see that the cost of either of these VRPs is
comparable to the cost of just one member of the browser
security team. On the other hand, the benefit of a VRP

0
1

2
3

4
5

6
C

u
m

u
la

ti
v
e
 r

e
w

a
rd

s
 p

a
id

 (
$
1
0
0
k
)

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

(a) Chrome

0
1

2
3

4
5

6
C

u
m

u
la

ti
v
e
 r

e
w

a
rd

s
 p

a
id

 (
$
1
0
0
k
)

7/10 1/11 7/11 1/12 7/12 1/13

(b) Firefox

Figure 5: Cumulative rewards paid out for vulnerabilities affect-
ing a stable release (blue long-dashed line), vulnerabilities not
affecting any stable release (red short-dashed line), and the sum
of the two (green solid line).

far outweighs that of a single security researcher because
each of these VRPs finds many more vulnerabilities than
any one researcher is likely to be able to find. For bugs
affecting stable releases, the Chrome VRP has paid 371
bounties, and the most prolific internal security researcher
has found 263 vulnerabilities. For Firefox, these num-
bers are 148 and 48, respectively. Based on this simple
cost/benefit analysis, we hypothesize that:

Hypothesis 3 A VRP can be a cost-effective mechanism
for finding security vulnerabilities.

4.2 External security researcher

We model the goal of an external security researcher as
follows: to make as much money as possible in as lit-
tle time as possible.7 The researcher can contribute to

7Naturally, this does not reflect the reality of every security re-
searcher’s goal.

8

USENIX Association 22nd USENIX Security Symposium 281

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

A
v
e
ra

g
e
 d

a
ily

 c
o
s
t
to

 d
a
te

 (
$
/d

a
y
)

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

(a) Chrome

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

A
v
e
ra

g
e
 d

a
ily

 c
o
s
t
to

 d
a
te

 (
$
/d

a
y
)

7/10 1/11 7/11 1/12 7/12 1/13

(b) Firefox

Figure 6: Average daily cost to date since first reward.

any VRP he chooses, each of which pays out according
to some rewards distribution. The researcher has some
perception of security of each product, which reflects the
expected amount of time the researcher will have to spend
to find a vulnerability.

A rational strategy for the security researcher is to look
for products perceived to be insecure that also happen to
pay large bounties. This implies that a product with a
higher perceived security must pay relatively higher boun-
ties to encourage researchers to look for vulnerabilities in
it as opposed to in a different product that is perceived to
be less secure. We therefore hypothesize that:

Hypothesis 4 In an efficient market with many VRPs
and fluid reward structures, larger rewards reflect a
higher level of perceived security by the population of
researchers who contribute to VRPs.

4.2.1 Reward amounts

Our dataset provides insight into the distributions of re-
wards for two products. Firefox offers a standard reward
of $3,000 for all vulnerabilities. In contrast, the Chrome

Amount ($) Frequency (%)

500 24.75
1,000 60.08
1,337 3.59
1,500 2.99
2,000 2.99
2,337 0.60
2,500 0.60
3,000 0.20
3,133 1.80
3,500 0.20
4,000 0.20
4,500 0.20
5,000 0.20
7,331 0.20

10,000 1.40

Table 4: Percentage of rewards given for each dollar amount in
Chrome VRP.

VRP’s incentive structure provides different reward levels
based on a number of subjective factors like difficulty of
exploit, presence of a test case, novelty, and impact, all of
which is at the discretion of Google developers.

Table 4 depicts the reward amounts paid to external
researchers by the Chrome VRP. The majority of the
rewards are for only $500 or $1,000. Large rewards, such
as $10,000 rewards, are infrequent.

Discussion We hypothesize that high maximum rewards
entice researchers to participate, but low ($500 or $1,000)
rewards are typical, and the total cost remains low. The
median (mean) payout for Chrome bug bounty is $1,000
($1,156.9), suggesting that a successful VRP can be in-
expensive with a low expected individual payout. Much
like the lottery, a large maximum payout ($30,000 for
Chrome), despite a small expected return (or even nega-
tive, as is the case of anyone who searches for bugs but
never successfully finds any) appears to suffice in attract-
ing enough participants. Bhattacharyya and Garrett [5]
explain this phenomenon as follows:

Lotteries are instruments with negative ex-
pected returns. So when people buy lottery
tickets, they are trading off negative expected
returns for skewness. Thus, if a lottery game
has a larger prize amount, then a buyer will be
willing to accept a lower chance of winning
that prize.

4.2.2 VRPs as employment

Our dataset also allows limited insight into how much
money independent security researchers make. Table 5a
displays the total amounts of money earned by each exter-
nal contributor to the Chrome VRP. Only three external
contributors (out of eighty two) have earned over $80,000
over the lifetime of the VRP, and an additional five have
earned over $20,000.

9

282 22nd USENIX Security Symposium USENIX Association

$ earned Freq.

500 26
1,000 25
1,337 6
1,500 2
2,000 1
3,000 2
3,133 1
3,500 2
4,000 1
5,000 1
7,500 1

11,000 1
11,500 1
11,837 1
15,000 1
17,133 1
18,337 1
20,633 1
24,133 1
28,500 1
28,633 1
37,470 1
80,679 1
85,992 1

105,103 1
Total 82

(a) Chrome

$ earned Freq.

3,000 46
6,000 12
9,000 4

12,000 1
15,000 1
21,000 1
27,000 1
30,000 1
36,000 1
42,000 1

141,000 1
Total 70

(b) Firefox

Table 5: Frequency distributions of total amounts earned by
external VRP contributors.

In contrast to Google Chrome, we see in Table 5b that a
single Firefox contributor has earned $141,000 ($47,000
per year) since the beginning of our study period. Ten
of this individual’s rewards, representing $30,000, were
for vulnerabilities that did not impact a stable release.
Six contributors have earned more than $20,000 via the
Mozilla VRP.

Discussion Based on the data from 2 VRPs, we hypoth-
esize that:

Hypothesis 5 Contributing to a single VRP is, in gen-
eral, not a viable full-time job, though contributing to
multiple VRPs may be, especially for unusually successful
vulnerability researchers.

4.2.3 Repeat contributors

Figure 7 shows the cumulative number of vulnerabilities
patched due to reports from first-time VRP participants
and repeat participants. For both programs, first-time
participant rewards are steadily increasing, and repeat
participant rewards are increasing even more quickly.

Discussion Both VRP incentive structures are evidently
sufficient for both attracting new participants and contin-
uing to entice existing participants, though we do note
differences between Chrome and Firefox. Until recently,
repeat participants in Firefox’s VRP represented a rel-
atively small fraction of the number of awards issued.

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

N
u
m

b
e
r

v
u
ln

e
ra

b
ili

ti
e
s
 (

c
u
m

u
la

ti
v
e
)

7/09 1/10 7/10 1/11 7/11 1/12 7/12 1/13

(a) Chrome

0
5
0

1
0
0

1
5
0

2
0
0

N
u
m

b
e
r

v
u
ln

e
ra

b
ili

ti
e
s
 (

c
u
m

u
la

ti
v
e
)

7/10 1/11 7/11 1/12 7/12 1/13

(b) Firefox

Figure 7: Cumulative number of vulnerabilities rewarded, as
reported by (1) first-time VRP contributors (blue short-dashed
line), (2) repeat contributors (red long-dashed line), and (3) all
contributors (green solid line).

Chrome, on the other hand, has seen the majority of its
reports come from repeat participants for nearly the whole
lifetime of its VRP.

4.3 Internal security researcher

An internal security researcher is a full-time employee of
a software vendor who is paid a salary to find as many
vulnerabilities as possible. Google hired at least three re-
searchers who first came to light via the Chrome VRP [21]
and Mozilla hired at least three researchers as well [56].

Discussion A software vendor may choose to hire an
unusually successful independent security researcher. The
researcher’s past performance indicates how many vul-
nerabilities the vendor can expect them to find, and the
vendor may prefer to pay a fixed salary instead of a per-
vulnerability reward. The researcher may also prefer this;
the researcher trades a potentially higher amount of cash
for less compensation, but more benefits and job security.

10

USENIX Association 22nd USENIX Security Symposium 283

Median, Std. dev. Median, Std. dev.,
Severity Chrome Chrome Firefox Firefox

Low 58.5 110.6 114 256.1
Medium 45.5 78.9 106 157.6

High 28.0 35.3 62.5 85.7
Critical 20.0 26.6 76 116.5

Table 6: Median and standard deviation of number of days
between vulnerability report and release that patches the vulner-
ability, for each severity level.

Accordingly, we hypothesize that:

Hypothesis 6 Successful independent security re-
searchers bubble to the top, where a full-time job awaits
them.

4.4 Other factors

Our dataset provides an additional opportunity to better
understand the state of the SDLC (software development
lifecycle) at Mozilla and Google. In particular, we ana-
lyze (1) the elapsed time between a vulnerability report
and the release of a patched browser version that fixes the
vulnerability, and (2) how often vulnerabilities are inde-
pendently discovered, and what the potential implications
are of this rediscovery rate.

4.4.1 Time to patch

As previously discussed, we choose to study time to re-
lease a patched version, not time to commit a patch. Al-
though relying on time to release a patch means we an-
alyze only a subset of the data (Section 3), we believe
the time to release a patched version of the browser is the
more useful metric for end users. Mozilla Firefox and
Google Chrome both follow a rapid-release cycle, with a
new release every 6 or 7 weeks [11, 25]. In some cases,
browser vendors release an out-of-band (or “chemspill”)
release for vulnerabilities with active exploits in the wild.
Such out-of-band releases are one of the most expensive
incidents for software companies, with costs running into
millions of dollars [30]. Our metric awards the engineer-
ing and management commitment required in choosing
to release such versions.

Figure 8 depicts the time between initial report of a
vulnerability and the stable release that patches it. Table 6
gives summary statistics for these distributions.

Figure 9 is a scatter plot of the same data, which al-
lows us to see changes in time to patch over time. Fig-
ure 10 shows the change in standard deviation of time to
patch over time. More specifically, for a given release
date, the y-value is the standard deviation for all bugs
patched in that release or up to five prior releases. These
graphs indicate that the standard deviation in time to patch
critical vulnerabilities has slowly dropped for Firefox,
while Chrome’s time to patch critical vulnerabilities has
remained relatively constant over time.

0
10

0
20

0
30

0
40

0
50

0
Da

ys
 b

et
we

en
 in

itia
l r

ep
or

t a
nd

 s
ta

bl
e

re
le

as
e

wi
th

 p
at

ch

Low Medium High Critical

(a) Chrome

0
5
0
0

1
,0

0
0

D
a
y
s
 b

e
tw

e
e
n
 i
n
it
ia

l
re

p
o
rt

 a
n
d
 s

ta
b
le

 r
e
le

a
s
e
 w

it
h
 p

a
tc

h

Low Medium High Critical

(b) Firefox

Figure 8: Box and whisker plots depicting the distributions of
time between vulnerability report and release that patches the
vulnerability, for each severity level.

Discussion For Chrome, both the median time to patch
and the variance are lower for higher severity vulnerabili-
ties. This is an important parameter for a VRP because
responsible disclosure depends critically on vendor re-
sponse time [22, 50]. If a vendor does not patch in a rea-
sonable time frame, security researchers are less likely to
exercise responsible disclosure. Accordingly, this may be
a contributing factor in Firefox’s lower degree of commu-
nity participation (as compared to Chrome), given that the
time to patch critical vulnerabilities in Firefox is longer
and has very high variance.

In Chrome, the time to patch is faster for critical vulner-
abilities than it is for high severity vulnerabilities. This
trend continues for medium- and low-severity vulnera-
bilities as well. This indicates correct prioritization of
higher-severity vulnerabilities by Chrome security en-
gineers. The same cannot be said for Firefox; high and
critical severity vulnerabilities tend to take about the same
amount of time to fix.

11

284 22nd USENIX Security Symposium USENIX Association

0
10

0
20

0
30

0
40

0
50

0
0

10
0

20
0

30
0

40
0

50
0

7-09 7-10 7-11 7-12 7-09 7-10 7-11 7-12

Low Medium

High Critical

Ti
m

e
to

 p
at

ch
 (d

ay
s)

Stable release date

(a) Chrome

0
5
0
0

1
0
0
0

0
5
0
0

1
0
0
0

1−10 1−11 1−12 1−131−10 1−11 1−12 1−13

Low Medium

High Critical

T
im

e
 t
o
 p

a
tc

h
 (

d
a
y
s
)

Stable release date

(b) Firefox

Figure 9: Scatter plots depicting the time between vulnerability
report and release that patches the vulnerability vs. time, for
each severity level.

The high variance in Firefox’s time to patch critical
vulnerabilities may be partly attributable to the lack of
privilege separation in Firefox, since a larger TCB for
critical vulnerabilities means that there is a larger pool of
engineers owning code that might hold a critical vulnera-
bility. However, it is an encouraging sign that Firefox has
gradually reduced this variance. Nonetheless, the variance
in patch times and typical time to patch for Firefox both
remain far higher than we see for Chrome, suggesting the
need for a concerted effort at reducing this.

4.4.2 Independent discovery

Using the Chromium release blog, we manually coded
an additional variable independent. This variable
represents the number of times a vulnerability was inde-
pendently discovered. We coded it using the text of the
credit variable, which mentions “independent discov-
ery” of a vulnerability in the case of multiple independent
discoveries.

0
5
0

1
0
0

1
5
0

2
0
0

S
td

.
d
e
v
.
o
f
ti
m

e
 t
o
 p

a
tc

h

7−10 1−11 7−11 1−12 7−12 1−13

(a) Critical-severity vulnerabilities.

0
5
0

1
0
0

1
5
0

S
td

.
d
e
v
.
o
f
ti
m

e
 t
o
 p

a
tc

h

7−09 1−10 7−10 1−11 7−11 1−12 7−12 1−13

(b) Critical and high severity vulnerabilities.

Figure 10: Standard deviation of time to patch over time. For
a given release date, the y-value is the standard deviation of all
bugs patched in that release or up to five prior releases. The red
solid line is for Firefox, and the blue dashed line is for Chrome.

Our Chrome dataset indicates when a vulnerability was
independently discovered by multiple parties, identifies
the parties, and in some cases, gives an upper bound
on the time between discovery and rediscovery. Of the
668 vulnerabilities in our Chrome VRP dataset, fifteen
(2.25\%) of them had at least two independent discoveries,
and two of these had three independent discoveries. This
is a lower bound on the number of independent discover-
ies of these vulnerabilities, since it represents only those
known to the vendor.

Figure 11 displays the independent rediscovery rates
for individuals. Each dot represents an individual contrib-
utor in our dataset. Its x-value gives the number of vul-
nerabilities discovered by this individual, and its y-value
gives the number of these vulnerabilities independently
rediscovered by another contributor in our dataset. Of
those individuals who reported five or more vulnerabili-
ties, the highest rediscovery rate is 25\% and the mean is

12

USENIX Association 22nd USENIX Security Symposium 285

0
1

2
3

4
5

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

in
de

pe
nd

en
tly

 re
po

rte
d

by
 s

om
eo

ne
 e

ls
e

0 20 40 60 80 100
Number of vulnerabilities reported

Figure 11: Independent vulnerability discoveries within the
Chrome VRP dataset. Each dot represents an individual con-
tributor in our dataset. Its x-value gives the number of vulnera-
bilities contributed by this individual, and its y-value gives the
number of these contributions that were independently discov-
ered by another contributor in our dataset.

4.6\%.
Our Firefox dataset does not indicate independent re-

discovery, but we have limited data from personal com-
munication with a Firefox security engineer [56]. He
indicated that there had been at least 4–7 vulnerabilities
reported through the VRP for which there had been two
independent discoveries, a rate of 2.7% to 4.7%, which is
consistent with what we see in our Chrome dataset.

Discussion Independent rediscovery rates can have im-
plications for estimating the number of latent bugs in
software [29] as well as understanding the expected decay
rate of a stash of zero-day vulnerabilities.

A zero-day loses its value when the vendor becomes
aware of it, which happens via independent discovery of
the vulnerability. Thus, a stash of zero-days will decay at
some rate. From the limited data available to us via our
study, we hypothesize that:

Hypothesis 7 The decay rate of a stash of zero-day vul-
nerabilities is low enough to be inconsequential as a result
of relatively low empirical independent rediscovery rates.

We encourage future studies that aim to confirm or refute
this hypothesis using larger, more appropriate datasets.

5 Discussion and recommendations
In this section, we synthesize what we have learned and
present concrete recommendations for software vendors
based on our data analysis.

5.1 Mozilla Firefox vs. Google Chrome

Despite costing approximately the same as the Mozilla
program, the Chrome VRP has identified more than three

times as many bugs, is more popular and shows simi-
lar participation from repeat and first-time participants.
There is a stark difference between the levels of external
participation in the two VRPs (Figure 2).

Despite having the oldest bounty program, external
contributions lag far behind internal contributions to Fire-
fox’s security advisories. In contrast, external contribu-
tions to Chrome’s security advisories closely rival internal
contributions. Investigating further, we find three key dif-
ferences between the two programs:

Tiered structure with large special rewards Mozilla’s
program has a fixed payout of $3,000, which is approxi-
mately equal to the normal maximum payout for Chrome
($3,1337). Nonetheless, Chrome’s tiered structure, with
even higher payouts (e.g., $10,000) possible for clever
bugs and special cases appears to be far more effective
in encouraging participation. This makes sense with an
understanding of incentives in lotteries: the larger the po-
tential prize amount, the more willing participants are to
accept a lower expected return, which, for VRPs, means
the program can expect more participants [5].

Time to patch We see a far higher variance in the
time-to-release-patch metric for critical vulnerabilities in
Mozilla Firefox. It is generally accepted that the viability
of responsible disclosure depends on a reasonable vendor
response time [50]. Thus, the high variance in Mozilla’s
response time could affect responsible disclosure through
the VRP.

Higher profile Chrome’s VRP has a higher profile, with
annual competitions like Pwnium providing particularly
high rewards (up to $150,000). Chrome authors also
provide extra reward top-ups for “interesting” bugs. We
believe this sort of “gamification” leads to a higher profile
for the Chrome VRP, which may help encourage partici-
pation, particularly from researchers interested in wider
recognition.

Our methodology does not provide insight into the mo-
tivations of security researchers and the impact of VRP
designs on the same—a topic we leave for future work.
Nevertheless, we hypothesize that these three factors com-
bined explain the disparity in participation between the
Firefox and Chrome VRPs. Accordingly, we recommend
Mozilla change their reward structure to a tiered system
like that of Chrome. We urge Mozilla to do whatever it
takes to continue to reduce the variance in time to release
a patch for critical vulnerabilities, though we also realize
the difficulty involved in doing so. Ongoing attempts at
privilege separation might enable reducing the variance in
time to patch critical vulnerabilities [17, 36, 39]. Mozilla
can also consider holding its own annual competitions or
otherwise increasing the PR surrounding its VRP.

13

286 22nd USENIX Security Symposium USENIX Association

5.2 Recommendations for vendors

Our study of the Chrome and Firefox VRPs yield a num-
ber of observations that we believe can guide vendors
interested in launching or evolving their own VRPs.

We find that VRPs appear to provide an economically
efficient mechanism for finding vulnerabilities, with a rea-
sonable cost/benefit trade-off (Sections 4.1.1 and 4.1.6).
In particular, they appear to be 2-100 times more cost-
effective than hiring expert security researchers to find
vulnerabilities. We therefore recommend that more ven-
dors consider using them to their (and their users’) advan-
tage. The cost/benefit trade-off may vary for other types
of (i.e., non-browser) software vendors; in particular, the
less costly a security incident is for a vendor, the less
useful we can expect a VRP to be. Additionally, we ex-
pect that the higher-profile the software project is (among
developers and security researchers), the more effective a
VRP will be.

Response time, especially for critical vulnerabilities,
is important (Section 4.4.1). High variance in time-to-
patch is not appreciated by the security community. It can
reasonably be expected to reduce participation because it
makes responsible disclosure through the VRP a less at-
tractive option than the other options available to security
researchers.

VRP incentive design is important and should be care-
fully considered. Chrome’s tiered incentive structure ap-
pears more effective at encouraging community participa-
tion than Firefox’s fixed-amount incentive structure (Sec-
tion 4.2.1). Additionally, both Chrome and Firefox have
increased their rewards over time. Doing so increases
publicity, entices participants, and signals that a vendor
is betting that their product has become more secure over
time.

Our analysis demonstrates the impact of privilege sep-
aration on the Chrome VRP (Section 4.1.2). Privilege
separation also provides flexibility to the Chrome team.
For example, a simple way for Chrome to cut costs while
still increasing participation could be to reduce reward
amounts for high-severity vulnerabilities and increase re-
ward amounts for critical-severity vulnerabilities. Mozilla
does not have this flexibility. Vendors should consider
using their security architecture to their advantage.

6 Related Work
Mein and Evans share our motivation and present
Google’s experience with its vulnerability rewards
programs [35]. In contrast, our focus is on understanding
and comparing two popular VRPs run by competing
browser vendors. We also perform a number of analyses
not performed by the previous work as well as make
our data available for other researchers. We also
independently confirm that, for both Google and Mozilla,
VRPs are cost-effective mechanisms for finding security

vulnerabilities.

Development lifecycle datasets Many authors have
looked to large datasets, including code repositories, bug
trackers, and vulnerability databases, to gather and ana-
lyze data in an effort to better understand some aspect of
the development lifecycle. Rescorla gathered data from
NIST’s ICAT database (which has since been updated and
renamed to NVD [44]) to analyze whether vulnerability
rates tend to decrease over time [49]. He found no evi-
dence that it is in fact worthwhile for software vendors
to attempt to find vulnerabilities in their own software
because there is no evidence that such efforts are reducing
vulnerability rates.

Ozment and Schechter used the OpenBSD CVS reposi-
tory to ask and answer similar questions as Rescorla [47].
They find that the rate of discovery of what they call
foundational vulnerabilities—those present since the be-
ginning of the study period—had decreased over the study
period.

Neuhaus and Plattner use vulnerability reports for
Mozilla, Apache httpd, and Apache Tomcat to evalu-
ate whether vulnerability fix rates have changed over
time [42]. They conclude that the supply of vulnerabili-
ties is not declining, and therefore that attackers and/or
vulnerability researchers have not hit diminishing returns
in looking for vulnerabilities.

Neuhaus et al. use a dataset of Firefox security advi-
sories in combination with the Firefox codebase to map
vulnerabilities to software components and predict which
components are likely to contain vulnerabilities [43].

Scholte et al. use the NVD to evaluate how cross-site
scripting and SQL injection vulnerabilities have evolved
over time [52]. They find that the complexity of such vul-
nerabilities does not appear to have changed over time and
that many foundational cross-site scripting vulnerabilities
are still being discovered.

Evaluating vulnerability-finding techniques Other
work has focused specifically on evaluating the many
available techniques for finding vulnerabilities, though
we are unaware of any previous work that has considered
public-facing VRPs as one such technique.

Austin and Williams evaluated four different tech-
niques for vulnerability discovery on two health record
systems: “systematic and exploratory manual penetration
testing, static analysis, and automated penetration test-
ing” [2], finding that very few vulnerabilities are in fact
found by multiple techniques and that automated penetra-
tion testing is the most effective in terms of vulnerabilities
found per hour.

Finifter and Wagner compared manual source code
analysis to automated penetration testing on a web appli-
cation, with similar findings: the techniques are comple-
mentary, and manual analysis found more vulnerabilities,

14

USENIX Association 22nd USENIX Security Symposium 287

but took much more time than automated penetration test-
ing [24].

Edmundson et al. found that different reviewers tend
to find different vulnerabilities and, even in a small code-
base, it takes many reviewers to spot all or even a sig-
nificant fraction of the vulnerabilities present [18]. This
is consistent with our findings about the effectiveness of
crowdsourced VRPs.

A large body of work investigates defect prediction
using empirical techniques; we refer the reader to a survey
by Catal et al. [10].

7 Conclusion and future work
We examined the characteristics of well-known vulner-
ability rewards programs (VRPs) by studying two such
VRPs. Both programs appear economically efficient, com-
paring favorably to the cost of hiring full-time security
researchers. The Chrome VRP features low expected pay-
outs accompanied by high potential payouts, a strategy
that appears to be effective in engaging a broad commu-
nity of vulnerability researchers.

We hope that our study of these two VRPs serves as a
valuable reference for software vendors aiming to evolve
an existing VRP or start a new one. Potential future work
on understanding VRPs includes economic modeling of
VRPs; identifying typical patterns, trajectories, or phases
in a VRP; and studying failed or unsuccessful VRPs to
get a better sense of possible pitfalls in VRP development.
Gathering and analyzing data from more VRPs will surely
paint a more complete picture of their potential costs and
benefits.

Acknowledgments
We are particularly grateful to Chris Evans and Dan Veditz
for their help, encouragement, and feedback throughout
the research. We also thank Chris Hofmann, Parisa Tabriz,
Vern Paxson, Adrienne Felt, the anonymous reviewers,
and our shepherd, Sam King, for their feedback on drafts
of the paper.

This work was supported by Intel through the ISTC for
Secure Computing; by the National Science Foundation
under a Graduate Research Fellowship and grant numbers
CCF-0424422, 0842695, and 0831501-CT-L; by the Air
Force Office of Scientific Research under MURI awards
FA9550-08-1-0352, FA9550-09-1-0539, and FA9550-12-
1-0040; and by the Office of Naval Research under MURI
grant no. N000140911081. Any opinions, findings, and
conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily
reflect the views of the NSF, the AFOSR, the ONR, or
Intel.

References
[1] ADAMSKI, L. Refresh of the Mozilla Security Bug Bounty

Program, July 2010. https://blog.mozilla.org/

security/2010/07/15/refresh/.

[2] AUSTIN, A., AND WILLIAMS, L. One technique is not enough:
A comparison of vulnerability discovery techniques. In Empirical
Software Engineering and Measurement (ESEM), 2011 Interna-
tional Symposium on (2011), IEEE, pp. 97–106.

[3] BARRETT, M. PayPal “Bug Bounty” Program for Security
Researchers, June 2012. https://www.thepaypalblog.
com/2012/06/paypal-bug-bounty-program/.

[4] BARTH, A., JACKSON, C., REIS, C., AND TEAM, T. G. C.
The Security Architecture of the Chromium Browser. Tech. rep.,
Stanford University, 2008.

[5] BHATTACHARYYA, N., AND GARRETT, T. A. Why People
Choose Negative Expected Return Assets - An Empirical Examina-
tion of a Utility Theoretic Explanation. Federal Reserve Bank of St.
Louis Working Paper Series (March 2006). http://research.
stlouisfed.org/wp/2006/2006-014.pdf.

[6] BLINDU, E. Vulnerabilities reward programs, July 2012.
http://www.testalways.com/2012/07/13/
vulnerabilities-reward-programs/.

[7] BUCHANAN, K., EVANS, C., REIS, C., AND SEPEZ, T. A Tale
of Two Pwnies (Part 2), June 2012. http://blog.chromium.
org/2012/06/tale-of-two-pwnies-part-2.html.

[8] BUCHANAN, K., EVANS, C., REIS, C., AND SEPEZ, T. Show
off Your Security Skills: Pwn2Own and Pwnium 3, January 2013.
http://blog.chromium.org/2013/01/
show-off-your-security-skills-
pwn2own.html.

[9] CARETTONI, L. “No More Free Bugs” Initiative, Octo-
ber 2011. http://blog.nibblesec.org/2011/10/
no-more-free-bugs-initiatives.html.

[10] CATAL, C., AND DIRI, B. A systematic review of software fault
prediction studies. Expert Systems with Applications 36, 4 (2009),
7346–7354.

[11] Chromium Development Calendar and Release Info. http://
www.chromium.org/developers/calendar.

[12] Severity Guidelines for Security Issues. https:
//sites.google.com/a/chromium.org/dev/
developers/severity-guidelines.

[13] Chromium Bug Tracker, 2013. http://crbug.com.

[14] Security: Pwnium 2 tcmalloc profile bug, 2012. http://crbug.
com/154983.

[15] DAVIS, N. Secure Software Development Life Cycle Processes,
July 2012. https://buildsecurityin.us-cert.gov/
bsi/articles/knowledge/sdlc/326-BSI.html.

[16] Defense in Depth. http://www.nsa.gov/ia/_files/
support/defenseindepth.pdf.

[17] MozillaWiki: Electrolysis, April 2011. https://wiki.
mozilla.org/Electrolysis.

[18] EDMUNDSON, A., HOLTKAMP, B., RIVERA, E., FINIFTER, M.,
METTLER, A., AND WAGNER, D. An Empirical Study on the
Effectiveness of Security Code Review. In Proceedings of the
International Symposium on Engineering Secure Software and
Systems (March 2013).

[19] EVANS, C. Celebrating Six Months of Chromium Security Re-
wards, July 2010. http://blog.chromium.org/2010/
07/celebrating-six-months-of-chromium.html.

[20] EVANS, C. Bug bounties vs. black (& grey) markets, May
2011. http://scarybeastsecurity.blogspot.com/
2011/05/bug-bounties-vs-black-grey-markets.
html.

15

288 22nd USENIX Security Symposium USENIX Association

[21] EVANS, C. Personal Communication, March 2013.

[22] EVANS, C., GROSSE, E., MEHTA, N., MOORE, M., ORMANDY,
T., TINNES, J., ZALEWSKI, M., AND TEAM, G. S. Rebooting
Responsible Disclosure: a focus on protecting end users, July
2010. http://googleonlinesecurity.
blogspot.com/2010/07/rebooting-
responsible-disclosure-focus.html.

[23] EVANS, C., AND SCHUH, J. Pwnium: rewards for exploits,
February 2012. http://blog.chromium.org/2012/02/
pwnium-rewards-for-exploits.html.

[24] FINIFTER, M., AND WAGNER, D. Exploring the relationship be-
tween web application development tools and security. In USENIX
conference on Web application development (2011).

[25] MozillaWiki: RapidRelease/Calendar, January 2013. https:
//wiki.mozilla.org/RapidRelease/Calendar.

[26] FISHER, D. Microsoft Says No to Paying Bug Bounties, July
2010. http://threatpost.com/
microsoft-says-no-paying-bug-
bounties-072210/.

[27] Chrome Releases: Stable Updates. http://
googlechromereleases.blogspot.com/search/
label/Stable%20updates.

[28] GORENC, B. Pwn2Own 2013, January 2013. http:
//dvlabs.tippingpoint.com/blog/2013/01/17/
pwn2own-2013.

[29] HATTON, L. Predicting the Total Num-
ber of Faults Using Parallel Code Inspections.
http://www.leshatton.org/2005/05/
total-number-of-faults-using-
parallel-code-inspections/, May 2005.

[30] HOFMANN, C. Personal Communication, March 2013.

[31] HOLLER, C. Trying new code analysis techniques, January 2012.
https://blog.
mozilla.org/decoder/2012/01/27/
trying-new-code-analysis-
techniques/.

[32] Creating a Computer Security Incident Response Team: A Pro-
cess for Getting Started, February 2006. https://www.cert.
org/csirts/Creating-A-CSIRT.html.

[33] MATTHEW FINIFTER AND DEVDATTA AKHAWE AND
DAVID WAGNER. Chrome and Firefox VRP datasets,
June 2013. https://gist.github.com/devd/
a62f2afae9f1c93397f5.

[34] The MEGA Vulnerability Reward Program, February 2013.
https://mega.co.nz/#blog_6.

[35] MEIN, A., AND EVANS, C. Dosh4Vulns: Google’s Vulnerability
Reward Programs”, March 2011.

[36] MELVEN, I. MozillaWiki: Features/Security/Low rights Firefox,
August 2012. https://wiki.mozilla.org/Features/
Security/Low_rights_Firefox.

[37] MILLER, C. The legitimate vulnerability market: the secretive
world of 0-day exploit sales. In WEIS (2007).

[38] MILLS, E. Facebook launches bug bounty program, July 2011.
http://news.cnet.com/8301-27080 3-
20085163-245/facebook-launches-
bug-bounty-program/.

[39] MOZILLA BUGZILLA. Bug 790923: Content process sandboxing
via seccomp filter. https://bugzil.la/790923.

[40] MOZILLA FOUNDATION. Mozilla Foundation Security Ad-
visories, January 2013. https://www.mozilla.org/
security/announce/.

[41] Netscape announces ”netscape bugs bounty” with release of
netscape navigator 2.0 beta. The Internet Archive. http:
//web.archive.org/web/19970501041756/www101.
netscape.com/newsref/pr/newsrelease48.html.

[42] NEUHAUS, S., AND PLATTNER, B. Software security economics:
Theory, in practice. In WEIS (2012).

[43] NEUHAUS, S., ZIMMERMANN, T., HOLLER, C., AND ZELLER,
A. Predicting vulnerable software components. In Proceedings
of the 14th ACM conference on Computer and communications
security (2007), ACM, pp. 529–540.

[44] National Vulnerability Database. http://nvd.nist.gov/.

[45] OBES, J. L., AND SCHUH, J. A Tale of Two Pwnies (Part
1), May 2012. http://blog.chromium.org/2012/05/
tale-of-two-pwnies-part-1.html.

[46] Understanding Operational Security. http://www.
cisco.com/web/about/security/intelligence/
opsecurity.html.

[47] OZMENT, A., AND SCHECHTER, S. E. Milk or wine: does soft-
ware security improve with age. In In USENIX-SS06: Proceedings
of the 15th conference on USENIX Security Symposium (2006),
USENIX Association.

[48] RAYMOND, E. S. The Cathedral and the Bazaar, 1st ed. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 1999.

[49] RESCORLA, E. Is finding security holes a good idea? IEEE
Security & Privacy 3, 1 (2005), 14–19.

[50] CERT/CC Vulnerability Disclosure Policy, November 2012.
https://www.cert.org/kb/vul_disclosure.
html.

[51] Chromium bug tracker: Sandbox bypasses found in review, 2013.
http://goo.gl/13ZlR.

[52] SCHOLTE, T., BALZAROTTI, D., AND KIRDA, E. Quo vadis? a
study of the evolution of input validation vulnerabilities in web
applications. Financial Cryptography and Data Security (2012),
284–298.

[53] Secunia Vulnerability Coordination Reward Program (SVCRP).
https://secunia.com/community/research/
svcrp/.

[54] THE BLUEHAT TEAM. Microsoft Security Bounty Programs.
http://www.microsoft.com/security/msrc/report/
bountyprograms.aspx, June 2013.

[55] THE CHROMIUM AUTHORS. Vulnerability Rewards Program:
Rewards FAQ, 2010. http://goo.gl/m1MdV.

[56] VEDITZ, D. Personal Communication, February 2013.

[57] Vulnerability Remediation, September 2010. https://www.
cert.org/vuls/remediation.html.

16

USENIX Association 22nd USENIX Security Symposium 289

Secure Outsourced Garbled Circuit Evaluation for Mobile Devices

Henry Carter
Georgia Institute of Technology

carterh@gatech.edu

Benjamin Mood
University of Oregon

bmood@cs.uoregon.edu

Patrick Traynor
Georgia Institute of Technology

traynor@cc.gatech.edu

Kevin Butler
University of Oregon

butler@cs.uoregon.edu

Abstract
Garbled circuits provide a powerful tool for jointly

evaluating functions while preserving the privacy of each
user’s inputs. While recent research has made the use
of this primitive more practical, such solutions generally
assume that participants are symmetrically provisioned
with massive computing resources. In reality, most peo-
ple on the planet only have access to the comparatively
sparse computational resources associated with their mo-
bile phones, and those willing and able to pay for ac-
cess to public cloud computing infrastructure cannot be
assured that their data will remain unexposed. We ad-
dress this problem by creating a new SFE protocol that
allows mobile devices to securely outsource the major-
ity of computation required to evaluate a garbled circuit.
Our protocol, which builds on the most efficient gar-
bled circuit evaluation techniques, includes a new out-
sourced oblivious transfer primitive that requires signifi-
cantly less bandwidth and computation than standard OT
primitives and outsourced input validation techniques
that force the cloud to prove that it is executing all pro-
tocols correctly. After showing that our extensions are
secure in the malicious model, we conduct an extensive
performance evaluation for a number of standard SFE
test applications as well as a privacy-preserving naviga-
tion application designed specifically for the mobile use-
case. Our system reduces execution time by 98.92% and
bandwidth by 99.95% for the edit distance problem of
size 128 compared to non-outsourced evaluation. These
results show that even the least capable devices are ca-
pable of evaluating some of the largest garbled circuits
generated for any platform.

1 Introduction

Secure Function Evaluation (SFE) allows two parties to
compute the result of a function without either side hav-
ing to expose their potentially sensitive inputs to the
other. While considered a generally theoretical curios-

ity even after the discovery of Yao’s garbled circuit [43],
recent advances in this space have made such computa-
tion increasingly practical. Today, functions as complex
as AES-128 and approaching one billion gates in size are
possible at reasonable throughputs, even in the presence
of a malicious adversary.

While recent research has made the constructions in
this space appreciably more performant, the majority of
related work makes a crucial assumption - that both par-
ties are symmetrically provisioned with massive comput-
ing resources. For instance, Kreuter et al. [25] rely on the
Ranger cluster at the Texas Advanced Computing Center
to compute their results using 512 cores. In reality, the
extent of a user’s computing power may be their mobile
phone, which has many orders of magnitude less compu-
tational ability. Moreover, even with access to a public
compute cloud such as Amazon EC2 or Windows Azure,
the sensitive nature of the user’s data and the history of
data leakage from cloud services [40, 42] prevent the di-
rect porting of known SFE techniques.

In this paper, we develop mechanisms for the secure
outsourcing of SFE computation from constrained de-
vices to more capable infrastructure. Our protocol main-
tains the privacy of both participant’s inputs and outputs
while significantly reducing the computation and net-
work overhead required by the mobile device for garbled
circuit evaluation. We develop a number of extensions
to allow the mobile device to check for malicious behav-
ior from the circuit generator or the cloud and a novel
Outsourced Oblivious Transfer for sending garbled input
data to the cloud. We then implement the new proto-
col on a commodity mobile device and reasonably provi-
sioned servers and demonstrate significant performance
improvements over evaluating garbled circuits directly
on the mobile device.

We make the following contributions:
• Outsourced oblivious transfer & outsourced con-

sistency checks: Instead of blindly trusting the
cloud with sensitive inputs, we develop a highly

1

290 22nd USENIX Security Symposium USENIX Association

efficient Outsourced Oblivious Transfer primitive
that allows mobile devices to securely delegate the
majority of computation associated with oblivious
transfers. We also provide mechanisms to outsource
consistency checks to prevent a malicious circuit
generator from providing corrupt garbled values.
These checks are designed in such a way that the
computational load is almost exclusively on the
cloud, but cannot be forged by a malicious or “lazy”
cloud. We demonstrate that both of our additions
are secure in the malicious model as defined by Ka-
mara et al. [21].

• Performance Analysis: Extending upon the imple-
mentation by Kreuter et al. [25], we conduct an ex-
tensive performance analysis against a number of
simple applications (e.g., edit distance) and crypto-
graphic benchmarks (e.g., AES-128). Our results
show that outsourcing SFE provides improvements
to both execution time and bandwidth overhead. For
the edit distance problem of size 128, we reduce ex-
ecution time by 98.92% and bandwidth by 99.95%
compared to direct execution without outsourcing
on the mobile device.

• Privacy Preserving Navigation App: To demon-
strate the practical need for our techniques, we de-
sign and implement an outsourced version of Dijk-
stra’s shortest path algorithm as part of a Naviga-
tion mobile app. Our app provides directions for
a Presidential motorcade without exposing its loca-
tion, destination, or known hazards that should be
avoided (but remain secret should the mobile device
be compromised). The optimized circuits generated
for this app represent the largest circuits evaluated
to date. Without our outsourcing techniques, such
an application is far too processor, memory and
bandwidth intensive for any mobile phone.

While this work is similar in function and provides
equivalent security guarantees to the Salus protocols re-
cently developed by Kamara et al. [21], our approach
is dramatically different. The Salus protocol frame-
work builds their scheme on a completely different as-
sumption, specifically, that they are outsourcing work
from low-computation devices with high communication
bandwidth. With provider-imposed bandwidth caps and
relatively slow and unreliable cellular data connections,
this is not a realistic assumption when developing solu-
tions in the mobile environment. Moreover, rather than
providing a proof-of-concept work demonstrating that
offloading computation is possible, this work seeks to
develop and thoroughly demonstrate the practical poten-
tial for evaluating large garbled circuits in a resource-
constrained mobile environment.

The remainder of this work is organized as follows:
Section 2 presents important related work and discusses

how this paper differs from Salus; Section 3 provides
cryptographic assumptions and definitions; Section 4 for-
mally describes our protocols; Section 5 provides secu-
rity discussion - we direct readers to our technical re-
port [6] for full security proofs; Section 6 shows the re-
sults of our extensive performance analysis; Section 7
presents our privacy preserving navigation application
for mobile phones; and Section 8 provides concluding
remarks.

2 Related Work

Beginning with Fairplay [32], several secure two-party
computation implementations and applications have
been developed using Yao garbled circuits [43] in the
semi-honest adversarial model [3, 15, 17, 19, 26, 28, 31,
38]. However, a malicious party using corrupted in-
puts or circuits can learn more information about the
other party’s inputs in these constructions [23]. To re-
solve these issues, new protocols have been developed to
achieve security in the malicious model, using cut-and-
choose constructions [30], input commitments [41], and
other various techniques [22,34]. To improve the perfor-
mance of these schemes in both the malicious and semi-
honest adversarial models, a number of circuit optimiza-
tion techniques have also been developed to reduce the
cost of generating and evaluating circuits [8, 11, 24, 35].
Kreuter et al. [25] combined several of these techniques
into a general garbled circuit protocol that is secure in
the malicious model and can efficiently evaluate circuits
on the order of billions of gates using parallelized server-
class machines. This SFE protocol is currently the most
efficient implementation that is fully secure in the mali-
cious model. (The dual execution construction by Huang
et al. leaks one bit of input [16].)

Garbled circuit protocols rely on oblivious transfer
schemes to exchange certain private values. While sev-
eral OT schemes of various efficiencies have been de-
veloped [1, 30, 36, 39], Ishai et al. demonstrated that any
of these schemes can be extended to reduce kc oblivi-
ous transfers to k oblivious transfers for any given con-
stant c [18]. Using this extension, exchanging potentially
large inputs to garbled circuits became much less costly
in terms of cryptographic operations and network over-
head. Even with this drastic improvement in efficiency,
oblivious transfers still tend to be a costly step in evalu-
ating garbled circuits.

Currently, the performance of garbled circuit protocols
executed directly on mobile devices has been shown to
be feasible only for small circuits in the semi-honest ad-
versarial model [5, 13]. While outsourcing general com-
putation to the cloud has been widely considered for im-
proving the efficiency of applications running on mobile
devices, the concept has yet to be widely applied to cryp-

2

USENIX Association 22nd USENIX Security Symposium 291

tographic constructions. Green et al. began exploring
this idea by outsourcing the costly decryption of ABE
ciphertexts to server-class machines while still maintain-
ing data privacy [12]. Considering the costs of exchang-
ing inputs and evaluating garbled circuits securely, an
outsourcing technique would be useful in allowing lim-
ited capability devices to execute SFE protocols. Naor
et al. [37] develop an oblivious transfer technique that
sends the chooser’s private selections to a third party,
termed a proxy. While this idea is applied to a limited
application in their work, it could be leveraged more gen-
erally into existing garbled circuit protocols. Our work
develops a novel extension to this technique to construct
a garbled circuit evaluation protocol that securely out-
sources computation to the cloud.

In work performed concurrently and independently
from our technique, Kamara et al. recently developed
two protocols for outsourcing secure multiparty compu-
tation to the cloud in their Salus system [21]. While their
work achieves similar functionality to ours, we distin-
guish our work in the following ways: first, their protocol
is constructed with the assumption that they are outsourc-
ing work from devices with low-computation but high-
bandwidth capabilities. With cellular providers impos-
ing bandwidth caps on customers and cellular data net-
works providing highly limited data transmission speed,
we construct our protocol without this assumption using
completely different cryptographic constructions. Sec-
ond, their work focuses on demonstrating outsourced
SFE as a proof-of-concept. Our work offers a rigorous
performance analysis on mobile devices, and outlines a
practical application that allows a mobile device to par-
ticipate in the evaluation of garbled circuits that are or-
ders of magnitude larger than those evaluated in the Salus
system. Finally, their protocol that is secure in the ma-
licious model requires that all parties share a secret key,
which must be generated in a secure fashion before the
protocol can be executed. Our protocol does not require
any shared information prior to running the protocol, re-
ducing the overhead of performing a multiparty fair coin
tossing protocol a priori. While our work currently con-
siders only the two-party model, by not requiring a pre-
liminary multiparty fair coin toss, expanding our proto-
col to more parties will not incur the same expense as
scaling such a protocol to a large number of participants.
To properly compare security guarantees, we apply their
security definitions in our analysis.

3 Assumptions and Definitions
To construct a secure scheme for outsourcing garbled cir-
cuit evaluation, some new assumptions must be consid-
ered in addition to the standard security measures taken
in a two-party secure computation. In this section, we
discuss the intuition and practicality of assuming a non-

colluding cloud, and we outline our extensions on stan-
dard techniques for preventing malicious behavior when
evaluating garbled circuits. Finally, we conclude the sec-
tion with formal definitions of security.

3.1 Non-collusion with the cloud

Throughout our protocol, we assume that none of the
parties involved will ever collude with the cloud. This
requirement is based in theoretical bounds on the effi-
ciency of garbled circuit evaluation and represents a re-
alistic adversarial model. The fact that theoretical limi-
tations exist when considering collusion in secure multi-
party computation has been known and studied for many
years [2, 7, 27], and other schemes considering secure
computation with multiple parties require similar restric-
tions on who and how many parties may collude while
preserving security [4, 9, 10, 20, 21]. Kamara et al. [21]
observe that if an outsourcing protocol is secure when
both the party generating the circuit and the cloud eval-
uating the circuit are malicious and colluding, this im-
plies a secure two-party scheme where one party has
sub-linear work with respect to the size of the circuit,
which is currently only possible with fully homomor-
phic encryption. However, making the assumption that
the cloud will not collude with the participating parties
makes outsourcing securely a theoretical possibility. In
reality, many cloud providers such as Amazon or Mi-
crosoft would not allow outside parties to control or af-
fect computation within their cloud system for reasons
of trust and to preserve a professional reputation. In
spite of this assumption, we cannot assume the cloud
will always be semi-honest. For example, our protocol
requires a number of consistency checks to be performed
by the cloud that ensure the participants are not behaving
maliciously. Without mechanisms to force the cloud to
make these checks, a “lazy” cloud provider could save
resources by simply returning that all checks verified
without actually performing them. Thus, our adversar-
ial model encompasses a non-colluding but potentially
malicious cloud provider that is hosting the outsourced
computation.

3.2 Attacks in the malicious setting

When running garbled circuit based secure multiparty
computation in the malicious model, a number of well-
documented attacks exist. We address here how our sys-
tem counters each.
Malicious circuit generation: In the original Yao gar-
bled circuit construction, a malicious generator can gar-
ble a circuit to evaluate a function f ′ that is not the func-
tion f agreed upon by both parties and could compromise
the security of the evaluator’s input. To counter this, we

3

292 22nd USENIX Security Symposium USENIX Association

employ an extension of the random seed technique devel-
oped by Goyal et al. [11] and implemented by Kreuter et
al. [25]. Essentially, the technique uses a cut-and-choose,
where the generator commits to a set of circuits that all
presumably compute the same function. The parties then
use a fair coin toss to select some of the circuits to be
evaluated and some that will be re-generated and hashed
by the cloud given the random seeds used to generate
them initially. The evaluating party then inspects the cir-
cuit commitments and compares them to the hash of the
regenerated circuits to verify that all the check circuits
were generated properly.

Selective failure attack: If, when the generator is send-
ing the evaluator’s garbled inputs during the oblivious
transfer, he lets the evaluator choose between a valid gar-
bled input bit and a corrupted garbled input, the evalua-
tor’s ability to complete the circuit evaluation will reveal
to the generator which input bit was used. To prevent this
attack, we use the input encoding technique from Lindell
and Pinkas [29], which lets the evaluator encode her in-
put in such a way that a selective failure of the circuit
reveals nothing about the actual input value. To prevent
the generator from swapping garbled wire values, we use
a commitment technique employed by Kreuter et al. [25].

Input consistency: Since multiple circuits are evaluated
to ensure that a majority of circuits are correct, it is pos-
sible for either party to input different inputs to differ-
ent evaluation circuits, which could reveal information
about the other party’s inputs. To keep the evaluator’s
inputs consistent, we again use the technique from Lin-
dell and Pinkas [29], which sends all garbled inputs for
every evaluation circuit in one oblivious transfer execu-
tion. To keep the generator’s inputs consistent, we use
the malleable claw-free collection construction of shelat
and Shen [41]. This technique is described in further de-
tail in Section 4.

Output consistency: When evaluating a two-output
function, we ensure that outputs of both parties are kept
private from the cloud using an extension of the tech-
nique developed by Kiraz [23]. The outputs of both par-
ties are XORed with random strings within the garbled
circuit, and the cloud uses a witness-indistinguishable
zero-knowledge proof as in the implementation by
Kreuter et al. [25]. This allows the cloud to choose a
majority output value without learning either party’s out-
put or undetectably tampering with the output. At the
same time, the witness-indistinguishable proofs prevent
either party from learning the index of the majority cir-
cuit. This prevents the generator from learning anything
by knowing which circuit evaluated to the majority out-
put value.

Phase 1
Phase 2
Phase 3

Phase 1
Phase 1

Phase 4

Bob
(generator)

Alice
(evaluator)

cloud
(outsourcing agent)

Phase 2Phase 3Phase 5 Phase 3

Phase 5

Figure 1: The complete outsourced SFE protocol.

3.3 Malleable claw-free collections
To prevent the generating party from providing differ-
ent inputs for each evaluation circuit, we implement the
malleable claw-free collections technique developed by
shelat and Shen [41]. Their construction essentially al-
lows the generating party to prove that all of the garbled
input values were generated by exactly one function in
a function pair, while the ability to find an element that
is generated by both functions implies that the genera-
tor can find a claw. It is composed of a four-tuple of
algorithms (G,D,F,R), where G is the index selection
algorithm for selecting a specific function pair, D is an
algorithm for sampling from the domain of the function
pair, F is the algorithm for evaluating the functions in the
pair (in which it should be difficult to find a claw), and R
is the “malleability” function. The function R maps ele-
ments from the domain of F to the range of F such that
for b ∈ {0,1}, any I in the range of G, and any m1,m2 in
the domain of F , we have for the function indexed by I
and b f b

I (m1 �m2) = f b
I (m1)�RI(m2), where � and � rep-

resent the group operations over the domain and range of
F . We provide full definitions of their construction in our
technical report [6].

3.4 Model and Definitions
The work of Kamara et al. [21] presents a definition
of security based on the ideal-model/real-model secu-
rity definitions common in secure multiparty computa-
tion. Because their definition formalizes the idea of a
non-colluding cloud, we apply their definitions to our
protocol for the two-party case in particular. We sum-
marize their definitions below.
Real-model execution. The protocol takes place be-
tween two parties (P1,P2) executing the protocol and a
server P3, where each of the executing parties provides
input xi, auxiliary input zi, and random coins ri and the
server provides only auxiliary input z3 and random coins
r3. In the execution, there exists some subset of indepen-
dent parties (A1, ..,Am),m ≤ 3 that are malicious adver-
saries. Each adversary corrupts one executing party and

4

USENIX Association 22nd USENIX Security Symposium 293

does not share information with other adversaries. For all
honest parties, let OUTi be its output, and for corrupted
parties let OUTi be its view of the protocol execution.
The ith partial output of a real execution is defined as:

REAL(i)(k,x;r) = {OUTj : j ∈ H}∪OUTi

where H is the set of honest parties and r is all random
coins of all players.
Ideal-model execution. In the ideal model, the setup of
participants is the same except that all parties are inter-
acting with a trusted party that evaluates the function. All
parties provide inputs xi, auxiliary input zi, and random
coins ri. If a party is semi-honest, it provides its actual
inputs to the trusted party, while if the party is malicious
(and non-colluding), it provides arbitrary input values.
In the case of the server P3, this means simply providing
its auxiliary input and random coins, as no input is pro-
vided to the function being evaluated. Once the function
is evaluated by the trusted third party, it returns the result
to the parties P1 and P2, while the server P3 does not re-
ceive the output. If a party aborts early or sends no input,
the trusted party immediately aborts. For all honest par-
ties, let OUTi be its output to the trusted party, and for
corrupted parties let OUTi be some value output by Pi.
The ith partial output of an ideal execution in the pres-
ence of some set of independent simulators is defined as:

IDEAL(i)(k,x;r) = {OUTj : j ∈ H}∪OUTi

where H is the set of honest parties and r is all random
coins of all players. In this model, the formal definition
of security is as follows:

Definition 1. A protocol securely computes a function
f if there exists a set of probabilistic polynomial-time
(PPT) simulators {Simi}i∈[3] such that for all PPT ad-
versaries (A1, ...,A3), x, z, and for all i ∈ [3]:

{REAL(i)(k,x;r)}k∈N
c
≈ {IDEAL(i)(k,x;r)}k∈N

Where S = (S1, ...,S3), Si = Simi(Ai), and r is random
and uniform.

4 Protocol

Our protocol can be divided into five phases, illustrated
in Figure 1. Given a circuit generator Bob, and an eval-
uating mobile device Alice, the protocol can be summa-
rized as follows:
• Phase 1: Bob generates a number of garbled cir-

cuits, some of which will be checked, others will be
evaluated. After Bob commits to the circuits, Alice
and Bob use a fair coin toss protocol to select which
circuits will be checked or evaluated. For the check

Inputs: Alice has a string of encoded input bits ea of
length � ·n and Bob has pairs of input values (x0, j,x1, j)
for j = 1...� ·n.

1. Setup: Alice generates random matrix T of size
� · n× t, Bob generates random string s of length
t.

2. Primitive OT: Alice and Bob execute t 1-
out-of-2 oblivious transfers with Alice inputting
(T i,T i⊕ea) and Bob inputting selection bits s (T i

denotes the ith column of the T matrix). Bob sets
the resulting columns as matrix Q.

3. Permuting the output: Alice generates random
string p of length � ·n and sends it to Bob.

4. Encrypting the output: Bob sets the en-
crypted output pairs y0, j,y1, j where yb, j = xb, j ⊕
H1(j,Q j ⊕ (b · s)) (Q j denotes the jth row of the
Q matrix).

5. Permuting the outputs: Bob permutes the en-
crypted output pairs as y0⊕p j , j,y1⊕p j , j and sends
the resulting set of pairs Y to the cloud.

6. Decrypting the output: Alice sends h = ea ⊕
p and T to the cloud. The cloud recovers z j =
yh j , j ⊕H1(j,Tj) for j = 1...� · n (Tj denotes the
jth row of the T matrix).

Figure 2: The Outsourced Oblivious Transfer protocol

circuits, Bob sends the random seeds used to gener-
ate the circuits to the cloud and the hashes of each
circuit to Alice. These are checked to ensure that
Bob has not constructed a circuit that is corrupted
or deviates from the agreed-upon function.

• Phase 2: Alice sends her inputs to Bob via an out-
sourced oblivious transfer. Bob then sends the cor-
responding garbled inputs to the cloud. This allows
the cloud to receive Alice’s garbled inputs without
Bob or the cloud ever learning her true inputs.

• Phase 3: Bob sends his garbled inputs to the cloud,
which verifies that they are consistent for each eval-
uation circuit. This prevents Bob from providing
different inputs to different evaluation circuits.

• Phase 4: The cloud evaluates the circuit given Alice
and Bob’s garbled inputs. Since the cloud only sees
garbled values during the evaluation of the circuit,
it never learns anything about either party’s input or
output. Since both output values are blinded with
one-time pads, they remain private even when the
cloud takes a majority vote.

• Phase 5: The cloud sends the encrypted output val-
ues to Alice and Bob, who are guaranteed its au-
thenticity through the use of commitments and zero-
knowledge proofs.

5

294 22nd USENIX Security Symposium USENIX Association

4.1 Participants
Our protocols reference three different entities:
Evaluator: The evaluating party, called Alice, is as-
sumed to be a mobile device that is participating in a
secure two-party computation.
Generator: The party generating the garbled circuit,
called Bob, is an application- or web- server that is the
second party participating with Alice in the secure com-
putation.
Proxy: The proxy, called cloud, is a third party that is
performing heavy computation on behalf of Alice, but is
not trusted to know her input or the function output.

4.2 Outsourced Protocol
Common inputs: a function f (x,y) that is to
be securely computed, a claw-free collection
(GCLW ,DCLW ,FCLW ,RCLW), two hash functions
H1 : {0,1}∗ → {0,1}n and H2 : {0,1}∗ → {0,1}w,
a primitive 1-out-of-2 oblivious transfer protocol, a per-
fectly hiding commitment scheme comH(key,message),
and security parameters for the number of circuits built
k, the number of primitive oblivious transfers t, and the
number of encoding bits for each of Alice’s input wires
�.
Private inputs: The generating party Bob inputs a bit
string b and a random string of bits br that is the length
of the output string. The evaluating party Alice inputs a
bit string a and a random string of bits ar that is the length
of the output string. Assume without loss of generality
that all input and output strings are of length |a|= n.
Output: The protocol outputs separate private values f a
for Alice and f b for Bob.
Phase 1: Circuit generation and checking

1. Circuit preparation: Before beginning the protocol,
both parties agree upon a circuit representation of
the function f (a,b), where the outputs of the func-
tion may be defined separately for Alice and Bob as
fA(a,b) and fB(a,b). The circuit must also meet the
following requirements:

(a) Additional XOR gates must be added such that
Bob’s output is set to f b = fB(a,b)⊕ br and
Alice’s output is set to f a = fA(a,b)⊕ar.

(b) For each of Alice’s input bits, the input wire
wi is split into � different input wires w j,i
such that wi = w1,i ⊕ w2,i ⊕ ...⊕ wl,i follow-
ing the input encoding scheme by Lindell and
Pinkas [29]. This prevents Bob from correlat-
ing a selective failure attack with any of Al-
ice’s input bit values.

2. Circuit garbling: the generating party, Bob, con-
structs k garbled circuits using a circuit garbling

technique Garble(·, ·). When given a circuit rep-
resentation C of a function and random coins
rc, Garble(C,rc) outputs a garbled circuit GC
that evaluates C. Given the circuit C and ran-
dom coins rc1...rck, Bob generates garbled circuits
Garble(C,rci) = GCi for i = 1...k. For Bob’s jth in-
put wire on the ith circuit, Bob associates the value
H2(βb, j,i) with the input value b, where βb, j,i =
FCLW (b, I,αb, j,i). For Alice’s jth input wire, Bob as-
sociates the value H2(δb, j,i) with the input value b,
where δb, j,i = FCLW (b, I,γb, j,i). All the values αb, j,i
and γb, j,i for b = {0,1}, j = 1...n, i = 1...k are se-
lected randomly from the domain of the claw-free
pair using D.

3. Circuit commitment: Bob generates commitments
for all circuits by hashing H1(GCi) = HCi for i =
1...k. Bob sends these hashes to Alice. In addition,
for every output wire wb, j,i for b = {0,1}, j = 1...n
and i = 1...k, Bob generates commitments CO j,i =
comH(ck j,i,(H2(w0, j,i),H2(w1, j,i))) using commit-
ment keys ck j,i for j = 1...n and i = 1...k and sends
them to both Alice and the cloud.

4. Input label commitment: Bob commits to Alice’s
garbled input values as follows: for each gener-
ated circuit i = 1...k and each of Alice’s input wires
j = 1...� ·n, Bob creates a pair of commitment keys
ik0, j,i, ik1, j,i and commits to the input wire label
seeds δ0, j,i and δ1, j,i as CIb, j,i = comH(ikb, j,i,δb, j,i).
For each of Alice’s input wires j = 1...� ·n, Bob ran-
domly permutes the commitments within the pair
CI0, j,i,CI1, j,i across every i = 1...k. This prevents
the cloud from correlating the location of the com-
mitment with Alice’s input value during the OOT
phase.

5. Cut and choose: Alice and Bob then run a fair coin
toss protocol to agree on a set of circuits that will
be evaluated, while the remaining circuits will be
checked. The coin toss generates a set of indices
Chk ⊂ {1, ...,k} such that |Chk| = 3

5 k, as in shelat
and Shen’s cut-and-choose protocol [41]. The re-
maining indices are placed in the set Evl for eval-
uation, where |Evl| = e = 2

5 k. For every i ∈ Chk,
Bob sends rci and the values [αb,1,i, ...,αb,n,i] and
[γb,1,i, ...,γb,�·n,i] for b = {0,1} to the cloud. Bob
also sends all commitment keys ck j,i for j = 1...n
and i ∈ Chk to the cloud. Finally, Bob sends the
commitment keys ikb, j,i for b = {0,1}, i ∈Chk, and
j = 1...� · n to the cloud. The cloud then gener-
ates Garble(C,rci) = GC′

i for i ∈ Chk. For each
i ∈ Chk, the cloud then hashes each check circuit
H1(GC′

i) = HC′
i and checks that:

6

USENIX Association 22nd USENIX Security Symposium 295

• each commitment CO j,i for j = 1...n is well
formed

• the value H2(βb, j,i) is associated with the input
value b for Bob’s jth input wire

• the value H2(δb, j,i) is associated with the input
value b for Alice’s jth input wire

• for every bit value b and input wire j, the val-
ues committed in CIb, j,i are correct

If any of these checks fail, the cloud immediately
aborts. Otherwise, it sends the hash values HC′

i for
i ∈ Chk to Alice. For every i ∈ Chk, Alice checks
if HCi = HC′

i . If any of the hash comparisons fail,
Alice aborts.

Phase 2: Outsourced Oblivious Transfer (OOT)

1. Input encoding: For every bit j = 1...n in her input
a, Alice sets encoded input ea j as a random string
of length � such that ea1, j ⊕ ea2, j ⊕ ...⊕ eal, j = a j
for each bit in ea j. This new encoded input string
ea is of length � ·n.

2. OT setup: Alice initializes an � ·n× t matrix T with
uniformly random bit values, while Bob initializes
a random bit vector s of length t. See Figure 2 for a
more concise view.

3. Primitive OT operations: With Alice as the sender
and Bob as the chooser, the parties initiate t 1-out-
of-2 oblivious transfers. Alice’s input to the ith in-
stance of the OT is the pair (T i,T i ⊕ ea) where T i

is the ith column of T , while Bob’s input is the ith

selection bit from the vector s. Bob organizes the t
selected columns as a new matrix Q.

4. Permuting the selections: Alice generates a random
bit string p of length � ·n, which she sends to Bob.

5. Encrypting the commitment keys: Bob gen-
erates a matrix of keys that will open the
committed garbled input values and proofs of
consistency as follows: for Alice’s jth in-
put bit, Bob creates a pair (x0, j,x1, j), where
xb, j = [ikb, j,Evl1 , ikb, j,Evl2 , ..., ikb, j,Evle]||[γb j , j,Evl2 �

(γb j , j,Evl1)
−1,γb j , j,Evl3 � (γb j , j,Evl1)

−1, ...,γb j , j,Evle �

(γb j , j,Evl1)
−1] and Evli denotes the ith index in the

set of evaluation circuits. For j = 1...� ·n, Bob pre-
pares (y0, j,y1, j) where yb, j = xb, j ⊕H1(j,Q j ⊕ (b ·
s)). Here, Q j denotes the jth row in the Q matrix.
Bob permutes the entries using Alice’s permutation
vector as (y0⊕p j , j,y1⊕p j , j). Bob sends this permuted
set of ciphertexts Y to the cloud.

6. Receiving Alice’s garbled inputs: Alice blinds her
input as h = ea ⊕ p and sends h and T to the
cloud. The cloud recovers the commitment keys

and consistency proofs xb, j = yh j , j ⊕H1(j,Tj) for
j = 1...� · n. Here, h j denotes the jth bit of the
string h and Tj denotes the jth row in the T ma-
trix. Since for every j ∈ Evl, the cloud only has
the commitment key for the b garbled value (not the
b⊕1 garbled value), the cloud can correctly decom-
mit only the garbled labels corresponding to Alice’s
input bits.

7. Verifying consistency across Alice’s in-
puts: Given the decommitted values
[δb,1,i, ...,δb,�·n,i] and the modified pre im-
ages [γb j , j,Evl2 � (γb j , j,Evl1)

−1,γb j , j,Evl3 �

(γb j , j,Evl1)
−1, ...,γb j , j,Evle � (γb j , j,Evl1)

−1], the
cloud checks that:

δb j , j,i = δb j , j,Evl1 �RCLW (I,γb j , j,i � (γb j , j,Evl1)
−1)

for i = 2...e. If any of these checks fails, the cloud
aborts the protocol.

Phase 3: Generator input consistency check

1. Delivering inputs: Bob delivers the hash
seeds for each of his garbled input values
[βb1,1,i,βb2,2,i, ...,βbn,n,i] for every evaluation
circuit i ∈ Evl to the cloud, which forwards a copy
of these values to Alice. Bob then proves the
consistency of his inputs by sending the modified
preimages [αb j , j,Evl2 � (αb j , j,Evl1)

−1,αb j , j,Evl3 �

(αb j , j,Evl1)
−1, ...,αb j , j,Evle � (αb j , j,Evl1)

−1] such that
FCLW (bi, I,αbi, j,i) = βbi, j,i for j = 1...n and i ∈ Evl
such that GCi was generated with the claw-free
function pair indexed at I.

2. Check consistency: Alice then checks that all the
hash seeds were generated by the same function by
checking if:

βb j , j,i = βb j , j,Evl1 �RCLW (I,αb j , j,i � (αb j , j,Evl1)
−1)

for i = 2...e. If any of these checks fails, Alice
aborts the protocol.

Phase 4: Circuit evaluation

1. Evaluating the circuit:For each evaluation circuit,
the cloud evaluates GCi(gai,gbi) for i ∈ Evl in the
pipelined manner described by Kreuter et al. in
[25]. Each circuit produces two garbled output
strings, (g f ai,g f bi).

2. Checking the evaluation circuits: Once these output
have been computed, the cloud hashes each evalua-
tion circuit as H1(GCi) = HC′

i for i ∈ Evl and sends
these hash values to Alice. Alice checks that for ev-
ery i,HCi =HC′

i . If any of these checks do not pass,
Alice aborts the protocol.

7

296 22nd USENIX Security Symposium USENIX Association

Phase 5: Output check and delivery

1. Committing the outputs:The cloud then generates
random commitment keys kai,kbi and commits the
output values to their respective parties according to
the commitment scheme defined by Kiraz [23], gen-
erating CA j,i = commit(ka j,i,g f a j,i) and CB j,i =
commit(kb j,i,g f b j,i) for j = 1...n and i = 1...e. The
cloud then sends all CA to Alice and CB to Bob.

2. Selection of majority output: Bob opens the com-
mitments CO j,i for j = 1...n and i = 1...e for both
Alice and the Cloud. These commitments contain
the mappings from the hash of each garbled output
wire H2(wb, j,i) to real output values b j,i for j = 1...n
and i = 1...e. The cloud selects a circuit index ma j
such that the output of that circuit matches the ma-
jority of outputs for both Alice and Bob. That is,
f ama j = f ai and f bma j = f bi for i in a set of indices
IND that is of size |IND|> e

2

3. Proof of output consistency: Using the OR-proofs
as described by Kiraz [23], the cloud proves to
Bob that CB contains valid garbled output bit val-
ues based on the de-committed output values from
the previous step. The cloud then performs the same
proof to Alice for her committed values CA. Note
that these proofs guarantee the output was generated
by one of the circuits, but the value ma j remains
hidden from both Alice and Bob.

4. Output release: The cloud then decommits g f ama j
to Alice and g f bma j to Bob. Given these garbled
outputs and the bit values corresponding to the hash
of each output wire, Alice recovers her output string
f a, and Bob recovers his output string f b.

5. Output decryption: Alice recovers her output
fA(a,b) = f a⊕ ar, while Bob recovers fB(a,b) =
f b⊕br.

5 Security Guarantees

In this section, we provide a summary of the security
mechanisms used in our protocol and an informal se-
curity discussion of our new outsourced oblivious trans-
fer primitive. Due to space limitations, we provide fur-
ther discussion and proofs of security in our technical
report [6].

Recall from Section 3 that there are generally four se-
curity concerns when evaluating garbled circuits in the
malicious setting. To solve the problem of malicious cir-
cuit generation, we apply the random seed check vari-
ety of cut-&-choose developed by Goyal et al. [11]. To

solve the problem of selective failure attacks, we em-
ploy the input encoding technique developed by Lin-
dell and Pinkas [29]. To prevent an adversary from us-
ing inconsistent inputs across evaluation circuits, we em-
ploy the witness-indistinguishable proofs from shelat and
Shen [41]. Finally, to ensure the majority output value
is selected and not tampered with, we use the XOR-
and-prove technique from Kiraz [23] as implemented by
Kreuter et al. [25]. In combination with the standard
semi-honest security guarantees of Yao garbled circuits,
these security extensions secure our scheme in the mali-
cious security model.
Outsourced Oblivious Transfer: Our outsourced obliv-
ious transfer is an extension of a technique developed by
Naor et al. [37] that allows the chooser to select entries
that are forwarded to a third party rather than returned
to the chooser. By combining their concept of a proxy
oblivious transfer with the semi-honest OT extension by
Ishai et al. [18], our outsourced oblivious transfer pro-
vides a secure OT in the malicious model. We achieve
this result for four reasons:

1. First, since Alice never sees the outputs of the OT
protocol, she cannot learn anything about the gar-
bled values held by the generator. This saves us
from having to implement Ishai’s extension to pre-
vent the chooser from behaving maliciously.

2. Since the cloud sees only random garbled values
and Alice’s input blinded by a one-time pad, the
cloud learns nothing about Alice’s true inputs.

3. Since Bob’s view of the protocol is almost identical
to his view in Ishai’s standard extension, the same
security guarantees hold (i.e., security against a ma-
licious sender).

4. Finally, if Alice does behave maliciously and uses
inconsistent inputs to the primitive OT phase, there
is a negligible probability that those values will hash
to the correct one-time pad keys for recovering ei-
ther commitment key, which will prevent the cloud
from de-committing the garbled input values.

It is important to note that this particular application of
the OOT allows for this efficiency gain since the evalua-
tion of the garbled circuit will fail if Alice behaves ma-
liciously. By applying the maliciously secure extension
by Ishai et al. [18], this primitive could be applied gen-
erally as an oblivious transfer primitive that is secure in
the malicious model. Further discussion and analysis of
this general application is outside the scope of this work.

We provide the following security theorem here,
which gives security guarantees identical to the Salus
protocol by Kamara et al. [21]. However, we use dif-
ferent constructions and require a completely different
proof, which is available in our technical report [6].

Theorem 1. The outsourced two-party SFE protocol se-
curely computes a function f (a,b) in the following two

8

USENIX Association 22nd USENIX Security Symposium 297

corruption scenarios: (1)The cloud is malicious and
non-cooperative with respect to the rest of the parties,
while all other parties are semi-honest, (2)All but one
party is malicious, while the cloud is semi-honest.

6 Performance Analysis

We now characterize how garbled circuits perform in the
constrained-mobile environment with and without out-
sourcing.1 Two of the most important constraints for
mobile devices are computation and bandwidth, and we
show that order of magnitude improvements for both fac-
tors are possible with outsourced evaluation. We begin
by describing our implementation framework and testbed
before discussing results in detail.

6.1 Framework and Testbed

Our framework is based on the system designed by
Kreuter et al. [25], hereafter referred to as KSS for
brevity. We implemented the outsourced protocol and
performed modifications to allow for the use of the
mobile device in the computation. Notably, KSS uses
MPI [33] for communication between the multiple nodes
of the multi-core machines relied on for circuit evalu-
ation. Our solution replaces MPI calls on the mobile
device with sockets that communicate directly with the
Generator and Proxy. To provide a consistent compari-
son, we revised the KSS codebase to allow for direct eval-
uation between the mobile device (the Evaluator) and the
cloud-based Generator.2

Our deployment platform consists of two Dell R610
servers, each containing dual 6-core Xeon processors
with 32 GB of RAM and 300 GB 10K RPM hard drives,
running the Linux 3.4 kernel and connected as a VLAN
on an internal 1 Gbps switch. These machines perform
the roles of the Generator and Proxy, respectively, as de-
scribed in Section 4.1. The mobile device acts as the
Evaluator. We use a Samsung Galaxy Nexus phone with
a 1.2 GHz dual-core ARM Cortex-A9 processor and 1
GB of RAM, running the Android 4.0 “Ice Cream Sand-
wich” operating system. We connect an Apple Airport
Express wireless access point to the switch attaching the
servers, The Galaxy Nexus communicates to the Airport
Express over an 802.11n 54Mbps WiFi connection in
an isolated environment to minimize co-channel interfer-
ence. All tests are run 10 times with error bars on figures
representing 95% confidence intervals.

1We contacted the authors of the Salus protocol [21] in an attempt
to acquire their framework to compare the performance of their scheme
with ours, but they were unable to release their code.

2The full technical report [6] describes a comprehensive list of mod-
ifications and practical improvements made to KSS, including fixes that
were added back into the codebase of KSS by the authors. We thank
those authors for their assistance.

 100

 1000

 10000

 100000

 1e+06

ED2 ED4 ED8 ED16 ED32 ED64 ED128

Ti
m

e
(m

s)

Program Size

Outsourced
Non-Outsourced

Figure 3: Execution time for the Edit Distance program
of varying input sizes, with 2 circuits evaluated.

We measured both the total execution time of the pro-
grams and microbenchmarks for each program. All re-
sults are from the phone’s standpoint. We do not mea-
sure the time the programs take to compile as we used
the standard compiler from Kreuter et al. For our mi-
crobenchmarks, the circuit garbling and evaluation pair
is referred to as the ‘evaluation’.

6.2 Execution Time

Our tests evaluated the following problems:
Millionaires: This problem models the comparison of
two parties comparing their net worth to determine who
has more money without disclosing the actual values. We
perform the test on input values ranging in size from 4 to
8192 bits.
Edit (Levenshtein) Distance: This is a string compari-
son algorithm that compares the number of modifications
required to covert one string into another. We performed
the comparison based on the circuit generated by Jha et
al. [19] for strings sized between 4 and 128 bytes.
Set Intersection: This problem matches elements be-
tween the private sets of two parties without learning
anything beyond the intersecting elements. We base our
implementation on the SCS-WN protocol proposed by
Huang et al. [14], and evaluate for sets of size 2 to 128.
AES: We compute AES with a 128-bit key length, based
on a circuit evaluated by Kreuter et al. [25].

Figure 3 shows the result of the edit distance compu-
tation for input sizes of 2 to 128 with two circuits evalu-
ated. This comparison represents worst-case operation
due to the cost of setup for a small number of small
circuits—with input size 2, the circuit is only 122 gates in
size. For larger input sizes, however, outsourced compu-
tation becomes significantly faster. Note that the graph
is logarithmic such that by the time strings of size 32
are evaluated, the outsourced execution is over 6 times

9

298 22nd USENIX Security Symposium USENIX Association

OUT OUT OUT

OUT

OUT

OUT

OUT

 NON
 NON

 NON

 NON

 NON

 NON

 NON

Evaluation
Checks

 100

 1000

 10000

 100000

 1e+06

ED2 ED4 ED8 ED16 ED32 ED64 ED128

Ti
m

e
(m

s)

Progam

OT

Figure 4: Execution time for significant stages of garbled
circuit computation for outsourced and non-outsourced
evaluation. The Edit Distance program is evaluated with
variable input sizes for the two-circuit case.

faster than non-outsourced execution, while for strings of
size 128 (comprising over 3.4 million gates), outsourced
computation is over 16 times faster.

The reason for this becomes apparent when we exam-
ine Figure 4. There are three primary operations that
occur during the SFE transaction: the oblivious transfer
(OT) of participant inputs, the circuit commit (including
the circuit consistency check), and the circuit generation
and evaluation pair. As shown in the figure, the OT phase
takes 292 ms for input size 2, but takes 467 ms for input
size 128. By contrast, in the non-outsourced execution,
the OT phase takes 307 ms for input size 2, but increases
to 1860 ms for input size 128. The overwhelming fac-
tor, however, is the circuit evaluation phase. It increases
from 34 ms (input size 2) to 7320 ms (input size 128)
for the outsourced evaluation, a 215 factor increase. For
non-outsourced execution however, this phase increases
from 108 ms (input size 2) to 98800 ms (input size 128),
a factor of 914 increase.

6.3 Evaluating Multiple Circuits

The security parameter for the garbled circuit check is
2−0.32k [25], where k is the number of generated cir-
cuits. To ensure a sufficiently low probability (2−80) of
evaluating a corrupt circuit, 256 circuits must be eval-
uated. However, there are increasing execution costs
as increasing numbers of circuits are generated. Fig-
ure 5 shows the execution time of the Edit Distance
problem of size 32 with between 2 and 256 circuits be-
ing evaluated. In the outsourced scheme, costs rise as
the number of circuits evaluated increases. Linear re-
gression analysis shows we can model execution time
T as a function of the number of evaluated circuits k
with the equation T = 243.2k+ 334.6 ms, with a coef-

 100

 1000

 10000

 100000

 1e+06

2 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Circuits Evaluated

Outsourced
Non-Outsourced

Figure 5: Execution time for the Edit Distance problem
of size 32, with between 2 and 256 circuits evaluated. In
the non-outsourced evaluation scheme, the mobile phone
runs out of memory evaluating 256 circuits.

ficient of determination R2 of 0.9971. However, note
that in the non-outsourced scheme, execution time in-
creases over 10 times as quickly compared to outsourced
evaluation. Regression analysis shows execution time
T = 5435.7k + 961 ms, with R2 = 0.9998. Because in
this latter case, the mobile device needs to perform all
computation locally as well as transmit all circuit data
to the remote parties, these costs increase rapidly. Fig-
ure 6 provides more detail about each phase of execution.
Note that the OT costs are similar between outsourced
and non-outsourced execution for this circuit size, but
that the costs of consistency checks and evaluation vastly
increase execution time for non-outsourced execution.

Note as well that in the non-outsourced scheme, there
are no reported values for 256 circuits, as the Galaxy
Nexus phone ran out of memory before the execution
completed. We observe that a single process on the
phone is capable of allocating 512 MB of RAM before
the phone would report an out of memory error, provid-
ing insight into how much intermediate state is required
for non-outsourced evaluation. Thus, to handle circuits
of any meaningful size with enough check circuits for
a strong security parameter, the only way to be able to
perform these operations is through outsourcing.

Table 1 presents the execution time of a representative
subset of circuits that we evaluated. It spans circuits from
small to large input size, and from 8 circuits evaluated to
the 256 circuits required for a 2−80 security parameter.
Note that in many cases it is impossible to evaluate the
non-outsourced computation because of the mobile de-
vice’s inability to store sufficient amounts of state. Note
as well that particularly with complex circuits such as set
intersection, even when the non-outsourced evaluation is
capable of returning an answer, it can require orders of

10

USENIX Association 22nd USENIX Security Symposium 299

8 Circuits 32 Circuits 128 Circuits 256 Circuits
Program Outsourced KSS Outsourced KSS Outsourced KSS Outsourced KSS

Millionaires 128 2150.0 ± 1% 6130.0 ± 0.6% 8210.0 ± 3% 23080.0 ± 0.6% 38100.0 ± 7% 91020.0 ± 0.8% 75700.0 ± 1% 180800.0 ± 0.5%
Millionaires 1024 4670.0 ± 6% 46290.0 ± 0.4% 17800.0 ± 1% 180500.0 ± 0.3% 75290.0 ± 1% 744500.0 ± 0.7% 151000.0 ± 1% 1507000.0 ± 0.5%
Millionaires 8192 17280.0 ± 0.9% 368800.0 ± 0.4% 76980.0 ± 0.5% 1519000.0 ± 0.4% 351300.0 ± 0.7% - 880000.0 ± 20% -
Edit Distance 2 1268.0 ± 0.9% 794.0 ± 1% 4060.0 ± 1% 2125.0 ± 0.7% 19200.0 ± 2% 7476.0 ± 0.5% 42840.0 ± 0.4% 14600.0 ± 0.8%
Edit Distance 32 2860.0 ± 3% 44610.0 ± 0.7% 7470.0 ± 5% 175600.0 ± 0.5% 30500.0 ± 3% 699000.0 ± 2% 63600.0 ± 1% -

Edit Distance 128 12800.0 ± 2% 702400.0 ± 0.5% 30300.0 ± 2% 2805000.0 ± 0.8% 106200.0 ± 0.6% - 213400.0 ± 0.3% -
Set Intersection 2 1598.0 ± 0.8% 1856.0 ± 0.9% 5720.0 ± 0.7% 6335.0 ± 0.4% 26100.0 ± 2% 24420.0 ± 0.6% 56350.0 ± 0.8% 48330.0 ± 0.6%
Set Intersection 32 5200.0 ± 10% 96560.0 ± 0.6% 13800.0 ± 1% 400800.0 ± 0.6% 59400.0 ± 1% - 125300.0 ± 0.9% -
Set Intersection 128 24300.0 ± 2% 1398000.0 ± 0.4% 55400.0 ± 3% 5712000.0 ± 0.4% 1998000.0 ± 0.5% - 395200.0 ± 0.8% -

AES-128 2450.0 ± 2% 15040.0 ± 0.7% 9090.0 ± 5% 58920.0 ± 0.5% 39000.0 ± 2% 276200.0 ± 0.6% 81900.0 ± 1% 577900.0 ± 0.5%

Table 1: Execution time (in ms) of outsourced vs non-outsourced (KSS) evaluation for a subset of circuits. Results
with a dash indicate evaluation that the phone was incapable of performing.

OUT OUT
OUT

OUT

OUT

OUT

OUT

OUT

 NON

 NON

 NON

 NON

 NON

 NON

 NONEvaluation
Checks

 100

 1000

 10000

 100000

 1e+06

2 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Circuits Evaluated

OT

Figure 6: Microbenchmarks of execution time for Edit
Distance with input size 32, evaluating from 2 to 256
circuits. Note that the y-axis is log-scale; consequently,
the vast majority of execution time is in the check and
evaluation phases for non-outsourced evaluation.

magnitude more time than with outsourced evaluation.
For example, evaluating the set intersection problem with
128 inputs over 32 circuits requires just over 55 seconds
for outsourced evaluation but over an hour and a half
with the non-outsourced KSS execution scheme. Out-
sourced evaluation represents a time savings of 98.92%.
For space concerns, we have omitted certain values; full
results can be found in our technical report [6].

Multicore Circuit Evaluation We briefly note the ef-
fects of multicore servers for circuit evaluation. The
servers in our evaluation each contain dual 6-core CPUs,
providing 12 total cores of computation. The compu-
tation process is largely CPU-bound: while circuits on
the servers are being evaluated, each core was reporting
approximately 100% utilization. This is evidenced by
regression analysis when evaluating between 2 and 12
circuit copies; we find that execution time T = 162.6k+
1614.6 ms, where k is the number of circuits evaluated,
with a coefficient of determination R2 of 0.9903. As
the number of circuits to be evaluated increases beyond
the number of available cores, the incremental costs of

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

ED2 ED4 ED8 ED16 ED32 ED64 ED128

Ba
nd

w
id

th
 (b

yt
es

)

Program Size

Outsourced
Non-Outsourced

Figure 7: Bandwidth measurements from the phone to
remote parties for the Edit Distance problem with vary-
ing input sizes, executing two circuits.

adding new circuits becomes higher; in our observation
of execution time for 12 to 256 circuits, our regression
analysis provided the equation T = 247.4k− 410.6 ms,
with R2 = 0.998. This demonstrates that evaluation of
large numbers of circuits is optimal when every evalu-
ated circuit can be provided with a dedicated core.

The results above show that as many-way servers are
deployed in the cloud, it becomes easier to provide op-
timal efficiency computing outsourced circuits. A 256-
core machine would be able to evaluate 256 circuits in
parallel to provide the accepted standard 2−80 security
parameter. Depending on the computation performed,
there can be a trade-off between a slightly weaker se-
curity parameter and maintaining optimal evaluation on
servers with lower degrees of parallelism. In our testbed,
optimal evaluation with 12 cores provides a security pa-
rameter of 2−3.84. Clearly more cores would provide
stronger security while keeping execution times propor-
tional to our results. A reasonable trade-off might be 32
circuits, as 32-core servers are readily available. Evalu-
ating 32 circuits provides a security parameter of 2−10.2,
equivalent to the adversary having less than a 1

512 chance
of causing the evaluator to compute over a majority of
corrupt circuits. Stronger security guarantees on less par-

11

300 22nd USENIX Security Symposium USENIX Association

32 Circuits Factor
Program Outsourced KSS Improvement

Millionaires 128 336749 1445369 4.29X
Millionaires 1024 2280333 11492665 5.04X
Millionaires 8192 17794637 91871033 5.16X
Edit Distance 2 56165 117245 2.09X
Edit Distance 32 134257 41889641 312.01X

Edit Distance 128 350721 682955633 1947.29X
Set Intersection 2 117798 519670 4.41X

Set Intersection 32 1173844 84841300 72.28X
Set Intersection 128 4490932 1316437588 293.13X

AES-128 367364 9964576 27.12X

Table 2: Total Bandwidth (Bytes) transmitted to and
from the phone during execution.

allel machines can be achieved at the cost of increasing
execution time, as individual cores will not be dedicated
to circuit evaluation. However, if a 256-core system is
available, it will provide optimal results for achieving a
2−80 security parameter.

6.4 Bandwidth
For a mobile device, the costs of transmitting data are in-
trinsically linked to power consumption, as excess data
transmission and reception reduces battery life. Band-
width is thus a critical resource constraint. In addition,
because of potentially uncertain communication chan-
nels, transmitting an excess of information can be a rate-
limiting factor for circuit evaluation. Figure 7 shows
the bandwidth measurement between the phone and re-
mote parties for the edit distance problem with 2 circuits.
When we compared execution time for this problem in
Figure 3, we found that trivially small circuits could ex-
ecute in less time without outsourcing. Note, however,
that there are no cases where the non-outsourced scheme
consumes less bandwidth than with outsourcing.

This is a result of the significant improvements gar-
nered by using our outsourced oblivious transfer (OOT)
construction described in Section 4. Recall that with the
OOT protocol, the mobile device sends inputs for eval-
uation to the generator; however, after this occurs, the
majority of computation until the final output verifica-
tion from the cloud occurs between the generator and
the cloud, with the mobile device only performing mi-
nor consistency checks. Figure 7 shows that the amount
of data transferred increases only nominally compared
to the non-outsourced protocol. Apart from the ini-
tial set of inputs transmitted to the generator, data de-
mands are largely constant. This is further reflected
in Table 2, which shows the vast bandwidth savings
over the 32-circuit evaluation of our representative pro-
grams. In particular, for large, complex circuits, the sav-
ings are vast: outsourced AES-128 requires 96.3% less
bandwidth, while set intersection of size 128 requires
99.7% less bandwidth than in the non-outsourced evalua-

tion. Remarkably, the edit distance 128 problem requires
99.95%, over 1900 times less bandwidth, for outsourced
execution. The full table is in our technical report [6].

The takeaway from our evaluation is simple: outsourc-
ing the computation allows for faster and larger circuit
evaluation than previously possible on a mobile device.
Specifically, outsourcing allows users to evaluate garbled
circuits with adequate malicious model security (256 cir-
cuits), which was previously not possible on mobile de-
vices. In addition, outsourcing is by far the most efficient
option if the bandwidth use of the mobile devices is a
principle concern.

7 Evaluating Large Circuits

Beyond the standard benchmarks for comparing garbled
circuit execution schemes, we aimed to provide com-
pelling applications that exploit the mobile platform with
large circuits that would be used in real-world scenar-
ios. We discuss public-key cryptography and the Dijk-
stra shortest path algorithm, then describe how the latter
can be used to implement a privacy-preserving naviga-
tion application for mobile phones.

7.1 Large Circuit Benchmarks
Table 3 shows the execution time required for a blinded
RSA circuit of input size 128. For these tests we used
a more powerful server with 64 cores and 1 Terabyte
of memory. Our testbed is able to give dedicated CPUs
when running 32 circuits in parallel. Each circuit would
have 1 core for the generation and 1 core for the evalu-
ation. As described in Section 6, larger testbeds capable
of executing 128 or 256 cores in parallel would be able to
provide similar results for executing the 256 circuits nec-
essary for a 2−80 security parameter as they could evalu-
ate the added circuits in parallel. The main difference in
execution time would come from the multiple OTs from
the mobile device to the outsourced proxy. The RSA cir-
cuit has been previously evaluated with KSS, but never
from the standpoint of a mobile device.

We only report the outsourced execution results, as the
circuits are far too large to evaluate directly on the phone.
As with the larger circuits described in Section 6, the
phone runs out of memory from merely trying to store
a representation of the circuit. Prior to optimization, the
blinded RSA circuit is 192,537,834 gates and afterward,
comprises 116,083,727 gates, or 774 MB in size.

The implementation of Dijkstra’s shortest-path algo-
rithm results in very large circuits. As shown in Table 3,
the pre-optimized size of the shortest path circuit for
20 vertices is 20,288,444 gates and after optimization
is 1,653,542 gates. The 100-node graph is even larger,
with 168,422,382 gates post optimization, 1124 MB in
size. This final example is among the largest evaluated

12

USENIX Association 22nd USENIX Security Symposium 301

32 Circuits Time (ms) 64 Circuits (ms) 128 Circuits (ms) Optimized Gates Unoptimized Gates Size (MB)
RSA128 505000.0 ± 2% 734000.0 ± 4% 1420000.0 ± 1% 116,083,727 192,537,834 774

Dijkstra20 25800.0 ± 2% 49400.0 ± 1% 106000.0 ± 1% 1,653,542 20,288,444 11
Dijkstra50 135000.0 ± 1% 197000.0 ± 3% 389000.0 ± 2% 22,109,732 301,846,263 147

Dijkstra100 892000.0 ± 2% 1300000.0 ± 2% 2560000.0 ± 1% 168,422,382 2,376,377,302 1124

Table 3: Execution time for evaluating a 128-bit blinded RSA circuit and Dijkstra shortest path solvers over graphs
with 20, 50, and 100 vertices. All numbers are for outsourced evaluation, as the circuits are too large to be computed
without outsourcing to a proxy.

(a) 20 identified intersections. (b) 50 identified intersections. (c) 100 identified intersections.

Figure 8: Map of potential presidential motorcade routes through Washington, DC. As the circuit size increases, a
larger area can be represented at a finer granularity.

garbled circuits to date. While it may be possible for
existing protocols to evaluate circuits of similar size, it
is significant that we are evaluating comparably massive
circuits from a resource-constrained mobile device.

7.2 Privacy-Preserving Navigation

Mapping and navigation are some of the most popular
uses of a smartphone. Consider how directions may be
given using a mobile device and an application such as
Google Maps, without revealing the user’s current loca-
tion, their ultimate destination, or the route that they are
following. That is, the navigation server should remain
oblivious of these details to ensure their mutual privacy
and to prevent giving away potentially sensitive details if
the phone is compromised. Specifically, consider plan-
ning of the motorcade route for the recent Presidential
inauguration. In this case, the route is generally known
in advance but is potentially subject to change if sudden
threats emerge. A field agent along the route wants to re-
ceive directions without providing the navigation service
any additional details, and without sensitive information
about the route loaded to the phone. Moreover, because
the threats may be classified, the navigation service does
not want the holder of the phone to be given this infor-
mation directly. In our example, the user of the phone is
trying to determine the shortest path.

To model this scenario, we overlay a graph topology
on a map of downtown Washington D.C., encoding in-
tersections as vertices. Edge weights are a function of
their distance and heuristics such as potential risks along
a graph edge. Figure 8 shows graphs generated based
on vertices of 20, 50, and 100 nodes, respectively. Note
that the 100-node graph (Figure 8c) encompasses a larger
area and provides finer-grained resolution of individual

intersections than the 20-node graph (Figure 8a).

There is a trade-off between detail and execution time,
however; as shown in Table 3, a 20-vertex graph can be
evaluated in under 26 seconds, while a 100-vertex graph
requires almost 15 minutes with 32 circuits in our 64-
core server testbed. The 64 circuit evaluation requires
more time: almost 50 seconds for the 20-vertex graph,
and almost 22 minutes for a 100-vertex graph. We an-
ticipate that based on the role a particular agent might
have on a route, they will be able to generate a route that
covers their particular geographical jurisdiction and thus
have an appropriately sized route, with only certain users
requiring the highest-resolution output. Additionally, as
described in Section 6.3, servers with more parallel cores
can simultaneously evaluate more circuits, giving faster
results for the 64 circuit evaluation.

Figure 9 reflects two routes. The first, overlaid with a
dashed blue line, is the shortest path under optimal con-
ditions that is output by our directions service, based on
origin and destination points close to the historical start
and end points of the past six presidential inaugural mo-
torcades. Now consider that incidents have happened
along the route, shown in the figure as a car icon in a
hazard zone inside a red circle. The agent recalculates
the optimal route, which has been updated by the navi-
gation service to assign severe penalties to those corre-
sponding graph edges. The updated route returned by
the navigation service is shown in the figure as a path
with a dotted purple line. In the 50-vertex graph in Fig-
ure 8, the updated directions would be available in just
over 135 seconds for 32-circuit evaluation, and 196 and
a half seconds for 64-circuit evaluation.

13

302 22nd USENIX Security Symposium USENIX Association

START
POINT

END
POINT

Optimal Route

Modified Route

Figure 9: Motorcade route with hazards along the route. The dashed blue line represents the optimal route, while the
dotted violet line represents the modified route that takes hazards into account.

8 Conclusion

While garbled circuits offer a powerful tool for secure
function evaluation, they typically assume participants
with massive computing resources. Our work solves
this problem by presenting a protocol for outsourcing
garbled circuit evaluation from a resource-constrained
mobile device to a cloud provider in the malicious
setting. By extending existing garbled circuit evaluation
techniques, our protocol significantly reduces both com-
putational and network overhead on the mobile device
while still maintaining the necessary checks for mali-
cious or lazy behavior from all parties. Our outsourced
oblivious transfer construction significantly reduces the
communication load on the mobile device and can easily
accommodate more efficient OT primitives as they are
developed. The performance evaluation of our protocol
shows dramatic decreases in required computation and
bandwidth. For the edit distance problem of size 128
with 32 circuits, computation is reduced by 98.92% and
bandwidth overhead reduced by 99.95% compared to
non-outsourced execution. These savings are illustrated
in our privacy-preserving navigation application, which
allows a mobile device to efficiently evaluate a massive
garbled circuit securely through outsourcing. These
results demonstrate that the recent improvements in
garbled circuit efficiency can be applied in practical
privacy-preserving mobile applications on even the most
resource-constrained devices.

Acknowledgments This material is based on research
sponsored by DARPA under agreement number FA8750-
11-2-0211. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of DARPA or the U.S. Government.
We would like to thank Benjamin Kreuter, abhi shelat,
and Chih-hao Shen for working with us on their garbled
circuit compiler and evaluation framework; Chris Peikert
for providing helpful feedback on our proofs of security;
Thomas DuBuisson and Galois for their assistance in the
performance evaluation; and Ian Goldberg for his guid-
ance during the shepherding process.

References

[1] M. Bellare and S. Micali. Non-interactive obliv-
ious transfer and applications. In Advances in
Cryptology–CRYPTO, 1990.

[2] M. Ben-Or, S. Goldwasser, and A. Wigder-
son. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proceed-
ings of the annual ACM symposium on Theory of
computing, 1988.

14

USENIX Association 22nd USENIX Security Symposium 303

[3] J. Brickell and V. Shmatikov. Privacy-preserving
graph algorithms in the semi-honest model. In Pro-
ceedings of the international conference on Theory
and Application of Cryptology and Information Se-
curity, 2005.

[4] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai.
Universally composable two-party and multi-party
secure computation. In Proceedings of the annual
ACM symposium on Theory of computing, 2002.

[5] H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor.
Efficient oblivious computation techniques for
privacy-preserving mobile applications. Journal of
Security and Communication Networks (SCN), To
appear 2013.

[6] H. Carter, B. Mood, P. Traynor, and K. Butler. Se-
cure outsourced garbled circuit evaluation for mo-
bile devices. Technical Report GT-CS-12-09, Col-
lege of Computing, Georgia Institute of Technol-
ogy, 2012.

[7] D. Chaum, C. Crépeau, and I. Damgard. Multiparty
unconditionally secure protocols. In Proceedings of
the annual ACM symposium on Theory of comput-
ing, 1988.

[8] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou.
On the security of the ”free-xor” technique. In Pro-
ceedings of the international conference on Theory
of Cryptography, 2012.

[9] I. Damgård and Y. Ishai. Scalable secure multi-
party computation. In Proceedings of the annual
international conference on Advances in Cryptol-
ogy, 2006.

[10] I. Damgård and J. B. Nielsen. Scalable and un-
conditionally secure multiparty computation. In
Proceedings of the annual international cryptology
conference on Advances in cryptology, 2007.

[11] V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. In Proceedings of the theory and ap-
plications of cryptographic techniques annual in-
ternational conference on Advances in cryptology,
2008.

[12] M. Green, S. Hohenberger, and B. Waters. Out-
sourcing the decryption of abe ciphertexts. In
Proceedings of the USENIX Security Symposium,
2011.

[13] Y. Huang, P. Chapman, and D. Evans. Privacy-
Preserving Applications on Smartphones. In Pro-
ceedings of the USENIX Workshop on Hot Topics
in Security, 2011.

[14] Y. Huang, D. Evans, and J. Katz. Private set in-
tersection: Are garbled circuits better than custom
protocols? In NDSS ’12: Proceedings of the 19th
ISOC Symposium on Network and Distributed Sys-
tems Security, San Diego, CA, USA, Feb. 2012.

[15] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled cir-
cuits. In Proceedings of the USENIX Security Sym-
posium, 2011.

[16] Y. Huang, J. Katz, and D. Evans. Quid-pro-quo-
tocols: Strengthening semi-honest protocols with
dual execution. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2012.

[17] A. Iliev and S. W. Smith. Small, stupid, and scal-
able: Secure computing with faerieplay. In The
ACM Workshop on Scalable Trusted Computing,
2010.

[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Ex-
tending oblivious transfers efficiently. In Proceed-
ings of the Annual International Cryptology Con-
ference, 2003.

[19] S. Jha, L. Kruger, and V. Shmatikov. Towards prac-
tical privacy for genomic computation. In Proceed-
ings of the IEEE Symposium on Security and Pri-
vacy, 2008.

[20] S. Kamara, P. Mohassel, and M. Raykova. Out-
sourcing multi-party computation. Cryptology
ePrint Archive, Report 2011/272, 2011. http:
//eprint.iacr.org/.

[21] S. Kamara, P. Mohassel, and B. Riva. Salus: A sys-
tem for server-aided secure function evaluation. In
Proceedings of the ACM conference on Computer
and communications security (CCS), 2012.

[22] M. S. Kiraz. Secure and Fair Two-Party Compu-
tation. PhD thesis, Technische Universiteit Eind-
hoven, 2008.

[23] M. S. Kiraz and B. Schoenmakers. A protocol is-
sue for the malicious case of yaos garbled circuit
construction. In Proceedings of Symposium on In-
formation Theory in the Benelux, 2006.

[24] V. Kolesnikov and T. Schneider. Improved gar-
bled circuit: Free xor gates and applications. In
Proceedings of the international colloquium on
Automata, Languages and Programming, Part II,
2008.

[25] B. Kreuter, a. shelat, and C. Shen. Billion-gate se-
cure computation with malicious adversaries. In

15

304 22nd USENIX Security Symposium USENIX Association

Proceedings of the USENIX Security Symposium,
2012.

[26] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Se-
cure function evaluation with ordered binary deci-
sion diagrams. In Proceedings of the ACM con-
ference on Computer and communications security
(CCS), 2006.

[27] Y. Lindell. Lower bounds and impossibility results
for concurrent self composition. Journal of Cryp-
tology, 21(2):200–249, 2008.

[28] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Proceedings of the Annual International
Cryptology Conference on Advances in Cryptology,
2000.

[29] Y. Lindell and B. Pinkas. An efficient protocol
for secure two-party computation in the presence of
malicious adversaries. In Proceedings of the annual
international conference on Advances in Cryptol-
ogy, 2007.

[30] Y. Lindell and B. Pinkas. Secure two-party com-
putation via cut-and-choose oblivious transfer. In
Proceedings of the conference on Theory of cryp-
tography, 2011.

[31] L. Malka. Vmcrypt: modular software architecture
for scalable secure computation. In Proceedings of
the 18th ACM conference on Computer and com-
munications security, 2011.

[32] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay–a secure two-party computation system.
In Proceedings of the USENIX Security Sympo-
sium, 2004.

[33] Message Passing Interface Forum. The
message passing interface (mpi) standard.
http://www.mcs.anl.gov/research/
projects/mpi/, 2009.

[34] P. Mohassel and M. Franklin. Efficiency tradeoffs
for malicious two-party computation. In Proceed-
ings of the Public Key Cryptography conference,
2006.

[35] B. Mood, L. Letaw, and K. Butler. Memory-
efficient garbled circuit generation for mobile de-
vices. In Proceedings of the IFCA International
Conference on Financial Cryptography and Data
Security (FC), 2012.

[36] M. Naor and B. Pinkas. Efficient oblivious transfer
protocols. In Proceedings of the annual ACM-SIAM
symposium on Discrete algorithms, 2001.

[37] M. Naor, B. Pinkas, and R. Sumner. Privacy pre-
serving auctions and mechanism design. In Pro-
ceedings of the ACM conference on Electronic com-
merce, 1999.

[38] N. Nipane, I. Dacosta, and P. Traynor. “Mix-In-
Place” anonymous networking using secure func-
tion evaluation. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC),
2011.

[39] C. Peikert, V. Vaikuntanathan, and B. Waters. A
framework for efficient and composable oblivious
transfer. In Advances in Cryptology (CRYPTO),
2008.

[40] W. Rash. Dropbox password breach high-
lights cloud security weaknesses. http:
//www.eweek.com/c/a/Security/
Dropbox-Password-Breach-Highlights
-Cloud-Security-Weaknesses-266215/,
2012.

[41] a. shelat and C.-H. Shen. Two-output secure com-
putation with malicious adversaries. In Proceed-
ings of the Annual international conference on The-
ory and applications of cryptographic techniques,
2011.

[42] K. Thomas. Microsoft cloud data breach heralds
things to come. http://www.pcworld.com/
article/214775/microsoft_cloud_
data_breach_sign_of_future.html,
2010.

[43] A. C. Yao. Protocols for secure computations. In
Proceedings of the Annual Symposium on Founda-
tions of Computer Science, 1982.

16

USENIX Association 22nd USENIX Security Symposium 305

On the Security of RC4 in TLS1

Nadhem J. AlFardan
Information Security Group,

Royal Holloway, University of London

Daniel J. Bernstein
University of Illinois at Chicago and

Technische Universiteit Eindhoven

Kenneth G. Paterson
Information Security Group,

Royal Holloway, University of London

Bertram Poettering
Information Security Group,

Royal Holloway, University of London

Jacob C. N. Schuldt
Information Security Group,

Royal Holloway, University of London

Abstract
The Transport Layer Security (TLS) protocol aims to

provide confidentiality and integrity of data in transit
across untrusted networks. TLS has become the de facto
protocol standard for secured Internet and mobile ap-
plications. TLS supports several symmetric encryption
options, including a scheme based on the RC4 stream
cipher. In this paper, we present ciphertext-only plain-
text recovery attacks against TLS when RC4 is selected
for encryption. Our attacks build on recent advances in
the statistical analysis of RC4, and on new findings an-
nounced in this paper. Our results are supported by an
experimental evaluation of the feasibility of the attacks.
We also discuss countermeasures.

1 Introduction

TLS is arguably the most widely used secure communi-
cations protocol on the Internet today. Starting life as
SSL, the protocol was adopted by the IETF and specified
as an RFC standard under the name of TLS 1.0 [7]. It
has since evolved through TLS 1.1 [8] to the current ver-
sion TLS 1.2 [9]. Various other RFCs define additional
TLS cryptographic algorithms and extensions. TLS is
now used for securing a wide variety of application-level
traffic: It serves, for example, as the basis of the HTTPS
protocol for encrypted web browsing, it is used in con-
junction with IMAP or SMTP to cryptographically pro-
tect email traffic, and it is a popular tool to secure com-
munication with embedded systems, mobile devices, and
in payment systems.

Technically speaking, TLS sessions consist of two
consecutive phases: the execution of the TLS Handshake
Protocol which typically deploys asymmetric techniques
to establish a secure session key, followed by the exe-
cution of the TLS Record Protocol which uses symmet-
ric key cryptography (block ciphers, the RC4 stream ci-
pher, MAC algorithms) in combination with the estab-
lished session key and sequence numbers to build a se-

cure channel for transporting application-layer data. In
the Record Protocol, there are mainly three encryption
options:

• HMAC followed by CBC-mode encryption using a
block cipher,

• HMAC followed by encryption using the RC4
stream cipher, or

• authenticated encryption using GCM or CCM mode
of operation of a block cipher.

The third of these three options is only available with
TLS 1.2 [21, 18], which is yet to see widespread adop-
tion.2 The first option has seen significant cryptanalysis
(padding oracle attacks [6], BEAST [10], Lucky 13 [3]).
While countermeasures to the attacks on CBC-mode in
TLS exist, many commentators now recommend, and
many servers now offer, RC4-based encryption options
ahead of CBC-mode.3 Indeed, the ICSI Certificate No-
tary4 recently performed an analysis of 16 billion TLS
connections and found that around 50% of the traffic was
protected using RC4 ciphersuites [5].

This makes it timely to examine the security of RC4 in
TLS. While the RC4 algorithm is known to have a variety
of cryptographic weaknesses (see [23] for an excellent
survey), it has not been previously explored how these
weaknesses can be exploited in the context of TLS. Here
we show that new and recently discovered biases in the
RC4 keystream do create serious vulnerabilities in TLS
when using RC4 as its encryption algorithm.

While the main focus of this paper lies on the security
of RC4 in TLS, our attacks (or variants thereof) might
also be applicable to other protocols where RC4 is meant
to ensure data confidentiality. Indeed, the WPA proto-
col used for encrypting wireless network traffic also uti-
lizes the RC4 stream cipher in a way that allows (partial)
plaintext recovery in specific settings — using basically
the same attack strategies as in the TLS case.

1

306 22nd USENIX Security Symposium USENIX Association

We hope that this work will help spur the adoption of
TLS 1.2 and its authenticated encryption algorithms, as
well as the transition from WPA to (the hopefully more
secure) WPA2.

1.1 Overview of Results

We present two plaintext recovery attacks on RC4 that
are exploitable in specific but realistic circumstances
when this cipher is used for encryption in TLS. Both at-
tacks require a fixed plaintext to be RC4-encrypted and
transmitted many times in succession (in the same, or in
multiple independent RC4 keystreams). Interesting can-
didates for such plaintexts include passwords and, in the
setting of secure web browsing, HTTP cookies.

A statistical analysis of ciphertexts forms the core of
our attacks. We stress that the attacks are ciphertext-
only: no sophisticated timing measurement is needed on
the part of the adversary, the attacker does not need to be
located close to the server, and no packet injection capa-
bility is required (all premises for Lucky 13). Instead, it
suffices for the adversary to record encrypted traffic for
later offline analysis. Provoking the required repeated
encryption and transmission of the target plaintext, how-
ever, might require more explicit action: e.g., resetting
TCP connections or guiding the victim to a website with
specially prepared JavaScript (see examples below).

Since both our attacks require large amounts of cipher-
text, their practical relevance could be questioned. How-
ever, they do show that the strength of RC4 in TLS is
much lower than the employed 128-bit key would sug-
gest. We freely admit that our attacks are not particularly
deep, nor sophisticated: they only require an understand-
ing of how TLS uses RC4, solid statistics on the biases
in RC4 keystreams, and some experience of how modern
browsers handle cookies. We consider it both surprising
and alarming that such simple attacks are possible for
such an important and heavily-studied protocol as TLS.
We further discuss the implications of our attack in Sec-
tion 6 and in the full version of this paper [4].

1.1.1 Our single-byte bias attack

Our first attack targets the initial 256 bytes of RC4 ci-
phertext. It is fixed-plaintext and multi-session, meaning
that it requires a fixed sequence of plaintext bytes to be
independently encrypted under a large number of (ran-
dom) keys. This setting corresponds to what is called a
“broadcast attack” in [17, 15, 23]. As we argue below,
such attacks are a realistic attack vector in TLS. Observe
that, in TLS, the first 36 bytes of the RC4 keystream are
used to encrypt a TLS Handshake Finished message.
This message is not fixed across TLS sessions. As a con-
sequence, our methods can be applied only to recover up

to 220 bytes of the TLS application plaintext.
Our attack exploits statistical biases occurring in the

first 256 bytes of RC4 keystream. Such biases, i.e., devi-
ations from uniform in the distributions of the keystream
bytes at certain positions, have been reported and the-
oretically analyzed by [17], [15], and [23]. The corre-
sponding authors also propose algorithms to exploit such
biases for plaintext recovery. In this paper, we discuss
shortcomings of their algorithms, empirically obtain a
complete view of all single-byte biases occurring in the
first 256 keystream positions, and propose a generalized
algorithm that fully exploits all these biases for advanced
plaintext recovery. As a side result of our research, in
Section 3.1 we report on significant biases in the RC4
keystream that seemingly follow specific patterns and
that have not been identified or analysed previously.

For concreteness, we describe how our single-byte
bias attack could be applied to recover cookies in HTTPS
traffic. Crucial here is to find an automated mechanism
for efficiently generating a large number of encryptions
of the target cookie. In line with the scenario employed
by the BEAST and Lucky 13 attacks against CBC-mode
encryption in TLS [3, 10], a candidate mechanism is
for JavaScript malware downloaded from an attacker-
controlled website and running in the victim’s browser
to repeatedly send HTTPS requests to a remote server.
The corresponding cookies are automatically included in
each of these requests in a predictable location, and can
thus be targeted in our attack. If client and server are
configured to use TLS session resumption, the renewal of
RC4 keys could be arranged to happen with particularly
high frequency — as required for our attack to be suc-
cessful.5 Alternatively, the attacker can cause the TLS
session to be terminated after the target encrypted cookie
is sent; the browser will automatically establish a new
TLS session when the next HTTPS request is sent.

As a second example, consider the case where IMAP
passwords6 are attacked. In a setup where an email client
regularly connects to an IMAP server for (password-
authenticated) mail retrieval, let the adversary reset the
TCP connection between client and server immediately
after the encrypted password is transmitted. In some
client configurations this might trigger an automatic re-
sumption of the session, including a retransmission of the
(encrypted) password. If this is the case, the adversary
is in the position to harvest a large set of independently
encrypted copies of the password —one per reset— pre-
cisely fulfilling the precondition of our attack.

Our single-byte bias attack is on the verge of prac-
ticality. In our experiments, the first 40 bytes of TLS
application data after the Finished message were re-
covered with a success rate of over 50% per byte, using
226 sessions. With 232 sessions, the per-byte success rate
is more than 96% for the first 220 bytes (and is 100%

2

USENIX Association 22nd USENIX Security Symposium 307

for all but 12 of these bytes). If, for example, a target
plaintext byte is known to be a character from a set of
cardinality 16 (e.g., in a 4-bits-per-byte-encoded HTTP
cookie), our algorithm recovers the first 112 bytes of
plaintext with a success rate of more than 50% per byte,
using 226 sessions. For further details, see Section 5.

1.1.2 Our double-byte bias attack

As we have seen, our single-byte bias attack on RC4 is
quite effective in recovering ‘early’ plaintext bytes in the
fixed-plaintext multi-session setting. It has, however, a
couple of limitations when it comes to attacking practi-
cal systems that employ TLS. Focussing on the recovery
of cookies in HTTPS-secured web sessions, we note that
modern web browsers typically send a large number of
HTTP headers before any cookies (these headers carry
information about the particular client or server software,
accepted MIME types, compression options, etc.). In
practice, cookie data appears only at positions that come
after the attackable initial 220 bytes of the ciphertext7.
Independently of this issue, in the attack scenarios pro-
posed above, a large number of HTTPS sessions would
have to be established and torn down again, inducing
non-negligible computing and bandwidth overheads via
the TLS Handshake. Lastly, it has been proposed to rou-
tinely drop the first few hundred keystream bytes of RC4
before starting encryption in order to avoid the relatively
strong early keystream biases [19] — if this were to be
implemented in TLS, our single-byte bias attack would
effectively be defeated.

Complementary to our single-byte bias attack, we
present a second fixed-plaintext ciphertext-only attack
on RC4. It exploits biases that appear in the entire
keystream (and not just in the first 256 positions) and
does not assume, but tolerates, frequent changes of the
encryption key. Our second attack hence covers some
scenarios where our single-byte bias attack does not
seem to be applicable; it would, for example, be able to
recover cookies from (long-persisting) HTTPS sessions.
It would also be applicable if the initial keystream bytes
were to be discarded.

In contrast to our first attack, our second attack ex-
ploits certain biases in consecutive pairs of bytes in the
RC4 keystream that were first reported by Fluhrer and
McGrew [12]. We empirically evaluate the probability
of occurrence for each possible pair of bytes beginning at
each position (modulo 256), obtaining a complete view
of the distributions of pairs of bytes in positions (i, i+1)
(modulo 256). Our analysis strongly suggests that there
are no further biases in consecutive positions of the same
strength as the Fluhrer-McGrew biases. We use the ob-
tained results in a specially designed attack algorithm to
recover repeatedly encrypted plaintexts.

Our double-byte bias attack is again close to being
practical. In our experiments, we focus on our attack’s
ability to correctly recover 16 consecutive bytes of plain-
text, roughly equating to an HTTP cookie. With 13 ·230

encryptions of the plaintext, we achieve a success rate of
100% in recovering all 16 bytes. We obtain better suc-
cess rates for restricted plaintexts, as in the single-byte
case. For further details, see Section 5.

1.2 Related Work

In independent and concurrent work, Isobe et al. [13]
have considered the security of RC4 against broadcast
attacks. They present attacks based on both single-byte
and multi-byte biases. They identify three biases in the
first output bytes Zr of RC4 that we also identify (specifi-
cally, the biases towards Z3 = 0x83, Zr = r, and Zr =−r
when r is a multiple of 16) as well as a new conditional
bias Z1 = 0|Z2 = 0.

The single-byte bias attack in [13] only considers the
strongest bias at each position, whereas our single-byte
bias attack simultaneously exploits all biases in each
keystream position. Specifically, we use Bayes’s law to
compute the a posteriori plaintext distribution from the a
priori plaintext distribution and the precomputed distri-
butions of the Zr. This explains why our single-byte at-
tack out-performs that of [13]. For example, we achieve
reliable plaintext recovery in the first 256 positions with
232 ciphertexts, while Isobe et al. [13] require 234 cipher-
texts. We also achieve uniformly higher success rates for
lower numbers of sessions. Previous authors exploring
broadcast attacks on RC4 also only used single biases,
leading to attacks that simply do not work [15, 23] or
which have inferior performance to ours [22].

The multi-byte bias attack in [13] exploits the positive
bias towards the pattern ABSAB that was identified by
Mantin [16]. Here A and B are keystream bytes and S
is a short string consisting of any keystream bytes (pos-
sibly of length 0). The attack in [13] assumes that 3-
out-of-4 bytes in particular positions are known and uses
the Mantin bias to recover the fourth. A limited ex-
perimental evaluation of the attack is reported in [13]:
the attack is applied only to recovery of plaintext bytes
258-261, assuming all previous plaintext bytes have been
successfully recovered, with success rates of 1 (for each
of the 4 targeted bytes) using 234 ciphertexts. As ex-
plained in [13], this multi-byte attack would fail if the
initial bytes of RC4 output were to be discarded. By
contrast, our double-byte bias attack, which exploits the
Fluhrer-McGrew biases, recovers more bytes with com-
parable success rate using slightly fewer ciphertexts and
is resilient to initial byte discarding. It is an interesting
open problem to determine whether the Mantin ABSAB
bias can be combined with the Fluhrer-McGrew biases to

3

308 22nd USENIX Security Symposium USENIX Association

gain enhanced attack performance.
A further point of comparison between our work and

that of [13] concerns practical implementation. We have
extensively explored the applicability of our attacks to
RC4 as used in TLS, while [13] makes only brief men-
tion of TLS in its concluding section and gives no mech-
anisms for generating the large numbers of ciphertexts
needed for the attacks.

Finally, the authors of [13] claim in their abstract that
their methods “can recover the first 250 bytes ≈ 1000 T
bytes of the plaintext, with probability close to 1, from
only 234 ciphertexts”. We point out that their methods
would only recover 216 distinct bytes of output, rather
than the advertised 250 bytes, since their attacks require
the same plaintext to be encrypted 234 times. Further-
more, their multi-byte bias attack is not resilient to er-
rors occurring in the recovery of early plaintext bytes
(whereas ours is), so this claim would only be true if their
multi-byte bias attack does not fail at any stage, and this
is as yet untested.

1.3 Paper Organisation
Section 2 provides further background on the RC4
stream cipher and the TLS Record Protocol. Section 3
summarises weaknesses in RC4 that we exploit in our at-
tacks. Section 4 describes our two plaintext recovery at-
tacks on RC4. We evaluate the attacks in Section 5, with
our main focus there being on TLS. Finally, Section 6
discusses countermeasures to our attacks, and concludes
with a recap of the main issues raised by our work.

2 Further Background

2.1 The RC4 Stream Cipher
The stream cipher RC4, originally designed by Ron
Rivest, became public in 1994 and found application in a
wide variety of cryptosystems; well-known examples in-
clude SSL/TLS, WEP [1], WPA [2], and some Kerberos-
related encryption modes [14]. RC4 has a remark-
ably short description and is extremely fast when imple-
mented in software. However, these advantages come
at the price of lowered security: several weaknesses have
been identified in RC4 [12, 11, 17, 16, 15, 23, 25, 24, 26],
some of them being confirmed and exploited in the cur-
rent paper.

Technically, RC4 consists of two algorithms: a key
scheduling algorithm (KSA) and a pseudo-random gen-
eration algorithm (PRGA), which are specified in Fig-
ure 1. The KSA takes as input a key K, typically a byte-
array of length between 5 and 32 (i.e., 40 to 256 bits), and
produces the initial internal state st0 = (i, j,S), where S
is the canonical representation of a permutation on the set

Algorithm 1: RC4 key
scheduling (KSA)

input : key K of l bytes
output: internal state st0
begin

for i = 0 to 255 do
S[i] ← i

j ← 0
for i = 0 to 255 do

j ←
j+S[i]+K[imod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2: RC4 keystream
generator (PRGA)

input : internal state str
output: keystream byte Zr+1

internal state str+1

begin
parse (i, j,S) ← str
i ← i+ 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

Figure 1: Algorithms implementing the RC4 stream ci-
pher. All additions are performed modulo 256.

[0,255] as an array of bytes, and i, j are indices into this
array. The PRGA will, given an internal state str, output
‘the next’ keystream byte Zr+1, together with the updated
internal state str+1. Particularly interesting to note is the
fact that updated index j is computed in dependence on
current i, j, and S , while i is just a counter (modulo 256).

2.2 The TLS Record Protocol
We describe in detail the cryptographic operation of the
TLS Record Protocol in the case that RC4 is selected as
the encryption method.

Data to be protected by TLS is received from the ap-
plication and may be fragmented and compressed before
further processing. An individual record R (viewed as
a sequence of bytes) is then processed as follows. The
sender maintains an 8-byte sequence number SQN which
is incremented for each record sent, and forms a 5-byte
field HDR consisting of a 2-byte version field, a 1-byte
type field, and a 2-byte length field. It then calculates
an HMAC over the string HDR||SQN||R; let T denote the
resulting tag.

For RC4 encryption, record and tag are concate-
nated to create the plaintext P = R||T . This plaintext
is then xored in a byte-by-byte fashion using the RC4
keystream, i.e., the ciphertext bytes are computed as

Cr = Pr ⊕Zr for r = 1,2,3, . . . ,

where Pr are the individual bytes of P, and Zr are the RC4
keystream bytes. The data transmitted over the wire then
has the form

HDR||C ,

where C is the concatenation of the bytes Cr.
The RC4 algorithm itself is initialised at the start of

each TLS connection, using a 128 bit encryption key K.
This key K is computed with a hash-function-based key

4

USENIX Association 22nd USENIX Security Symposium 309

derivation function from the TLS master secret that is es-
tablished during the TLS Handshake Protocol. In more
detail, the key K may be established either via a full TLS
Handshake or via TLS session resumption. In a full TLS
Handshake, a total of 4 communication round-trips are
needed, and usually some public key cryptographic op-
erations are required of both client and server. A full
TLS Handshake run establishes a new TLS session and
a new TLS master secret from which all other keys, in-
cluding RC4 key K, are derived. TLS session resumption
involves a lightweight version of the TLS Handshake
Protocol being run to establish a new connection within
an existing session: essentially, an exchange of nonces
takes place, followed by an exchange of Finished mes-
sages; no public key cryptographic operations are in-
volved. The keys for the new connection, including K,
are derived from the existing master secret and the new
nonces. Given the design of the key derivation process,
it is reasonable to model K as being uniformly random in
the different sessions/connections.

The initialisation of RC4 in TLS is the standard one
for this algorithm. Notably, none of the initial keystream
bytes is discarded when RC4 is used in TLS, despite
these bytes having known weaknesses. Note also that
the first record sent under the protection of RC4 for each
session or connection will be a Finished message, typ-
ically of length 36 bytes, consisting of a Handshake Pro-
tocol header, a PRF output, and a MAC on that output.
This is typically 36 bytes in size. This record will not
be targeted in our attacks, since it is not constant across
multiple sessions.

The decryption process reverses this sequence of
steps, but its details are not germane to our attacks.
For TLS, any error arising during decryption should be
treated as fatal, meaning an (encrypted) error message
is sent to the sender and the session terminated with all
keys and other cryptographic material being disposed of.
This gives an attacker a convenient method to cause a
session to be terminated and force new encryption and
MAC keys to be set up. Another method is to somehow
induce the client or server to initiate session resumption.

3 Biases in the RC4 Keystream

In this section, we summarise known biases in the RC4
keystream, and report new biases that we have observed
experimentally.

3.1 Single-byte Biases

The first significant bias in the RC4 keystream was ob-
served by Mantin and Shamir in [17]. Their main result
can be stated as:

Result 1. [17, Thm 1] The probability that Z2, the sec-
ond byte of keystream output by RC4, is equal to 0x00

is approximately 1/128 (where the probability is taken
over the random choice of the key).

Since this result concerns only the second byte of the
keystream, and this byte is always used to encrypt a
Finished message in TLS, we are unable to exploit it
in our attacks. More recently, the following result was
obtained by Sen Gupta et al. in [23] as a refinement of an
earlier result of Maitra et al. [15]:

Result 2. [23, Thm 14 and Cor 3] For 3 ≤ r ≤ 255, the
probability that Zr, the r-th byte of keystream output by
RC4, is equal to 0x00 is

Pr(Zr = 0x00) =
1

256
+

cr

2562 ,

where the probability is taken over the random choice of
the key, c3 = 0.351089, and c4,c5 . . . ,c255 is a decreasing
sequence with terms that are bounded as follows:

0.242811 ≤ cr ≤ 1.337057.

In other words, bytes 3 to 255 of the keystream have
a bias towards 0x00 of approximately 1/216. This re-
sult was experimentally verified in [23] and found to be
highly accurate (see Figure 11 of that paper). The bi-
ases here are substantially smaller than those observed in
Result 1.

Additionally, Sen Gupta et al. [23] have identified a
key-length-dependent bias in RC4 keystreams. Specifi-
cally, [23, Theorem 5] shows that when the key-length
is � bytes, then byte Z� is biased towards value 256− �,
with the bias always being greater than 1/216. For RC4
in TLS, we have �= 16.

Experimentally, we have observed additional biases in
the RC4 keystream that do not yet have a theoretical ex-
planation. As an example, Figure 2 shows the empir-
ical distribution for the RC4 keystream bytes Z16, Z32
and Z50, calculated over 244 independent, random 128-bit
keys. For Z16, we have 3 main biases: the bias towards
0x00, the very dominant key-length-dependent bias to-
wards 0xF0 (decimal 240) from [23], and a new bias to-
wards 0x10 (decimal 16). For Z32, we also have 3 main
biases: the bias towards 0x00, a large, new bias towards
0xE0 (decimal 224), and a new bias towards 0x20 (dec-
imal 32). For Z50, there are significant biases towards
byte values 0x00 and 0x32 (decimal 50), as well as an
upward trend in probability as the byte value increases.

Individual inspection of ciphertext distributions at all
positions 1 ≤ r ≤ 256 reveals two new significant bi-
ases that occur with specific regularities: a bias towards
value r for all r, and a bias towards value 256− r at po-
sitions r that are multiples of (key-length) 16; note that

5

310 22nd USENIX Security Symposium USENIX Association

0.00388%

0.0039%

0.00392%

0.00394%

0.00396%

0.00398%

0.004%

0.00402%

0.00404%

0.00406%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200% 210% 220% 230% 240% 250%

0.00388%

0.0039%

0.00392%

0.00394%

0.00396%

0.00398%

0.004%

0.00402%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200% 210% 220% 230% 240% 250%

0.003902&

0.003904&

0.003906&

0.003908&

0.00391&

0.003912&

0.003914&

0.003916&

0.003918&

0.00392&

0.003922&

0& 10& 20& 30& 40& 50& 60& 70& 80& 90& 100& 110& 120& 130& 140& 150& 160& 170& 180& 190& 200& 210& 220& 230& 240& 250&

Figure 2: Measured distributions of RC4 keystream
bytes Z16 (top), Z32 (middle), and Z50 (bottom).

the latter finding both confirms and extends the results
from [23]. Both of these new biases were also observed
by Isobe et al. [13], with a theoretical explanation be-
ing given for the bias towards r. Figure 3 shows the es-
timated strength of these biases in comparison with the
strength of the bias towards 0x00 for the keystream bytes
Z1, . . . ,Z256. The estimates are based on the empirical
distribution of the RC4 keystream bytes, calculated over
244 random 128-bit RC4 keys. We note that the key-
length dependent bias dominates the other two biases un-
til position Z112, and that the bias of Zr towards r dom-
inates the bias towards 0x00 observed by [15] between
positions Z5 and Z31, except for byte Z16 where the bias
towards 0x00 is slightly stronger.

Furthermore, for the first keystream byte Z1, we have
observed a bias away from value 0x81 (decimal 129) in
the addition to the known bias away from value 0x00.
This additional bias is not consistent with the recent re-
sults of Sen Gupta et al. [23] who provide a theoreti-
cal treatment of the distribution of Z1. The disparity
likely arises because Sen Gupta et al. work with 256-
byte keys, while our work is exclusively concerned with
128-bit (16-byte) keys as used in TLS; in other words,
our observed bias in Z1 = 0x81 seems to be key-length-
dependent. Finally, our computations have revealed a
number of other, smaller biases in the initial bytes of the
RC4 keystream.

0.00389&

0.00391&

0.00393&

0.00395&

0.00397&

0.00399&

0.00401&

0.00403&

0.00405&

0& 10& 20& 30& 40& 50& 60& 70& 80& 90& 100& 110& 120& 130& 140& 150& 160& 170& 180& 190& 200& 210& 220& 230& 240& 250&

Figure 3: Measured strength of the bias towards 0x00

(green), the bias towards value r in Zr (blue), and the key-
length dependent bias towards byte value 256− r (red)
for keystream bytes Z1, . . . ,Z256, based on keystreams
generated by 244 independent random keys. Note that
the large peak for the 0x00 bias in Z2 extends beyond the
bounds of the graph and is not fully shown for illustrative
purposes.

3.2 Multi-byte Biases

Besides the single-byte biases highlighted above, sev-
eral multi-byte biases have been identified in the RC4
keystream. In contrast to the single-byte biases, most
of the identified multi-byte biases are “long term” bi-
ases which appear periodically at regular intervals in the
keystream.

The most extensive set of multi-byte biases was
identified by Fluhrer and McGrew [12] who analyzed
the distribution of pairs of byte values for consecutive
keystream positions (Zr,Zr+1), r ≥ 1. More precisely,
they estimated the distribution of consecutive keystream
bytes for scaled-down8 versions of RC4 by assuming an
idealized internal state of RC4 in which the permuta-
tion S and the internal variable j are random (see Fig-
ure 1), and then extrapolated the results to standard RC4.

The reported biases for standard RC4 are listed in Ta-
ble 1. Note that all biases are dependent on the internal
variable i which is incremented (modulo 256) for each
keystream byte generated. It should also be noted that,
due to the assumption that S and j are random, the bi-
ases cannot be expected to hold for the initial keystream
bytes. However, this idealization becomes a close ap-
proximation to the internal state of RC4 after a few invo-
cations of the RC4 keystream generator, [12].

We experimentally verified the Fluhrer-McGrew bi-
ases by analysing the output of 210 RC4 instances using
128-bit keys and generating 240 keystream bytes each.
For each keystream, the initial 1024 bytes were dropped.
Based on this data, we found the biases from [12] to be
accurate, also for 128-bit keys. This is in-line with the

6

USENIX Association 22nd USENIX Security Symposium 311

experiments and observations reported in [12]. Further-
more, we did not identify any additional significant long
term biases for consecutive keystream bytes which are
repeated with a periodicity that is a proper divisor of 256.
Hence, for the purpose of implementing the attack pre-
sented in Section 4.2, we assume that the biases iden-
tified in [12] are the only existing long term biases for
consecutive keystream bytes, and that all other pairs of
byte-values are uniformly distributed.

Byte pair Condition on i Probability
(0,0) i = 1 2−16(1+2−9)

(0,0) i �= 1,255 2−16(1+2−8)

(0,1) i �= 0,1 2−16(1+2−8)

(i+1,255) i �= 254 2−16(1+2−8)

(255, i+1) i �= 1,254 2−16(1+2−8)

(255, i+2) i �= 0,253,254,255 2−16(1+2−8)

(255,0) i = 254 2−16(1+2−8)

(255,1) i = 255 2−16(1+2−8)

(255,2) i = 0,1 2−16(1+2−8)

(129,129) i = 2 2−16(1+2−8)

(255,255) i �= 254 2−16(1−2−8)

(0, i+1) i �= 0,255 2−16(1−2−8)

Table 1: Fluhrer-McGrew biases for consecutive pairs of
byte values. In the table, i is the internal variable of the
RC4 keystream generation algorithm (see Section 2.1).

Independently of [12], Mantin [16] identified a pos-
itive bias towards the pattern ABSAB, where A and B
represent byte values and S is a short string of bytes
(possibly of length 0). The shorter the string S is, the
more significant is the bias. Additionally, Sen Gupta
et al. [23] identified a bias towards the byte values (0,0)
for keystream positions (Zr,Zr+2), separated by any sin-
gle keystream byte for r ≥ 1. However, we do not make
use of these biases in the attacks presented in this paper.

4 Plaintext Recovery Attacks

For the purpose of exposition, we first explain how the
broadcast attack by Maitra et al. [15] and Sen Gupta
et al. [23] is meant to work. Suppose byte Zr of the
RC4 keystream has a dominant bias towards value 0x00.
As RC4 encryption is defined as Cr = Pr ⊕ Zr, the cor-
responding ciphertext byte Cr has a bias towards plain-
text byte Pr. Thus, obtaining sufficiently many ciphertext
samples Cr for a fixed plaintext Pr allows inference of Pr
by a majority vote: Pr is equal to the value of Cr that
occurs most often. This is the core idea of Algorithm 3
that we reproduce from [15, 23]. Let S denote the num-
ber of ciphertexts available to the attacker and, for all
1 ≤ j ≤ S, let Cj,r denote the r-th byte of ciphertext Cj.
For a fixed position r, Algorithm 3 runs through all j,
and in each iteration increments one out of 256 counters,

Algorithm 3: Basic plaintext recovery attack
input : S independent encryptions (Cj)1≤ j≤S of

fixed plaintext P, position r
output: estimate P∗

r for plaintext byte Pr
begin

N0x00 ← 0, . . . , N0xFF ← 0
for j = 1 to S do

NCj,r ← NCj,r +1
P∗

r ← argmaxµ∈{0x00,...,0xFF} Nµ

namely the one that corresponds to value Cj,r. After pro-
cessing all ciphertexts, the character corresponding to the
largest counter in the obtained histogram is the output of
the algorithm.

The algorithm is tailor-made for plaintext recovery
in the case described by Result 2: it assumes that the
largest bias in the RC4 keystream is towards 0x00. How-
ever, it is highly likely to fail to reliably suggest the cor-
rect plaintext byte Pr if the RC4 keystream has, in posi-
tion r, additional biases of approximately the same size
(or larger) as the bias towards 0x00. Such additional
biases would simply be misinterpreted as the bias to-
wards 0x00 and hence falsify the result. As we observed
in Section 3.1 (and Figure 3), several other quite strong
biases in the RC4 keystream do indeed exist. This clearly
invalidates Algorithm 3 for practical use.

4.1 Our Single-byte Bias Attack
We propose a plaintext-recovery algorithm that takes into
account all possible single-byte RC4 biases at the same
time, along with their strengths. The idea is to first obtain
a detailed picture of the distributions of RC4 keystream
bytes Zr, for all positions r, by gathering statistics from
keystreams generated using a large number of indepen-
dent keys (244 in our case). That is, for all r, we (empiri-
cally) estimate

pr,k := Pr(Zr = k), k = 0x00, . . . ,0xFF ,

where the probability is taken over the random choice
of the RC4 encryption key (i.e., 128 bit keys in the
TLS case). Using these biases pr,k, in a second step,
plaintext can be recovered with optimal accuracy using
a maximum-likelihood approach, as follows.

Suppose we have S ciphertexts C1, . . . ,CS available
for our attack. For any fixed position r and any
candidate plaintext byte µ for that position, vector
(N(µ)

0x00, . . . ,N
(µ)
0xFF) with

N(µ)
k = |{ j |Cj,r = k⊕µ}1≤ j≤S| (0x00≤ k ≤ 0xFF)

represents the distribution on Zr required to obtain the
observed ciphertexts {Cj,r}1≤ j≤S by encrypting µ . We

7

312 22nd USENIX Security Symposium USENIX Association

Algorithm 4: Single-byte bias attack
input : S independent encryptions {Cj}1≤ j≤S of

fixed plaintext P, position r, keystream
distribution (pr,k)0x00≤k≤0xFF at position r

output: estimate P∗
r for plaintext byte Pr

begin
N0x00 ← 0, . . . , N0xFF ← 0
for j = 1 to S do

NCj,r ← NCj,r +1

for µ = 0x00 to 0xFF do
for k = 0x00 to 0xFF do

N(µ)
k ← Nk⊕µ

λµ ← ∑0xFF
k=0x00 N(µ)

k log pr,k

P∗
r ← argmaxµ∈{0x00,...,0xFF} λµ

return P∗
r

compare these induced distributions (one for each pos-
sible µ) with the accurate distribution pr,0x00, . . . , pr,0xFF
and interpret a close match as an indication for the cor-
responding plaintext candidate µ being the correct one,
i.e., Pr = µ . More formally, we observe that the proba-
bility λµ that plaintext byte µ is encrypted to ciphertext
bytes {Cj,r}1≤ j≤S follows a multinomial distribution and
can be precisely calculated as

λµ =
S!

N(µ)
0x00! · · ·N(µ)

0xFF!
∏

k∈{0x00,...,0xFF}
p

N(µ)
k

r,k . (1)

By computing λµ for all 0x00≤ µ ≤ 0xFF and identify-
ing µ such that λµ is largest, we determine the (optimal)
maximum-likelihood plaintext byte value. Algorithm 4
specifies the details of the described single-byte bias at-
tack, including the optimizations discussed next.

Observe that, for each fixed position r and set of
ciphertexts {Cj,r}1≤ j≤S, values N(µ)

k can be computed

from values N(µ ′)
k by equation N(µ)

k = N(µ ′)
k⊕µ ′⊕µ , for

all k. In other words, vectors (N(µ)
0x00, . . . ,N

(µ)
0xFF) and

(N(µ ′)
0x00, . . . ,N

(µ ′)
0xFF) are permutations of each other; by

consequence, term S!/(N(µ)
0x00! · · ·N(µ)

0xFF!) in equation (1)
can safely be ignored when determining the largest λµ .
Furthermore, computing and comparing log(λµ) instead
of λµ makes the computation slightly more efficient.

4.2 Our Double-byte Bias Attack
As we have seen, Algorithm 4 allows the recovery of the
initial 256 bytes of plaintext when multiple encryptions
under different keys are observed by the attacker. In the
following, we describe an algorithm which allows the re-
covery of plaintext bytes at any position in the plaintext.

Furthermore, the algorithm does not require the plain-
text to be encrypted under many different keys but works
equally well for plaintexts repeatedly encrypted under a
single key.

Our algorithm is based on biases in the distribution of
consecutive bytes (Zr,Zr+1) of the RC4 keystream that
occur as long term biases, i.e., that appear periodically
at regular intervals in the keystream. As described in
Section 3, we empirically measured the biases which are
repeated with a period of 256 bytes. However, in 250 ex-
perimentally generated keystream bytes we observed no
significant new biases besides those already identified by
Fluhrer and McGrew [12]; for the purpose of construct-
ing our algorithm, we hence use the biases described in
Table 1 and assume that all other consecutive byte pairs
are equally likely to appear in the keystream. In other
words, we assume that we have accurate estimates pr,k1,k2
such that

pr,k1,k2 = Pr[(Zr,Zr+1) = (k1,k2)]

for 1 ≤ r ≤ 256 and 0x00 ≤ k1,k2 ≤ 0xFF, where the
probability is taken over all possible configurations of
the internal state S and the index j of the RC4 keystream
generation algorithm.9 Note that, since these proba-
bilities express biases that are repeated with a period
of 256 bytes, we have pr,k1,k2 = p(r mod 256),k1,k2 for all
r,k1,k2.

Let L be an integer multiple of 256. In the following
description of our plaintext recovery algorithm, we as-
sume that a fixed L-byte plaintext P = P1|| · · · ||PL is en-
crypted repeatedly under a single key, i.e., we consider a
ciphertext C obtained by encrypting P|| · · · ||P. (In fact, it
is sufficient for our attack that the target plaintext bytes
form a subsequence of consecutive bytes that are con-
stant across blocks of L bytes.) Let Cj denote the sub-
string of C corresponding to the encryption of the j-th
copy of P, and let Cj,r denote the r-th byte of Cj (i.e.,
Cj,r corresponds to byte (j−1) ·L+ r of C).

Given this setting, it seems reasonable to take an ap-
proach towards plaintext recovery similar to that of Al-
gorithm 4: for each position r, the most likely plaintext
pair (µr,µr+1) could be computed from the ciphertext
bytes {(Cj,r,Cj,r+1)}1≤ j≤S and the probability estimates
{pr,k1,k2}0x00≤k1,k2≤0xFF. In other words, a plaintext can-
didate would be obtained by splitting ciphertexts C into
byte pairs and individually computing the most likely
corresponding plaintext pairs.

However, by considering overlapping byte pairs, it is
possible to construct a more accurate estimate of the like-
lihood of a plaintext candidate being correct than by just
considering the likelihood of individual byte-pairs. More
specifically, for any plaintext candidate P′ = µ1|| · · · ||µL
we compute an estimated likelihood λP′ = λµ1||···||µL for

8

USENIX Association 22nd USENIX Security Symposium 313

P′ being correct via the recursion

λµ1||···||µ�−1||µ�
= δµ�|µ�−1

·λµ1||···||µ�−1
(�≤ L), (2)

where δµ�|µ�−1
denotes the probability that P� = µ�

assuming P�−1 = µ�−1, and λµ1||···||µ�−1
is the esti-

mated likelihood of µ1|| · · · ||µ�−1 being the correct
(� − 1)-length prefix of P. We show below how
values δµ�|µ�−1

can be computed given the ciphertext
bytes {(Cj,�−1,Cj,�)}1≤ j≤S and the probability estimates
{p�−1,k1,k2}0x00≤k1,k2≤0xFF. Note that, by rewriting equa-
tion (2) and assuming that λµ1 = Pr[P1 = µ1] is accurately
known, we obtain likelihood estimate λP′ = Pr[P1 =
µ1]∏L

�=2 δµ�|µ�−1
.

Our algorithm computes the plaintext candidate P∗ =
µ1|| · · · ||µL which maximizes the estimated likelihood
λP∗ . This is done by exploiting the following easy-
to-see optimality-preserving property: for all prefixes
µ1|| · · · ||µ� of P∗, � ≤ L, we have that λµ1||···||µ�−1

is the
largest likelihood among all (�−1)-length plaintext can-
didates with µ�−1 as the last byte.

The basic idea of our algorithm is to iteratively con-
struct P∗ by considering the prefixes of P∗ with increas-
ing length. As just argued, these correspond to the
(partial) plaintext candidates with the highest likelihood
and a specific choice of the last byte value. However,
when computing a candidate for a length � ≤ L, it is
not known in advance what the specific value of the
last byte µ� should be. Our algorithm hence computes
the most likely partial plaintext candidates for all pos-
sible values of µ�. More specifically, for each (�− 1)-
length partial candidate µ1|| · · · ||µ�−1 and any value µ�,
we compute the likelihood of the �-length plaintext can-
didate µ1|| · · · ||µ�−1||µ� via equation (2) as λµ1||···||µ�

=
δµ�|µ�−1

· λµ1||···||µ�−1
. Due to the optimality-preserving

property, the string µ1|| · · · ||µ� with the highest likeli-
hood will correspond to the most likely plaintext can-
didates of length � with the last byte µ�. This guarantees
that the �-length prefix of (optimal) P∗ will be among the
computed candidates and, furthermore, when the length
of P∗ is reached, that P∗ itself will be obtained.

To initialize the above process, the algorithm assumes
that the first plaintext byte µ1 of P is known with cer-
tainty, i.e., λµ1 = 1 (this can, for example, be assumed
if the attack is used to recover HTTP cookies from an
encrypted HTTP(S) header). Likewise, the algorithm as-
sumes that the last byte µL of P is known, i.e., λµL = 1
(also this is the case when recovering HTTP cookies).
This leads to a single µL being used in the last iteration of
the above process which will then return the most likely
plaintext candidate P∗. (See Remark 1 for how the al-
gorithm can be modified to work without these assump-
tions.)

It remains to show the details of how δµi+1|µi
can be computed. This is done similarly to the

maximum-likelihood computation of the proba-
bility estimate used in Algorithm 4. More pre-
cisely, each combination of index i, pair (µi,µi+1),
and ciphertext bytes {(Cj,i,Cj,i+1)}1≤ j≤S in-
duces a distribution on the keystream bytes
{(Z(j−1)L+i,Z(j−1)L+i+1)}1≤ j≤S. The latter can be
represented as a vector (Ni,0x00,0x00, . . . ,Ni,0xFF,0xFF),
where

Ni,k1,k2 = |{ j |(Cj,i,Cj,i+1)= (k1⊕µi,k2⊕µi+1)}1≤ j≤S| .

As in Section 4.1, we see that this vector follows a
multinomial distribution, and that the probability that
(Ni,0x00,0x00, . . . ,Ni,0xFF,0xFF) will arise (i.e., the probabil-
ity that (µi,µi+1) corresponds to the i-th and the (i+1)-th
plaintext bytes) is given by

Pr[Pi = µi ∧Pi+1 = µi+1 |C] = (3)

S!
Ni,0x00,0x00! · · ·Ni,0xFF,0xFF! ∏

k1,k2∈{0x00,...,0xFF}
p

Ni,k1,k2
i,k1,k2

.

We can now compute δµi+1|µi as

δµi+1|µi = Pr[Pi+1 = µi+1 |Pi = µi ∧C]

=
Pr[Pi = µi ∧Pi+1 = µi+1 |C]

Pr[Pi = µi |C]
. (4)

We assume that no significant single-byte biases are
present in the keystream, i.e., that Pr[Pi = µi |C] is uni-
form over the possible plaintext values µi. Under this
condition, since the term will stay invariant for all plain-
text candidates, we can ignore the contribution of fac-
tor 1/Pr[Pi = µi |C] in (4), when comparing probabil-
ity estimates. This is likewise the case for the terms
S!/(Ni,0x00,0x00, . . . ,Ni,0xFF,0xFF) in (3), due to similar ob-
servations as made for Algorithm 4.

We combine the results of the discussion from the
preceeding paragraphs, including the proposed optimiza-
tions, to obtain our double-byte bias attack in Algo-
rithm 5.

Remark 1. The above assumption, that the first and last
byte of the plaintext P is known, can easily be avoided.
Specifically, if the first byte is unknown, Algorithm 5 can
be initialized by computing, for each possible value µ2,
the most likely pairs (µ1,µ2). This can be done based
on the ciphertext bytes {(Cj,1,Cj,2)}1≤ j≤S and the proba-
bility estimates {p1,k1,k2}0x00≤k1,k2≤0xFF. Likewise, if the
last byte is unknown, the algorithm will identify P∗ as the
plaintext candidate with the highest likelihood estimate
among the computed plaintext candidates of length L.
Note, however, that knowing the first and last plaintext
byte will lead to a more accurate likelihood estimate and
will thereby increase the success rate of the algorithm.

9

314 22nd USENIX Security Symposium USENIX Association

Algorithm 5: Double-byte bias attack
input : C – encryption of S copies of fixed plaintext P

(Cj,r denotes the r-th byte of the substring of C encrypting the j-th copy of P)
L – length of P in bytes (must be a multiple of 256)
µ1 and µL – the first and last byte of P
{pr,k1,k2}1≤r≤L−1,0x00≤k1,k2≤0xFF – keystream distribution

output: estimate P∗ for plaintext P
notation: let max2(Q) denote (P,λ) ∈ Q such that λ ≥ λ ′ ∀(P′,λ ′) ∈ Q
begin

N(r,k1,k2) ← 0 for all 1 ≤ r < L, 0x00≤ k1,k2 ≤ 0xFF

for j = 1 to S do
for r = 1 to L−1 do

N(r,Cj,r ,Cj,r+1) ← N(r,Cj,r ,Cj,r+1) +1

Q ←{(µ1,0)}
for r = 1 to L−2 do

Qext ←{} // List of plaintext candidates of length r+1
for µr+1 = 0x00 to 0xFF do

Qµr+1 ←{} // List of plaintext candidates ending with µr+1
for each (P′,λP′) ∈ Q do

P′ → µ1|| · · · ||µr
λP′||µr+1 ← λP′ +∑0xFF

k1=0x00 ∑0xFF
k2=0x00 N(r,k1⊕µr ,k2⊕µr+1) · log p(r,k1,k2)

Qµr+1 ← Qµr+1 ∪{(P′||µr+1 ,λP′||µr+1)}
Qext ← Qext ∪{max2(Qµr+1)}

Q ← Qext

QµL ←{} // List of plaintext candidates ending with µL
for each (P′,λP′) ∈ Q do

P′ → µ1|| · · · ||µL−1
λP′||µL ← λP′ +∑0xFF

k1=0x00 ∑0xFF
k2=0x00 N(r,k1⊕µL−1,k2⊕µL) · log p(r,k1,k2)

QµL ← QµL ∪{(P′||µL ,λP′||µL)}
(P∗,λP∗)← max2(QµL)
return P∗

5 Experimental Results

Through simulation, we measured the performance of
the single-byte and double-byte bias attacks. We further-
more validated our algorithms in real attack scenarios.

5.1 Simulation of Single-byte Bias Attack

We simulated the first plaintext recovery attack described
in Section 4. We used RC4 keystreams for 244 ran-
dom keys to estimate the per-output-byte probabilities
{pr,k}1≤r≤256,0x00≤k≤0xFF. We then ran the attack in Al-
gorithm 4 256 times for each of S = 224,225, . . . ,232 ses-
sions to estimate the attack’s success rate. The results for
S = 224,226, . . . ,230 are shown in Figures 4–7. In each
figure, we show the success rate in recovering the correct
plaintext byte versus the position r of the byte in the out-
put stream (but recall that, in practice, the first 36 bytes

are not interesting as they contain the Finished mes-
sage). Some notable features of these figures are:

• Even with as few as 224 sessions, some positions
of the plaintext are correctly recovered with high
probability. The ones with highest probability seem
to arise because of the key-length-dependent bi-
ases that we observed in positions that are multiples
of 16. These large biases make it easier to recover
the correct plaintext bytes when compared to other
ciphertext positions.

• With S = 226 sessions, the first 46 plaintext bytes
are recovered with rate at least 50% per byte.

• With S = 232 sessions (not shown here; see [4]), all
of the first 256 bytes of output are recovered with
rate close to 100%: the rate is at least 96% in all
positions, and is 100% for all but 12 positions.

10

USENIX Association 22nd USENIX Security Symposium 315

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 4: Recovery rate of the single-byte bias attack for
S = 224 sessions for first 256 bytes of plaintext (based on
256 experiments).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 5: Recovery rate of the single-byte bias attack for
S = 226 sessions for the first 256 bytes of plaintext (based
on 256 experiments).

• The rate at which bytes are correctly recovered in-
creases steadily as the number of sessions S is in-
creased, with all but the last few bytes being reliably
recovered already for 231 trials.

Secondly, we executed the recovery attack in a setting
where plaintexts are encoded with a 4-bits-per-byte en-
coding scheme using the characters ‘0’ to ‘9’ and ‘a’
to ‘f’. Such restricted plaintext character sets are rou-
tinely used in different applications [4]; for instance,
in the popular PHP server-side scripting language, the
encoding of HTTP cookies can be limited to a repre-
sentation with 4 bits per character [20]. We reused
the probability estimates {pr,k}1≤r≤256,0x00≤k≤0xFF for
the RC4 keystream bytes generated for the simulation
above, and ran a modified version of Algorithm 4 which
takes into account the restricted plaintext space. The
modified algorithm was run 256 times for each of S =
224,225, . . . ,232 sessions. The results for S = 224, S = 226

and S = 228 are shown in Figures 8–10. For comparison,
the figures include the success rate of the original attack

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 6: Recovery rate of the single-byte bias attack for
S = 228 sessions for the first 256 bytes of plaintext (based
on 256 experiments).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 7: Recovery rate of the single-byte bias attack for
S = 230 sessions for the first 256 bytes of plaintext (based
on 256 experiments).

for an unrestricted plaintext space. We note:

• With S = 226 sessions, the first 112 plaintext bytes
are recovered with rate at least 50% per byte. This
represents a marked improvement over the case of
an unrestricted plaintext space, where only the first
46 bytes were recovered with rate at least 50% per
byte.

• With S = 224, . . . ,228 sessions, the recovery attack
for the restricted plaintext space has a better success
rate than the recovery attack for the unrestricted
plaintext space with twice the number of sessions
(i.e. S = 225, . . . ,229) for almost all positions.

5.2 Simulation of Double-byte Bias Attack
We simulated the second plaintext recovery attack based
on Algorithm 5. In the simulation, we encrypted S =
1 · 230, . . . ,13 · 230 copies of the same 256-byte plaintext

11

316 22nd USENIX Security Symposium USENIX Association

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 8: Recovery rates for the restricted plaintext space
(red) and the original single-byte bias attack (blue) for
S = 224 sessions (based on 256 experiments).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 9: Recovery rates for the restricted plaintext space
(red) and the original single-byte bias attack (blue) for
S = 226 sessions (based on 256 experiments).

and attempted to recover 16 bytes located at a fixed po-
sition in the plaintext. More precisely, we simulated an
attack in which we assume the first byte of the plaintext
is known, the following 16 bytes are the unknown bytes
targeted by the attack, and the byte immediately follow-
ing these is known. The remaining bytes are assumed
not to be of interest in the attack. This attack scenario is
very similar to the case in which an adversary attempts to
recover a cookie value from an HTTP request. Depend-
ing on the number of plaintext copies, we used between
one and five 128-bit RC4 keys for the encryption10. As
highlighted in Section 4.2, we used the biases described
by Fluhrer-McGrew [12] to compute the probability esti-
mates {pr,k1,k2}1≤r≤255,0x00≤k1,k2≤0xFF required by Algo-
rithm 5.

The attack was run 128 times for each of S = 1 ·
230, . . . ,13 ·230 encrypted copies of the plaintext to esti-
mate the success rate of the attack. The results are shown
in Figure 11: the dashed line shows the average fraction
of successfully recovered plaintext bytes versus the num-

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250"

Figure 10: Recovery rates for the restricted plaintext
space (red) and the original single-byte bias attack (blue)
for S = 228 sessions (based on 256 experiments).

ber of encrypted plaintexts, whereas the solid line shows
the success rate of recovering the full 16-byte plaintext
versus the number of encrypted plaintexts. We note:

• With S = 6 · 230 encrypted copies of the plaintext,
more than 50% of the plaintext is correctly recov-
ered on average. Furthermore, in 19% of the 128
trials, the full 16-byte plaintext was recovered.

• With S = 8 · 230 encrypted copies of the plaintext,
the full plaintext is correctly recovered in signifi-
cantly more than 50% of the 128 trials (more pre-
cisely, the full plaintext was recovered in 72% of
the trials).

• With S = 13 ·230 the full plaintext was recovered in
all trials.

• The rate at which the full plaintext is correctly re-
covered increases fairly rapidly after S = 5 · 230

copies of the plaintext are encrypted, and with S =
11 · 230, the full plaintext is correctly recovered in
nearly all trials (99%).

In addition, similar to Section 5.1, we simulated
the attack for plaintexts encoded with a 6-bits-per-byte
(base64) and a 4-bits-per-byte encoding scheme. Specif-
ically, we firstly ran a modified version of Algorithm 5
which takes into account the restricted plaintext space by
only considering candidate plaintext bytes which corre-
spond to byte-values used in a base64 encoding. Fur-
thermore, we used a plaintext where the 16 bytes tar-
geted by the attack consisted of bytes with a byte-value
corresponding to the character ‘b’, which is a valid
base64 encoded message. As in the attack above for a
non-restricted plaintext space, the probability estimates
{pr,k1,k2}1≤r≤255,0x00≤k1,k2≤0xFF were based on the biases
from [12]. The attack was run 128 times for each of

12

USENIX Association 22nd USENIX Security Symposium 317

��

����

����

����

����

��

����

�� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ���

Figure 11: Average fraction of successfully recovered
plaintext bytes (dashed line), and success rate for recov-
ering the full 16-byte plaintext (solid line) of the double-
byte bias attack based on 128 experiments. The unit of
the x-axis is 230 encrypted copies of the plaintext.

��

����

����

����

����

��

����

�� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ���

Figure 12: Average fraction of successfully recovered
plaintext bytes (dashed line), and success rate for recov-
ering the full 16-byte plaintext (solid line) of the double-
byte bias attack for base64 encoded plaintexts (based on
128 experiments). The unit of the x-axis is 230 encrypted
copies of the plaintext.

S = 1 ·230, . . . ,12 ·230 encrypted copies of the plaintext,
and the results are shown in Figure 12. We note:

• With S = 4 · 230 encrypted copies of the plaintext,
more than 50% of the plaintext is correctly recov-
ered on average. Furthermore, in 4% of the 128 tri-
als, the full 16-byte plaintext is recovered.

• With S = 6 · 230 encrypted copies of the plaintext,
the full plaintext is correctly recovered in 50% of
the 128 trials.

• With S = 10 · 230 encrypted copies of the plaintext,
the full plaintext is correctly recovered in nearly all
trials (98%).

Regarding the 4-bit-per-byte encoding scheme, we
again assumed a plaintext character set consisting of

��

����

����

����

����

��

����

�� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ���

Figure 13: Average fraction of successfully recovered
plaintext bytes (dashed line), and success rate for re-
covering the full 16-byte plaintext (solid line) of the
double-byte bias attack for 4-bit-per-byte encoded plain-
texts (based on 128 experiments). The unit of the x-axis
is 230 encrypted copies of the plaintext.

‘0’ to ‘9’ and ‘a’ to ‘f’. The setup was similar to the
above experiment for base64 encoded messages: we ran
a modified version of Algorithm 5 which takes into ac-
count the restricted plaintext space, the probability esti-
mates {pr,k1,k2}1≤r≤255,0x00≤k1,k2≤0xFF was based on the
biases from [12], and we used a plaintext consisting
of bytes with a byte-value corresponding to the char-
acter ‘b’. The attack was run 128 times for each of
S = 1 ·230, . . . ,10 ·230 encrypted copies of the plaintext,
and the results can be seen in Figure 13. We note:

• With S = 3 · 230 encrypted copies of the plaintext,
significantly more than 50% of the plaintext is cor-
rectly recovered on average (more precisely, 72% is
recovered correctly on average).

• With S = 5 · 230 encrypted copies of the plaintext,
the full plaintext is recovered in more than 50% of
the 128 trials.

• With S = 8 · 230 encrypted copies of the plaintext,
the full plaintext is recovered in nearly all trials
(98%).

5.3 Practical Validation
We tested the success rates of our plaintext recovery al-
gorithms in realistic attack settings involving web servers
and browsers that are connected through TLS-secured
network links. Here, we report on the results.

5.3.1 Validating the operation of RC4 in TLS

We first experimentally verified that the OpenSSL im-
plementation of TLS does indeed use RC4 in the way

13

318 22nd USENIX Security Symposium USENIX Association

explained in Section 2.2, in particular without discard-
ing any initial keystream bytes. We did this by setting
up an OpenSSL version 1.0.1c client and server running
in a virtualised environment, making use of s client

and s server, generic tools that are available as part
of the OpenSSL distribution package. The two virtual
machines were running Ubuntu 12.10 and kernel version
3.5.0-17.

5.3.2 Validating the single-byte bias attack

Recall that our single-byte bias attack targets the first 256
bytes of plaintext across multiple TLS sessions or con-
nections with random keys. In order to efficiently gen-
erate the large number of ciphertexts needed to test our
attack, we again used the s client and s server tools,
this time modifying the s client source code to force a
session resumption for each TLS packet sent.

Using this approach, we were able to generate around
221 encryptions of a fixed plaintext per hour; with 225

recorded ciphertexts, we obtained results comparable to
the simulation of our single-byte bias attack reported in
Section 5.1 above. A second possible approach to ensure
frequently enough rekeying is to actively interfere with
the TLS session after each ciphertext is sent, causing it
to fail and be restarted, by injecting a bad TLS packet or
by resetting the corresponding TCP connection.

We admit that we do not currently have an automated
mechanism for forcing session resumption, e.g., from
JavaScript. However, JavaScript running in the browser
can trigger the browser to establish a fresh TLS session
(with a fresh, random key) after each HTTP connection
torn down by the attacker. We estimate that this second
approach would be significantly slower than using ses-
sion resumption because of the additional overhead of
running the full TLS Handshake. Thus, even though our
double-byte bias attack has higher complexity in terms
of its ciphertext requirements than our single-byte bias
attack, in practice it could be the more efficient attack in
terms of total running time, because it can be executed in
a single session (or a small number of sessions).

Furthermore, while the single-byte bias attack suc-
cessfully recovered fixed plaintext bytes in the initial
256 bytes of the TLS ciphertexts, our subsequent experi-
mentation with modern web browsers revealed that these
bytes consisted mostly of less interesting HTTP head-
ers rather than cookies. For this reason, after this ba-
sic validation, we switched our experimental focus to the
double-byte bias attack.

5.3.3 Validating the double-byte bias attack

The double-byte bias attack does not rely on session re-
sumption or session renegotiation and is hence easier to

implement in practice. As our experimental setup for
this attack, we used a network comprising three (non-
virtualized) nodes: a legitimate web server (www.abc.
com) that serves 16-byte secure cookies over HTTPS,
a malicious web server (www.evil.com) serving a ma-
licious JavaScript, and a client running a web browser
representing a user. The legitimate and malicious web
servers run Apache and PHP. For the client, we experi-
mented with various browsers, including Firefox, Opera
and Chrome. The nodes were connected through a
100 Mbps Ethernet link; they were equipped with Intel
Core i7 processors with 2.3 GHz cores and 16 GB of
RAM. None of our experiments used all available CPU
resources, nor saturated the network bandwidth.

In this setup, we let the client visit https://www.
abc.com. This will result in the legitimate web server
sending the client a secure cookie which will be stored
by the client’s browser. This cookie will be the tar-
get of the attack. We then let the client visit http://
www.evil.com and run the malicious JavaScript served
by the malicious web server. Note that the same-origin
policy (SOP) implemented by the client’s browser will
prevent the JavaScript from directly accessing the se-
cure cookie. However, the JavaScript will direct repeated
HTTP requests to the legitimate server over TLS (i.e. us-
ing HTTPS)11. The client’s browser will then automat-
ically attach the cookie to each request and thereby re-
peatedly encrypt the target cookie as required in our at-
tack.

The JavaScript uses XMLHttpRequest objects12 to
send the requests. We tested GET, POST, and HEAD re-
quests, but found that POST requests gave the best per-
formance (using Firefox). Furthermore, we found that
the requests needed to be send in blocks to ensure that
the browser stayed responsive and didn’t become over-
loaded.

For all the browsers we tested (Firefox, Chrome, and
Opera), we found that the requests generated by the
JavaScript resulted in TLS messages containing more
than 256 bytes of ciphertext. To keep the target cookie
in a fixed position in the TLS message (modulo 256)
as needed for the double-byte bias attack, we therefore
added padding by manipulating the HTTP headers in the
request to bring the encrypted POST requests up to ex-
actly 512 bytes. This padding introduces some overhead
to the attack. The exact amount and location of padding
needed is browser-dependent, since different browsers
behave differently in terms of the content and order of
HTTP headers included in POST requests. In practice,
then, the attacker’s JavaScript would need to perform
some browser fingerprinting before carrying out its at-
tack.

As an alternative method for generating request to the
legitimate web server, we tried replacing the JavaScript

14

USENIX Association 22nd USENIX Security Symposium 319

code with basic HTML code, using HTML tags such as img,
pointing to https://www.abc.com. The target cookie
was still sent in every request, but we found this approach
to be less effective (i.e. slower) than using JavaScript.

For Firefox with 512-byte ciphertexts encrypting
padded XMLHttpRequest POST requests, we were able
to generate 6 million ciphertexts per hour on our net-
work, with each request containing the target cookie in
the same position (modulo 256) in the corresponding
plaintext. Given that our attack needs on the order of
13 · 230 encryptions to recover a 16-byte plaintext with
high success probability, we estimate that the running
time for the whole attack would be on the order of 2000
hours using our experimental setup. The attack gener-
ates large volumes of network traffic over long periods of
time, and so should not be considered a practical threat.
Nevertheless, it demonstrates that our double-byte bias
attack does work in principle.

6 Discussion and Conclusions

We have shown that plaintext recovery for RC4 in TLS
is possible for the first about 200 or so bytes of the
plaintext stream (after the Finished message), provided
sufficiently many independent encryptions of the same
plaintext are available. The number of encryptions re-
quired (around 228 to 232 for reliable recovery) is large,
but not completely infeasible. We have also shown that
plaintext recovery for RC4 is possible from arbitrary po-
sitions in the plaintext, given enough encryptions of the
same plaintext bytes. Here, the number of encryptions
required is rather higher (around 13 · 230), but the attack
is more flexible and more efficient in practice because
it avoids rerunning the TLS Handshake. Certainly, the
security level provided by RC4 in TLS is far below the
strength implied by the 128-bit key in TLS.

This said, it would be incorrect to describe the attacks
as being a practical threat to TLS today. However, our
attacks are open to further enhancement, using, for ex-
ample, the ability of our algorithms to output likelihoods
for candidate plaintext bytes coupled with more sophis-
ticated plaintext models. It may also be possible to en-
hance the rate of ciphertext generation in browsers using
methods beyond our knowledge. It would seem danger-
ous to assume that the attacks will not be improved by
other researchers in future.

There are countermeasures to the attacks. We dis-
cussed these countermeasures extensively with vendors
during the disclosure process that we followed prior to
making our attacks public. They include: discarding
the initial keystream bytes output by RC4, as recom-
mended in [19]; fragmenting the initial HTTP requests at
the browser so that the initial keystream bytes are mostly
(or entirely) used to encrypt MAC fields; adding random

padding to HTTP requests; and limiting the lifetime of
cookies or the number of times they can be sent from
the browser. The first countermeasure cannot easily be
implemented in TLS because it would require mass co-
ordination between the many different client and server
implementations. The first two countermeasures are not
effective against our double-byte bias attack. The third
countermeasure can be relatively easily implemented in
browsers but increases the complexity of our attacks
rather than defeating them completely. The fourth coun-
termeasure is currently effective, but not immune to fur-
ther improvements of our attacks. Some vendors (e.g.
Opera13) have implemented a combination of these (and
other) countermeasures; others (e.g. Google in Chrome)
are focussing on implementing TLS 1.2 and AES-GCM.

We recognise that, with around 50% of TLS traffic
currently using RC4, recommending that it be avoided
completely in TLS is not a suggestion to be made lightly.
Nevertheless, given the rather small security margin pro-
vided by RC4 against our attacks, our recommendation
is that RC4 should henceforth be avoided in TLS, and
deprecated as soon as possible.

Acknowledgements

We thank David McGrew for raising the question of the
security of RC4 in TLS.

References
[1] Wireless LAN medium access control (MAC) and physical layer

(PHY) specification, 1997.

[2] Wireless LAN medium access control (MAC) and physical layer
(PHY) specification: Amendment 6: Medium access control
(MAC) security enhancements, 2004.

[3] ALFARDAN, N., AND PATERSON, K. G. Lucky 13: Breaking
the TLS and DTLS record protocols. In IEEE Symposium on
Security and Privacy (2013).

[4] ALFARDAN, N. J., BERNSTEIN, D. J., PATERSON, K. G., PO-
ETTERING, B., AND SCHULDT, J. C. N. On the security of RC4
in TLS and WPA. Information Security Group at Royal Hol-
loway, University of London, 2013. http://www.isg.rhul.

ac.uk/tls/RC4biases.pdf.

[5] AMMAN, B. Personal communication, February 2013.

[6] CANVEL, B., HILTGEN, A., VAUDENAY, S., AND VUAGNOUX,
M. Password interception in a SSL/TLS channel. Advances in
Cryptology-CRYPTO 2003 (2003), 583–599.

[7] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0.
RFC 2246, Internet Engineering Task Force, Jan. 1999.

[8] DIERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.1. RFC 4346, Internet Engineering
Task Force, Apr. 2006.

[9] DIERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246, Internet Engineering
Task Force, Aug. 2008.

[10] DUONG, T., AND RIZZO, J. Here come the ⊕ Ninjas. Unpub-
lished manuscript, 2011.

15

320 22nd USENIX Security Symposium USENIX Association

[11] FLUHRER, S. R., MANTIN, I., AND SHAMIR, A. Weaknesses in
the key scheduling algorithm of RC4. In Selected Areas in Cryp-
tography (2001), S. Vaudenay and A. M. Youssef, Eds., vol. 2259
of Lecture Notes in Computer Science, Springer, pp. 1–24.

[12] FLUHRER, S. R., AND MCGREW, D. Statistical analysis of the
alleged RC4 keystream generator. In FSE (2000), B. Schneier,
Ed., vol. 1978 of Lecture Notes in Computer Science, Springer,
pp. 19–30.

[13] ISOBE, T., OHIGASHI, T., WATANABE, Y., AND MORII, M.
Full plaintext recovery attack on broadcast RC4. In Preproceed-
ings of FSE (2013).

[14] JAGANATHAN, K., ZHU, L., AND BREZAK, J. The RC4-HMAC
Kerberos Encryption Types Used by Microsoft Windows. RFC
4757 (Informational), Dec. 2006.

[15] MAITRA, S., PAUL, G., AND SENGUPTA, S. Attack on broad-
cast RC4 revisited. In FSE (2011), A. Joux, Ed., vol. 6733 of
Lecture Notes in Computer Science, Springer, pp. 199–217.

[16] MANTIN, I. Predicting and distinguishing attacks on rc4
keystream generator. In EUROCRYPT (2005), R. Cramer, Ed.,
vol. 3494 of Lecture Notes in Computer Science, Springer,
pp. 491–506.

[17] MANTIN, I., AND SHAMIR, A. A practical attack on broadcast
RC4. In FSE (2001), M. Matsui, Ed., vol. 2355 of Lecture Notes
in Computer Science, Springer, pp. 152–164.

[18] MCGREW, D., AND BAILEY, D. AES-CCM Cipher Suites for
Transport Layer Security (TLS). RFC 6655 (Proposed Standard),
2012.

[19] MIRONOV, I. (Not so) random shuffles of RC4. In CRYPTO
(2002), M. Yung, Ed., vol. 2442 of Lecture Notes in Computer
Science, Springer, pp. 304–319.

[20] PHP DOCUMENTATION GROUP. PHP manual, Feb 2013. http:
//www.php.net/manual/en/session.configuration.

php#ini.session.hash-bits-per-character.

[21] SALOWEY, J., CHOUDHURY, A., AND MCGREW, D. AES Ga-
lois Counter Mode (GCM) Cipher Suites for TLS. RFC 5288
(Proposed Standard), Aug. 2008.

[22] SEN GUPTA, S., MAITRA, S., PAUL, G., AND SARKAR, S.
Proof of empirical RC4 biases and new key correlations. In Se-
lected Areas in Cryptography (2011), pp. 151–168.

[23] SEN GUPTA, S., MAITRA, S., PAUL, G., AND SARKAR, S.
(Non-) random sequences from (non-) random permutations –
analysis of RC4 stream cipher. Journal of Cryptology to appear
(2013).

[24] SEPEHRDAD, P., VAUDENAY, S., AND VUAGNOUX, M. Discov-
ery and exploitation of new biases in RC4. In Selected Areas in
Cryptography (2010), A. Biryukov, G. Gong, and D. R. Stinson,
Eds., vol. 6544 of Lecture Notes in Computer Science, Springer,
pp. 74–91.

[25] SEPEHRDAD, P., VAUDENAY, S., AND VUAGNOUX, M. Sta-
tistical attack on RC4 – distinguishing WPA. In EUROCRYPT
(2011), K. G. Paterson, Ed., vol. 6632 of Lecture Notes in Com-
puter Science, Springer, pp. 343–363.

[26] VAUDENAY, S., AND VUAGNOUX, M. Passive-only key recov-
ery attacks on RC4. In Selected Areas in Cryptography (2007),
C. M. Adams, A. Miri, and M. J. Wiener, Eds., vol. 4876 of Lec-
ture Notes in Computer Science, Springer, pp. 344–359.

Notes
1The research of the third, fourth and fifth authors was supported

by an EPSRC Leadership Fellowship, EP/H005455/1. The research of
the second author was supported by the National Science Foundation
under grant 1018836 and by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.073.005.

2SSL Pulse (https://www.trustworthyinternet.org/
ssl-pulse/) reported in June 2013 that only 15.1% of 170,000
websites surveyed support TLS 1.2; most major browsers currently do
not support TLS 1.2.

3For examples of RC4 being recommended in the
face of CBC attacks, see advice at Qualys’ website
https://community.qualys.com/blogs/securitylabs/

2011/10/17/mitigating-the-beast-attack-on-tls,
Ivan Ristic’s personal blog http://blog.ivanristic.com/

2009/08/is-rc4-safe-for-use-in-ssl.html, PhoneFac-
tor’s blog http://blog.phonefactor.com/2011/09/23/

slaying-beast-mitigating-the-latest-ssltls

-vulnerability, and F5’s suggested Lucky 13 mitigation at
http://support.f5.com/kb/en-us/solutions/public/

14000/100/sol14190.html. Other examples abound on discussion
forums and vendor websites.

4http://notary.icsi.berkeley.edu
5Unfortunately, we do not currently know of a way to trigger TLS

session resumption from JavaScript running in a browser.
6The Internet Message Access Protocol (IMAP) is a popular proto-

col for email retrieval.
7Note that when attacking secret URL parameters from HTTPS

connections or passwords from IMAP sessions such limitations do not
arise.

8 In detail, instead of an internal permutation S of 8-bit values,
Fluhrer and McGrew consider variants of RC4 based on permutations
of 3-bit, 4-bit, and 5-bit values, respectively. Note that in these versions
of RC4, the internal variables i and j, as well as the output Zr , will also
be 3-bit, 4-bit and 5-bit values, respectively.

9Note that the internal state S, which corresponds to a permutation
over byte values, will not be distributed as a random permutation im-
mediately after the key scheduling algorithm is run, even if the used
key is picked uniformly at random. Furthermore, j will not be random,
but initialized to 0. However, random S and j will be a close approx-
imation after keystream bytes have been generated a short period of
time (see [12] for further discussion of this property).

10Our experiments showed that there is no significant difference in
the recovery rate when running the attack on encryptions of the plain-
text generated by a single key and encryptions generated by a small
number of different keys.

11This is made possible by Cross-Origin Resource Sharing (CORS),
a mechanism developed to allow JavaScript to make requests to another
domain than the domain the script originates from.

12http://www.w3.org/TR/XMLHttpRequest/
13http://my.opera.com/securitygroup/blog/2013/03/

20/on-the-precariousness-of-rc4

16

USENIX Association 22nd USENIX Security Symposium 321

PCF: A Portable Circuit Format For Scalable Two-Party Secure
Computation

Ben Kreuter
Computer Science Dept.

U. Virginia

Benjamin Mood
Computer and Info. Science Dept.

U. Oregon

abhi shelat
Computer Science Dept.

U. Virginia

Kevin Butler
Computer and Info. Science Dept.

U. Oregon

Abstract
A secure computation protocol for a function f (x,y)

must leak no information about inputs x,y during its ex-
ecution; thus it is imperative to compute the function f
in a data-oblivious manner. Traditionally, this has been
accomplished by compiling f into a boolean circuit. Pre-
vious approaches, however, have scaled poorly as the cir-
cuit size increases. We present a new approach to com-
piling such circuits that is substantially more efficient
than prior work. Our approach is based on online cir-
cuit compression and lazy gate generation. We imple-
mented an optimizing compiler for this new representa-
tion of circuits, and evaluated the use of this representa-
tion in two secure computation environments. Our eval-
uation demonstrates the utility of this approach, allow-
ing us to scale secure computation beyond any previous
system while requiring substantially less CPU time and
disk space. In our largest test, we evaluate an RSA-1024
signature function with more than 42 billion gates, that
was generated and optimized using our compiler. With
our techniques, the bottleneck in secure computation lies
with the cryptographic primitives, not the compilation or
storage of circuits.

1 Introduction

Secure function evaluation (SFE) refers to several related
cryptographic constructions for evaluating functions on
unknown inputs. Typically, these constructions require
an oblivious representation of the function being eval-
uated, which ensures that the control flow of the algo-
rithm will not depend on its input; in the two party case,
boolean circuits are most frequently seen. These oblivi-
ous representations are often large, with millions and in
some cases billions of gates even for relatively simple
functions, which has motivated the creation of software
tools for producing such circuits. While there has been
substantial work on the practicality of secure function

evaluation, it was only recently that researchers began
investigating the practicality of compiling such oblivious
representations from high-level descriptions.

The work on generating boolean circuits for SFE has
largely focused on two approaches. In one approach,
a library for a general purpose programming language
such as Java is created, with functions for emitting cir-
cuits [13, 20]. For convenience, these libraries typically
include pre-built gadgets such as adders or multiplex-
ers, which can be used to create more complete func-
tions. The other approach is to write a compiler for a
high level language, which computes and optimizes cir-
cuits based on a high level description of the functional-
ity that may not explicitly state how the circuit should
be organized [18, 21]. It has been shown in previous
work that both of these approaches can scale up to cir-
cuits with at least hundreds of millions of gates on mod-
ern computer hardware, and in some cases even billions
of gates [13, 18].

The approaches described above were limited in terms
of their practical utility. Library-based approaches like
HEKM [13] or VMCrypt [20] require users to understand
the organization of the circuit description of their func-
tion, and were unable to apply any optimizations across
modules. The Fairplay compiler [21] was unable to scale
to circuits with only millions of gates, which excludes
many interesting functions that have been investigated.
The poor scalability of Fairplay is a result of the com-
piler first unrolling all loops and inlining all subroutines,
storing the results in memory for later compiler stages.
The PALC system [23] was more resource efficient than
Fairplay, but did not attempt to optimize functions, re-
lying instead on precomputed optimizations of specific
subcircuits. The KSS12 [18] system was able to apply
some global optimizations and used less memory than
Fairplay, but also had to unroll all loops and store the
complete circuit description, which caused some func-
tions to require days to compile. Additionally, the lan-
guage used to describe circuits in the KSS12 system was

1

322 22nd USENIX Security Symposium USENIX Association

brittle and difficult to use; for example, array index val-
ues could not be arbitrary functions of loop indices.

1.1 Our Approach

In this work, we demonstrate a new approach to compil-
ing, optimizing, and storing circuits for SFE systems. At
a high level, our approach is based on representing the
function to be evaluated as a program that computes the
circuit representation of the function, similar to the cir-
cuit library approaches described in previous work. Our
compiler then optimizes this program with the goal of
producing a smaller circuit. We refer to our circuit rep-
resentation as the Portable Circuit Format (PCF).

When the SFE system is run, it uses our interpreter
to load the PCF program and execute it. As the PCF
program runs, it interacts with the SFE system, managing
information about gates internally based on the responses
from the SFE system itself. In our system, the circuit is
ephemeral; it is not necessary to store the entire circuit,
and wires will be deleted from memory once they are no
longer required.

The key insight of our approach is that it is not neces-
sary to unroll loops until the SFE protocol runs. While
previous compilers discard the loop structure of the func-
tion, ours emits it as part of the control structure of the
PCF program. Rather than dealing directly with wires,
our system treats wire IDs as memory addresses; a wire
is “deleted” by overwriting its location in memory. Loop
termination conditions have only one constraint: they
must not depend on any secret wire values. There is no
upper bound on the number of loop iterations, and the
programmer is responsible for ensuring that there are no
infinite loops.

To summarize, we present the following contributions:

• A new compiler that has the same advantages as the
circuit library approach

• A novel, more general algorithm for translating con-
ditional statements into circuits

• A new representation of circuits that is more com-
pact than previous representations which scales to
arbitrary circuit sizes.

• A portable interpreter that can be used with differ-
ent SFE execution systems regardless of the security
model.

Our compiler is a back end that can read the byte-
code emitted by a front end; thus our compiler allows
any language to be used for SFE. Instead of focusing on
global optimizations of boolean functions, our optimiza-
tion strategy is based on using higher-level information

from the bytecode itself, which we show to be more ef-
fective and less resource-intensive. We present compar-
isons of our compiler with previous work and show ex-
perimental results using our compiler in two complete
SFE systems, one based on an updated version of the
KSS12 system and one based on HEKM. In some of our
test cases, our compiler produced circuits only 30% as
large as previous compilers starting from the same source
code. With the techniques presented in this work, we
demonstrate that the RSA algorithm with a real-world
key size and real-world security level can be compiled
and run in a garbled circuit protocol using a typical desk-
top computer. To the best of our knowledge, the RSA-
1024 circuit we tested is larger than any previous garbled
circuit experiment, with more than 42 billion gates. We
also present preliminary results of our system running
on smartphones, using a modified version of the HEKM
system.

For testing purposes, we used the LCC compiler [8]
as a front-end to our system. A high-level view of our
system, with the LCC front-end, is given in Figure 1.

The rest of this paper is organized as follows: Sec-
tion 2 is a review of SFE and garbled circuits; Section 3
presents an overview of bytecode languages; Section 4
explains our compiler design and describes our represen-
tation; Section 5 discusses the possibility of using dif-
ferent bytecode and SFE systems; Section 6 details the
experiments we performed to evaluate our system and re-
sults of those experiments; Section 7 details other work
which is related to our own; and Section 8 presents future
lines of research.

2 Secure Function Evaluation

The problem of secure two-party computation is to allow
two mutually distrustful parties to compute a function
of their two inputs without revealing their inputs to the
opposing party (privacy) and with a guarantee that the
output could not have been manipulated (correctness).
Yao was the first to show that such a protocol can be
constructed for any computable function, by using the
garbled circuits technique [30]. In his original formula-
tion, Yao proposed a system that would allow users to de-
scribe the function in a high level language, which would
then be compiled into a circuit to be used in the garbled
circuits protocol. The first complete implementation of
this design was the Fairplay system given by Malkihi et
al. [21].
Oblivious Transfer One of the key building blocks
in Yao’s protocol is oblivious transfer, a cryptographic
primitive first proposed by Rabin [25]. In this primitive,
the “sender” party holds a database of n strings, and the
“receiver” party learns exactly k strings with the guar-
antee that the sender will not learn which k strings were

2

USENIX Association 22nd USENIX Security Symposium 323

Gen. PCF
Interpreter

C Code

Evl. PCF
InterpreterLCC

Bytecode

C Compiler LCC to PCF
Compiler

PCF File

Figure 1: High-level design of our system. We take a C
program and compile it down to the LCC bytecode. Our
compiler then transforms the LCC bytecode to our new
language PCF. Both parties then execute the protocol in
their respective role in the SFE protocol. The interpreter
could be any execution system.

sent and the receiver will not learn more than k strings;
this is known as a k-out-of-n oblivious transfer. Given a
public key encryption system it is possible to construct
a 1-out-of-2 oblivious transfer protocol [7], which is the
building block used in Yao’s protocol.
Garbled Circuits The core of Yao’s protocol is the con-
struction of garbled circuits, which involves encrypting
the truth table of each gate in a circuit description of the
function. When the protocol is run, the truth values in the
circuit will be represented as decryption keys for some
cipher, with each gate receiving a unique pair of keys for
its output wire. The keys for a gate’s input wires are then
used to encrypt the keys for its output wires. Given a sin-
gle key for each input wire of the circuit, the party that
evaluates the circuit can decrypt a single key that rep-
resents a hidden truth value for each gate’s output wire,
until the output gates are reached. Since this encryption
process can be applied to any circuit, and since any com-
putable function has a corresponding circuit family, this
allows the construction of a secure protocol for any com-
putable function.

The typical garbled circuit protocol has two parties
though it can be expanded to more. Those two parties
are Bob, the generator of the garbled circuit, and Alice,
the evaluator of the garbled circuit. Bob creates the gar-
bled circuit and therefore knows the decryption keys, but
does not know which specific keys Alice uses. Alice will
receive the input keys from Bob using an oblivious trans-
fer protocol, and thus learns only one key for each input
wire; if the keys are generated independent of Bob’s in-
put, Alice will learn only enough to compute the output
of the circuit.

Several variations on the Yao protocol have been pub-
lished; a simple description of the garbling and eval-
uation process follows. Let f : {0,1}A × {0,1}B →
{0,1} j ×{0,1}k be a computable function, which will
receive input bits from two parties and produce output
bits for each party (not necessarily the same outputs). To
garble the circuit, a block cipher 〈E,D,G〉 will be used.

For each wire in the circuit, Bob computes a pair of
random keys (k0,k1) ← (G(1n),G(1n)), which represent

logical 0 and 1 values. For each of Alice’s outputs, Bob
uses these keys to encrypt a 0 and a 1 and sends the pair
of ciphertexts to Alice. Bob records the keys correspond-
ing to his own outputs. The rest of the wires in the cir-
cuit are inputs to gates. For each gate, if the truth table is
[v0,0,v0,1,v1,0,v1,1], Bob computes the following cipher-
text:

[

Ekl,0(Ekr,0(kv0,0)),Ekl,0(Ekr,1(kv0,1))
Ekl,1(Ekr,0(kv1,0)),Ekl,1(Ekr,1(kv1,1))

]

where kl,∗ and kr,∗ are the keys for the left and right input
wires (this can be generalized for gates with more than
two inputs). The order of the four ciphertexts is then
randomly permuted and sent to Alice.

Now that Alice has the garbled gates, she can begin
evaluating the circuit. Bob will send Alice his input wire
keys. Alice and Bob then use an oblivious transfer to give
Alice the keys for her input wires. For each gate, Alice
will only be able to decrypt one entry, and will receive
one key for the gate’s output, and will continue to de-
crypt truth table entries until the output wires have been
computed. Alice will then send Bob his output keys, and
decrypt her own outputs.
Optimizations Numerous optimizations to the basic Yao
protocol have been published [10, 13, 17, 24, 27]. Of
these, the most relevant to compiling circuits is the “free
XOR trick” given by Kolesnikov and Schneider [17].
This technique allows XOR gates to be evaluated with-
out the need to garble them, which greatly reduces the
amount of data that must be transferred and the CPU time
required for both the generator and the evaluator. One ba-
sic way to take advantage of this technique is to choose
subcircuits with fewer non-XOR gates; Schneider pub-
lished a list of XOR-optimal circuits for even three-input
functions [27].

Huang et al. noted that there is no need for the eval-
uator to wait for the generator to garble all gates in the
circuit [13]. Once a gate is garbled, it can be sent to
the evaluator, allowing generation and evaluation to oc-
cur in parallel. This technique is very important for large
circuits, which can quickly become too large to store in
RAM [18]. Our approach unifies this technique with the
use of an optimizing compiler.

3 Bytecode

A common approach to compiler design is to translate a
high level language into a sequence of instructions for a
simple, abstract machine architecture; this is known as
the intermediate representation or bytecode. Bytecode
representations have the advantage of being machine-
independent, thus allowing a compiler front-end to be
used for multiple target architectures. Optimizations per-

3

324 22nd USENIX Security Symposium USENIX Association

formed on bytecode are machine independent as well; for
example, dead code elimination is typically performed
on bytecode, as removing dead code causes programs to
run faster on all realistic machines.

For the purposes of this work, we focus on a com-
monly used bytecode abstraction, the stack machine. In
this model, operands must be pushed onto an abstract
stack, and operations involve popping operands off of the
stack and pushing the result. In addition to the stack, a
stack machine has RAM, which is accessed by instruc-
tions that pop an address off the stack. Instructions in
a stack machine are partially ordered, and are divided
into subroutines in which there is a total ordering. In
addition to simple operations and operations that interact
with RAM, a stack machine has operations that can mod-
ify the program counter, a pointer to the next instruction
to be executed, either conditionally or unconditionally.

At a high level, our system translates bytecode pro-
grams for a stack machine into boolean circuits for SFE.
At first glance, this would appear to be at least highly
inefficient, if not impossible, because of the many ways
such an input program could loop. We show, however,
that imposing only a small set of restrictions on permis-
sible sequences of instructions enables an efficient and
practical translator, without significantly reducing the us-
ability or expressive power of the high level language.

4 System Design

Our system divides the compiler into several stages, fol-
lowing a common compiler design. For testing, we used
the LCC compiler front end to parse C source code and
produce a bytecode intermediate representation (IR). Our
back end performs optimizations and translates the byte-
code into a description of a secure computation proto-
col using our new format. This representation greatly re-
duces the disk space requirements for large circuits com-
pared to previous work, while still allowing optimiza-
tions to be done at the bit level. We wrote our compiler
in Common Lisp, using the Steel Bank Common Lisp
system.

4.1 Compact Representations of Boolean
Circuits

In Fairplay and the systems that followed its design, the
common pattern has been to represent Boolean circuits as
adjacency lists, with each node in the graph being a gate.
The introduces a scalability problem, as it requires stor-
age proportional to the size of the circuit. Generating,
optimizing, and storing circuits has been a bottleneck
for previous compilers, even for relatively simple func-
tions like RSA. Loading such large circuits into RAM

OR

Memory

LOC: 65+iLOC: 33+i LOC: 1+i

Loop?

… ...

… ...

YESNO

OR

Memory

LOC: 65+iLOC: 65+i LOC: 97+i

… ...

Figure 2: The high-level concept of the PCF design. It
is not necessary to unroll loops at compile time, even to
perform optimizations on the circuit. Instead, loops can
be evaluated at runtime, with gates being computed on-
the-fly, and loop indices being updated locally by each
party. Wire values are stored in a table, with each gate
specifying which two table entries should be used as in-
puts and where the output should be written; previous
wire values in the table can be overwritten during this
process, if they are no longer needed.

is a challenge, as even very high-end machines may not
have enough RAM for relatively simple functions.

There have been some approaches to addressing this
scalability problem presented in previous work. The
KSS12 system reduced the RAM required for protocol
executions by assigning each gate’s output wire a refer-
ence count, allowing the memory used for a wire value to
be deallocated once the gate is no longer needed. How-
ever, the compiler bottleneck was not solved in KSS12,
as even computing the reference count required memory
proportional to the size of the circuit. Even with the engi-
neering improvements presented by Kreuter, shelat, and
Shen, the KSS12 compiler was unable to compile circuits
with more than a few billion gates, and required several
days to compile their largest test cases [18].

The PAL system [23] also addresses memory require-
ments, by adding control structures to the circuit descrip-
tion, allowing parts of the description to be re-used. In
the original presentation of PAL, however, a large circuit
file would still be emitted in the Fairplay format when
the secure protocol was run. An extension of this work
presented by Mood [22] allowed the PAL description to
be used directly at runtime, but this work sacrificed the
ability to optimize circuits automatically.

Our system builds upon the PAL and KSS12 systems
to solve the memory scalability problem without sacri-

4

USENIX Association 22nd USENIX Security Symposium 325

ficing the ability to optimize circuits automatically. Two
observations are key to our approach.

Our first observation is that it is possible to free the
memory required for storing wire values without com-
puting a reference count for the wire. In previous work,
each wire in a circuit is assigned a unique global identi-
fier, and gate input wires are specified in terms of these
identifiers (output wires can be identified by the position
of the gate in the gate list). Rather than using global
identifiers, we observe that wire values are ephemeral,
and only require a unique identity until their last use as
the input to a gate.

We therefore maintain a table of “active” wire values,
similar to KSS12, but change the gate description. In
this format, wire values are identified by their index in
the table, and gates specify the index of each input wire
and an index for the output wire; in other words, a gate
is a tuple 〈t, i1, i2,o〉, where t is a truth table, i1, i2 are the
input wire indexes, and o is the output wire index. When
a wire value is no longer needed, its index in the table
can be safely used as an output wire for a gate.

Now, consider the following example of a circuit
described in the above format, which accumulates the
Boolean AND of seven wire values:

〈AND1,1,2,0〉
〈AND2,0,3,0〉
〈AND3,0,4,0〉
〈AND4,0,5,0〉
〈AND5,0,6,0〉
〈AND6,0,7,0〉

Our second observation is that circuits such as this can
be described more compactly using a loop. This builds
on our first observation, which allows wire values to be
overwritten once they are no longer needed. A simple ap-
proach to allowing this would add a conditional branch
operation to the description format. This is more general
than the approach of PAL, which includes loops but al-
lows only simple iteration. Additionally, it is necessary
to allow the loop index to be used to specify the input or
output wire index of the gates; as a general solution, we
add support for indirection, allowing wire values to be
copied.

This representation of Boolean circuits is a bytecode
for a one-bit CPU, where the operations are the 16 pos-
sible two-arity Boolean gates, a conditional branch, and
indirect copy. In our system, we also add instructions
for function calls (which need not be inlined at compile
time) and handling the parties’ inputs/outputs. When the
secure protocol is run, a three-level logic is used for wire
values: 0, 1, or ⊥, where ⊥ represents an “unknown”
value that depends on one of the party’s inputs. In the
case of a Yao protocol, the ⊥ value is represented by a

garbled wire value. Conditional branches are not allowed
to depend on ⊥ values, and indirection operations use
a separate table of pointers that cannot computed from
⊥ values (if such an indirection operation is required, it
must be translated into a large multiplexer, as in previous
work).

We refer to our circuit representation as the Portable
Circuit Format or PCF. In addition to gates and branches,
PCF includes support for copying wires indirectly, a
function call stack, data stacks, and setting function pa-
rameters. These additional operations do not emit any
gates and can therefore be viewed as “free” operations.
PCF is modeled after the concept of PAL, but instead
of using predefined sub-circuits for complex operations,
a PCF file defines the sub-circuits for a given function
to allow for circuit structure optimization. PCF includes
lower level control structures compared to PAL, which
allows for more general loop structures.

In Appendix A, we describe in detail the semantics of
the PCF instructions. Example PCF files are available at
the authors’ website.

4.2 Describing Functions for SFE

Most commonly used programming languages can de-
scribe processes that cannot be translated to SFE; for ex-
ample, a program that does not terminate, or one which
terminates after reading a specific input pattern. It is
therefore necessary to impose some limitation on the de-
scriptions of functions for SFE. In systems with domain
specific languages, these limitations can be imposed by
the grammar of the language, or can be enforced by
taking advantage of particular features of the grammar.
However, one goal of our system is to allow any pro-
gramming language to be used to describe functionality
for SFE, and so we cannot rely on the grammar of the
language being used.

We make a compromise when it comes to restricting
the inputs to our system. Unlike model checking sys-
tems [2], we impose no upper bound on loop iterations or
on recursive function calls (other than the memory avail-
able for the call stack), and leave the responsibility of en-
suring that programs terminate to the user. On the other
hand, our system does forbid certain easily-detectable
conditions that could result in infinite loops, such as
unconditional backwards jumps, conditional backwards
jumps that depend on input, and indirect function calls.
These restrictions are similar to those imposed by the
Fairplay and KSS12 systems [18,21], but allow for more
general iteration than incrementing the loop index by a
constant. Although false positives, i.e., programs that
terminate but which contain such constructs are possible,
our hypothesis is that useful functions and typical com-
pilers would not result in such instruction sequences, and

5

326 22nd USENIX Security Symposium USENIX Association

we observed no such functions in our experiments with
LCC.

4.3 Algorithms for Translating Bytecode
Our compiler reads a bytecode representation of the
function, which lacks the structure of higher-level de-
scriptions and poses a unique challenge in circuit gener-
ation. As mentioned above, we do not impose any upper
limit on loop iterations or the depth of the function call
stack. Our approach to translation does not use any sym-
bolic analysis of the function. Instead, we translate the
bytecode into PCF, using conditional branches and func-
tion calls as needed and translating other instructions into
lists of gates. For testing, we use the IR from the LCC
compiler, which is based on the common stack machine
model; we will use examples of this IR to illustrate our
design, but note that none of our techniques strictly re-
quire a stack machine model or any particular features of
the LCC bytecode.

In our compiler, we divide bytecode instructions into
three classes:

Normal Instructions which have exactly one successor
and which can be represented by a simple circuit.
Examples of such instructions are arithmetic and
bitwise logic operations, operations that push data
onto the stack or move data to memory, etc.

Jump Instructions that result in an unconditional con-
trol flow switch to a specific label. This does not
include function calls, which we represent directly
in PCF. Such instructions are usually used for if/else
constructs or preceding the entry to a loop.

Conditional Instructions that result in control flow
switching to either a label or the subsequent instruc-
tion, depending on the result of some conditional
statement. Examples include arithmetic compar-
isons.

In the stack machine model, all operands and the
results of operations are pushed onto a global stack.
For “normal” instructions, the translation procedure is
straightforward: the operands are popped off the stack
and assigned temporary wires, the subcircuit for the op-
eration is connected to these wires, and the output of the
operation is pushed onto the stack. “Jump” instructions
appear, at first, to be equally straightforward, but actually
require special care as we describe below.

“Conditional” instructions present a challenge. Condi-
tional jumps whose targets precede the jump are assumed
to be loop constructs, and are translated directly into PCF
branch instructions. All other conditional jumps require
the creation of multiplexers in the circuit to deal with

If If[code] [code] [code]
True True

False

False

[code]

Figure 3: Nested if statements, which can be handled
using the stack-based algorithm.

conditional assignments. Therefore, the branch targets
must be tracked to ensure that the appropriate condition
wires are used to control those multiplexers.

In the Fairplay and KSS12 compilers, the condition
wire for an “if” statement is pushed onto a stack along
with a “scope” that is used to track the values (wire as-
signments) of variables. When a conditional block is
closed, the condition wire at the top of the stack is used
to multiplex the value of all the variables in the scope at
the top with the values from the scope second to the top,
and then the stack is popped. This procedure relies on
the grammar of “if/else” constructs, which ensures that
conditional blocks can be arranged as a tree. An exam-
ple of this type of “if/else” construct is in Figure 3. In a
bytecode representation, however, it is possible for con-
ditional blocks to “overlap” with each other without be-
ing nested.

In the sequence shown in Figure 4, the first branch’s
target precedes the second branch’s target, and indirect
loads and assignments exist in the overlapping region of
these two branches. The control flow of such an overlap
is given in Figure 5. A stack is no longer sufficient in this
case, as the top of the stack will not correspond to the ap-
propriate branch when the next branch target is encoun-
tered. Such instruction sequences are not uncommon in
the code generated by production compilers, as they are
a convenient way to generate code for “else” blocks and
ternary operators.

To handle such sequences, we use a novel algorithm
based on a priority queue rather than a stack, and we
maintain a global condition wire that is modified as
branches and branch targets are reached. When a branch
instruction is reached, the global condition wire is up-
dated by logically ANDing the branch condition with
the global condition wire. The priority queue is updated
with the branch condition and a scope, as in the stack-
based algorithm; the priority is the target, with lower
targets having higher priority. When an assignment is
performed, the scope at the top of the priority queue is
updated with the value being assigned, the location be-
ing assigned to, the old value, and a copy of the global
condition wire. When a branch target is reached, multi-
plexers are emitted for each assignment recorded in the
scope at the top of the priority queue, using the copy of
the global condition wire that was recorded. After the

6

USENIX Association 22nd USENIX Security Symposium 327

EQU4 A
INDIRI4 16
EQU4 B
INDIRI4 24
LABELV A
ASGNI4
LABELV B
ASGNI4

Figure 4: A bytecode sequence where overlapping con-
ditional blocks are not nested; note that the target of
the first branch, “A,” precedes the target of the second
branch, “B.”

[code] [code] A:
[code]

False False

True
True

B:
[code]EQU4: BEQU4: A

Figure 5: A control flow with overlapping conditional
blocks.

multiplexers are emitted, the global condition wire is up-
dated by ORing the inverse of the condition wire at the
top of the priority queue, and then the top is removed.

Unconditional jumps are only allowed in the forward
direction, i.e., only if the jump precedes its target. When
such instructions are encountered, they are translated into
conditional branches whose condition wire is the inverse
of the conjunction of the condition wires of all enclos-
ing branches. In the case of a jump that is not in any
conditional block, the condition wire is set to false; this
does not necessarily mean that subsequent assignments
will not occur, as the multiplexers for these assignments
will be emitted and will depend on a global control line
that may be updated as part of a loop construct. The op-
timizer is responsible for determining whether such as-
signments can occur, and will rewrite the multiplexers as
direct assignments when possible.

Finally, it is possible that the operand stack will have
changed in the fall-through path of a conditional jump.
In that case, the stack itself must be multiplexed. For
simplicity, we require that the depth of the stack not
change in a fall-through path. We did not observe any
such changes to the stack in our experiments with LCC.

4.4 Optimization
One of the shortcomings of the KSS12 system was the
amount of time and memory required to perform opti-
mizations on the computed circuit. In our system, opti-
mization is performed before loops are unrolled but after
the functionality is translated into a PCF representation.
This allows optimizations to be performed on a smaller

representation, but increases the complexity of the opti-
mization process somewhat.

The KSS12 compiler bases its optimization on a rudi-
mentary dataflow analysis, but without any conditional
branches or loops, and with single assignments to each
wire. In our system, loops are not eliminated and wires
may be overwritten, but conditional branches are elim-
inated. As in KSS12, we use an approach based on
dataflow analysis, but we must make multiple passes to
find a fixed point solution to the dataflow equations. Our
dataflow equations take advantage of the logical rules of
each gate, allowing more gates to be identified for elimi-
nation than the textbook equations identify.

We perform our dataflow analysis on individual PCF
instructions, which allows us to remove single gates even
where entire bytecode instructions could not be removed,
but which carries the cost of somewhat longer compila-
tion time, on the order of minutes for the experiments we
ran. Currently, our framework only performs optimiza-
tion within individual functions, without any interproce-
dural analysis. Compile times in our system can be re-
duced by splitting a large procedure into several smaller
procedures.

Optimization 128 mult. 5x5 matrix 256 RSA

None 707,244 260,000 904,171,008
Const. Prop. 296,960 198,000 651,504,495
Dead Elim. 700,096 255,875 883,307,712

Both 260,073 131,875 573,156,735

Table 1: Effects of constant propagation and dead code
elimination on circuit size, measured with simulator that
performs no simplification rules. For each function, the
number of non-XOR gates are given for all combinations
of optimizations enabled.

4.4.1 Constant Propagation

The constant propagation framework we use is straight-
forward, similar to the methods used in typical compil-
ers. However, for some gates, simplification rules can re-
sult in constants being computed even when the inputs to
a gate are not constant; for example, XORing a variable
with itself. The transfer function we use is augmented
with a check against logic simplification rules to account
for this situation, but remains monotonic and so conver-
gence is still guaranteed.

4.4.2 Dead Gate Removal

The last step of our optimizer is to remove gates whose
output wires are never used. This is a standard bit vector
dataflow problem that requires little tailoring for our sys-
tem. As is common in compilers, performing this step

7

328 22nd USENIX Security Symposium USENIX Association

Function With Without Ratio

16384-bit Comp. 32,228 49,314 65%
128-bit Sum 345 508 67%
256-sit Sum 721 1,016 70%

1024-bit Sum 2,977 4,064 73%
128-bit Mult. 76,574 260,073 20%
256-bit Mult. 300,634 1,032,416 20%

1024-bit Mult. 8,301,962 19,209,120 21%

Table 2: Non-XOR gates in circuits computed by the in-
terpreter with and without the application of simplifica-
tion rules by the runtime system.

last yields the best results, as large numbers of gates be-
come dead following earlier optimizations.

4.5 Externally-Defined Functions

Some functionality is difficult to describe well in byte-
code formats. For example, the graph isomorphism ex-
periment presented in Section 6 uses AES as a PRNG
building block, but the best known description of the
AES S-box is given at the bit-level [4], whereas the
smallest width operation supported by LCC is a single
byte. To compensate for this difficulty, we allow users to
specify functions with the same language used internally
to translate bytecode operations into circuits; an example
of this language is shown in Section 5.1. This allows for
possible combinations of our compiler with other circuit
generation and optimization tools.

4.6 PCF Interpreter

To use a PCF description of a circuit in a secure protocol,
an interpreter is needed. The interpreter simulates the ex-
ecution of the PCF file for a single-bit machine, emitting
gates as needed for the protocol. Loops are not explicitly
unrolled; instead, PCF branch instructions are condition-
ally followed, based on the logic value of some wire, and
each wire identifier is treated as an address in memory.
This is where the requirement that loop bounds be in-
dependent of both parties’ inputs is ultimately enforced:
the interpreter cannot determine whether or not to take a
branch if it cannot determine the condition wire’s value.

For testing purposes, we wrote two PCF interpreters:
one in C, which is packaged as a reusable library, and
one in Java that was used for tests on smartphones. The
C library can be used as a simulator or for full protocol
execution. As a simulator it simply evaluates the PCF file
without any garbling to measure the size of the circuit
that would have been garbled in a real protocol. This
interpreter was used for the LAN tests, using an updated
version of the KSS12 protocol. The Java interpreter was

Function With (s) Without (s)

16384-bit Comp. 4.41±0.3% 4.44± 0.3%
128-bit Sum 0.0581±0.3% 0.060± 2%
256-bit Sum 0.103±0.3% 0.105± 0.3%

1024-bit Sum 0.365±0.3% 0.367± 0.2%
128-bit Mult. 0.892±0.1% 0.894± 0.1%
256-bit Mult. 3.02±0.1% 3.04± 0.1%

1024-bit Mult. 39.7±0.2% 39.9±0.06%

Table 3: Simulator time with simplification rules versus
without, using the C interpreter. Times are averaged over
50 samples, with 95% confidence intervals, measured us-
ing the time function implemented by SBCL.

incorporated into the HEKM system for the smartphone
experiments, and can also be used in a simulator mode.

4.7 Threat Model

The PCF system treats the underlying secure computa-
tion protocol as a black box, without making any as-
sumptions about the threat model. In Section 6, we
present running times for smaller circuits in the mali-
cious model version of the KSS12 protocol. This ma-
licious model implementation simply invokes multiple
copies of the same PCF interpreter used for the semi-
honest version, one for each copy of the circuit needed
in the protocol.

4.8 Runtime Optimization

Some optimizations cannot be performed without un-
rolling loops, and so we defer these optimizations until
the PCF program is interpreted. As an example, logic
simplification rules that eliminate gates whose output
values depend on no more than one of their input wires
can only be partially applied at compile time, as some
potential applications of these rules might only be possi-
ble for some iterations of a loop. While it is possible to
compute this information at compile time, in the general
case this would involve storing information about each
gate for every iteration of every loop, which would be as
expensive as unrolling all loops at compile time.

A side effect of applying such logic simplification
rules is copy propagation. A gate that always takes on
the same value as one of its inputs is equivalent to a copy
operation. The application of logic simplification rules to
such a gate results in the interpreter simply copying the
value of the input wire to the output wire, without emit-
ting any gate. As there is little overhead resulting from
the application of simplification rules at runtime, we are
able to reduce compile times further by not performing
this optimization at compile time.

8

USENIX Association 22nd USENIX Security Symposium 329

Function This Work KSS12 HFKV

16384 Comp. 32,229 49,149 -
RSA 256 235,925,023 332,085,981 -

Hamming 160 880 - 3,003
Hamming 1600 9,625 - 30,318

3x3 Matrix 27,369 160,949 47,871
5x5 Matrix 127,225 746,177 221,625
8x8 Matrix 522,304 3,058,754 907,776

16x16 Matrix 4,186,368 24,502,530 7,262,208

Table 4: Comparisons between our compiler’s output and
the output of the KSS12 and Holzer et al. (HFKV) com-
pilers, in terms of non-XOR gates.

For each gate, the interpreter checks if the gate’s value
can be statically determined, i.e., if its output value does
not rely on either party’s input bits. This is critical, as
some of the gates in a PCF file are used for control flow,
e.g., to increment a loop index. Additionally, logic sim-
plification rules are applied where possible in the inter-
preter. This allows the interpreter to not emit gates that
follow an input or which have static outputs even when
their inputs cannot be statically determined. As shown
in Table 2, we observed cases where up to 80% of the
gates could be removed in this manner. Even in a sim-
ulator that performs no garbling, applying this runtime
optimization not only shows no performance overhead,
but actually a very slight performance gain, as shown in
Table 3. The slight performance gain is a result of the
transfer of control that occurs when a gate is emitted,
which has a small but non-trivial cost in the simulator. In
a garbled circuit protocol, this cost would be even higher,
because of the time spent garbling gates.

5 Portability

5.1 Portability Between Bytecodes
Our compiler can be given a description of how to trans-
late bytecode instructions into boolean circuits using a
special internal language. An example, for the LCC in-
struction “ADDU,” is shown in Figure 6. The first line is
specific to LCC, and would need to be modified for use
with other front-ends. The second line assumes a stack
machine model: this instruction reads two instructions
from the stack. Following that is the body of the transla-
tion rule, which can be used in general to describe circuit
components and how the input variables should be con-
nected to those components.

The description follows an abstraction similar to VM-
Crypt, in which a unit gadget is “chained” to create a
larger gadget. It is possible to create chains of chains,
e.g., for a shift-and-add multiplier as well. For more
complex operations, Lisp source code can be embedded,

(‘‘ADDU’’ nil second normal nil nil
(two-stack-arg (x y) (var var)
(chain [o1 = i1 + i2 + i3,

o2 = i1 + (i1 + i2) * (i1 + i3)]
(o2 -> i3
x -> i1
y -> i2
o1 -> stack)

(0 -> i3))))

Figure 6: Code used in our compiler to map the bytecode
instruction for unsigned integer addition to the subcircuit
for that operation.

which can interact directly with the compiler’s internal
data structures.

5.2 Portability Between SFE Systems
Both the PCF compiler and the interpreter can treat the
underlying secure computation system as a black box.
Switching between secure computation systems, there-
fore, requires work only at the “back end” of the inter-
preter, where gates are emitted. We envision two pos-
sible approaches to this, both of which we implemented
for our tests:

1. A single function should be called when a gate
should be used in the secure computation proto-
col. The Java implementation of PCF uses this ap-
proach, with the HEKM system.

2. Gates should be generated as if they are being read
from a file, with the secure computation system call-
ing a function. The secure computation system may
need to provide “callback” functions to the PCF in-
terpreter for copying protocol-specific data between
wires. The C implementation we tested uses this
abstraction for the KSS12 system.

6 Evaluation

We compiled a variety of functions to test our com-
piler, optimizer, and PCF interpreter. For each circuit,
we tested the performance of the KSS12 system on a
LAN, described below. For the KSS12 timings, we av-
eraged the runtime for 50 runs, alternating which com-
puter acted as the generator and which as the evaluator to
account for slight configuration differences between the
systems. Compiler timings are based on 50 runs of the
compiler on a desktop PC with an Intel Xeon 5560 pro-
cessor, 8GB of RAM, a 7200 RPM hard disk, Scientific
Linux 6.3 (kernel version 2.6.32, SBCL version 1.0.38).

9

330 22nd USENIX Security Symposium USENIX Association

Function Total Gates non-XOR Gates Compile Time (s) Simulator Time (s)

16384-bit Comp. 97,733 32,229 3.40± 4% 4.40±0.2%

Hamming 160 4,368 880 9.81± 1% 0.0810±0.3%
Hamming 1600 32,912 6,375 11.0±0.4% 0.52± 8%

Hamming 16000 389,312 97,175 10.8±0.2% 4.83±0.5%

128-bit Sum 1,443 345 4.70± 3% 0.0433±0.4%
256-bit Sum 2,951 721 4.60± 3% 0.0732±0.4%

1024-bit Sum 11,999 2,977 4.60± 3% 0.250±0.5%

64-bit Mult. 105,880 24,766 71.7±0.2% 0.332±0.4%
128-bit Mult. 423,064 100,250 74.9±0.1% 0.903±0.3%
256-bit Mult. 1,659,808 400,210 79.5±0.9% 3.07±0.2%

1024-bit Mult. 25,592,368 6,371,746 74.0±0.2% 40.9±0.4%

256-bit RSA 673,105,990 235,925,023 381.±0.2% 980.±0.3%
512-bit RSA 5,397,821,470 1,916,813,808 350.±0.2% 7,330±0.2%

1024-bit RSA 42,151,698,718 15,149,856,895 564.±0.2% 56,000±0.3%

3x3 Matrix Mult. 92,961 27,369 306.± 1% 0.256±0.5%
5x5 Matrix Mult. 433,475 127,225 343.±0.7% 0.94± 2%
8x8 Matrix Mult. 1,782,656 522,304 109.±0.1% 3.14±0.3%

16x16 Matrix Mult. 14,308,864 4,186,368 109.±0.1% 23.7±0.3%

4-Node Graph Iso. 482,391 97,819 684.±0.2% 3.63±0.5%
16-Node Graph Iso. 10,908,749 4,112,135 1040±0.1% 47.0±0.1%

Table 5: Summary of circuit sizes for various functions and the time required to compile and interpret the PCF files
in a protocol simulator. Times are averaged over 50 samples, with 95% confidence intervals, except for RSA-1024
simulator time, which is averaged over 8 samples. Run times were measured using the time function implemented in
SBCL.

Source code for our compiler, our test systems, and our
test functions is available at the authors’ website.

6.1 Effect of Array Sizes on Timing

Some changes in compile time can be observed as some
of the functions grow larger. The dataflow analysis deals
with certain pointer operations by traversing the entire
local variable space of the function and all global mem-
ory, which in functions with large local arrays or pro-
grams with large global arrays is costly as it increases the
number of wires that optimizer must analyze. Reducing
this cost is an ongoing engineering effort.

6.2 Experiments

We compiled and executed the circuits described below
to evaluate our compiler and representation. Several of
these circuits were tested in other systems; we present
the non-XOR gate counts of the circuits generated by our
compiler and other work in Table 4. The sizes, compile
times, and interpreter times required for these circuits are
listed in Table 5. By comparison, we show compile times
and circuit sizes using the KSS12 and HFKV compilers
in Table 6. As expected, the PCF compiler outperforms

these previous compilers as the size of the circuits grow,
due to the improved scalability of the system.
Arbitrary-Width Millionaire’s Problem As a simple
sanity check for our system, we tested an arbitrary-width
function for the millionaire’s problem; this can be viewed
as a string comparison function on 32 bit characters. It
outputs a 1 to the party which has the larger input. We
found that for this simple function, our performance was
only slightly better than the performance of the KSS12
compiler on the same circuit.
Matrix Multiplication To compare our system with the
work of Holzer et al. [12], we duplicated some of their
experiments, beginning with matrix multiplication on
32-bit integers. We found that our system performed fa-
vorably, particularly due to the optimizations our com-
piler and PCF interpreter perform. On average, our sys-
tem generated circuits that are 60% smaller. We tested
matrices of 3x3, 5x5, 8x8, and 16x16, with 32 bit integer
elements.
Hamming Distance Here, we duplicate the Hamming
distance experiment from Holzer et al. [12]. Again, we
found that our system generated substantially smaller cir-
cuits. We tested input sizes of 160, 1600, and 16000 bits.
Integer Sum We implemented a basic arbitrary-width in-
teger addition function, using ripple-carry addition. No

10

USENIX Association 22nd USENIX Security Symposium 331

HFKV KSS12
Function Total Gates non-XOR gates Time (s) Total Gates non-XOR gates Time (s)

16384-bit Comp. 330,784 131,103 105. ± 0.1% 98,303 49,154 4.66 ± 0.5%
3x3 Matrix Mult. 172,315 47,871 2.2 ± 4% 424,748 160,949 10.5 ± 0.5%
5x5 Matrix Mult. 797,751 221,625 8.40 ± 0.3% 1,968,452 746,177 48.2 ± 0.2%
8x8 Matrix Mult. 3,267,585 907,776 59.4 ± 0.3% 8,067,458 3,058,754 210 ± 2%

16x16 Matrix Mult. 26,140,673 7,262,208 2,600 ± 7% 64,570,969 24,502,530 2,200 ± 1%
32-bit Mult. 65,121 26,624 6.43 ± 0.3% 15,935 5,983 0.55 ± 5%
64-bit Mult. 321,665 126,529 71.4 ± 0.3% 64,639 24,384 1.6 ± 2%

128-bit Mult. 1,409,025 546,182 999. ± 0.1% 260,351 97,663 6.10 ± 0.6%
256-bit Mult. 5,880,833 2,264,860 16,000 ± 2% 1,044,991 391,935 24.5 ± 0.2%
512-bit Mult. - - - 4,187,135 1,570,303 105. ± 0.2%

1024-bit Mult. - - - 16,763,518 6,286,335 430. ± 0.3%

Table 6: Times of HFKV and KSS12 compilers with circuit sizes. The Mult. program uses a Shift-Add implementa-
tion. All times are averaged over 50 samples with the exception of the HFKV 256-bit multiplication, which was run
for 10 samples; times are given with 95% confidence intervals.

array references are needed, and so our compiler easily
handles this function even for very large input sizes. We
tested input sizes of 128, 256, and 1024 bits.
Integer Multiplication Building on the integer addition
function, we tested an integer multiplication function that
uses the textbook shift-and-add algorithm. Unlike the in-
teger sum and hamming distance functions, the multipli-
cation function requires arrays for both input and out-
put, which slows the compiler down as the problem size
grows. We tested bit sizes of 64, 128, 256, and 1024.
RSA (Modular Exponentiation) In the KSS12 sys-
tem [18], it was possible to compile an RSA circuit for
toy problem sizes, and it took over 24 hours to compile
a circuit for 256-bit RSA. This lengthy compile time and
large memory requirement stems from the fact that all
loops are unrolled before any optimization is performed,
resulting in a very large intermediate representation to
be analyzed. As a demonstration of the improvement
our approach represents, we compiled not only toy RSA
sizes, but also an RSA-1024 circuit, using only modest
computational resources. We tested bit sizes of 256, 512,
and 1024.
Graph Isomorpism We created a program that allows
two parties to jointly prove the zero knowledge proof
of knowledge for graph isomorphism, first presented by
Goldreich et al. [9]. In Goldreich et al.’s proof system,
the prover has secret knowledge of an isomorphism be-
tween two graphs, g1 and g2. To prove this, the prover
sends the verifier a random graph g3 that is isomorphic
to g1 and g2, and the verifier will then choose to learn
either the g1 → g3 isomorphism or the g2 → g3 isomor-
phism. We modify this protocol so that Alice and Bob
must jointly act as the prover; each is given shares of
an isomorphism between graphs g1 and g2, and will use
the online protocol to compute g3 and shares of the two
isomorphisms.

Our implementation works as follows: the program
takes in XOR shares of the isomophism between g1 and
g2 and a random seed from both participants. It also
takes the adjacency matrix representation of g1 as input
by a single party. The program XORs the shares together
to create the g1 → g2 isomorphism. The program then
creates a random isomorphism from g1 → g3 using AES
as the PRNG (to reduce the input sizes and thus the OT
costs), which effectively also creates g3.

Once the random isomorphism g1 → g3 is created, the
original isomorphism, g1 → g2, is inverted to get an iso-
morphism from g2 → g1. Then the two isomorphisms
are “followed” in a chain to get the g2 to g3 isomor-
phism, i.e., for the ith instance in the isomorphic ma-
trix, iso2→3[i] = iso1→3[iso2→1[i]]. The program outputs
shares of both the isomorphism from g1 to g3 and the
isomorphism from g2 to g3 to both parties.

An adjacency matrix of g3 is also an output for the
party which input the adjacency matrix g1. This is calcu-
lated by using g1 and the g1 → g3 isomorphism.

6.3 Online Running Times

To test the online performance of our new format, we
modified the KSS12 protocol to use the PCF interpreter.
Two sets of tests were run: one between two computers
with similar specifications on the University of Virginia
LAN, a busy 100 megabit Ethernet network, and one be-
tween two smartphones communicating over a wifi net-
work.

For the LAN experiments, we used two comput-
ers running ScientificLinux 6.3, a four core Intel Xeon
E5506 2.13GHz CPU, and 8GB of RAM. No time limit
on computation was imposed on these machines, so we
were able to run the RSA-1024 circuit, which requires a
little less than two days. To compensate for slight con-

11

332 22nd USENIX Security Symposium USENIX Association

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit Comp. 99.8±0.2% 5.63±0.6% 26.0±0.6% 79.4±0.2%

Hamming 1600 9.13±0.4% 0.64± 4% 2.9± 4% 6.87± 2%
Hamming 16000 91.2±0.2% 5.67±0.7% 28.±3% 69.± 2%

64-bit Mult. 0.749±0.3% 0.158±0.7% 0.409±0.3% 0.494±0.6%
128-bit Mult. 2.04±0.3% 0.52± 1% 1.25±0.2% 1.31±0.6%
256-bit Mult. 5.74±0.5% 1.2± 2% 4.2± 2% 2.7± 3%

1024-bit Mult. 72.7±0.2% 28.± 4% 60.± 2% 40.± 3%

256-bit RSA 1940±0.2% 767.±0.7% 1620± 2% 1080± 3%
1024-bit RSA 1.15×105 ±0.5% 4.4×104 ± 4% 9.5×104 ± 5% 6.5×104 ± 7%

3x3 Matrix Mult. 5.33±0.4% 0.403±0.6% 1.45±0.8% 4.28±0.6%
5x5 Matrix Mult. 24.4±0.2% 1.81±0.4% 6.75±0.9% 19.5±0.4%
8x8 Matrix Mult. 100.±0.2% 7.39±0.4% 26.8±0.7% 81.1±0.3%

4-node ISO 10.1±0.1% 1.05±0.7% 4.96±0.3% 6.15±0.4%
16-node ISO 116.±0.2% 15.7±0.6% 71.6±0.3% 60.3±0.6%

Table 7: Total running time, including PCF operations and protocol operations such as oblivious transfer, for online
protocols using the PCF interpreter and the KSS12 two party computation system, on two computers communicating
over the University of Virginia LAN. With the exception of RSA-1024, all times are averaged over 50 samples; RSA-
1024 is averaged over 8 samples. Running time is divided into time spent on computation and time spent on network
operations (including blocking).

figuration differences between the two systems, we alter-
nated between each machine acting as the generator and
acting as the evaluator.

We give the results of this experiment in Table 7. We
note that while the simulator times given in Table 5 are
more than half the CPU time measured, they are also on
par with the time spent waiting on the network. Non-
blocking I/O or a background thread for the PCF inter-
preter may improve performance somewhat, which is an
ongoing engineering task in our implementation.

6.4 Malicious Model Tests

The PCF system is not limited to the semi-honest model.
We give preliminary results in the malicious model ver-
sion of KSS12. These experiments were run on the same
test systems as above, using two cores for each party.
We present our results in Table 9. The increased running
times are expected, as we used only two cores per party.
In the case of 16384-bit comparison, the increase is very
dramatic, due to the large amount of time spent on obliv-
ious transfer (as both parties have long inputs).

6.5 Phone Execution

We created a PCF interpreter for use with the HEKM ex-
ecution system and ported it to the Android environment.
We then ran it on two Galaxy Nexus phones where one

phone was the generator and another phone was the eval-
uator. These phones have dual core 1.2Ghz processors
and were linked over Wi-Fi using an Apple Airport.

6.6 Phone Trials
As seen in Table 8, we were able to run the smaller pro-
grams directly on two phones. Since the interpreter ex-
ecutes slower on a phone and what would have taken
a week of LAN trials would have taken years of phone
time, we did not complete trials of the larger programs.
Not all of the programs had output for the generator, al-
lowing the generator to finish before the evaluator. This
leads to a noticeable difference in total running time be-
tween the two parties.

Mood’s work on designing SFE applications for mo-
bile devices [22] found that allocation and deallocation
was a bottleneck to circuit execution. This issue was
addressed by substituting the standard BigInteger type
for a custom class that reduced the amount of alloca-
tion required for numeric operations, resulting in a four-
fold improvement in execution time. The lack of this
optimization in our mobile phone experiments may con-
tribute to the reduced performance that we observed.

In future work, we will port the C interpreter and
KSS12 system to Android and run the experiment with
that execution system. Since overhead appears to be tied
to Android’s Dalvik Virtual Machine (DVM), running
programs natively should reduce overhead and hence re-

12

USENIX Association 22nd USENIX Security Symposium 333

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit Comp. 163.±0.5% 12.± 3% 142.±0.5% 68.± 1%

128-bit Sum 5.8±8.2% 1.±30% 5.6± 8% 3.±20%
256-bit Sum 7.3±5.0% 1.±30% 6.± 5% 4.±20%

1024-bit Sum 16.±3.1% 2.±20% 16.± 3% 6.4± 7%

64-bit Mult. 63.3±0.5% 1.±10% 66.3±0.6% 5.±10%
128-bit Mult. 257.±0.2% 3.8± 5% 280.±0.3% 12.± 6%

3x3 Matrix Mult. 76.9±0.4% 12.± 2% 82.0±0.5% 8.5± 4%
5x5 Matrix Mult. 352.±0.3% 49.± 2% 371.±0.3% 32.± 4%
8x8 Matrix Mult. 1,588.±0.1% 82.± 3% 1,550.±0.1% 120.± 1%

Table 8: Execution results from the phone interpreter using the HEKM execution system on two Galaxy Nexus phones.
Times are averages of 50 samples, with 95% confidence intervals.

Function CPU (s) Network (s) CPU (s) Network (s)

Generator Evaluator

16384-bit comp. 3900± 3% 76± 4% 2820± 2% 1200± 10%

128-bit sum 23.± 2% 21± 2% 33.3±0.5% 11.2±0.2%
256-bit sum 63.0±0.4% 10± 20% 49.± 6% 27.± 4%

1024-bit sum 260± 10% 16± 6% 187.± 2% 100± 40%

128-bit mult. 192.±0.3% 47.2±0.6% 168.±0.4% 70.1± 1%
256-bit mult. 637.±0.5% 160± 1% 577.±0.3% 210± 2%

Table 9: Online running time in the malicious model for several circuits. Times are averaged over 50 samples, with
95% confidence intervals.

duce the performance differential between the phone and
PC environments. Additionally, the KSS12 system uses
more efficient cryptographic primitives, potentially fur-
ther improving performance.

7 Related Work

Compiler approaches to secure two-party computation
have attracted significant attention in recent years. The
TASTY system presented by Henecka et al. [11] com-
bines garbled circuit approaches with homomorphic en-
cryption, and includes a compiler that emits circuits that
can be used in both models. As with Fairplay and
KSS12, TASTY requires functions to be described in a
domain-specific language. The TASTY compiler per-
forms optimizations on the abstract syntax tree for the
function being compiled. Kruger et al. developed an or-
dered BDD compiler to test the performance of their sys-
tem relative to Fairplay [19]. Mood et al. focused on
compiling secure functions on mobile devices with the
PALC system, which involved a modification to the Fair-
play compiler [23].

Recently, a compiler approach based on bounded
model checking was present by Holzer et al. [12]. In that

work, the CBMC system [5] was used to construct cir-
cuits, which were then rewritten to have fewer non-XOR
gates. This approach had several advantages over pre-
vious approaches, most prominent being that functions
could be described in the widely used C programming
language, and that the use of CBMC allows for more
advanced software engineering techniques to be applied
to secure computation protocols. Like KSS12, however,
this approach unrolls all loops (up to some fixed number
of iterations), and converts a high level description di-
rectly to a boolean circuit which must then be optimized.

In addition to SFE, work on efficient compilers for
proof systems has also been presented. Almeida et al.
developed a zero-knowledge proof of knowledge com-
piler for Σ-protocols, which converts a protocol specifi-
cation given in a domain-specific language into a pro-
gram for the prover and the verifier to run [1]. Setty
et al. presented a system for verifiable computation that
uses a modification of the Fairplay compiler, which com-
putes a system of quadratic constraints instead of boolean
circuits, and emits executables for the prover and veri-
fier [28, 29]. Our system is somewhat similar to these
approaches, in that the circuit representation we present
can be viewed as a program that is executed by the par-

13

334 22nd USENIX Security Symposium USENIX Association

ties in the SFE system; however, our approach is unique
in its handling of control flow and iterative constructs.

Closely related to our work is the Sharemind sys-
tem [3, 14], which uses secure computation as a building
block for privacy-preserving distributed applications. As
in our approach, the circuits used in the secure compu-
tation portions of Sharemind are not fully unrolled until
the protocol is actually run. Functions in Sharemind are
described using a domain-specific language called Se-
creC. Although there has been work on static analysis
for SecreC [26], the SecreC compiler does not perform
automatic optimizations. By contrast, our approach is fo-
cused on allowing circuit optimizations at the bit-level to
occur without having to unroll an entire circuit.

Kerschbaum has presented work on automatically op-
timizing secure computation at the protocol level, with
an approach based on term and expression rewriting [15,
16]. This approach is based on maximizing the use of of-
fline computation by inferring what each party can com-
pute without knowledge of the other party’s input, and
does not treat the underlying secure computation primi-
tives as a black box. It therefore requires additional work
to remain secure in the malicious model. Our techniques
could conceivably be combined with Kerschbaum’s to re-
duce the overhead of online components.

8 Future Work

Our compiler can conceivably read any bytecode repre-
sentation as input; one immediate future direction is to
write translations for the instructions of another byte-
code format, such as LLVM or the JVM, which would
allow functions to be expressed in a broader range of
languages. Additionally, we believe that our techniques
could be combined with Sharemind, by having our com-
piler read the bytecode for the Sharemind VM and com-
pute optimized PCF files for cases where garbled circuit
computations are used in a Sharemind protocol.

The PCF format does not convey high-level informa-
tion about data operations or types. Such information
may further reduce the size of the circuits that are com-
puted. Static analysis of such information by compilers
has been widely studied, and it is possible that our com-
piler could be extended to support further reductions in
the sizes of circuits emitted by the PCF interpreter. High-
level information about data structures could also be used
to improve the generation of circuits prior to optimiza-
tion, using techniques recently presented by Evans and
Zahur [6].

Our system and techniques can likely be generalized to
the multiparty case, and to other representations of func-
tions, such as arithmetic circuits. This would require sig-
nificant changes to the optimization strategies and goals
in our compiler, but fewer changes would be necessary

for the PCF interpreter. Similar modifications to support
homomorphic encryption systems are also possible.

9 Conclusion

We have presented an approach to compiling and stor-
ing circuits for secure computation systems that requires
substantially lower computational resources than previ-
ous approaches. Empirical evidence of the improve-
ment and utility of our approach is given, using a vari-
ety of functions with different circuit sizes and control
flow structures. Additionally, we have presented a com-
piler for secure computation that reads bytecode as an in-
put, rather than a domain-specific language, and have ex-
plored the challenges associated with such an approach.
We also presented interpreters, which evaluate our new
language on both PCs and phones.

The code for the compiler, PCF interpreters, and test
cases will be available on the authors’ website.

Acknowledgments We would like to thank Elaine Shi
for her helpful advice. We also thank Chih-hao Shen for
his help with porting KSS12 to use PCF. This material is
based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under contract FA8750-
11-2-0211. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Gov-
ernment.

References
[1] J. B. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R.

Sadeghi, and T. Schneider. A Certifying Compiler For Zero-
Knowledge Proofs of Knowledge Based on Σ-Protocols. In Pro-
ceedings of the 15th European conference on Research in com-
puter security, ESORICS’10, pages 151–167, Berlin, Heidelberg,
2010. Springer-Verlag.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Anal-
ysis of Systems, TACAS ’99, pages 193–207, London, UK, UK,
1999. Springer-Verlag.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A Frame-
work for Fast Privacy-Preserving Computations. In Proceedings
of the 13th European Symposium on Research in Computer Secu-
rity - ESORICS’08, 2008.

[4] J. Boyar and R. Peralta. A New Combinational Logic Minimiza-
tion Technique with Applications to Cryptology. In P. Festa, ed-
itor, Experimental Algorithms, volume 6049 of Lecture Notes in
Computer Science, pages 178–189. Springer Berlin / Heidelberg,
2010.

14

USENIX Association 22nd USENIX Security Symposium 335

[5] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-
C Programs. In K. Jensen and A. Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[6] D. Evans and S. Zahur. Circuit structures for improving efficiency
of security and privacy tools. In IEEE Symposium on Security and
Privacy (to appear), 2013.

[7] S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637–647, June 1985.

[8] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: De-
sign and Implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[9] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in np have zero-
knowledge proof systems. J. ACM, 38(3):690–728, July 1991.

[10] V. Goyal, P. Mohassel, and A. Smith. Efficient Two Party and
Multi Party Computation Against Covert Adversaries. In Pro-
ceedings of 27th annual international conference on Advances
in cryptology, EUROCRYPT’08, pages 289–306, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[11] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY
computations. In ACM Conference on Computer and Communi-
cations Security, 2010.

[12] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure Two-
Party computations in ANSI C. In Proceedings of the 2012 ACM
conference on Computer and communications security, CCS ’12,
pages 772–783, New York, NY, USA, 2012. ACM.

[13] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-
Party Computation Using Garbled Circuits. In USENIX Security
Symposium, 2011.

[14] R. Jagomägis. SecreC: a Privacy-Aware Programming Language
with Apllications in Data Mining. Master’s thesis, University of
Tartu, 2010.

[15] F. Kerschbaum. Automatically optimizing secure computation.
In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 703–714, New York,
NY, USA, 2011. ACM.

[16] F. Kerschbaum. Expression rewriting for optimizing secure com-
putation. In Conference on Data and Application Security and
Privacy, 2013.

[17] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free
XOR Gates and Applications. In L. Aceto, I. Damgård, L. Gold-
berg, M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, edi-
tors, ALP 2008, volume 5126 of LNCS, pages 486–498. Springer,
2008.

[18] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure com-
putation with malicious adversaries. In Proceedings of the 21st
USENIX conference on Security symposium, Security’12, pages
14–14, Berkeley, CA, USA, 2012. USENIX Association.

[19] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function
evaluation with ordered binary decision diagrams. In Proceedings
of the 13th ACM conference on Computer and communications
security (CCS’06), Alexandria, VA, Oct. 2006.

[20] L. Malka. VMCrypt: modular software architecture for scalable
secure computation. In ACM Conference on Computer and Com-
munications Security, pages 715–724, 2011.

[21] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay: A Secure
Two-Party Computation System. In 13th Conference on USENIX
Security Symposium, volume 13, pages 287–302. USENIX Asso-
ciation, 2004.

[22] B. Mood. Optimizing Secure Function Evaluation on Mobile De-
vices. Master’s thesis, 2012, University of Oregon.

[23] B. Mood, L. Letaw, and K. Butler. Memory-Efficient Garbled
Circuit Generation for Mobile Devices. In Financial Cryptogra-
phy and Data Security, volume 7397. Springer Berlin Heidelberg,
2012.

[24] B. Pinkas, T. Schneider, N. Smart, and S. Williams. Secure Two-
Party Computation Is Practical. In M. Matsui, editor, Asiacrypt,
volume 5912 of LNCS, pages 250–267. Springer, 2009.

[25] M. Rabin. How to Exchange Secrets by Oblivious Transfer.
Technical Report TR-81, Harvard Aiken Computation Labora-
tory, 1981.

[26] J. Ristioja. An analysis framework for an imperative privacy-
preserving programming language. Master’s thesis, Institute of
Computer Science, University of Tartu, 2010.

[27] T. Schneider. Engineering Secure Two-Party Computation Proto-
cols - Design, Optimization, and Applications of Efficient Secure
Function Evaluation. Springer, 2012.

[28] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Mak-
ing Argument Systems for Outsourced Computation Practical
(Sometimes). In NDSS, 2012.

[29] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In Proceedings of the 21st USENIX confer-
ence on Security symposium, Berkeley, CA, USA, 2012.

[30] A. Yao. Protocols for Secure Computations. In 23rd Sympo-
sium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society, 1982.

A PCF Semantics

The PCF file format consists of a header section that de-
clares the input size, followed by a list of operations that
are divided into subroutines. At runtime, these opera-
tions manipulate the internal state of the PCF interpreter,
causing gates to be emitted when necessary. The inter-
nal state of the PCF interpreter consists of an instruction
pointer, a call stack, an array of wire values, and an ar-
ray of pointers. The pointers are positive integers. Wire
values are 0, 1, or ⊥, where ⊥ represents a value that de-
pends on input data, which is supplied by the code that
invokes the interpreter. Each position in the wire table
can be treated as a stack.

Each PCF instruction can take up to 3 arguments. The
instructions and their semantics are as follows:

CLABEL/SETLABELC Appears only in the header,
used for setting the input size for each party. CLA-
BEL declares the bit width of a value, SETLA-
BELC sets the value.

FUNCTION Denotes the beginning of a subroutine.
When the subroutine is called, the instruction
pointer is set to the position following this instruc-
tion.

GADGET Denotes a branch target

15

336 22nd USENIX Security Symposium USENIX Association

BRANCH Takes two arguments: a target, declared with
GADGET, and a location in the wire table. In the
wire value is 0, the instruction pointer is set to the
instruction following the target. If the wire value is
1, the instruction pointer is incremented. If the wire
value is ⊥, evaluation halts with an error.

FUNC Calls a subroutine, pushing the current instruc-
tion pointer onto the call stack.

PUSH Pushes a copy of the wire value at a specified
position onto the stack at that position.

POP Pops a stack at a specified position. If there is only
one value on that stack, evaluation halts with an er-
ror.

ALICEIN32/BOBIN32 Fetches 32 input bits from one
party, beginning at a specified bit position in that
party’s input. The bit position is specified by an
array of 32 values in the wire table. If any of the
values is ⊥, evaluation halts with an error. The input
values will all have the value ⊥, and will be stored
in the wire table at positions 0 through 31.

SHIFT OUT Outputs a single bit for a given party

RETURN Return from a subroutine. The instruction
pointer is repositioned to the value popped from the
top of the call stack.

STORECONSTPTR Sets a value in the pointer table

OFFSETPTR Adds a value to a pointer, specified by an
array of 32 wire values starting at a position in the
wire table. If any value in the array is ⊥, evaluation
halts with an error.

PTRTOWIRE Saves a pointer value as a 32 bit un-
signed integer. Each of the bits is pushed onto the
stack at a location in the wire table.

PTRTOPTR Copies a value from one position in the
pointer table to another.

CPY121 Copy a wire value from a position specified by
a pointer to a statically specified position.

CPY32 Copy a wire value from a statically specific po-
sition to a position specified by a pointer.

g0,0g0,1g1,0g1,1 Compute a gate with the specified truth
table on two input values from the wire table, with
output stored at a specified position. Logic simpli-
fication rules are applied when one or both of the
input values is ⊥. If no simplification is possible,
then the output will be ⊥ and the interpreter will
emit a gate. This is used for both local computa-
tions such as updating a loop index, and for com-
puting the gates used by the protocol.

A.1 Example PCF Description
Below is an example of a PCF file. It iterates over a loop
several times times, XORing the two parties’ inputs with
a bit from the internal state.

GADGET: main
CLABEL ALICEINLENGTH 32
CLABEL BOBINLEGNTH 32
CLABEL xxx 32
SETLABELC ALICEINLENGTH 128
SETLABELC ALICEINLENGTH 128
FUNCTION: main
1111 32 0 0
0000 33 0 0
0000 34 0 0
0000 35 0 0
GADGET: L
0110 36 35 34
0001 35 36 36
0110 36 34 33
0001 34 36 36
0110 36 33 32
0001 33 36 36
ALICEINPUT32 0 0
0001 36 0 0
BOBINPUT32 0 0
0001 37 0 0
0110 38 37 36
0110 39 33 38
SHIFT OUT ALICE 39
BRANCH L 35
RETURN xxx

16

USENIX Association 22nd USENIX Security Symposium 337

Control Flow Integrity for COTS Binaries ∗

Mingwei Zhang and R. Sekar
Stony Brook University
Stony Brook, NY, USA.

Abstract
Control-Flow Integrity (CFI) has been recognized as an
important low-level security property. Its enforcement
can defeat most injected and existing code attacks, in-
cluding those based on Return-Oriented Programming
(ROP). Previous implementations of CFI have required
compiler support or the presence of relocation or debug
information in the binary. In contrast, we present a tech-
nique for applying CFI to stripped binaries on x86/Linux.
Ours is the first work to apply CFI to complex shared
libraries such as glibc. Through experimental evalu-
ation, we demonstrate that our CFI implementation is
effective against control-flow hijack attacks, and elimi-
nates the vast majority of ROP gadgets. To achieve this
result, we have developed robust techniques for disas-
sembly, static analysis, and transformation of large bina-
ries. Our techniques have been tested on over 300MB of
binaries (executables and shared libraries).

1 Introduction
Since its introduction by Abadi et. al. [1, 2], Control-
Flow Integrity (CFI) has been recognized as an impor-
tant low-level security property. Unlike address-space
randomization [24, 5] and stack cookies [12, 17], CFI’s
control-flow hijack defense is not vulnerable to the re-
cent spate of information leakage and guessing attacks
[40, 37, 16]. Unlike code injection defenses such as
DEP (data execution prevention), CFI can protect from
existing code attacks such as return-oriented program-
ming (ROP) [38, 9, 49] and jump-oriented programming
(JOP) [10, 7]. In addition to exploit defense, CFI pro-
vides a principled basis for building other security mech-
anisms that are robust against low-level code attacks, as
evidenced by its application in software fault isolation
[27, 47] and sandboxing of untrusted code [15, 46].

An important feature of CFI is that it can be meaning-

∗This work was supported in part by AFOSR grant FA9550-09-1-
0539, NSF grant CNS-0831298, and ONR grant N000140710928.

fully enforced on binaries. Indeed, some applications of
CFI, such as sandboxing untrusted code, explicitly target
binaries. Most existing CFI implementations, including
those in Native Client [46], Pittsfield [27], Control-flow
locking [6] and many other works [22, 3, 42, 4, 36] are
implemented within compiler tool chains. They rely on
information that is available in assembly code or higher
levels, but unavailable in COTS binaries. The CFI imple-
mentation of Abadi et al [2] relies on relocation informa-
tion. Although this information is included in Windows
libraries that support ASLR, UNIX systems (and specif-
ically, Linux systems) rely on position-independent code
for randomization, and hence do not include relocation
information in COTS binaries. We therefore develop a
new approach for enforcing CFI on COTS binaries with-
out relocation or other high-level information.

Despite operating with less information, the security
and performance provided by our approach are compara-
ble to that of the existing CFI implementations. More-
over, our implementation is robust enough to handle
complex executables as well as shared libraries. We be-
gin by summarizing our approach and results.

1.1 CFI for COTS Binaries
We present the first practical approach for CFI enforce-
ment that scales to large binaries as well as shared
libraries without requiring symbol, debug, or reloca-
tion information. We have developed techniques that
cope with the challenges presented by static analysis
and transformation of large programs, including those
of Firefox, Adobe Acrobat 9, GIMP-2.6 and glibc. In
our experiments, we have transformed and tested over
300MB of binaries. Some of the key features of our de-
sign are:
• Modularity: Each shared library and executable is in-

strumented independently to enforce CFI. Our tech-
nique ensures that when an executable is loaded and
run, CFI property is enforced globally across the exe-
cutable and all the shared libraries used by it.

1

338 22nd USENIX Security Symposium USENIX Association

• Transparency: If our instrumentation made even the
smallest changes to (stack, heap or static) mem-
ory used by a program, it can cause complex pro-
grams to fail or function differently. As an exam-
ple, consider saved return addresses on the program
stack. Since code rewriting causes instruction loca-
tions to change, a straight-forward implementation
would change these saved return addresses. Unfortu-
nately, programs use this information in several ways:

– Position-independent code (PIC) computes the lo-
cations of static variables from return address.

– C++ exception handler uses return addresses to
identify the function (or more specifically, the try-
block within the function) to which the exception
needs to be dispatched.

– A program may use the return address (and any
other code pointer) to read constant data stored in
the midst of code, or more generally, its own code.

Changes to saved return address would cause these
uses to break, thus leading to application failure. For
this reason, our instrumentation has been designed to
provide full transparency.

The principal challenge in achieving full transparency
is one of performance. To address this challenge, we
have developed new optimization techniques.

• Compiler independence and support for hand-coded
assembly: Our approach does not make strong as-
sumptions regarding the compiler used to generate
a binary, such as the the conventions for generating
jump tables. Indeed, our code has been tested with
hand-written assembly, such as that found in low-
level libraries (e.g., glibc). It has been tested with the
two popular compilers on Linux, GCC and LLVM.

1.2 Quality of Protection
An ideal CFI implementation will restrict program ex-
ecution to exactly the set of program paths that can be
taken. In practice, due to the fact that targets of indi-
rect control-flow (ICF) transfers are difficult to predict,
CFI implementations enforce a conservative approxima-
tion of ideal CFI. Different techniques enforce different
approximations, so a natural and important question con-
cerns the relative strengths of these techniques. To an-
swer this question, we propose a simple metric, called
average indirect target reduction (AIR) which quantifies
the fraction of possible indirect targets eliminated by a
CFI technique. To compute AIR, we start with the frac-
tion of possible targets eliminated by a CFI technique for
each ICF transfer instruction, and average this number
across all ICF transfer instructions. (See Definition 1 on
Page 6.)

AIRs of several types of CFI are shown in Figure 1.
For the base case of an unprotected program, every byte

CFI Description AIR
type (%)
null no CFI protection 0.00
instr Restrict ICFs to valid instruction boundaries 79.27
bundle Instructions grouped into 32-byte bundles [46]. 96.04

All ICFs must target the start of a bundle.
reloc CFI based on relocation information. Indirect 99.13

calls/jumps to target any location present in
relocation table, returns to target a location
immediately following a call.

strict Enforces property closely matching reloc-CFI 99.08
but does not require relocation info.

bin Generalizes strict-CFI to avoid special 98.86
treatment of threads and exceptions

Figure 1: CFI flavors and strengths on SPEC CPU2006.

address in the code is a possible ICF target, and the AIR
is 0%. We then define a coarse form of CFI called instr-
CFI that limits ICF transfers to instruction boundaries. It
eliminates attacks that jump to the middle of instructions.
Bundle-CFI is another coarse form of CFI used in Pitts-
Field [27] and Native Client [46]. It limits ICF transfers
to addresses that are multiples of 16 (PittsField) or 32
(Native Client).

The next version, reloc-CFI, captures the strength of
CFI implementation described by Abadi et al [2]. It relies
on relocation information in binaries. (See Section 4.2
for more discussion).

Large and complex binaries contain several exceptions
to the simple model of calls, returns and indirect jumps
embodied in many CFI works:
• Returns used as jumps. Return instructions are some

times used to jump to functions by pushing their ad-
dress on the stack and returning. Examples include
code for thread context switching, signal handling,
etc.

• Returns to caller function, but not a return address.
Some times, returns go back to a caller, but don’t tar-
get a return address, e.g., due to C++ exceptions.

• Jumps to return addresses. Functions such as longjmp
use an indirect jump that targets a return address.

• Runtime generation of new ICF targets. Some appli-
cations create ICF targets on the fly using dlopen to
add additional libraries at any point during runtime.

• Indirect jumps using arithmetic operations. Low-
level assembly code can contain ICF targets that are
computed using multiple arithmetic operations.

To cope with these exceptions, our approach, called bin-
CFI, avoids making any of the common assumptions re-
garding ICF targets in general. Instead, it relies on static
analysis and a very conservative set of assumptions so
that it can scale to large executables and libraries.

Note that bin-CFI eliminates about 99% of possible
indirect targets. Moreover, it experiences only a small

2

USENIX Association 22nd USENIX Security Symposium 339

decrease in AIR as compared to reloc-CFI. This provides
evidence that our approach achieves compatibility with
COTS binaries without incurring a major reduction in
its quality of protection.

To further pinpoint the sources of the slight decrease in
AIR, we implemented a stricter version of bin-CFI called
strict-CFI. It uses the same binary analysis techniques as
bin-CFI, but instead of providing a general way to han-
dle exceptions and threads, it simply uses a relaxed pol-
icy for a few specific instructions in system libraries that
perform thread switching or exception unwinding. Note
that the strict-CFI has an AIR very close to that of reloc-
CFI, pointing out that the sources of AIR decrease are the
exceptions that need to be made in order to support large
and complex binaries. Effective precision loss incurred
by our static analysis is very small (0.05%) as compared
to the use of relocation information.

1.2.1 Experimental Evaluation

We present a detailed experimental evaluation of our
technique. Key points include:
• Good performance: Techniques for achieving trans-

parency and modularity can exact a price in terms of
performance. We describe several optimization tech-
niques in Section 6 that have reduced the overhead to
about 8.54% across the SPEC CPU benchmark suite.

• ROP and JOP defense: As our AIR measurements
indicate, about 99% of possible ICF targets have been
eliminated by bin-CFI. Moreover, on the SPEC CPU
2006 benchmark, our technique also eliminated about
93% of ROP gadgets that were found by the popular
ROP gadget discovery tool ROPGadget [35].

• Control-flow hijack detection. Our results show that
bin-CFI defeats the vast majority of control-flow hi-
jack attacks from the RIPE benchmark [45].

2 Disassembly
2.1 Background

There are two basic techniques for disassembly: linear
disassembly and recursive disassembly. Linear disas-
sembly starts by disassembling the first instruction in a
given segment. Once an instruction at an address l is
disassembled, and is determined to have a length of k
bytes, disassembly proceeds to the instruction starting at
address l + k. This process continues to the end of the
segment.

Linear disassembly can be confused by “gaps” in code
that consist of data or alignment-related padding. These
gaps will be interpreted by linear disassembly as in-
structions and decoded, resulting an erroneous disas-
sembly. With variable-length instruction sets such as
those of x86, incorrect disassembly of one instruction

can cause misidentification of the start of the next in-
struction; hence these errors can cascade even past the
end of gaps.

Recursive disassembly uses a different strategy, one
that is similar to a depth-first construction of program’s
control-flow graph (CFG). It starts with a set of code
entry points specified in the binary. For an executable,
there may be just one such entry point specified, but for
shared libraries, the beginning of each exported functions
is specified as well. The technique starts by disassem-
bling the instruction at an entry point. Subsequent in-
structions are disassembled in a manner similar to linear
disassembly. The difference with linear disassembly oc-
curs when control-flow transfer instructions are encoun-
tered. Specifically, (a) each target identified by a direct
control-flow transfer instruction is added to the list of
entry points, and (b) disassembly stops at unconditional
control-flow transfers.

Unlike linear disassembly, recursive disassembly does
not get confused by gaps in code, and hence does not
produce incorrect disassembly1. However, it fails to dis-
assemble code that is reachable only via ICF transfers.

Incompleteness of recursive disassembly can be miti-
gated by providing it a list of all targets that are reachable
via ICF transfers. This list can be computed from relo-
cation information. However, in stripped binaries, which
typically do not contain relocation information, recursive
disassembly can fail to disassemble significant parts of
the code.

2.2 Our Disassembly Technique
The above discussion on using relocation information to
complete recursive disassembly suggests the following
strategy for disassembly:
• Develop a static analysis to compute ICF targets.
• Modify recursive disassembly to make use of these as

possible entry points.
Unfortunately, the first step will typically result in a su-
perset of possible ICF targets: some of these locations
don’t represent code addresses. Thus, blindly following
ICF targets computed by static analysis can lead to incor-
rect disassembly. We therefore use a different strategy,
one that combines linear and recursive disassembly tech-
niques, and uses static analysis results as positive (but not
definitive) evidence about correctness of disassembly.

Our approach starts by eagerly disassembling the
entire binary using linear disassembly, which is then
checked for errors. The error checking step primarily
relies on the steps used in recursive disassembly. Finally,

1This does rely on some assumptions: (a) calls must return to the
instruction following the call, (b) all conditional branches are followed
by valid code, and (c) all targets of (conditional as well as uncondi-
tional) direct control-flow transfers represent legitimate code. These
assumptions are seldom violated, except in case of obfuscated code.

3

340 22nd USENIX Security Symposium USENIX Association

an error correction step identifies and marks regions of
disassembled code as representing gaps. The error de-
tection step relies on the following checks:
• Invalid opcode: Some byte patterns do not corre-

spond to any instruction, so attempts to decode them
will result in errors. This is relatively rare because
x86 machine code is very dense. But when it occurs,
it is a definitive indicator of a disassembly error.

• Direct control transfers outside the current module.
Cross-module transfers need to use special structures
called program-linkage table (PLT) and global offset
table (GOT), and moreover, need to use ICF transfers.
Thus, any direct control transfer to an address outside
the current module indicates erroneous disassembly.

• Direct control transfer to the middle of an instruc-
tion: This can happen either because of incorrect dis-
assembly of the target, or incorrect disassembly of the
control-flow transfer instruction. Detection of addi-
tional errors near the source or target will increase our
confidence regarding which of the two has been incor-
rectly disassembled. In the absence of additional in-
formation, our approach considers both possibilities.

Since errors in linear disassembly arise due to gaps,
our error correction step relies on identifying and mark-
ing these gaps. An incorrectly disassembled instruction
signifies the presence of a gap, and we need to find its
beginning and end. To find the beginning of the gap, we
simply walk backward from the erroneously disassem-
bled instruction to the closest preceding unconditional
control-flow transfer. If there are additional errors within
a few bytes preceding the gap, the scan is continued for
the next preceding unconditional control-flow transfer.
To find the end of the gap, we rely on static analysis re-
sults (Section 3). Specifically, the smallest ICF target
larger than the address of the erroneously disassembled
instruction is assumed to be the end of the gap. Once
again, if there are disassembly errors in the next few
bytes, we extend the gap to the next larger ICF target.

After the error correction step, all identified disassem-
bly errors are contained within gaps. At this point, the bi-
nary is disassembled again, this time avoiding the disas-
sembly of the marked gaps. If no errors are detected this
time, then we are done. Otherwise, the whole process
needs to be repeated. While it may seem that repetition
of disassembly is an unnecessarily inefficient measure,
we have used it because of its simplicity, and because
disassembly errors have been so rare in our implementa-
tion that no repetition was needed for the vast majority
of our benchmarks.

3 Indirect Control Flow Analysis
In this section, we describe a static analysis for discov-
ering possible ICF targets. We classify ICF targets into

several categories, and devise distinct analyses to com-
pute them:

• Code pointer constants (CK) consists of code ad-
dresses that are computed at compile-time.

• Computed code addresses (CC) include code ad-
dresses that are computed at runtime.

• Exception handling addresses (EH) include code ad-
dresses that are used to handle exceptions.

• Exported symbol addresses (ES) include export func-
tion addresses.

• Return addresses (RA) include the code addresses
next of a call.

Our static analysis results are filtered to retain only those
addresses that represent valid instruction boundaries in
disassembled code.

3.1 Identifying Code Pointer Constants (CK)

In general, there is no way to distinguish a code pointer
from other types of constants in code. So, we take a con-
servative approach: any constant that “looks like a code
pointer,” as per by the following tests, is included in CK:

• it falls within the range of code addresses in the cur-
rent module.

• it points to an instruction boundary in disassembled
code.

Note that a module has no compile-time knowledge of
addresses in another module, and hence it suffices to
check for constants that fall within the range of code ad-
dresses in the current module. For shared libraries, ab-
solute addresses are unknown, so we check if the con-
stant represents a valid offset from the base of the code
segment. It is also possible that the offset may be with
respect to the GOT of the shared library, so our validity
check takes that into account as well.

The entire code and data segments are scanned for pos-
sible code constants as determined by the procedure in
the preceding paragraph. Since 32-bit values need not
be aligned on 4-byte boundaries on x86, we use a 4-byte
sliding window over the code and data to identify all po-
tential code pointer constants.

3.2 Identifying Computed Code Pointers (CC)

Whereas our CK analysis was very conservative, it is dif-
ficult to bring the same level of conservativeness to the
analysis of computed code pointers. This is because, in
general, arbitrary computations may be performed on a
constant before it is used as an address, and it would be
impossible to estimate the results of such operations with
any degree of accuracy. However, these general cases are
just a theoretical possibility. The vast majority of code
is generated from high-level languages where arbitrary

4

USENIX Association 22nd USENIX Security Symposium 341

pointer arithmetic on code pointers isn’t meaningful2.
Even for hand-written assembly, considerations such as
maintainability, reliability and portability lead program-
mers to avoid arbitrary arithmetic on code pointers. So,
rather than supporting arbitrary code pointer computa-
tion, we support computed code pointers in a limited set
of contexts where they seem to arise in practice. Indeed,
the only context in which we have observed code pointer
arithmetic is that of jump tables3.

The most common case of jump tables arise from com-
piling switch statements in C and C++ programs. If
these were the only sources of CC, then a simple ap-
proach could be developed that is based on typical con-
ventions used by compilers for translating switch state-
ments. However, this approach isn’t feasible in our case
since we wish to handle many low-level libraries that
contain hand-written assembly code. So, we begin by
identifying properties that we believe are generic to jump
tables:
• Jump table targets are intra-procedural: the ICF trans-

fer instruction and ICF target are in the same function.
(We don’t require function boundaries — we estimate
them conservatively, as described below.)

• The target address is computed using simple arith-
metic operations such as additions and multiplication.

• Other than one quantity that serves as an index, all
other quantities involved in the computation are con-
stants in the code or data segment.

• All of the computation takes place within a fixed size
window of instructions, currently set to 50 instruc-
tions in our implementation.

Based on these characteristics, we have developed a
static analysis technique to compute possible CC targets.
It uses a three-step process. The first step is the identi-
fication of function boundaries and the construction of a
control-flow graph. In the absence of full symbol table
information, it is difficult to identify all function bound-
aries, so we fall back to the following approach that
uses information about exported function symbols. We
treat the region between two successive exported func-
tion symbols as an approximation of a function. (Note
that this approximation is conservative, as there may be
non-exported functions in between.) We then construct a
control-flow graph for each region.

In the second step, we identify instructions that per-
form an indirect jump. We perform a backward walk
from these instructions using the CFG. All backward
paths are followed, and for each path, we trace the

2This is true even in languages that are notorious for pointer arith-
metic, such as C.

3C++ exception handling also involved address arithmetic on return
addresses, but we can rely on exception handler information that must
be included in binaries rather than the CC analysis.

chain of data dependences to compute an expression for
the indirect jump target. This expression has the form
∗(CE1 + Ind)+CE2, where CE1 and CE2 denote expres-
sions consisting of only constants, Ind represents the in-
dex variable, and * denotes memory dereferencing. In
some cases, it is possible to extend the static analysis to
identify the range of values that can be taken by Ind.
However, we have not implemented such an analysis, es-
pecially because the index value may come from other
functions. Instead, we make an assumption that valid
Ind values will start around 0.

In the third step, we enumerate possible values for the
index variable, compute the jump target for each value,
and check if it falls within the current region. Specifi-
cally, we check if CE1 + Ind falls within the data or code
segment of the current module, and if so, retrieve the
value stored at this location. It is then added with CE2
and the result checked to determine if it falls within the
current region. If so, the target is added to the set CC. If
either of these checks fail, Ind value is deemed invalid.

We start from Ind value of 1, and explore values on
either side until we reach values for which the computed
target is invalid.

We point out that the backward walk through the CFG
can cross function boundaries, e.g., traversing into the
body of a called function. It may also go backwards
through indirect jumps. To support this case, we ex-
tend the CFG to capture indirect jumps discovered by
the analysis. The maximum extent of backward pass is
bounded by the window size specified above.

The above procedure can fail in some cases, e.g., if
CC computation is dispersed beyond the 50-instruction
window used in the analysis, or if the computation does
not have the form ∗(CE1+ Ind)+CE2. In such cases, we
can conservatively add every instruction address within
the region to CC.

3.3 Identifying Other Code Addresses

Below, we describe the computation of the three remain-
ing types of code pointers: exception handlers (EH), ex-
ported symbols (ES), and return addresses (RA).

In ELF binaries, exception handlers are also valid ICF
targets. They are constructed by adding a base address
with an offset. The base addresses and offsets are stored
in ELF sections .eh frame and .gcc except table re-
spectively. Both these sections are in DWARF [26] for-
mat. We use an existing tool, katana [29, 30], to parse
these DWARF sections and get both base addresses and
offsets, and thus compute the set EH. (We point out that
the CC analysis mentioned above won’t be able to dis-
cover these EH targets because DWARF format permits
variable length numeric encoding such as LEB128, and
hence the simple technique of scanning for 32-bit con-
stant values won’t work.)

5

342 22nd USENIX Security Symposium USENIX Association

Exported symbol (ES) addresses are listed in the dy-
namic symbol table, which is found in the .dynamic sec-
tion of an ELF file.

Return addresses (RA) are simply the set of locations
that follow a call instruction in the binary. Thus, they can
be computed following the disassembly step.

4 Defining and Assessing CFI for Binaries
4.1 A Metric for Measuring CFI Strength
Previous works on CFI have relied on analysis of higher
level code to effectively narrow down ICF targets. Since
binary analysis is generally weaker than analyses on
higher-level code, our CFI enforcement is likely to be
less precise. It is natural to ask how much protection
is lost as a result. To answer this question, we define a
simple metric for quality of protection offered by a CFI
technique.

Definition 1 (Average Indirect target Reduction (AIR))
Let i1, ..., in be all the ICF transfers in a program and S
be the number of possible ICF targets in an unprotected
program. Suppose that a CFI technique limits possible
targets of ICF transfer i j to the set Tj. We define AIR of
this technique as the quantity

1
n

n

∑
j=1

(

1−
|Tj|
S

)

where the notation |T | denotes the size of set T .

On x86, where branches can target any byte offset, S
is the same as the size of code in a binary.

4.2 A Simple CFI Property based on Relocation
CFI techniques are generally based on the following
model of how ICF transfers are used in source code:
1. Indirect call (IC): An indirect call can go to any func-

tion whose address is taken, including those addresses
that are implicitly taken and stored in tables, such as
virtual function tables in C++.

2. Indirect jump (IJ): Since compiler optimizations4 can
replace an indirect call (IC) with indirect jump (IJ),
the same policy is often applied to indirect jumps as
well.

3. Return (RET): Returns should go back to any Return
Address (RA), i.e., an instruction following a call.

It is theoretically possible to further constrain each of
these sets, and moreover, use different sets for each ICF
transfer. However, implementations typically don’t use
this option, as increased precision comes with certain
drawbacks. For instance, the callers of functions in
shared libraries (or dynamically linked libraries in the

4Specifically, a tail call optimization that replaces a call occurring
at the very end of a function with a jump.

case of Microsoft Windows) are not known before run-
time, and hence it is difficult to constrain their returns
more narrowly than described above. Moreover, some
techniques rely on relocation information, which does
not distinguish between targets reachable by IC from
those reachable by IJ, or between the targets reachable
by any two ICs. Hence they do not refine over the above
property. For this reason, we refer to the above CFI prop-
erty as reloc-CFI.

The description of implementation in Abadi et al [2]
indicates their use of relocation information, and con-
firms the above policy regarding ICs. No specifics are
provided regarding IJs and returns, but for reasons de-
scribed above, we believe that they support the reloc-CFI
policy described above. We also note that indexed hooks
[22] uses a single table for ICs and IJs, and another for
returns, enforcing reloc-CFI but in a kernel environment.

4.3 Strict-CFI: A CFI Property for Binaries Closely
Matching Reloc-CFI

Strict-CFI is derived from reloc-CFI, except that it uses
ICF targets computed by our ICF target analysis rather
than relocation information. In addition, strict-CFI in-
corporates an extension needed to handle features such
as exception handling and multi-threading. Specifically,
these features are used by a handful of instructions in
system libraries, and we simply relax the above policy
for these instructions:

• Instructions performing exception related stack un-
winding are permitted to go to any exception handler
landing pad (EH).

• Instructions performing context switches are permit-
ted to use any type of ICF transfer to transfer to a
function address.

Since they apply to a very small fraction of ICF trans-
fers in a program, their overall effect on AIR is negligi-
ble. Thus, the difference in AIR between reloc-CFI and
strict-CFI will pinpoint the precision loss due to the use
of static analysis in place of relocation information.

4.4 Bin-CFI: CFI for Complex Binaries

Complex binaries can contain exceptions to the simple
model of ICF transfers outlined earlier. To define a suit-
able CFI property for such binaries, we introduce a cat-
egory of ICF transfer in addition to RET, IC and IJ de-
scribed earlier. This category, called PLT, includes all
ICF transfers in the program linkage table, a section of
code used in dynamic linking5.

We are now ready to define bin-CFI as shown in Fig-
ure 2.

5Specifically, for each function belonging to another module, a stub
routine is created by the compiler in this section.

6

USENIX Association 22nd USENIX Security Symposium 343

Returns (RET), PLT targets,
Indirect Indirect

Jumps (IJ) Calls (IC)
Return addresses (RA) Y
Exception handling Y
addresses (EH)
Exported symbol Y
addresses (ES)
Code pointer Y Y
constants (CK)
Computed code Y Y
addresses (CC)

Figure 2: Bin-CFI Property Definition

It is easy to see that strict-CFI is stricter than bin-
CFI. The reasons for relaxing strict-CFI are as follows.
In general, there is no easy way to distinguish be-
tween returns used for purposes such as stack unwind-
ing, longjmp, thread context switch, and function dis-
patch from (the more common) use of returning from
functions. We therefore permit returns to go to any of
the valid targets corresponding to each of these uses. Re-
turns are some times broken up into a pop and jump, so
all possible targets of RET are permissible targets of IJ.
This explains the first column of the table.

Since the purpose of PLT stubs is to dispatch cross-
module calls, it would seem that the targets can only
be exported symbols from other modules. However, re-
cent versions of gcc support a new function type called
gnu indirect function, which allows a function to have
many different implementations, with the most suitable
one selected at runtime based on factors such as the CPU
type. Currently, many glibc low level functions such as
memcpy, strcmp and strlen use this feature. To support
this feature, a library exports a chooser function that se-
lects at runtime which of the many implementations is
going to be used. These implementation functions may
not be exported at all. To avoid breaking such programs,
the policy for PLT should be relaxed to include code
pointers in the target library. This is what we have done
on the second column of Figure 2.

Indirect calls should go to the targets in one of the sets
CC or CK. Since these two sets are usually much larger
than ES, we chose to merge IC and PLT to use the same
table of valid targets.

5 Implementation

Although our design is largely applicable to most archi-
tectures, our implementation targets 32-bit x86 proces-
sors running Linux. For this reason, some implementa-
tion aspects discussed below are specific to this platform.

5.1 Disassembly

Binaries on Linux (and most other UNIX systems) use
the ELF (Executable and Linkable Format) [25] for-
mat. We support binaries that represent executables and
shared libraries. The ELF format divides a binary into
several sections, each of which may contain code, read-
only data, initialized data, and so on. While our approach
utilizes the data in read-only data sections, it is mainly
concerned with the code sections.

Our implementation utilizes objdump to perform lin-
ear disassembly. We have built our disassembly error
detection and correction components on top of objdump.
In our experience, disassembly errors occurred primarily
due to insertion of null padding generated by legacy code
or linker script. In addition, we discovered jump table
data in the middle of code in libffi.so and libxul.so

There were also several instances where conditional
jumps targeted the middle of an instruction. Further anal-
ysis revealed that these errors occurred with instructions
that had optional prefixes, such as the “lock” prefix. We
eliminated this error by treating these prefixes as inde-
pendent instructions, so that jumps could target the in-
struction with or without the prefix.

5.2 Instrumentation and Regeneration of Binary

After disassembly, the resulting code is instrumented to
enforce CFI. The specifics of this instrumentation are de-
scribed in Section 5.3. Below we describe the genera-
tion of a binary from instrumented code, since a general
understanding of this process will enable a fuller under-
standing of the instrumentation steps.

Instrumentation is performed on assembly representa-
tion. This simplifies our implementation since it does
not need to be concerned with details such as encoding
and decoding of instructions. Moreover, it can use labels
instead of addresses. In particular, for each instruction
location A in the disassembler output of objdump, we
associate a symbolic label L_A as follows:

L_8040930:movl %ecx, %eax

These symbolic labels are used as targets of direct branch
instructions, which means that the assembler will take
care of fixing up the branch offsets. (These offsets will
typically change since we are inserting additional code
during instrumentation.)

After rewriting, the instrumented assembly file is pro-
cessed using the system assembler (in our case, the GNU
assembler gas) to produce an object file. We extract the
code from this object file and then use the objcopy tool to
inject it into the original ELF file. Note that the original
code sections are not overwritten. This ensures that any
attempt by the instrumented program to read its own code
will produce the same results as the original program.

7

344 22nd USENIX Security Symposium USENIX Association

The final step prepares the ELF file produced by ob-
jcopy for execution. This step requires relocation ac-
tions on the newly added segment, and updating the ELF
header to set its entry point to the segment containing in-
strumented code. The original code segments are made
unexecutable. For shared libraries, it is also necessary to
update the dynamic symbol sections.

5.3 Instrumentation for CFI
As described above, instrumented code resides in a dif-
ferent code segment (and hence a different memory lo-
cation) from the original code. This means that function
pointer values, which will typically appear in the code
as constants, will have incorrect values. Unfortunately,
it is not possible to fix them up automatically, since we
cannot distinguish constants representing code addresses
from other types of constants. It would obviously be un-
sound to modify a constant value that does not represent
a code pointer6.

The typical way to deal with this uncertainty, em-
ployed in dynamic binary translation (DBT) [8], is to
wait until a value is used as the target of an ICF transfer.
At that point, this target value is translated into the corre-
sponding location in the instrumented code. This trans-
lation is performed using a table that consists of pairs of
the form

〈original address, new address〉

At runtime, addr trans, a piece of trampoline code, per-
forms address translation. (In fact, there are two such
trampolines, one corresponding to each column of Fig-
ure 2.) Instrumentation is inserted at the site of the origi-
nal indirect control-flow transfer instruction as shown in
Figure 3.

060c0: call *%ecx

060c2:

L_060c0: push $060c2

movl %eax, %gs:0x44

movl %ecx, %eax

jmp addr_trans

L_060c2:

Figure 3: Original (left) and Instrumented code (right)
for ICF transfer

This code saves the register (eax) used by the instrumen-
tation, and moves the target address into it.7 Then the
original indirect jump (or call) is replaced with a direct
jump to the trampoline routine, addr trans. Note the use
of labels such as L_060c0 that are used to associate lo-
cations in the instrumented code with the corresponding

6Here again, relocation information can address this uncertainty, but
in our case, this is unavailable.

7Note that %gs points to the base of thread-local storage, and
%gs:0x44 is not used by existing system software.

original address, namely, 060c0. As a result, the transla-
tion table can consist of entries of the form

〈A,L A〉

for each valid ICF target A. As noted earlier, there are
two address translation routines, one corresponding to
each column of Figure 2. The valid ICF targets for each
table consists of the subset of ICF targets computed by
the static analysis described in Section 3 that appear in
the corresponding column of Figure 2.

The details of addr trans are as follows: After saving
registers and flags needed for its operation, addr trans

performs an address range check to determine if the tar-
get is within the current module. If not, this represents
a cross-module control transfer that is described later in
this section. After the range check, addr trans performs
address translation. Our implementation relies on closed
hashing [44] to perform an efficient lookup of the table
described above. Rather than storing just the target ad-
dress L A in the table, our implementation stores code
that transfers control to L A. For instance, the hash table
entry to translate a code address 0x060c2 looks as fol-
lows.

0x060c2 movl %gs:0x44, %eax; jmp L 060c2

If no translation is found for the target address,
addr_trans will set an error code to help in debugging,
and terminate the program.

Note that, for shared libraries, translation table only
contains the offsets rather than absolute addresses. Con-
sequently, the base address of the module needs to be
subtracted from the runtime address given to the transla-
tion routine. We rely on the dynamic linker to patch the
routine with the module’s base address when the module
is loaded.

In order to preserve the functionality of original code,
it is necessary to ensure that the instrumentation does not
modify any of the registers or memory used by the pro-
gram. It is relatively easy to avoid changes to memory, or
registers other than the program counter (PC). Since in-
strumentation changes code locations (as described ear-
lier), it is not possible to preserve the PC register. So,
what we need to do is to add a compensation for any op-
eration that uses the PC for any purpose other than fetch-
ing the next instruction. Fortunately, on x86, there are
only two instructions that use PC this way: call and re-
turn. A call X is translated into a push next; jmp X,
where next denotes the address of the instruction fol-
lowing call in the original program. Similarly, a return
is translated into a pop followed by a direct jump. Note
that after this transformation, none of the instructions in
the original program involve movement of data between
PC and other registers or memory8, thus ensuring that

8 In x86-64 architecture, any PC-relative data addressing needs to

8

USENIX Association 22nd USENIX Security Symposium 345

program behavior is unaffected by our instrumentation.

Modularity. Support for shared libraries is achieved as
follows. Our technique rewrites a single module (an ex-
ecutable or a shared library) at a time. There is exactly
one version of a transformed shared library, regardless of
the context (or the executable) in which it is used. Note
that we transform all shared libraries, including glibc

and ld.so.
As described before, addr_trans already handles

intra-module control transfers. Inter-module transfers
rely on a two-stage process. In the first stage, a global
translation table (GTT) is used to map an ICF target to
the translation routine address in the target module. This
table is constructed as follows. Since shared libraries
must begin at page boundaries, any two modules have
to be apart by at least 4KB, the page size on 32-bit Linux
systems. Thus, it is enough to use the leading 20 bits of
the ICF target in this lookup table. We use a simple array
implementation for GTT since there are only 220 = 1M
entries in this table. This array is made read-only in or-
der to protect it. The second stage performs a lookup in
the destination module, using the address translation ta-
ble for that module. We use the term module translation
table (MTT) for the translation table that specifies trans-
lations for addresses within the module.

Changes to the Loader. Note that the GTT needs to be
updated as and when modules are loaded. Naturally, the
best place to do this is the dynamic linker. We modified
the source code of ld.so to accomplish this. Our change
uniformly handles the typical case of the loader mapping
all of shared libraries referenced by an executable (or an-
other shared library loaded by the loader), as well as the
less common case of an application using dlopen and
dlclose primitives to load and unload libraries at run-
time. Our changes relate to about 300 lines of the source
code of ld.so.

Our loader modification also addressed two other id-
iosyncrasies of ld.so. First, note that our approach mod-
ifies the entry point of a binary. Thus, any program that
uses the entry point for purposes other than jumping to it
may not work any more. As it turns out, ld.so does make
use of this information when it is invoked to load a pro-
gram, as in ld.so <binary>. We changed the loader so
that it compensates for the change in the entry point, and
hence works correctly in all cases.

The second idiosyncrasy concerns the use of return
instructions for lazy symbol resolving. Lazy symbol
resolving is implemented by the dl runtime resolve

function (or dl runtime profile if profiling is enabled)
in ld.so. This function computes the target address cor-
responding to the symbol, pushes this address on the
top of stack, and returns. For this to work correctly, re-

be translated too. This can be done easily by modifying the offset value.

060b1: call 060c0

.....

L_060b1: call S_060b1

.....

S_060b1: add $offset, (%esp)

jmp L_060c0

Figure 4: Optimized instrumentation of calls

turns should be permitted to target exported symbols, fur-
ther decreasing the accuracy of our CFI implementation.
Instead, we chose to modify the loader to use indirect
jumps instead of returns, and restricted the target of these
jumps with the policy shown in Figure 2 for PLT entries.

Signals. Signal is another mechanism to redirect pro-
gram control flow. If a program registers its signal han-
dlers, once again we will have the problem that the pro-
gram will specify the location of the handler in original
code, whereas we want the signal to be delivered to the
instrumented code. (This problem arises because signals
are delivered by the kernel, which is not aware of the ad-
dress translations used to correctly handle code pointers.)

Our implementation intercepts sigaction and signal

system calls, and stores the address of the signal handlers
specified by these calls in a table. The signal handler ar-
gument is then changed so that control will be transferred
to a wrapper function, which contains code that jumps
to the user-specified handler. Since this wrapper will be
instrumented as usual, instrumented version of the user-
specified handler will be invoked.

6 Optimizations
6.1 Improving Branch Prediction (BP)

Modern processors use very deep pipelines, so branch
prediction misses can greatly decrease performance. Un-
fortunately, our translation of returns (into a combination
of pop and jmp) leads to misses. When a return instruc-
tion is used, the processor is able to predict the target by
maintaining a stack that keeps track of calls. When it is
replaced by an indirect jump, especially one that is al-
ways made from a single trampoline routine, prediction
fails.

To address this problem, we modified the transforma-
tion of calls and returns as shown in Figures 4 and 5.
The original call is transformed into another call into stub
code that is part of the instrumentation. There is a unique
stub for each call site. The code in the stub adjusts the
return address on the stack so that it will have the same
value as in the untransformed program. This requires
addition of a constant that represents the offset between
the call instructions in the original and transformed code.
Similarly, at the time of return, the return address on the
stack is translated from its original value to the corre-
sponding value in the transformed program, after which
a normal return can be executed.

9

346 22nd USENIX Security Symposium USENIX Association

060d1: ret #address translation

add $4, %esp

mov %edx, (%esp)

ret

Figure 5: Optimized instrumentation of returns

The key point about this transformation is that the pro-
cessor sees a return in Figure 5 that returns from the call
it executed (Figure 4, label L_060b1). Although the ad-
dress on the program stack was adjusted (Figure 4, la-
bel S_060b1), this is reversed by address translation in
Figure 5. As a result, the processor’s predicted return
matches the actual return address on the stack.

6.2 Avoiding Address Translation (AT)

We explored three optimizations aimed at eliminating ad-
dress translation overheads in the following cases:

AT.1 jump tables

AT.2 PIC translation

AT.3 return target speculation

For the first optimization, instead of computing an orig-
inal code address and then translating it into new ad-
dresses, we create a new table that contains translated
addresses. The content of the table is copied from the
original table, and then each value is translated (at in-
strumentation time) into the corresponding new address.
A catch here is that we don’t know the size of the original
table. Note, however, that we have a good guess, based
on the CC computation technique from Section 3.2. We
first check that the index variable is within this range, and
if so, use the new table. Otherwise, we use the old table,
and translate the jump address at runtime.

PIC has several code patterns, including a call to
get pc thunk and a call to the next instruction. The ba-
sic function of the pattern is getting the current PC and
copying it into a general purpose register. In the trans-
lated code, however, get pc thunk introduces an address
lookup for return. This extra translation could be avoided
by translating this version into a call of the next instruc-
tion. No returns are used in this case, thereby avoiding
address translation overhead. (It is worth noting that us-
ing a call/pop combination does not affect branch pre-
diction for return instructions. The processor is able to
correct for minor violations of call/return discipline.

In the third case, if a particular ICF transfer tends to
target the same location most of the time, we can speed
it up by avoiding address translation for this location. In-
stead, a comparison is introduced to determine if the tar-
get is this location, and if so, introducing a direct jump.
In our implementation, we choose to apply it only to re-
turn instruction. We used profiling to determine if the
return frequently targets the same location.

6.3 Violating Transparency (VT)

Using static analysis results, we can safely avoid some
of the overheads associated with full transparency. The
following are two optimizations we use:

VT.1 no saving of eflags

VT.2 use non-transparent calls

To achieve, VT.1, we analyze all potential indirect and
direct control targets. If there is no instruction that uses
eflags prior to all instructions that define it, then we can
safely use VT.1. In fact, we discover that eflags is live
only in a few jump tables.

When VT.2 is enabled, all return addresses are within
the new code. Note that VT.2 is always enabled on PIC
patterns, i.e., call of get pc thunk and call of next in-
struction. This is because it is simple to analyze this pat-
tern and determine that non-transparent mode will not
lead to any problems, as long as the offset added to ob-
tain data address is appropriately adjusted.

7 Evaluation
We first evaluate functionality of our system, focusing on
disassembly, and compatibility with different compilers.
Next, we evaluate its effectiveness in terms of the AIR
metric and attack defense. Then, we evaluate its runtime
and memory overheads, Finally, we summarize the lim-
itations of the approach and its current implementation.

Module Package Size # of Ins- # of
tructions Errors

libxul.so firefox-5.0 26M 4.3M 0
gimp-console-2.6 gimp-2.6.5 7.7M 385K 0
libc.so glibc-2.13 8.1M 301K 0
libnss3.so firefox-5.0 4.1M 235K 0
libmozsqlite3.so firefox-5.0 1.8M 128K 0
libfreebl3.so firefox-5.0 876K 66K 0
libsoftokn3.so firefox-5.0 756K 50K 0
libnspr4.so firefox-5.0 776K 41K 0
libssl3.so firefox-5.0 864K 40K 0
libm.so glibc-2.13 620K 35K 0
libnssdbm3.so firefox-5.0 570K 34K 0
libsmime3.so firefox-5.0 746K 30K 0
ld.so glibc-2.13 694K 28K 0
gimpressionist gimp-2.6.5 403K 21K 0
script-fu gimp-2.6.5 410K 21K 0
libnssckbi.so firefox-5.0 733K 19K 0
libtestcrasher.so firefox-5.0 676K 17K 0
gfig gimp-2.6.5 442K 17K 0
libpthread.so glibc-2.13 666K 15K 0
libnsl.so glibc-2.13 448K 15K 0
map-object gimp-2.6.5 257K 15K 0
libresolv.so glibc-2.13 275K 13K 0
libnssutil3.so firefox-5.0 311K 13K 0
Total 58M 5.84M 0

Figure 6: Disassembly Correctness

10

USENIX Association 22nd USENIX Security Symposium 347

Application Name Experiment
Wireshark v1.6.2 capture packets on LAN for 20 minutes
gedit v3.2.3 open multiple files; edit; print; save
lyx v2.0.0 open a large report; edit; convert to pdf/dvi/ps
acroread9 open 20 pdf files; scroll;print;zoom in/out
mplayer 4.6.1 play an mp3 file
firefox 5 (no JIT) open web pages
perl execute a complex script, compare the output
vim open file, copy/paste, search, edit
gimp-2.6 load jpg picture, crop, blur, sharpen, etc.
lynx 2.8.8dev open web pages
ssh 5.8p1 login to a remote server
evince 3.2.1 open a large pdf file

Figure 7: Real World Program Functionality Test

7.1 Functionality

Testing transformed code. We tested the SPEC CPU2006
programs (Figure 8). This benchmark comes with scripts
to verify outputs, thus simplifying functionality testing.

We also tested many real world programs in-
cluding coreutils-8.16 and binutils-2.22, and medium
to large programs such ssh, scp, wireshark, gedit,
mplayer, perl, gimp, firefox, acroread, lyx as well
as all the shared libraries used by them includ-
ing libc.so.6, libpthread.so.0, libQtGui.so.4,
libQtCore.so.4.

Altogether, we had to transform 786 shared libraries
during testing. The total code transformed was over 300
MB, of which the libraries were about 240MB and exe-
cutables were about 60MB. We tested each of these pro-
grams and ensured that they worked correctly. A subset
of these tests is shown in Figure 7.

Correctness of Disassembly. Since testing explores
only a fraction of program paths, we undertook a more
complete evaluation of disassembly correctness. For this,
we recompiled several large programs, including Firefox
5, GIMP-2.6 and glibc-2.13 to obtain the assembly code
generated by the compiler. Specifically, we turned on
the option --listing-lhs-width=4 -alcdn of GNU as-
sembler to generate listing files containing both machine
code and assembly. This was then compared with disas-
sembly.

Note that multiple object files are combined by the
linker to produce an executable or library. We intercept
the linker ld to record address ranges in the code that
correspond to each object file. This information is used
to compare compiler-produced assembly for each object
file with the corresponding part of the disassembler out-
put.

Figure 6 shows the results of our disassembly testing.
About 58MB of executable files including code and data,
corresponding to a total of about 6M instructions have
been tested, with no errors reported.

Testing Code Generated by Alternative Compilers. We
applied our instrumentation to two programs compiled
using LLVM. In particular, we used Clang 2.9 to com-
pile two programs in the OpenSSH project, ssh and scp.
Experiments shows that both LLVM generated ssh and
scp function correctly when we used them to login to a
remote server and copy a large file to/from the server.

7.2 CFI Effectiveness Evaluation
Figure 8 compares the AIR metric for bin-CFI with
strict-CFI, reloc-CFI, bundle-CFI and instr-CFI. To cal-
culate AIR of reloc-CFI, we recompiled SPEC2006 pro-
grams using “-g” and a linker option “-Wl,-emit-relocs”
to retain all the relocations in executables. We can now
calculate AIR from the description of reloc-CFI in Sec-
tion 4.2 and Definition 1.

To calculate AIR for bundle-CFI, we recompiled
SPEC2006 using the Native Client provided gcc and
g++ compilers. Since bundle-CFI restricts ICF targets to
32-byte boundaries, 31/32 of the compiled binary code
is eliminated as ICF targets. However, the AIR num-
ber is smaller because the base is the original program
size; programs compiled using Native Client tool-chain
are larger due to reasons such as the need to introduce
padding to align indirect targets at 32-byte boundaries.

Name Reloc Strict Bin Bundle Instr
CFI CFI CFI CFI CFI

perlbench 98.49% 98.44% 97.89% 95.41% 67.33%
bzip2 99.55% 99.49% 99.37% 95.65% 78.59%
gcc 98.73% 98.71% 98.34% 95.86% 80.63%
mcf 99.47% 99.37% 99.25% 95.91% 79.35%
gobmk 99.40% 99.40% 99.20% 97.75% 89.08%
hmmer 98.90% 98.87% 98.61% 95.85% 79.01%
sjeng 99.32% 99.30% 99.10% 96.22% 83.18%
libquantum 99.14% 99.07% 98.89% 95.96% 76.53%
h264ref 99.64% 99.60% 99.52% 96.25% 80.71%
omnetpp 98.26% 98.08% 97.68% 95.72% 82.03%
astar 99.18% 99.13% 98.95% 96.02% 78.00%
milc 98.89% 98.86% 98.65% 96.03% 79.74%
namd 99.65% 99.64% 99.59% 95.81% 76.37%
soplex 99.19% 99.10% 98.86% 95.50% 77.37%
povray 99.01% 98.99% 98.67% 95.87% 78.03%
lbm 99.60% 99.50% 99.46% 96.79% 80.92%
sphinx3 98.83% 98.80% 98.64% 96.06% 80.75%
average 99.13% 99.08% 98.86% 96.04% 79.27%

Figure 8: AIR metrics for SPEC CPU 2006.

7.3 Security Evaluation

7.3.1 Control-Flow Hijack Attacks
To evaluate control flow hijack defense, we used the
RIPE [45] test suite. RIPE is a benchmark consisting
of 850 distinct exploits including code injection, return-
to-libc and ROP attacks. RIPE illustrated these attacks
by building vulnerabilities into a small program. Ex-

11

348 22nd USENIX Security Symposium USENIX Association

DEP disabled DEP enabled
Original 520 140
CFI 90 90

Figure 9: Security Evaluation using RIPE

ploit code is also built into this program, so some of the
challenges of developing exploits, e.g., knowing the right
jump addresses, are not present. As such, techniques
such as ASLR have no impact on RIPE. So, the only
change we can experiment with is that of enabling or dis-
abling DEP.

Originally, on Ubuntu 11.10 platform, 520 attacks
survive with data execution prevention (DEP) disabled.
With DEP enabled, 140 attacks survive. All of these at-
tacks are return-to-libc attacks.

The 2nd row in Figure 9 shows bin-CFI could defeat
430 attacks including 380 code injection attacks and 50
return-to-libc attacks, even when DEP is disabled. In
both scenarios, when DEP is enabled or disabled, how-
ever there are 90 function pointer overwrite attacks that
survive in CFI.

Code injection attacks are defeated by CFI because
global data, stack and heap are not allowed targets of
ICF transfers. 50 out of 140 return-to-libc attacks are
defeated because they overflow return addresses and try
to redirect control flow to the libc functions and violate
the policy of bin-CFI. Those attacks are defeated.

The function pointer overwrite attacks that succeed are
some what of an artifact of RIPE design that includes ex-
ploit code within the victim program. Since pointers to
exploit code are already taken in the program, they are
identified as legitimate targets and permitted by our ap-
proach. If the same attacks were to be carried out against
real programs, only a subset of them will succeed: those
that overwrite function pointers with pointers to other
local functions. In this subset of cases, previous CFI
implementations (although not necessarily their formu-
lations) would fail too, as they too permit any indirect
call to reach any function whose address is taken.

7.3.2 ROP Attacks
We use the tool ROPGadget-v3.3[35], an ROP gadget
generator/compiler, as our testing tool. It scans binaries
to find useful gadgets for ROP attacks.

Figure 10 shows that CFI enforcement is effective, re-
sulting in the elimination of the vast majority (93%) of
gadgets in the original program. Moreover, there is little
diversity in the gadgets found — the tool was able to find
only the following gadgets:

• mov constant, %eax; ret (32.26%)
• add offset, %esp; pop %ebx; ret (27.42%)
• add offset, %esp; ret (19.35%)

• mov (%esp), %ebx; ret (14.52%)
• xor %eax, %eax; ret (5.65%)
• pop %edx; pop %ecx; pop %ebx; ret (0.81%)

There is little variety in these gadgets. Among other
missing features, note the complete lack of useful arith-
metic operations in the identified gadgets. As a result,
the tool was unable to build even a single exploit using
these gadgets

Name Reloc Strict Bin Instr
CFI CFI CFI CFI

perlbench 96.62% 96.24% 93.23% 58.65%
bzip2 97.78% 95.56% 93.33% 44.44%
gcc 97.69% 97.69% 91.42% 66.67%
mcf 95.45% 90.91% 90.91% 36.36%
gobmk 98.84% 98.27% 97.69% 70.52%
hmmer 97.00% 96.00% 96.00% 58.00%
sjeng 92.75% 92.75% 91.30% 47.83%
libquantum 93.18% 90.91% 86.36% 40.91%
h264ref 98.26% 97.39% 96.52% 60.87%
omnetpp 97.12% 97.12% 93.42% 74.07%
astar 95.35% 93.02% 93.02% 46.51%
milc 95.77% 94.37% 90.14% 57.75%
namd 94.87% 92.31% 92.31% 53.85%
soplex 94.64% 93.75% 93.75% 54.46%
povray 96.75% 96.75% 95.45% 61.69%
lbm 94.12% 88.24% 88.24% 23.53%
sphinx3 95.00% 93.75% 92.50% 52.50%
average 95.95% 94.41% 92.68% 53.45%

Figure 10: Gadget elimination in different CFI imple-
mentation

7.4 Performance Evaluation
Our testbed consists of an Intel core-i5 2410m CPU with
4GB memory, running Ubuntu 11.10 (32-bit version),
with glibc version 2.13. We used the SPEC 2006 CPU
benchmark to evaluate both the runtime overhead and
space overhead.

7.4.1 Runtime Overhead
Figure 11 shows the runtime overheads of CFI enforce-
ment on SPEC CPU 2006 benchmarks. The average
overhead for C programs is 4.29%. Due to C++ excep-
tion handling, VT.2 (Section 6.3) cannot be applied to
C++ programs. As a result, the overhead for C++ pro-
grams increases to an average of 8.54%. omnetpp, so-
plex, and povray are particular contributors to this in-
creased overhead. One way to bring these overheads
down (to match the overhead for C-programs) is to up-
date the exception handling metadata to use code ad-
dresses within instrumented code.

7.4.2 Space and Memory Overhead
Our instrumentation introduces a new code section that
is on average 1.2 times the original code size. The new

12

USENIX Association 22nd USENIX Security Symposium 349

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm
k

45
6.
hm
m
er

45
8.
sj
en
g

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f

47
1.
om
ne
tp
p

47
3.
as
ta
r

43
3.
m
ilc

44
4.
na
m
d

45
0.
so
pl
ex

45
3.
po
vr
ay

47
0.
lb
m

48
2.
sp
hi
nx
3

av
er
ag
e

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Figure 11: SPEC CPU2006 Benchmark Performance

data section introduced contains address translation ta-
ble for indirect branch instructions. In total, the space
overhead for bin-CFI is 139% over the original file size.
Note that although the file size has increased, execution
will be confined to the new code. Except in the case of
programs that store read-only data in their code, other
programs don’t access their code even once. Hence the
runtime memory overhead is unaffected by the presence
of the original copy of code. Indeed, our measurements
showed a very small increase in resident memory use
(about 2.2% on average).

7.5 Limitations
Dynamic code. Since we rely on static transformation
of binaries, any usage of dynamic code such as just-in-
time compilation cannot be handled by bin-CFI. This
also applies to any binary that modifies itself. These lim-
itations are shared by most previous implementations of
CFI.

Obfuscated code. Reliable static disassembly of obfus-
cated code is a challenging problem without satisfac-
tory solutions. However, obfuscation is typically used
on malware, whereas our target consists of benign (but
possibly vulnerable) programs.

Return-into-libc attack. In general, CFI does not elim-
inate the threat of all return-to-libc attacks, a fact that
holds true in our implementation as well.

Most return-into-libc fall into one of the two follow-
ing types. The first type chains a sequence of library
function calls, and relies on the semantics of these func-
tions to perform attacks [28]. The second type relies
on the side effects of library functions to realize Turing-
complete ROP [41]. Both types rely heavily on returning
to exported functions in glibc, and hence are defeated by
bin-CFI. (Note that exported functions are excluded from
allowable return targets by our policy.) However, it may
be possible to construct return-to-libc attacks that make
use of code pointers in glibc (or other shared libraries), or
more generally, any address computed by our static anal-

ysis. These attacks could be mitigated by further tight-
ening the policy for returns, improving the precision of
static analysis, or both. We point out that even without
these improvements, bin-CFI degrades return-to-libc at-
tacks in much the same way as it degrades ROP attacks:
it reduces the number of possible functions that can be
used in an attack.

8 Related Work
8.1 ROP Attacks and Defenses

Return Oriented Programing (ROP) [38] is a powerful
code reuse attack. It has become a very popular means
to carry out successful attacks in spite of DEP. Although
ROP was originally thought to be applicable primarily to
CISC processors such as the x86, subsequent work has
demonstrated their effectiveness on RISC architectures
as well [9]. ROP attacks can target user programs as well
as the kernel [19]. The introduction of JOP [10, 7] elim-
inates the need to use return instructions to effect ICF
transfers, thereby defeating defenses that rely on the use
of (repeated) returns [11, 14, 32].

Some of ROP defenses [31, 23] modify the code gen-
eration process to ensure that there are no useful gadgets
in a generated binary. As they work at the level of code
generation, they require source code. Rather than elim-
inating gadgets, some recent works [18, 43, 33] rely on
fine-grained randomization that makes it difficult to find
the location of useful gadgets. Instruction Location Ran-
domization (ILR) [18] randomizes instruction locations,
thereby making ROP hard. A benefit of their approach is
that they can randomize return addresses, which signifi-
cantly reduces the number of valid ICF targets, as return
addresses constitute a majority of them. But this random-
ization can cause problems in large and complex binaries
where a return instruction may be used for purposes other
than returning from a call, e.g., PIC code data access, or
to implement context-switching-like functionality.

A drawback of ILR is high space overhead. Binary
Stirring (STIR) [43] solves this issue by randomizing ba-
sic blocks at load time using static rewriting. It achieves
better runtime performance and reasonable space over-
head. However, neither ILR nor Binary Stirring apply
their work on libraries or large binaries. [33] uses static
in-place randomization (IPR) to eliminate gadgets. The
runtime overhead is almost zero, though the effective-
ness depends on the target binary layout. In particular, a
significant fraction of gadgets remain, thus limiting pro-
tection against ROP attacks.

While strong randomization could confuse attackers
at runtime, and further reduce the number of usable gad-
gets, we have refrained from adding randomization to our
technique for several reasons. First and foremost, we be-
lieve that one of principal reasons behind the success of

13

350 22nd USENIX Security Symposium USENIX Association

CFI is that it provides deterministic protection, thus lay-
ing a solid foundation for other protection mechanisms
such as SFI or policy enforcement on untrusted code.
Second, randomization defenses are already widely de-
ployed in the form of ASLR and stack cookies. To the
extent their randomization isn’t defeated, they can pro-
vide excellent protection in conjunction with our CFI.
If, on the other hand, we assume that randomization of
ASLR can be defeated, then there is no good reason to
believe that a randomization component added to a CFI
technique won’t be defeated either. Thirdly, the util-
ity of randomization is increasingly called into question
by advances in information leakage attacks. Recent ex-
ploits [37, 16] show that strong information leakage at-
tack could help bypass ASLR with high entropy. More-
over, just-in-time code reuse attacks [39] discover gad-
gets using repeated information leakage attacks and are
able to defeat even fine-grained code randomization.

8.2 Control Flow Integrity

Control-flow integrity (CFI) was introduced by Abadi et
al [1]. The basic idea was to use a static analysis to com-
pute a control-flow graph, and enforce it at runtime. En-
forcement was based on matching constants (called IDs)
between the source and target of each ICF transfer. How-
ever, due to difficulties in performing accurate points-
to analysis, and because of so-called destination equiv-
alence problem, their implementation resorts to coarse
granularity enforcement, wherein any indirect call is per-
mitted to target any function whose address is taken. Li
et al. [22] implement a compiler based CFI that uses
a similar policy for coarse-grained CFI. While they can
also support finer-granularity CFI, this requires runtime
profiling to compute possible targets of indirect calls, and
can hence be prone to false positives.

Control-flow locking (CFL) [6] improves significantly
on the performance of Abadi et al, while simultaneously
tightening the policy, especially for returns. But this
tighter policy poses challenges in the presence of indi-
rect tail calls. Another difference between their work and
ours is that they operate on assembly code generated by
the compiler, whereas our work targets binaries.

MoCFI [13] presents a design and implementation
of CFI for mobile platforms. The mobile environment
presents a unique set of challenges, including an instruc-
tion set that does not have explicit returns, a closed plat-
form (iOS), and so on. An important characteristic of
their approach is that they aggressively prune possible
targets of each ICF transfer. While this can provide bet-
ter protection, it leads to false positives in some cases
(e.g., when large jump tables are involved). In contrast,
our approach emphasizes handling of large binaries, in-
cluding shared libraries, that are not handled by their ap-
proach. We discussed how this requirement dictates the

use of coarser granularity CFI in our technique.

CCFIR [48], like the work presented in this paper,
targets binaries. The main insight in their work is that
most binaries on Windows support ASLR, which re-
quires relocation information to be included in the bi-
nary. They leverage this information for accurate dis-
assembly and static rewriting. Moreover, since reloca-
tion information effectively identifies all code pointers,
they can avoid runtime address translation, which en-
ables them to achieve better performance. The flipside
of this performance improvement is that the technique
can’t be used on most UNIX systems, as UNIX binaries
rarely contain the requisite relocations.

CFI has been used as the basis for untrusted code
sandboxing. PittSFIeld [27] implements SFI on top of
instruction bundling, a weaker CFI model. XFI [15]
presents techniques that are based on CFI and SFI to
confine untrusted code in shared-memory environments.
Zeng et al [47] improve the performance of SFI using
CFI and static analysis. Native client [46] is aimed at
running native binaries securely in a browser context,
and relies on instruction bundling. PittSFIeld, Native
Client, and many other works [22, 3, 4, 42, 21, 36, 34, 20]
that enforce CFI rely on compiler-provided information
and even hardware support. In contrast, bin-CFI operates
on COTS binaries without support from compiler, OS or
hardware.

9 Conclusions

In this paper, we developed a notion of control-flow in-
tegrity that can be effectively enforced on binaries. We
developed analysis techniques to compute possible ICF
targets, and instrumentation techniques that limit ICF
transfers to these targets. The resulting implementa-
tion defeats most common control-flow hijack attacks,
and greatly reduces the number of possible gadgets for
ROP attacks. We presented a robust implementation that
scales to large binaries as well as complex, low-level
libraries that include hand-coded assembly. Our tech-
nique is modular, supporting independent transformation
of shared libraries. It also provides very good perfor-
mance.

Our results realize one of central benefits of the CFI
property, i.e., it can be applied to protect low-level code
that is available only in the form of binaries. Although
the lack of high-level information can degrade the pre-
cision of static analysis, our results demonstrate that the
reduction is small; and overall, there is only a modest re-
duction in the strength of protection as compared to pre-
vious techniques that required source code, relocation in-
formation, or relied on compiler-based implementations.

14

USENIX Association 22nd USENIX Security Symposium 351

10 Acknowledgements
We are very grateful to the developers of Katana, es-
pecially James Oakley for his quick and very helpful
responses to our questions. Also we thank Edward
Schwartz for his technique support.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In the 12th ACM conference on
Computer and communications security (CCS), 2005.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information and Sys-
tem Security (TISSEC), (1), Nov. 2009.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Cas-
tro. Preventing memory error exploits with WIT. In
the 29th IEEE Symposium on Security and Privacy (Oak-
land), 2008.

[4] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor, B. Chen,
D. L. Schuff, D. Sehr, C. L. Biffle, and B. Yee. Language-
independent sandboxing of just-in-time compilation and
self-modifying code. In the 32nd ACM SIGPLAN confer-
ence on Programming language design and implementa-
tion (PLDI), 2011.

[5] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfus-
cation: an efficient approach to combat a board range of
memory error exploits. In the 12th conference on USENIX
Security Symposium, 2003.

[6] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-
reuse attacks with control-flow locking. In the 27th An-
nual Computer Security Applications Conference (AC-
SAC), 2011.

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
In the 6th ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2011.

[8] D. L. Bruening. Efficient, transparent, and comprehensive
runtime code manipulation. PhD thesis, MIT, 2004.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage.
When good instructions go bad: generalizing return-
oriented programming to RISC. In the 15th ACM confer-
ence on Computer and communications security (CCS),
2008.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented program-
ming without returns. In the 17th ACM conference on
Computer and communications security (CCS), 2010.

[11] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie.
DROP: Detecting return-oriented programming malicious
code. In the 5th International Conference on Information
Systems Security (ICISS), 2009.

[12] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.

StackGuard: automatic adaptive detection and preven-
tion of buffer-overflow attacks. In the 7th conference on
USENIX Security Symposium, 1998.

[13] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nrnberger, and A. reza Sadeghi. MoCFI:
A framework to mitigate control-flow attacks on smart-
phones. In the 19th Network and Distributed System Se-
curity Symposium (NDSS), 2012.

[14] L. Davi, Ahmad-Reza Sadeghi, and M. Winandy. ROPde-
fender: a detection tool to defend against return-oriented
programming attacks. In the 6th ACM Symposium on In-
formation, Computer and Communications Security (ASI-
ACCS), 2011.

[15] U. Erlingsson, S. Valley, M. Abadi, M. Vrable, M. Budiu,
and G. C. Necula. XFI: software guards for system ad-
dress spaces. In the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[16] C. Evans. Exploiting 64-bit linux like a boss.
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-
64-bit-linux-like-boss.html.

[17] M. Frantzen and M. Shuey. StackGhost: Hardware facili-
tated stack protection. In the 10th conference on USENIX
Security Symposium, 2001.

[18] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d my gadgets go? In the 33th
IEEE Symposium on Security and Privacy (Oakland),
2012.

[19] R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkits: bypassing kernel code integrity protection mech-
anisms. In the 18th conference on USENIX security sym-
posium, 2009.

[20] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Pono-
marev. Branch regulation: low-overhead protection from
code reuse attacks. In the 39th Annual International Sym-
posium on Computer Architecture (ISCA), 2012.

[21] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In the 11th confer-
ence on USENIX Security Symposium, 2002.

[22] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace,
and X. Jiang. Comprehensive and efficient protection of
kernel control data. IEEE Transactions on Information
Forensics and Security, (4), Dec. 2011.

[23] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. De-
feating return-oriented rootkits with ”return-less” kernels.
In the 5th European conference on Computer systems (Eu-
roSys), 2010.

[24] the PaX team. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2001.

[25] Tool Interface Standard. Executable and linking format
(ELF) specification. http://www.uclibc.org/docs/elf.pdf,
1995.

[26] UNIX International Programming Languages SIG.
DWARF debugging information format. http:
//www.dwarfstd.org/doc/dwarf-2.0.0.pdf, 1993.

15

352 22nd USENIX Security Symposium USENIX Association

[27] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In the 15th conference on USENIX Security
Symposium, 2006.

[28] Nergal. The advanced return-into-lib(c) exploits: PaX
case study. Phrack Magazine, 2001.

[29] J. Oakley and S. Bratus. Exploiting the hard-working
DWARF: trojan and exploit techniques with no native ex-
ecutable code. Technical report, Computer Science De-
partment, Dartmouth College, 2011.

[30] J. Oakley and S. Bratus. Exploiting the hard-working
DWARF: trojan and exploit techniques with no native ex-
ecutable code. In the 5th USENIX conference on Offensive
technologies (WOOT), 2011.

[31] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-Free: defeating return-oriented programming
through gadget-less binaries. In the 26th Annual Com-
puter Security Applications Conference (ACSAC), 2010.

[32] V. Pappas. kBouncer: Efficient and transparent ROP mit-
igation. Technical report, Columbia University, 2012.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization. In the
33th IEEE Symposium on Security and Privacy (Oak-
land), 2012.

[34] A. Prakash, H. Yin, and Z. Liang. Enforcing system-wide
control flow integrity for exploit detection and diagnosis.
In the 8th ACM SIGSAC symposium on Information, com-
puter and communications security (ASIACCS), 2013.

[35] J. Salwan. ROPGadget. http://shell-storm.org/project/
ROPgadget.

[36] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software fault
isolation to contemporary cpu architectures. In the 19th
conference on USENIX Security Symposium, 2010.

[37] F. J. Serna. CVE-2012-0769, the case of the perfect info
leak, 2012.

[38] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In the
14th ACM conference on Computer and communications
security (CCS), 2007.

[39] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout
randomization. In the 34th IEEE Symposium on Security
and Privacy, 2013.

[40] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the memory se-
crecy assumption. In the 2nd European Workshop on Sys-
tem Security (EUROSEC), 2009.

[41] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and
P. Ning. On the expressiveness of return-into-libc attacks.
In the 14th international conference on Recent Advances
in Intrusion Detection (RAID), 2011.

[42] Z. Wang and X. Jiang. HyperSafe: A lightweight ap-
proach to provide lifetime hypervisor control-flow in-
tegrity. In the 31th IEEE Symposium on Security and Pri-
vacy (Oakland), 2010.

[43] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: self-randomizing instruction addresses of legacy
x86 binary code. In the 19th ACM conference on Com-
puter and communications security (CCS), 2012.

[44] wikipedia. Open addressing hashing. http://en.wikipedia.
org/wiki/Open addressing, 2012.

[45] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and
W. Joosen. RIPE: runtime intrusion prevention evaluator.
In the 27th Annual Computer Security Applications Con-
ference (ACSAC), 2011.

[46] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In the 30th IEEE Symposium on Security and Privacy
(Oakland), 2009.

[47] B. Zeng, G. Tan, and G. Morrisett. Combining control-
flow integrity and static analysis for efficient and validated
data sandboxing. In the 18th ACM conference on Com-
puter and communications security (CCS), 2011.

[48] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. Mc-
Camant, D. Song, and W. Zou. Practical control flow in-
tegrity & randomization for binary executables. In the
34th IEEE Symposium on Security and Privacy, 2013.

[49] D. D. Zovi. Practical return-oriented programming. Tech-
nical report, SOURCE, 2010.

16

USENIX Association 22nd USENIX Security Symposium 353

Native x86 Decompilation using Semantics-Preserving Structural Analysis
and Iterative Control-Flow Structuring

Edward J. Schwartz
Carnegie Mellon University

Maverick Woo
Carnegie Mellon University

JongHyup Lee
Korea National University of Transportation

David Brumley
Carnegie Mellon University

Abstract

There are many security tools and techniques for analyz-
ing software, but many of them require access to source
code. We propose leveraging decompilation, the study
of recovering abstractions from compiled code, to apply
existing source-based tools and techniques to compiled
programs. A decompiler should focus on two properties
to be used for security. First, it should recover abstractions
as much as possible to minimize the complexity that must
be handled by the security analysis that follows. Second,
it should aim to recover these abstractions correctly.

Previous work in control-flow structuring, an abstrac-
tion recovery problem used in decompilers, does not pro-
vide either of these properties. Specifically, existing struc-
turing algorithms are not semantics-preserving, which
means that they cannot safely be used for decompilation
without modification. Existing structural algorithms also
miss opportunities for recovering control flow structure.
We propose a new structuring algorithm in this paper that
addresses these problems.

We evaluate our decompiler, Phoenix, and our new
structuring algorithm, on a set of 107 real world programs
from GNU coreutils. Our evaluation is an order of
magnitude larger than previous systematic studies of end-
to-end decompilers. We show that our decompiler outper-
forms the de facto industry standard decompiler Hex-Rays
in correctness by 114%, and recovers 30× more control-
flow structure than existing structuring algorithms in the
literature.

1 Introduction

Security analyses are often faster and easier when per-
formed on source code rather than on binary code. For ex-
ample, while the runtime overhead introduced by source-
based taint checkers can be as low as 0.65% [12], the
overhead of the fastest binary-based taint checker is over
150% [8]. In addition, many security analyses described

in the literature assume access to source code. For in-
stance, there are numerous source-based static vulnera-
bility finding tools such as KINT [40], RICH [9], and
Coverity [6], but equivalent binary-only tools are scarce.

In many security scenarios, however, access to source
code is simply not a reasonable assumption. Common
counterexamples include analyzing commercial off-the-
shelf software for vulnerabilities and reverse engineering
malware. The traditional approach in security has been to
directly apply some form of low-level binary analysis that
does not utilize source-level abstractions such as types
and functions [5, 7, 10, 24]. Not surprisingly, reasoning
at such a low level causes binary analysis to be more
complicated and less scalable than source analysis.

We argue that decompilation is an attractive alterna-
tive to traditional low-level binary-based techniques. At
its surface, decompilation is the recovery of a program’s
source code given only its binary. Underneath, decom-
pilation consists of a collection of abstraction recovery
mechanisms such as indirect jump resolution, control flow
structuring, and data type reconstruction, which recover
high-level abstractions that are not readily available in the
binary form. Our insight is that by reusing these mecha-
nisms, we can focus our research effort on designing secu-
rity analyses that take advantage of such abstractions for
accuracy and efficiency. In fact, when taken to an extreme,
we may even use decompilation to leverage an existing
source-based tool—be it a vulnerability scanner [27], a
taint engine [12], or a bug finder [6]—by applying it to
the decompiled program code.

Of course, decompilation is also extremely beneficial
in situations where manual analysis is required. For exam-
ple, practitioners often reverse-engineer program binaries
to understand proprietary file formats, study vulnerabili-
ties fixed in patches, and determine the exploitability of
crashing inputs. Arguably, any one of these tasks becomes
easier when given access to source code.

Unfortunately, current research in decompilation does
not directly cater to the needs of many security applica-

354 22nd USENIX Security Symposium USENIX Association

tions. A decompiler should focus on two properties to be
used for security. First, it should recover abstractions as
much as possible to minimize the complexity that must
be handled by the actual security analysis that follows.
Second, it should aim to recover these abstractions cor-
rectly. As surprising as it may sound, previous work on
decompilation almost never evaluated correctness. For
example, Cifuentes et al.’s pioneering work [13] and nu-
merous subsequent works [11, 14, 16, 39] all measured
either how much smaller the output C code was in com-
parison to the input assembly, or with respect to some
subjective readability metric.

In this paper, we argue that source can be recovered
in a principled fashion. As a result, security analyses
can better take advantage of existing source-based tech-
niques and tools both in research and practice. Security
practitioners can also recover correct, high-level source
code, which is easier to reverse engineer. In particular,
we propose techniques for building a correct decompiler
that effectively recovers abstractions. We implement our
techniques in a new end-to-end binary-to-C decompiler
called Phoenix1 and measure our results with respect to
correctness and high-level abstraction recovery.

Phoenix makes use of existing research on principled
abstraction recovery where possible. Source code recon-
struction requires the recovery of two types of abstrac-
tions: data type abstractions and control flow abstractions.
Recent work such as TIE [28], REWARDS [29], and
Howard [38] have largely addressed principled methods
for recovering data types. In this paper, we investigate
new techniques for recovering high-level control struc-
ture.

1.1 The Phoenix Structural Analysis Algo-
rithm

Previous work has proposed mechanisms for recovering
high-level control flow based on the structural analysis
algorithm and its predecessors [20, 23, 39]. However,
they are problematic because they (1) do not feature a cor-
rectness property that is necessary to be safely used for
decompilation, and (2) miss opportunities for recovering
control flow structure. Unfortunately, these problems can
cause a security analysis using the recovered control struc-
tures to become unsound or scale poorly. These problems
motivated us to create our own control flow structuring al-
gorithm for Phoenix. Our algorithm is based on structural
analysis, but avoids the problems we identified in earlier

1Phoenix is named in honor of the famous “Dragon Book” [1] on
compilers. According to Chinese mythology, the phoenix is a supreme
bird that complements the dragon (compilation). In Greek mythology,
the phoenix can be reborn from the ashes of its predecessor. Similarly, a
decompiler can recover source code and abstractions from the compiled
form of a binary, even when these artifacts seem to have been destroyed.

work. In particular, we identify a new property that struc-
tural analysis algorithms should have to be safely used for
decompilation, called semantics-preservation. We also
propose iterative refinement as a strategy for recovering
additional structure.

Semantics Preservation Structural analysis [32,
p. 203] is a control flow structuring algorithm that was
originally invented to help accelerate data flow analysis.
Later, decompiler researchers adapted this algorithm to
reconstruct high-level control flow structures such as
if-then-else and do-while from a program’s control flow
graph (see §2.1). We propose that structuring algorithms
should be semantics-preserving to be safely used in
decompilers. A structuring algorithm is semantics-
preserving if it always transforms the input program
to a functionally equivalent program representation.
Semantics-preservation is important for security analyses
to ensure that the analysis of the structured program
also applies to the original binary. Surprisingly, we
discovered that common descriptions of structural
analysis algorithms are not semantics-preserving. For
example, in contrast to our natural loop schema in
Table 4, other algorithms employ a schema that permits
out-going edges (e.g., see [20, Figure 3]). This can
lead to incorrect decompilation, such as the example
in Figure 3. We demonstrate that fixing this and other
schemas to be semantics-preserving increases the number
of utilities that Phoenix is able to correctly decompile by
30% (see §4).

Iterative Refinement When structural analysis algo-
rithms encounter unstructured code, they stop recover-
ing structure in that part of the program. Our algorithm
instead iteratively refines the graph to continue mak-
ing progress. The basic idea is to select an edge from
the graph that is preventing the algorithm from making
progress, and represent it using a goto in the decom-
piled output. This may seem counter-intuitive, since
more gotos implies less structure recovered. However,
by removing the edge from the graph the algorithm can
make more progress, and recover more structure. We
also show how refinement enables the recovery of switch
structures. In our evaluation, we demonstrate that iterative
refinement recovers 30× more structure than structural
analysis algorithms that do not employ iterative refine-
ment (see §4). Missed structure is problematic in se-
curity applications because it can hamper syntax-based
deductions—such as the fact that body will execute ten
times in for (i=0; i<10; i++) {body;}. Control
flow structure is also used to explicitly accelerate some
analyses (e.g., data flow analysis [2, 17]), and failure to
recover structure can undermine the performance of these

USENIX Association 22nd USENIX Security Symposium 355

algorithms. Unfortunately, even recent structuring al-
gorithms such as the one in [20, Algorithm 2] do not
employ refinement in their descriptions, and thus can fail
to recover structure on problematic program sections.

Contributions:

1. We propose a new structural analysis algorithm that
addresses two shortcomings of existing structural
analysis algorithms: (1) they can cause incorrect
decompilation, and (2) they miss opportunities to
recover control flow structure. Our algorithm uses
iterative refinement to recover additional structure,
including switches. We also identify a new property,
semantics-preservation, that control flow structuring
algorithms should have to be safely used in decom-
pilers. We implement and test our algorithm in our
new end-to-end binary-to-C decompiler, Phoenix.

2. We demonstrate that our proposed structural analysis
algorithm recovers 30× more control-flow structure
than existing research in the literature [20, 32, 36],
and 28% more than the de facto industry standard
decompiler Hex-Rays [23]. Our evaluation uses the
107 programs in GNU coreutils as test cases, and
is an order of magnitude larger than any other sys-
tematic end-to-end decompiler evaluation to date.

3. We propose correctness as a new metric for eval-
uating decompilers. Although previous work has
measured the correctness of individual decompiler
components (e.g., type recovery [28] and structure
recovery [20]), surprisingly the correctness of a de-
compiler as a whole has never been measured. We
show in our evaluation that Phoenix successfully de-
compiled over 2× as many programs that pass the
coreutils test suite as Hex-Rays.

2 Overview

Any end-to-end decompiler such as Phoenix is necessarily
a complex project. This section aims to give a high-level
description of Phoenix. We will start by reviewing several
background concepts and then present an overview of
each of the four stages of Phoenix. The remainder of the
paper focuses on our novel structural analysis algorithm,
which is Phoenix’s third stage.

2.1 Background
Control Flow Analysis A control flow graph (CFG) of
a program P is a directed graph G = (N,E,ns,ne). The
node set N contains basic blocks of program statements
in P. Each basic block must have exactly one entrance at
the beginning and one exit at the end. Thus, each time the

If-Then-
Else

c2

¬ c2

c1 ¬ c1

c2

¬ c2

Do-
While

Figure 1: Example of structural analysis.

first instruction of a basic block is executed, the remaining
instructions must also be executed in order. The nodes
ns ∈ N and ne ∈ N represent the entrance and the exit
basic blocks of P respectively. An edge (ni,n j) exists in
the edge set E if ni ∈ N may transfer control to n j ∈ N.
Each edge (ni,n j) has a label � that specifies the logical
predicate that must be satisfied for ni to transfer control
to n j.

Domination is a key concept in control flow analy-
sis. Let n be any node. A node d dominates n, denoted
d dom n, iff every path in G from ns to n includes d.
Furthermore, every node dominates itself. A node p post-
dominates n, denoted p pdom n, iff every path in G from
n to ne includes p. For any node n other than ns, the im-
mediate dominator of n is the unique node d that strictly
dominates n (i.e., d dom n and d �= n) but does not strictly
dominate any other node that strictly dominates n. The
immediate post-dominator of n is defined similarly.

Loops are defined through domination. An edge (s,d)
is a back edge iff d dom s. Each back edge (s,d) defines
a natural loop, whose header is d. The natural loop of a
back edge (s,d) is the union of d and the set of nodes that
can reach s without going through d.

Structural Analysis Structural analysis is a control
flow structuring algorithm for recovering high-level con-
trol flow structure such as if-then-else constructs and
loops. Intriguingly, such an algorithm has uses in both
compilation (during optimization) and decompilation (to
recover abstractions). At a high level, structural anal-
ysis matches a set of region schemas over the CFG by
repeatedly visiting its nodes in post-order. Each schema
describes the shape of a high-level control structure such
as if-then-else. When a match is found, all nodes matched
by the schema are collapsed or reduced into a single node
that represents the schema matched. For instance, Figure 1
shows the progression of structural analysis on a simple
example from left to right, assuming that the topmost
node is being visited. In the initial (leftmost) graph, the
top three nodes match the shape of an if-then-else. Struc-
tural analysis therefore reduces these nodes into a single
node that is explicitly labeled as an if-then-else region in
the middle graph. This graph is then further reduced into

356 22nd USENIX Security Symposium USENIX Association

a do-while loop. A decompiler would use this sequence
of reductions and infer the control flow structure: do {
if (c1) then {...} else {...} } while (c2).

Once no further matches can be found, structural anal-
ysis starts reducing acyclic and cyclic subgraphs into
proper regions and improper regions, respectively. In-
tuitively, both of these regions indicate that no high-level
structure can be identified in that subgraph and thus goto
statements will be emitted to encode the control flow. A
key topic of this paper is how to build a modern structural
analysis algorithm that can refine such regions so that
more high-level structure can be recovered.

SESS Analysis and Tail Regions Vanilla structural
analysis cannot recognize loops containing common C
constructs such as break and continue. For instance,
structural analysis would fail to structure the loop

while (...) { if (...) { body; break; } }.

Engel et al. [20] proposed the SESS (single exit single
successor) analysis to identify regions that have multiple
exits (using break and continue) but share a unique
successor. Such exits can be converted into a tail region
that represents the equivalent control flow construct. In
the above example, body would be reduced to a break

tail region. Without tail regions, structural analysis stops
making progress when reasoning about loops containing
multiple exits.

Although the SESS analysis was proposed to help ad-
dress this problem, the core part of the algorithm, the
detection of tail regions, is left unspecified [20, Algo-
rithm 2, Line 15]. We implemented SESS analysis as
closely to the paper as possible, but noticed that our im-
plementation often stopped making progress before SESS
analysis was able to produce a tail region. This can occur
when regions do not have an unambiguous successor, or
when loop bodies are too complex. Unfortunately, no
structure is recovered for these parts of the program. This
problem motivated the iterative refinement technique of
our algorithm, which we describe in §3.

2.2 System Overview
Figure 2 shows the high-level overview of the approach
that Phoenix takes to decompile a target binary. Like most
previous work, Phoenix uses a number of stages, where
the output of stage i is the input to stage i+1. Phoenix can
fail to output decompiled source if any of its four stages
fails. For this reason we provide an overview of each stage
in this section. The first two stages are based on existing
implementations. The last two use novel techniques and
implementations developed specifically for Phoenix.

CFG
Recovery

Control-Flow
Structure
Recovery

Statement
Translation

Decompiler
Output

Binary

TIE and BAP

Phoenix

Type
Recovery

Figure 2: Decompilation flow of Phoenix. Phoenix con-
tains new implementations for control flow recovery and
statement translation.

edge :: exp

vertex ::= stmt*

stmt ::= var := exp | assert exp | addr address

exp ::= load(exp, exp, exp, τreg)

| store(exp, exp, exp, exp, τreg)

| exp op exp | var | lab(string) | integer

| cast(cast kind, τreg, exp)

Table 1: An abbreviated syntax of the BAP IL used to
label control flow graph vertices and edges.

2.3 Stages I and II—Existing Work
Control Flow Graph Recovery The first stage parses
the input binary’s file format, disassembles the binary, and
creates a control flow graph (CFG) for each function. At
a high level, a control flow graph is a program representa-
tion in which vertices represent basic blocks, and edges
represent possible control flow transitions between blocks.
(See §2.1 for more detail.) While precisely identifying
binary code in an executable is known to be hard in the
general case, current algorithms have been shown to work
well in practice [4, 5, 24, 25].

There are mature platforms that already implement
this step. We use the CMU Binary Analysis Platform
(BAP) [10]. BAP lifts sequential x86 assembly instruc-
tions in the CFG into an intermediate language called BIL,
whose syntax is shown in Table 1 (see [10]). As we will
see, the end goal of Phoenix is to decompile this language
into the high-level language shown in Table 2.

Variable and Type Recovery The second stage recov-
ers individual variables from the binary code, and assigns
them types. Phoenix uses TIE [28] to perform this task.
TIE runs Value Set Analysis (VSA) [4] to recover vari-
able locations. TIE then uses a static, constraint-based
type inference system similar to the one used in the ML
programming language [31]. Roughly speaking, each
statement imposes some constraints on the type of vari-
ables involved. For example, an argument passed to a
function that expects an argument of type T should be
of type T , and the denominator in a division must be an

USENIX Association 22nd USENIX Security Symposium 357

integer and not a pointer. The constraints are then solved
to assign each variable a type.

2.4 Stage III—Control-Flow Structure Re-
covery

The next stage recovers the high-level control flow struc-
ture of the program. The input to this stage is an assembly
program in CFG form. The goal is to recover high-level,
structured control flow constructs such as loops, if-then-
else and switch constructs from the graph representation.
A program or construct is structured if it does not utilize
gotos. Structured program representations are preferred
because they help scale program analysis [32] and make
programs easier to understand [19]. The process of re-
covering a structured representation of the program is
sometimes called control flow structure recovery or con-
trol flow structuring in the literature.

Although control flow structure recovery is similar in
name to control flow graph recovery (stage I), the two are
very different. Control flow graph recovery starts with a
binary program, and produces a control flow graph repre-
sentation of the program as output. Control flow structure
recovery takes a control flow graph representation as in-
put, and outputs the high-level control flow structure of
the program, for instance:

while (...) { if (...) {...} }.

The rest of this paper will only focus on control flow
structuring and not control flow graph reconstruction.

Structural analysis is a control flow structuring algo-
rithm that, roughly speaking, matches predefined graph
schemas or patterns to the control flow constructs that cre-
ate the patterns [32]. For example, if a structural analysis
algorithm identifies a diamond-shape in a CFG, it outputs
an if-then-else construct, because if-then-else statements
create diamond-shaped subgraphs in the CFG.

However, using structural analysis in a decompiler is
not straightforward. We initially tried implementing the
most recent algorithm in the literature [20] in Phoenix. We
discovered that this algorithm, like previous algorithms,
can (1) cause incorrect decompilation, and (2) miss op-
portunities for recovering structure. These problems moti-
vated us to develop a new structural analysis algorithm for
Phoenix which avoids these pitfalls. Our algorithm has
two new features. First, our algorithm employs iterative
refinement to recover more structure than previous algo-
rithms. Our algorithm also features semantics-preserving
schemas, which allows it to be safely used for decompila-
tion. These topics are a primary focus of this paper, and
we discuss them in detail in §3.

prog ::= (varinfo*, func*)

func ::= (string, varinfo, varinfo, stmt*)

stmt ::= var := exp | Goto(exp) | If exp then stmt else stmt

| While(exp, stmt) | DoWhile(stmt, exp)

| For(stmt, exp, stmt)

| Sequence(stmt*)

| Switch(exp,stmt*)

| Case(exp,stmt)

| Label(string)

| Nop

Table 2: An abbreviated syntax of the HIL.

2.5 Stage IV—Statement Translation and
Outputting C

The input to the next stage of our decompiler is a CFG
annotated with structural information, which loosely maps
each vertex in the CFG to a position in a control construct.
What remains is to translate the BIL statements in each
vertex of the CFG to a high-level language representation
called HIL. Some of HIL’s syntax is shown in Table 2.

Although most statements are straightforward to trans-
late, some require information gathered in prior stages of
the decompiler. For instance, to translate function calls,
we use VSA to find the offset of the stack pointer at the
call site, and then use the type signature of the called
function to determine how many arguments should be
included. We also perform optimizations to make the
final source more readable. There are two types of opti-
mizations. First, similar to previous work, we perform
optimizations to remove redundancy such as dead-code
elimination [13]. Second, we implement optimizations
that improve readability, such as untiling.

During compilation a compiler uses a transformation
called tiling to reduce high-level program statements into
assembly statements. At a high level, tiling takes as in-
put an abstract syntax tree (AST) of the source language
and produces an assembly program by covering the AST
with semantically equivalent assembly statements. For
example, given:

x = (y+z)/w

tiling would first cover the expression y+ z with the add
instruction, and then the division with the div instruction.
Tiling will typically produce many assembly instructions
for a single high-level statement.

Phoenix uses an untiling algorithm to improve read-
ability. Untiling takes several statements and outputs an
equivalent high-level source statement. For instance, at a
low-level, High1 [a&b] means to extract the most signifi-
cant bit from bitwise-anding a with b. This may not seem
like a common operation used in C, but it is equivalent to

358 22nd USENIX Security Symposium USENIX Association

x = 1

x ≠ 1y ≠ 2

y = 2

x = 1
y = 2

Loop
If-Then-

Else

Figure 3: An example of how structural analysis can fail
without semantics-preservation.

the high-level operation of computing a <s 0 && b <s 0
(i.e., both a and b are less than zero when interpreted
as signed integers). Phoenix uses about 20 manually
crafted untiling patterns to simplify instructions emitted
by gcc’s code generator. These patterns only improve
the readability of the source output, and do not influence
correctness or control-flow structure recovery. The output
of the statement translation phase is a HIL program.

The final stage in Phoenix is an analysis that takes the
HIL representation of the program as input. In this paper,
we use an analysis that translates HIL into C, in order to
test Phoenix as a binary-to-C decompiler.

3 Semantics-Preserving Structural Analy-
sis and Iterative Control-Flow Structur-
ing

In this section we describe our proposed structural anal-
ysis algorithm. Our algorithm builds on existing work
by adding iterative refinement and semantics-preserving
schemas. Before we discuss the details of our algorithm,
we highlight the importance of these additions.

Semantics Preservation Structural analysis was origi-
nally invented to scale data flow analysis by summarizing
the reachability properties of a program’s CFG. Later,
decompiler researchers adapted structural analysis and its
predecessor, interval analysis, to recover the control flow
structure of decompiled programs [15, 23].

Unfortunately, structural analysis can identify control
flow that is consistent with a graph’s reachability, but is
inconsistent with the graph’s semantics.

Such an error from structural analysis is demonstrated
in Figure 3. Structural analysis would identify the loop in
the leftmost graph and reduce it to a single node represent-
ing the loop, thus producing the diamond-shaped graph
shown in the middle. This graph matches the schema for
an if-then-else region, which would also be reduced to
a single node. Finally, the two remaining nodes would

then be reduced to a sequence node (not shown), at which
point structural analysis is finished. This would be correct
for data flow analysis, which only depends on reachabil-
ity. However, the first node reduction is not semantics-
preserving. This is easy to see for the case when both
x = 1 and y = 2 hold. In the original graph, the first loop
exit would be taken, since x = 1 matches the first exit
edge’s condition. However, in the middle graph, both exit
edges can be taken.

Such discrepancies are a problem in security, because
they can unintentionally cause unsoundness in analyses.
For example, an otherwise sound bug checker, when ap-
plied to the program in Figure 3, could state that a bug is
present, even if the original program had no bugs.

To avoid unintentional unsoundness, a structural anal-
ysis algorithm should preserve the semantics of a CFG
during each reduction. Otherwise the recovered control
flow structure can become inconsistent with the actual
control flow in the binary. Most schemas in structural
analysis [32, p. 203] preserve semantics, but the natural
loop schema is one that does not. A natural loop is a
generalized definition of a single-entrance loop that can
have multiple exits. The loop in Figure 3 is a natural loop,
for example, because it has one entrance and two exits.
We demonstrate that fixing the schemas in our algorithm
to be semantics-preserving increases the number of utili-
ties Phoenix correctly decompiles by 30% (see §4). We
describe these modifications in the upcoming sections.

Iterative Refinement At a high level, refinement is the
process of removing an edge from a CFG by emitting a
goto in its place, and iterative refinement refers to the
repeated application of refinement until structuring can
progress. This may seem counter-intuitive, since adding a
goto seems like it would decrease the amount of structure
recovered. However, the removal of a carefully-chosen
edge can potentially allow a schema to match the refined
CFG, thus enabling the recovery of additional structure.
(We describe which edges are removed in the following
sections.) The alternative to refinement is to recover no
structure for problematic parts of the CFG. We show that
Phoenix emits 30× more gotos (from 40 to 1,229) when
iterative refinement is disabled.

Recovering structure is important for two reasons. First,
structuredness has been shown to help scale program
analysis in general [32]. In addition, some analyses use
syntactic patterns to find facts, which relies on effective
structure recovery. For example, a bug checker might
conclude that there is no buffer overflow in
char b [1 0] ;
i n t i = 0 ;
whi le (i < 10) {

b [i] = 0 ;
i ++;

}

USENIX Association 22nd USENIX Security Symposium 359

by syntactically discovering the induction variable i and
the loop invariant i < 10. If the structuring algorithm
does not recover the while loop, and instead represents
this loop using gotos, the bug checker could be unable to
reason that the loop is safe, and output a false positive.

3.1 Algorithm Overview
We focus on the novel aspects of our algorithm in this pa-
per and refer readers interested in any structural analysis
details elided to standard sources [32, p. 203].

Like vanilla structural analysis, our algorithm visits
nodes in post-order in each iteration. Intuitively, this
means that all descendants of a node will be visited (and
hence had the chance to be reduced) before the node itself.
The algorithm’s behavior when visiting node n depends
on whether the region at n is cyclic (has a loop) or not.
For an acyclic region, the algorithm tries to match the
subgraph at n to one of the acyclic schemas (§3.2). If
there is no match, and the region is a switch candidate,
then it attempts to refine the region at n into a switch
region (§3.4). If n is cyclic, the algorithm compares the
region at n to the cyclic schemas (§3.5). If this fails, it
refines n into a loop (§3.6). If neither matching or refine-
ment make progress, the current node n is then skipped
for the current iteration of the algorithm. If there is an
iteration in which all nodes are skipped, i.e., the algo-
rithm makes no progress, then the algorithm employs a
last resort refinement (§3.7) to ensure that progress can
be made.

3.2 Acyclic Regions
The acyclic region types supported by Phoenix correspond
to the acyclic control flow operators in C: sequences, ifs,
and switches. The schemas for these regions are shown
in Table 3. For example, the Seq[n1, · · · ,nk] region con-
tains k regions that always execute in the listed sequence.
IfThenElse[c, n, nt, nf] denotes that nt is executed after n
when condition c holds, and otherwise nf is executed.

Our schemas match both shape and the boolean pred-
icates that guard execution of each node, to ensure se-
mantics preservation. These conditions are implicitly
described using meta-variables in Table 3, such as c and
¬c. The intuition is that shape alone is not enough to
distinguish which control structure should be used in de-
compilation. For instance, a switch for cases x = 2 and
x = 3 can have the diamond shape of an if-then-else, but
we would not want to mistake a switch for an if-then-
else because the semantics of if-then-else requires the
outgoing conditions to be inverses.

3.3 Tail Regions and Edge Virtualization
When no subgraphs in the CFG match known schemas,
the algorithm is stuck and the CFG must be refined before
more structure can be recovered. The insight behind
refinement is that removing an edge from the CFG may
allow a schema to match, and iterative refinement refers
to the repeated application of refinement until a match is
possible. Of course, each edge in the CFG represents a
possible control flow, and we must represent this control
flow in some other way to preserve the program semantics.
We call removing the edge in a way that preserves control
flow virtualizing the edge, since the decompiled program
behaves as if the edge was present, even though it is not.

In Phoenix, we virtualize an edge by collapsing the
source node of the edge into a tail region (see §2.1). Tail
regions explicitly denote that there should be a control
transfer at the end of the region. For instance, to virtualize
the edge (n1,n2), we remove the edge from the CFG,
insert a fresh label l at the start of n2, and collapse n1
to a tail region that denotes there should be a goto l
statement at the end of region n1. Tail regions can also be
translated into break or continue statements when used
inside a switch or loop. Because the tail region explicitly
represents the control flow of the virtualized edge, it is
safe to remove the edge from the graph and ignore it when
doing future pattern matches.

3.4 Switch Refinement
If the subgraph at node n fails to match a known schema, it
may be a switch candidate. Switch candidates are regions
that would match a switch schema in Table 3 but contain
extra edges. A switch candidate can fail to match the
switch schema if it has extra incoming edges or multiple
successors. For instance, the nodes in the IncSwitch[·]
box in Figure 4 would not be identified as an IncSwitch[·]
region because there is an extra incoming edge to the
default case node.

A switch candidate is refined by first virtualizing in-
coming edges to any node other than the switch head.
The next step is to ensure there is a single successor of
all nodes in the switch. The immediate post-dominator
of the switch head is selected as the successor if it is the
successor of any of the case nodes. Otherwise, the node
that (1) is a successor of a case node, (2) is not a case
node itself, and (3) has the highest number of incoming
edges from case nodes is chosen as the successor. After
the successor has been identified, any outgoing edge from
the switch that does not go to the successor is virtualized.

After refinement, a switch candidate is usually col-
lapsed to a IncSwitch[·] region. For instance, a common
implementation strategy for switches is to redirect inputs
handled by the default case (e.g., x > 20) to a default

360 22nd USENIX Security Symposium USENIX Association

n1

…

nk

Seq[n1, · · · ,nk]: A block of sequential
regions that have a single predecessor
and a single successor.

n

nt nf

¬ cc
IfThenElse[c, n, nt, nf]: If-then-else re-
gion.

n

nt ¬ c

c

IfThen[c, n, nt]: If-then region.

n

n1 n2

ckc1

nk

c2
…

IncSwitch[n, (c1,n1), · · · ,(ck,nk)]: In-
complete switch region. The outgoing
conditions are pairwise disjoint and sat-
isfy

∨

i∈[1,k] ci �= true.

n

n1 n2

ckc1

nk

c2
…

Switch[n, (c1,n1), · · · ,(ck,nk)]: Com-
plete switch region. The outgoing con-
ditions are pairwise disjoint and satisfy
∨

i∈[1,k] ci = true.

Table 3: Acyclic regions.

node, and use a jump table for the remaining cases (e.g.,
x ∈ [0,20]). This relationship is depicted in Figure 4,
along with the corresponding region types. Because the
jump table only handles a few cases, it is recognized as an
IncSwitch[·]. However, because the default node handles
all other cases, together they constitute a Switch[·].

3.5 Cyclic Regions
If the subgraph at node n is cyclic, the algorithm tries to
match a loop at n to one of the cyclic loop patterns. It is
possible for a node to be the loop header of multiple loops.
For instance, nested do-while loops share a common loop
header. Distinct loops at node n can be identified by
finding back edges pointing to n (see §2.1). Each back
edge (nb,n) defines a loop body consisting of the nodes
that can reach nb without going through the loop header,
n. The loop with the smallest loop body is reduced first.
This must happen before the larger loops can match the
cyclic region patterns, because there is no schema for
nested loops.

As shown in Table 4, there are three types of loops.
While[·] loops test the exit condition before executing the
loop body, whereas DoWhile[·] loops test the exit condi-
tion after executing the loop body. If the exit condition
occurs in the middle of the loop body, the region is a nat-

Default
case

Fall
through

Bypassing

IncSwitch[•]

Switch[•]

Figure 4: Complete and incomplete switches.

b

¬ c
c

h

While[c,h,s,b]: A while loop.

b
¬ c

c

h

DoWhile[c,h,b] : A do-while loop.

b

h

e1

e2

NatLoop[h,b,e1 · · ·ek] : A natural loop.
Note that there are no edges leaving
the loop; outgoing edges must be vir-
tualized during refinement to match this
schema.

Table 4: Cyclic regions.

ural loop. Natural loops do not represent one particular C
looping construct, but can be caused by code such as

while (1) { body1; if (e) break; body2; }

Notice that our schema for natural loops contains no out-
going edges from the loop. This is not a mistake, but is
required for semantics-preservation. Because NatLoop[·]
regions are decompiled to

while (1) {...},

which has no exits, the body of the loop must trigger any
loop exits. In Phoenix, the loop exits are represented by
a tail region, which corresponds to a goto, break, or
continue in the decompiled output. These tail regions
are added during loop refinement, which we discuss next.

3.6 Loop Refinement
If any loops were detected with loop header n that did
not match a loop schema, loop refinement begins. Cyclic
regions may fail to match loop schemas because (1) there

USENIX Association 22nd USENIX Security Symposium 361

1 i n t f (void) {
2 i n t a = 4 2 ;
3 i n t b = 0 ;
4 whi le (a) {
5 i f (b) {
6 p u t s (” c ”) ;
7 break ;
8 } e l s e {
9 p u t s (” d ”) ;

10 }
11 a−−;
12 b ++;
13 }
14 p u t s (” e ”) ;
15 re turn 0 ;
16 }

(a) Original source code

1 t r e g 3 2 f (void) {
2 t r e g 3 2 v a r 2 0 = 4 2 ;
3 t r e g 3 2 v a r 2 4 ;
4 f o r (v a r 2 4 = 0 ; v a r 2 0 != 0 ;
5 v a r 2 4 = v a r 2 4 + 1) {
6 i f (v a r 2 4 != 0) {
7 p u t s (” c ”) ;
8 break ;
9 }

10 p u t s (” d ”) ;
11 v a r 2 0 = v a r 2 0 − 1 ;
12 }
13 p u t s (” e ”) ;
14 re turn 0 ;
15 }

(b) Phoenix decompiled output of (a)
with new loop membership definition

1 t r e g 3 2 f (void)
2 {
3 t r e g 3 2 v a r 2 0 = 4 2 ;
4 t r e g 3 2 v a r 2 4 ;
5 f o r (v a r 2 4 = 0 ;
6 v a r 2 0 != 0 ; v a r 2 4 = v a r 2 4 + 1)
7 {
8 i f (v a r 2 4 != 0) goto l a b 1 ;
9 p u t s (” d ”) ;

10 v a r 2 0 = v a r 2 0 − 1 ;
11 }
12 l a b 2 :
13 p u t s (” e ”) ;
14 re turn 0 ;
15 l a b 1 :
16 p u t s (” c ”) ;
17 goto l a b 2 ;
18 }

(c) Phoenix decompiled output of (a)
without new loop membership definition

Figure 5: Loop refinement with and without new loop membership definition.

are multiple entrances to the loop, (2) there are too many
exits from the loop, or (3) the loop body cannot be col-
lapsed (i.e., is a proper region).

The first step of loop refinement is to ensure the loop
has a single entrance (nodes with incoming edges from
outside the loop). If there are multiple entrances to the
loop, the one with the most incoming edges is selected,
and incoming edges to the other entrances are virtualized.

The next step is to identify the type of loop. If there is
an exit edge from the loop header, the loop is a While[·]
candidate. If there is an outgoing edge from the source
of the loop’s back edge (see §2.1), it is a DoWhile[·]
candidate. Otherwise, any exit edge is selected and the
loop is considered a NatLoop[·] candidate. The exit edge
determines the successor of the loop, i.e., the statement
that is executed immediately after the loop. The successor
in turn determines which nodes are lexically contained in
the loop.

Phoenix virtualizes any edge leaving the lexically con-
tained loop nodes other than the exit edge. Edges to the
loop header use the continue tail regions, while edges
to the loop successor use the break regions. Any other
virtualized edge becomes a goto.

In our first implementation, we considered the lexi-
cally contained nodes to be the loop body defined by the
loop’s back edge [32]. However, we found this definition
introduced goto statements when the original program
had break statements, as in Figure 5(a). The puts("c")
statement is not in the loop body according to the stan-
dard definition, because it cannot reach the loop’s back
edge, but it is lexically contained in the loop. Obviously,
a break statement must be lexically contained inside the
loop body, or there would be no loop to break out of.

Our observation is that the nodes lexically contained in
the loop should intuitively consist of the loop body and

any nodes that execute after the loop body but before the
successor. More formally, this corresponds to the loop
body, and the nodes that are dominated by the loop header,
excluding any nodes reachable from the loop’s succes-
sor without going through the loop header. For example,
puts("c") in Figure 5(b) is considered as a node that
executes between the loop body and the successor, and
thus Phoenix places it lexically inside the loop. When
Phoenix uses the standard loop membership definition
used in structural analysis, Phoenix outputs gotos, as
in Figure 5(c). In our evaluation (§4), we show that en-
abling the new loop membership definition decreased the
numbers of gotos Phoenix emitted by 45% (73 to 40).

The last loop refinement step is to remove edges that
may prevent the loop body from being collapsed. This
can happen, for instance, when a goto was used in the
input program. This step is only performed if the prior
loop refinement steps did not remove any edges during
the latest iteration of the algorithm. For this, we use the
last resort refinement on the loop body.

3.7 Last Resort Refinement
If the algorithm does not collapse any nodes or perform
any refinement during an iteration, Phoenix removes an
edge in the graph to allow it to make progress. We call
this process the last resort refinement, because it has the
lowest priority, and always allows progress to be made.
Last resort refinement prefers to remove edges whose
source does not dominate its target, nor whose target
dominates its source. These edges can be thought of as
cutting across the dominator tree. By removing them, the
edges that remain reflect more structure.

362 22nd USENIX Security Symposium USENIX Association

4 Evaluation

In this section, we describe the results of our experiments
on Phoenix. At a high level, these results demonstrate that
Phoenix is suitable for use in program analysis. Specifi-
cally, we show that the techniques employed by Phoenix
lead to significantly more correct decompilation and more
recovered structure than the de facto industry standard
Hex-Rays. Phoenix was able to decompile 114% more
utilities that passed the entire coreutils test suite than
Hex-Rays (60 vs 28). Our results show that employing
semantics-preserving schemas increased correctness by
30% (from 46 to 60). We attribute most remaining correct-
ness errors in Phoenix to type recovery (see §5). Phoenix
was able to structure the control flow for 8,676 functions
using only 40 gotos. This corresponds to recovering 30×
more structure (40 gotos vs 1,229) than structural analysis
without iterative refinement.

4.1 Phoenix Implementation
Our implementation of Phoenix consists of an extension
to the BAP framework. We implemented it in OCaml, to
ease integration with BAP, which is also implemented in
OCaml. Phoenix alone consists of 3,766 new lines of code
which were added to BAP. Together, the decompiler and
TIE comprise 8,443 lines of code. For reference, BAP
consisted of 29,652 lines of code before our additions.
We measured the number of lines of code using David A.
Wheeler’s SLOCCount utility.

4.2 Metrics
We propose two quantitative dimensions for evaluating
the suitability of decompilers for program analysis, and
then evaluate Phoenix on them:

• Correctness. Correctness measures whether the de-
compiled output is equivalent to the original binary
input. If a decompiler produces output that does not
actually reflect the behavior of the input binary, it
is of little utility in almost all settings. For program
analysis, we want decompilers to be correct so that
the decompiler does not introduce imprecision. In
our experiments we utilize high-coverage tests to
measure correctness.

• Structuredness. Recovering control flow structure
helps program analysis and humans alike. Structured
code is easier for programmers to understand [19],
and helps scale program analysis in general [32].
Therefore, we propose that decompiler output with
fewer unstructured control flow commands such as
goto are better.

The benefit of our proposed metrics is that they can be
evaluated quantitatively and thus can be automatically
measured. These properties makes them suitable for an
objective comparison of decompilers.

Existing Metrics Note that our metrics are vastly differ-
ent than those appearing in previous decompiler work. Ci-
fuentes proposed using the ratio of the size of the decom-
piler output to the initial assembly as a “compression ratio”
metric, i.e., 1− (LOC decompiled/LOC assembly) [13].
The idea was the more compact the decompiled output is
than the assembly code, the easier it would be for a hu-
man to understand the decompiled output. However, this
metric side-steps whether the decompilation is correct or
even compilable. A significant amount of previous work
has proposed no metrics. Instead, they observed that the
decompiler produced output, or had a manual qualitative
evaluation on a few, small examples [11, 13, 21, 22, 39].
Previous work that does measure correctness [20, 28] only
focuses on a small part of the decompilation process, e.g.,
type recovery or control flow structuring. However, it
does not measure end-to-end correctness of the decom-
piler as a whole.

4.3 Coreutils Experiment Overview
We tested Phoenix on the GNU coreutils 8.17 suite
of utilities. coreutils consists of 1072 mature, stan-
dard programs used on almost every Linux system.
coreutils also has a suite of high-coverage tests that
can be used to measure correctness. Though prior work
has studied individual decompiler components on a large
scale (see §6), to the best of our knowledge, our evalua-
tion on coreutils is an order of magnitude larger than
any other systematic end-to-end decompiler evaluation in
which specific metrics were defined and measured.

Tested Decompilers In addition to Phoenix, we tested
the latest publicly available version of the academic de-
compiler Boomerang [39] and Hex-Rays [23], the de facto
industry standard decompiler. We tested the latest Hex-
Rays version, which is 1.7.0.120612 as of this writing.

We also considered other decompilers such as
REC [35], DISC [26], and dcc [13]. However, these
compilers either produced pseudo-code (e.g., REC), did
not work on x86 (e.g., dcc), or did not have any documen-
tation that suggested advancements beyond Boomerang
(e.g., DISC).

2The number of utilities built depends on the machine that
coreutils is compiled on. This is the number applicable to our testing
system, which ran Ubuntu 12.04.1 x86-64. We compiled coreutils in
32-bit mode because the current Phoenix implementation only supports
32-bit binaries.

USENIX Association 22nd USENIX Security Symposium 363

We encountered serious problems with both
Boomerang and Hex-Rays in their default configurations.
First, Boomerang failed to produce any output for all but
a few coreutils programs. Boomerang would get stuck
while decompiling one function, and would never move
on to other functions. We looked at the code, but there
appeared to be no easy or reasonable fix to enable some
type of per-function timeout mechanism. Boomerang is
also no longer actively maintained. Second, Hex-Rays
did not output compliant C code. In particular, Hex-Rays
uses non-standard C types and idioms that only Visual
Studio recognizes, and causes almost every function to
fail to compile with gcc. Specifically, the Hex-Rays
website states: “[...] the produced code is not supposed to
be compilable and many compilers will complain about it.
This is a deliberate choice of not making the output 100%
compilable because the goal is not to recompile the code
but to analyze it.” Even if Hex-Rays output is intended
to be analyzed rather than compiled, it should still be
correct modulo compilation issues. After all, there is
little point to pseudo-code if it is semantically incorrect.

Because Hex-Rays was the only decompiler we tested
that actually produced output for real programs, we in-
vestigated the issue in more detail and noticed that the
Hex-Rays output was only uncompilable because of the
Visual Studio idioms and types it used. In order to offer
a conservative comparison of Phoenix to existing work,
we wrote a post-processor for Hex-Rays that translates
the Hex-Rays output to compliant C. The translation is
extremely straightforward. For example, one of the trans-
lations is that types such as unsigned intN must be
converted to uintN t3. All experiments are reported with
respect to the post-processed Hex-Rays output. We stress
this is intended to make the comparison more fair: with-
out the post-processing Hex-Rays output fails to compile
using gcc.

4.4 Coreutils Experiment Details
4.4.1 Setup

Testing decompilers on real programs is difficult because
they are not capable of decompiling all functions. This
means that we cannot decompile every function in a bi-
nary, recompile the resulting source, and expect to have
a working binary. However, we would like to be able to
test the functions that can be decompiled. To this end, we
propose the substitution method.

The goal of the substitution method is to produce a
recompiled binary that consists of a combination of orig-

3Although it seems like this should be possible to implement using
only a C header file containing some typedefs, a typedef has its qual-
ifiers fixed. For instance, typedef int t is equivalent to typedef

signed int t, and thus the type unsigned t is not allowed because
unsigned signed int is contradictory.

inal source code and decompiled source code. We im-
plemented the substitution method by using CIL [33] to
produce a C file for each function in the original source
code. We compiled each C file to a separate object file.
We also produced object files for each function emitted
by the decompiler in a similar manner. We then created
an initial recompiled binary by linking all of the original
object files (i.e., object files compiled from the original
source code) together to produce a binary. We then iter-
atively substituted a decompiler object file (i.e., object
files compiled from the decompiler’s output) for its cor-
responding original object file. If linking this new set
of object files succeeded without an error, we continued
using the decompiler object file in future iterations. Oth-
erwise we reverted to using the original object file. For
our experiments, we produced a recompiled binary for
each decompiler and utility combination.

Of course, for fairness, we must ensure that the recom-
piled binaries for each decompiler have approximately
the same number of decompiled functions, since non-
decompiled functions use the original function defini-
tion from the coreutils source code, which presumably
passes the test suite and is well-structured. The number
of recompilable functions output by each decompiler is
broken down by utility in Figure 6. Phoenix recompiled
10,756 functions in total, compared to 10,086 functions
for Hex-Rays. The Phoenix recompiled binaries consist
of 82.2% decompiled functions on average, whereas the
Hex-Rays binaries contain 77.5%. This puts Phoenix at
a slight disadvantage for the correctness tests, since it
uses fewer original functions. Hex-Rays did not produce
output after running for several hours on the sha384sum
and sha512sum utilities. Phoenix did not completely fail
on any utilities, and was able to decompile 91 out of 110
functions (82.7%) for both sha384sum and sha512sum.
(These two utilities are similar). We discuss Phoenix’s
limitations and failure modes in §5.

4.4.2 Correctness

We test the correctness of each recompiled utility by run-
ning the coreutils test suite with that utility and orig-
inal versions of the other utilities. We do this because
the coreutils test suite is self-hosting, that is, it uses
its own utilities to set up the tests. For instance, a test for
mv might use mkdir to setup the test; if the recompiled
version of mkdir fails, we could accidentally blame mv

for the failure, or worse, incorrectly report that mv passed
the test when in reality the test was not properly set up.

Each tested utility U can either pass all tests, or fail.
We do not count the number of failed tests, because many
utilities have only one test that exercises them. We have
observed decompiled utilities that crash on every execu-
tion and yet fail only a single test. Thus, it would be

364 22nd USENIX Security Symposium USENIX Association

0

50

100

150

200

Utility

N
um

be
r o

f
R

ec
om

pi
le

d
Fu

nc
tio

ns
Decompiler

HexRays
Phoenix

Figure 6: The number of functions that were decompiled and recompiled by each decompiler, broken down by utility.
Hex-Rays failed on two utilities for unknown reasons.

Phoenix HR

Correct utilities recompiled 60 28
Correct utilities recompiled (semantics-
preservation disabled)

46 n/a

Percentage recompiled functions (cor-
rect utilities only)

85.4% 73.8%

Table 5: Correctness measurements for the coreutils

experiment. These results includes two utilities for which
Hex-Rays recompiled zero functions (thus trivially pass-
ing correctness).

misleading to conclude that a recompiled program per-
formed well by “only” failing one test.

The results of the correctness tests are in Table 5. To
summarize, Hex-Rays recompiled 28 utilities that passed
the coreutils test suite. Phoenix was able to recompile
60 passing utilities (114% more). However, we want to
ensure that these utilities are not simply correct because
they consist mostly of the original coreutils functions.
This is not the case for Phoenix: the recompiled utili-
ties that passed all tests consisted of 85.4% decompiled
functions on average, which is actually higher than the
overall Phoenix average of 82.2%. The correct Hex-Rays
utilities consisted of 73.8% decompiled functions, which
is less than the overall Hex-Rays average of 77.5%. As
can be seen in Figure 6, this is because Hex-Rays com-
pletely failed on two utilities. The recompiled binaries for
these utilities consisted completely of the original source
code, which (unsurprisingly) passed all tests. Excluding
those two utilities, Hex-Rays only compiled 26 utilities
that passed the tests. These utilities consisted of 79.4%
decompiled functions on average.

We also re-ran Phoenix with the standard structural
analysis schemas, including those that are not semantics-
preserving, in order to evaluate whether semantics-
preservation has an observable effect on correctness. With
these schemas, Phoenix produced only 46 correct utilities.
This 30% reduction in correctness (from 60 down to 46)
illustrates the importance of using semantics-preserving
schemas.

Phoenix HR

Total gotos 40 51

Total gotos (without loop membership) 73 n/a

Total gotos (without refinement) 1,229 n/a

Table 6: Structuredness measurements for the coreutils
experiment. The statistics only reflect the 8,676 recompil-
able functions output by both decompilers.

4.4.3 Structuredness

Finally, we measure the amount of structure recovered by
each decompiler. Our approach here is straightforward:
we count the number of goto statements emitted by each
decompiler. To ensure a fair comparison, we only con-
sider the intersection of recompilable functions emitted
by both decompilers, which consists of 8,676 functions.
Doing otherwise would penalize a decompiler for out-
putting a function with goto statements, even if the other
decompiler could not decompile that function at all.

The overall structuredness results are depicted in Ta-
ble 6, with the results broken down per utility in Figure 7.
In summary, Phoenix recovered the structure of the 8,676
considered functions using only 40 gotos. Furthermore,
Phoenix recovered significantly less structure when either
refinement (1189 more gotos) or the new loop mem-
bership definition (33 more) was disabled. Our results
suggest that structuring algorithms without iterative re-
finement [20, 32, 36] will recover less structure. The
results also suggest that Hex-Rays employs a technique
similar to iterative refinement.

5 Limitations and Future Work

5.1 BAP Failures
Phoenix uses BAP [10] to lift instructions to a simple lan-
guage that is then analyzed. BAP does not have support
for floating point and other exotic types of instructions.
Phoenix will not attempt to decompile any function that
contains instructions which are not handled by BAP. BAP
can also fail for other reasons. It uses value set analy-

USENIX Association 22nd USENIX Security Symposium 365

0

2

4

6

8

Utility

N
um

be
r o

f G
ot

os
Decompiler

HexRays
Phoenix

Figure 7: The number of gotos emitted by each decompiler, broken down by utility. Only functions that were decompiled
and recompiled by both decompilers are counted.

sis (VSA) to perform CFG recovery, and to help with
other parts of the decompilation process. If VSA or other
mandatory analyses fail, then the decompiler cannot pro-
ceed. These problems can cascade to affect other func-
tions. For instance, if CFG recovery for function g fails
and function f calls g, function f will also fail, because it
is necessary to know the type of g before calling it.

5.2 Correctness Failures
Because Phoenix is designed for program analysis, we
want it to be correct. Our experiments show that, al-
though Phoenix significantly improves over prior work
with respect to correctness, Phoenix’s output is not always
correct. The good news is that we can attribute most cor-
rectness errors in Phoenix to the underlying type recovery
component we used, TIE [28]. Many of the problems,
which we describe below, only became apparent when
TIE was stress-tested by Phoenix.

Iterative Variable Recovery TIE does not always iden-
tify all local variables. For instance, if function f takes
a pointer to an integer, and a function calls f(x), then
TIE infers that x is a subtype of a pointer to an integer.
However, TIE does not automatically infer that *x, the
locations that x can point to, are potentially integer vari-
ables. TIE does not recover such variables because it
would need to iteratively discover variables, generate and
solve type constraints to do so. Unfortunately, undis-
covered variables can cause incorrect decompilation for
Phoenix. For example, if the undiscovered variable is a
struct on the stack, space for the struct is never allocated,
which allows the called function to read and overwrite
other variables on the stack of the callee. This is the lead-
ing cause of correctness errors in Phoenix. In the future,
we plan to investigate running type recovery until the set
of known variables reaches a fix point.

Calling Conventions TIE currently assumes that all
functions use the cdecl calling convention, and does not
support multi-register (64-bit) return values. Unfortu-
nately, this can make Phoenix output incorrect or uncom-
pilable code. In the future, we plan to use an interpro-

cedural liveness analysis to automatically detect calling
conventions based on the behavior of a function and the
functions that call it. Our goal is to detect and understand
calling conventions automatically, even when they are
non-standard. This is important for analyzing malware,
some of which uses unusual calling conventions to try to
confuse static analysis.

Recursive Types TIE has no support for recursive
types, although these are used quite frequently for data
structures like linked lists and binary trees. This means
that the type

struct s {int a; struct s *next;}

will be inferred as

struct s {int a; void* next;}

which does not specify what type of element next points
to. Since Phoenix is intended to be the front-end of an
analysis platform, we would like to recover the most spe-
cific type possible. We plan to investigate more advanced
type inference algorithms that can handle recursive types.

6 Related Work

At a high level, there are three lines of work relevant to
Phoenix. First, work in end-to-end decompilers. Second,
work in control structure recovery, such as loop identifi-
cation and structural analysis. Third, literature pertaining
to type recovery.

Decompilers The earliest work in decompilation dates
back to the 1960’s. For an excellent and thorough review
of the literature in decompilation and several related areas
up to around 2007, see Van Emmerik’s thesis [39, ch. 2].
Another in-depth overview is available online [18].

Modern decompilers typically trace their roots in Ci-
fuentes’ 1994 thesis on dcc [13], a decompiler for 80286
to C. The structuring algorithm used in dcc is based on
interval analysis [2]. Cifuentes proposed the compression
ratio metric (see §4.2), but did not measure correctness
on the ten programs that dcc was tested on [14]. Since

366 22nd USENIX Security Symposium USENIX Association

compression is the target metric, dcc outputs assembly if
it encounters code that it cannot handle. Cifuentes et al.
have also created a SPARC asm to C decompiler, and
measured compressibility and the number of recovered
control structures on seven SPEC1995 programs [16].
Again, they did not test the correctness of the decompi-
lation output. Cifuentes [13] pioneered the technique of
recovering short-circuit evaluations in compound expres-
sions (e.g., x && (!y || z) in C).

Chang et al. [11] also use compressibility in their work
on cooperating decompilers for the three programs they
tested. Their main purpose was to show they can find
bugs in the decompiled source that were known to exist
in the binary. However, correctness of the decompilation
itself was not verified.

Boomerang is a popular open-source decompiler
started by Van Emmerik as part of his Ph.D. [39]. The
main idea of Van Emmerik’s thesis is that decompilation
analysis is easier on the Single Static Assignment (SSA)
form of a program. In his thesis, Van Emmerik’s experi-
ments are limited to a case study of Boomerang coupled
with manual analysis to reverse engineer a single 670KB
Windows program. We tested Boomerang as part of our
evaluation, but it failed to produce any output on all but a
few of our test cases after running for several hours.

The structuring algorithm used in Boomerang first ap-
peared in Simon [37], who in collaboration with Cifuentes
proposed a new algorithm known as “parenthesis theory”.
Simon’s own experiments showed that parenthesis the-
ory is faster and more space efficient than the interval
analysis-based algorithm in dcc, but recovers less struc-
ture.

Hex-Rays is the de facto industry decompiler. The only
information we have found on Hex-Rays is a 2008 write-
up [23] by Hex-Rays’ author, Guilfanov, who revealed
that Hex-Rays also performs structural analysis. How-
ever, Hex-Rays achieves much better structuredness than
vanilla structural analysis, which suggests that Hex-Rays
is using a heavily modified version. There are many other
binary-to-C decompilers such as REC [35] and DISC [26].
However, our experience suggests that they are not as ad-
vanced as Hex-Rays.

Our focus is on decompiling C binaries. Other re-
searchers have investigated decompiling binaries from
managed languages such as Java [30]. The set of chal-
lenges they face are fundamentally different. On the one
hand, these managed binaries contain extra information
such as types; on the other hand, recovering the control
flow itself in the presence of exceptions and synchroniza-
tion primitives is a difficult problem.

Control Structure Recovery Control structure recov-
ery is also studied in compilation. This is because by the
time compilation is in the optimization stage, the input

program has already been parsed into a low-level interme-
diate representation (IR) in which the high-level control
structure has been destroyed. Much work in program
optimization therefore attempts to recover the control
structures.

The most relevant line of work in this direction is the
elimination methods in data flow analysis (DFA), pio-
neered by Allen [2] and Cooke [17] in the 1970’s and
commonly known as “interval analysis”. Sharir [36] sub-
sequently refined interval analysis into structural analysis.
In Sharir’s own words, structural analysis can be seen as
an “unparser” of the CFG. Besides the potential to speed
up DFA even more when compared to interval analysis,
structural analysis can also cope with irreducible CFGs.

Engel et al. [20] are the first to extend structural analy-
sis to handle C-specific control statements. Specifically,
their Single Entry Single Successor (SESS) analysis adds
a new tail region type, which corresponds to the state-
ments that appear before a break or continue. For
example, suppose if (b) { body; break; } appears
in a loop, then the statements represented by body would
belong to a tail region. Engel et al. have extensively
tested their implementation of SESS in a source-to-source
compiler. However, their SESS analysis does not use
iterative refinement, and can get stuck on unstructured
code. We show in our evaluation that this leads to a large
amount of structure being missed. Their exact algo-
rithm for detecting tail regions is also left unspecified [20,
Algorithm 2, Line 15].

Another line of related work lies in the area of program
schematology, of which “Go To Statement Considered
Harmful” by Dijkstra [19] is the most famous. Besides the
theoretical study of the expressive power of goto vs. high-
level control statements (see, e.g., [34]), this area is also
concerned with the automatic structuring of (unstructured)
programs, such as the algorithm by Baker [3].

Type Recovery Besides control structure recovery, a
high-quality decompiler should also recover the types of
variables. Much work has gone into this recently. Phoenix
uses TIE [28], which recovers types statically. In contrast,
REWARDS [29] and Howard [38] recover types from
dynamic traces. Other work has focused on C++-specific
issues, such as virtual table recovery [21, 22].

7 Conclusion

We presented Phoenix, a new binary-to-C decompiler de-
signed to accurately and effectively recover abstractions.
Phoenix can help leverage the wealth of existing source-
based tools and techniques in security scenarios, where
source code is often unavailable. Phoenix uses a novel
control flow structuring algorithm that avoids a previously

USENIX Association 22nd USENIX Security Symposium 367

unpublished correctness pitfall in decompilers, and uses it-
eratively refinement to recover more control flow structure
than existing algorithms. We evaluated Phoenix and the
de facto industry standard decompiler, Hex-Rays, on cor-
rectness and amount of control flow structure recovered.
Phoenix decompiled twice as many utilities correctly as
Hex-Rays, and recovered more structure.

Acknowledgments

This material is based upon work supported by DARPA
under Contract No. HR00111220009. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of DARPA.

References

[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey
Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 2nd edition, 2006.

[2] Frances E. Allen. Control Flow Analysis. In Pro-
ceedings of ACM Symposium on Compiler Optimiza-
tion, pages 1–19, 1970.

[3] Brenda S. Baker. An Algorithm for Structuring
Flowgraphs. Journal of the ACM, 24(1):98–120,
1977.

[4] Gogul Balakrishnan. WYSINWYX: What You See Is
Not What You eXecute. PhD thesis, Computer Sci-
ence Department, University of Wisconsin-Madison,
August 2007.

[5] Sebastien Bardin, Philippe Herrmann, and Franck
Vedrine. Refinement-Based CFG Reconstruction
from Unstructured Programs. In Proceedings of
the 12th International Conference on Verification,
Model Checking, and Abstract Interpretation, pages
54–69. Springer, 2011.

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou,
Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler.
A Few Billion Lines of Code Later. Communica-
tions of the ACM, 53(2):66–75, 2010.

[7] The BitBlaze Binary Analysis Platform. http://
bitblaze.cs.berkeley.edu, 2007.

[8] Erik Bosman, Asia Slowinska, and Herbert Bos.
Minemu: The World’s Fastest Taint Tracker. In
Proceedings of the 14th International Symposium
on Recent Advances in Intrusion Detection, pages
1–20. Springer, 2011.

[9] David Brumley, Tzi-cker Chiueh, Robert Johnson,
Huijia Lin, and Dawn Song. RICH: Automatically
Protecting Against Integer-Based Vulnerabilities. In
Proceedings of the Network and Distributed System
Security Symposium. The Internet Society, 2007.

[10] David Brumley, Ivan Jager, Thanassis Avgerinos,
and Edward J. Schwartz. BAP: A Binary Analysis
Platform. In Proceedings of the 23rd International
Conference on Computer Aided Verification, pages
463–469. Springer, 2011.

[11] Bor-yuh Evan Chang, Matthew Harren, and
George C. Necula. Analysis of Low-Level Code
Using Cooperating Decompilers. In Proceedings of
the 13th International Symposium on Static Analysis,
pages 318–335, 2006.

[12] Walter Chang, Brandon Streiff, and Calvin Lin. Ef-
ficient and Extensible Security Enforcement Using
Dynamic Data Flow Analysis. In Proceedings of the
15th ACM Conference on Computer and Communi-
cations Security, pages 39–50, 2008.

[13] Cristina Cifuentes. Reverse Compilation Techniques.
PhD thesis, Queensland University of Technology,
1994.

[14] Cristina Cifuentes. Interprocedural Data Flow De-
compilation. Journal of Programming Languages,
4(2):77–99, 1996.

[15] Cristina Cifuentes and K. John Gough. Decompi-
lation of Binary Programs. Software: Practice and
Experience, 25(7):811–829, 1995.

[16] Cristina Cifuentes, Doug Simon, and Antoine
Fraboulet. Assembly to High-Level Language Trans-
lation. In Proceedings of the International Con-
ference on Software Maintenance, pages 228–237.
IEEE, 1998.

[17] John Cocke. Global Common Subexpression Elimi-
nation. In Proceedings of the ACM Symposium on
Compiler Optimization, pages 20–24, 1970.

[18] The Decompilation Wiki. http://www.

program-transformation.org/Transform/

DeCompilation. Page checked 6/25/2013.

[19] Edsger W. Dijkstra. Letters to the Editor: Go To
Statement Considered Harmful. Communications of
the ACM, 11(3):147–148, 1968.

[20] Felix Engel, Rainer Leupers, Gerd Ascheid, Max
Ferger, and Marcel Beemster. Enhanced Structural
Analysis for C Code Reconstruction from IR Code.
In Proceedings of the 14th International Workshop

368 22nd USENIX Security Symposium USENIX Association

on Software and Compilers for Embedded Systems,
pages 21–27. ACM, 2011.

[21] Alexander Fokin, Egor Derevenetc, Alexander Cher-
nov, and Katerina Troshina. SmartDec: Approach-
ing C++ Decompilation. In Proceedings of the 18th
Working Conference on Reverse Engineering, pages
347–356. IEEE, 2011.

[22] Alexander Fokin, Katerina Troshina, and Alexander
Chernov. Reconstruction of Class Hierarchies for
Decompilation of C++ Programs. In Proceedings
of the 14th European Conference on Software Main-
tenance and Reengineering, pages 240–243. IEEE,
2010.

[23] Ilfak Guilfanov. Decompilers and Beyond. In Black-
Hat USA, 2008.

[24] Johannes Kinder and Helmut Veith. Jakstab: A
Static Analysis Platform for Binaries. In Proceed-
ings of the 20th International Conference on Com-
puter Aided Verification, pages 423–427. Springer,
2008.

[25] Christopher Kruegel, William Robertson, Fredrik
Valeur, and Giovanni Vigna. Static Disassembly
of Obfuscated Binaries. In Proceedings of the 13th
USENIX Security Symposium, pages 255–270, 2004.

[26] Satish Kumar. DISC: Decompiler for Tur-
boC. http://www.debugmode.com/dcompile/

disc.htm. Page checked 6/25/2013.

[27] David Larochelle and David Evans. Statically De-
tecting Likely Buffer Overflow Vulnerabilities. In
Proceedings of the 10th USENIX Security Sympo-
sium, pages 177–190, 2001.

[28] JongHyup Lee, Thanassis Avgerinos, and David
Brumley. TIE: Principled Reverse Engineering of
Types in Binary Programs. In Proceedings of the
Network and Distributed System Security Sympo-
sium. The Internet Society, 2011.

[29] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu.
Automatic Reverse Engineering of Data Structures
from Binary Execution. In Proceedings of the Net-
work and Distributed System Security Symposium.
The Internet Society, 2010.

[30] Jerome Miecznikowski and Laurie Hendren. Decom-
piling Java Bytecode: Problems, Traps and Pitfalls.
In Proceedings of the 11th International Conference
on Compiler Construction, pages 111–127. Springer,
2002.

[31] Robin Milner, Mads Tofte, Robert Harper, and
David MacQueen. The Definition of Standard ML
(Revised). The MIT Press, 1997.

[32] Steven Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[33] George C. Necula, Scott McPeak, Shree P. Rahul,
and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C
Programs. In Proceedings of the 11th International
Conference on Compiler Construction, pages 213–
228. Springer, 2002.

[34] W. W. Peterson, T. Kasami, and N. Tokura. On the
Capabilities of While, Repeat, and Exit Statements.
Communications of the ACM, 16(8):503–512, 1973.

[35] REC Studio 4—Reverse Engineering Compiler.
http://www.backerstreet.com/rec/rec.

htm. Page checked 6/25/2013.

[36] Micha Sharir. Structural Analysis: A New Approach
to Flow Analysis in Optimizing Compilers. Com-
puter Languages, 5(3-4):141–153, 1980.

[37] Doug Simon. Structuring Assembly Programs. Hon-
ours thesis, University of Queensland, 1997.

[38] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Howard: A Dynamic Excavator for Reverse Engi-
neering Data Structures. In Proceedings of the Net-
work and Distributed System Security Symposium.
The Internet Society, 2011.

[39] Michael James Van Emmerik. Static Single Assign-
ment for Decompilation. PhD thesis, University of
Queensland, 2007.

[40] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving Integer
Security for Systems with KINT. In Proceedings of
the 10th USENIX Symposium on Operating Systems
Design and Implementation, pages 163–177, 2012.

USENIX Association 22nd USENIX Security Symposium 369

Strato: A Retargetable Framework for Low-Level Inlined-Reference

Monitors

Bin Zeng

Department of Computer

Science and Engineering

Lehigh University

Gang Tan

Department of Computer

Science and Engineering

Lehigh University

Úlfar Erlingsson

Google Inc.

Abstract

Low-level Inlined Reference Monitors (IRM) such as

control-flow integrity and software-based fault isolation

can foil numerous software attacks. Conventionally,

those IRMs are implemented through binary rewriting

or transformation on equivalent low-level programs that

are tightly coupled with a specific Instruction Set Ar-

chitecture (ISA). Resulting implementations have poor

retargetability to different ISAs. This paper intro-

duces an IRM-implementation framework at a com-

piler intermediate-representation (IR) level. The IR-level

framework enables easy retargetability to different ISAs,

but raises the challenge of how to preserve security at

the low level, as the compiler backend might invalidate

the assumptions at the IR level. We propose a constraint

language to encode the assumptions and check whether

they still hold after the backend transformations and op-

timizations. Furthermore, an independent verifier is im-

plemented to validate the security of low-level code. We

have implemented the framework inside LLVM to en-

force the policy of control-flow integrity and data sand-

boxing for both reads and writes. Experimental results

demonstrate that it incurs modest runtime overhead of

19.90% and 25.34% on SPECint2000 programs for x86-

32 and x86-64, respectively.

1 Introduction

Software attacks are common, from code-injection at-

tacks to more sophisticated techniques such as Return

Oriented Programming (ROP [6, 29]). ROP chains the

attacked program’s code snippets, referred to as gadgets,

to achieve functionality desired by the attacker. It can

bypass many defensive techniques such as StackGuard

and Data Execution Prevention (DEP) [22].

Low-level inlined reference monitors (IRM [15–17])

are effective at preventing attacks against software sys-

tems. In this approach, checks are inlined into binary

code to ensure critical security properties. Take the

example of software-based fault isolation (SFI). It is a

code-sandboxing technique that isolates untrusted mod-

ules from trusted environments [32]. By having separate

code and data regions and by making the data region un-

executable, SFI prevents code-injection attacks in addi-

tion to containing faults in sandboxed modules.

Another effective IRM is control-flow integrity

(CFI [1]). An essential step in many software attacks is

to induce an illegal control flow transfer to maliciously

injected code, or to some library function as in jump-to-

libc attacks, or to some existing code snippet as in ROP

attacks. CFI enforces a strong runtime guarantee that ex-

ecution paths follow a predetermined control flow graph,

which is constructed either by source-code analysis, bi-

nary analysis, or program profiling. CFI can greatly de-

crease where ROP gadgets can be discovered and further

restrain the way gadgets can be chained, thus effectively

mitigating ROP attacks.

Low-level IRMs such as SFI and CFI are usually im-

plemented through low-level rewriting, either by per-

forming binary instrumentation, assembly-code instru-

mentation, or by modifying a compilation tool chain’s

backend to emit code with embedded checks. As an ex-

ample, PittSFIeld was implemented by assembly-code

instrumentation [21]. Google’s Native Client (NaCl [28,

37]) was built by modifying the backend of the GNU tool

chain. One key benefit of rewriting at the low level is

that a separate verifier can be built to check the result of

rewriting. The separate verifier removes the rewriter out-

side of the TCB. Furthermore, in a distributed environ-

ment, only the verifier needs to be installed at the client’s

side. The verifier checks the security of untrusted, re-

motely downloaded modules. The security architecture

of NaCl follows the separation between the rewriter and

the verifier.

On the other hand, low-level rewriting is tightly cou-

pled with a certain ISA, resulting in poor reusability and

retargetability, and hindering optimizations. It is non-

1

370 22nd USENIX Security Symposium USENIX Association

trivial to port a low-level IRM to another ISA and ex-

isting parts are hard to reuse. For instance, NaCl’s ini-

tial implementation was on x86-32 and its port to x86-64

and ARM involved significant effort in design and im-

plementation [28]. One reason for the nontrivial effort

is the differences among ISAs, including the instruction

set, the available hardware features, the number and size

of registers, and others. In addition, many components

need to be built from scratch. A typical example is op-

timizations. Any decent IRM implementation requires

optimizations to bring down the runtime cost. However,

those optimizations are tied to an ISA and hard to reuse.

We explore the building of a retargetable framework

for low-level IRMs on a high-level compiler intermedi-

ate representation; in particular, the LLVM IR [20]. The

framework, called Strato1, is general in the sense that

various security policies can be conveniently enforced

and much code can be reused among them and that in-

lined high-level checks for a specific policy can be low-

ered into distinct machine-code sequences. In Strato, we

have enforced CFI and data sandboxing for both memory

writes and reads.

IR-level rewriting comes with several benefits. First, it

is retargetable. Security checks are inserted into the high-

level representation. The check-insertion component is

shared by all target ISAs the compiler supports. Opti-

mizations that operate on the IR are also reused among

different targets. To support a new target ISA, only the

lowering from high-level checks to machine-instruction

sequences needs to be changed. Even for the same ISA,

it is easy to explore different machine-instruction se-

quences that implement the same high-level check since

the lowering part can be easily changed. Our framework

was originally built to support x86-32 and then extended

to support x86-64; only a small amount of code was al-

tered to retarget it for x86-64.

The second benefit of IR-level rewriting is that opti-

mizations are easier to implement and more optimiza-

tions can be supported. An IR usually carries a wealth of

structured information and attains many properties that

are amenable to program analyses and optimizations. For

instance, LLVM IR is in the Static Single Assignment

(SSA) form [8, 9], making analysis easier to implement.

In addition, LLVM IR preserves type information, loop

information, and dominator-tree information, which fa-

cilitate analyses and optimizations. Finally, a high-level

representation contains many fewer instructions than a

typical target machine (e.g., in LLVM 2.9, LLVM IR

has only 54 instructions while the x86-64 target has over

3,500). All these benefits make it easier to implement

optimizers that remove or hoist security checks; we call

these optimizers security-check optimizers.

However, the downside of pure IR-level rewriting is

that it results in a larger TCB compared to low-level

rewriting. The compiler backend performs sophisticated

transformations to generate low-level code, including in-

struction selection, ISA-specific optimizations, and reg-

ister allocation. Those transformations can invalidate the

hypotheses assumed by a security mechanism at the high

level. First, a bug in a transformation can produce in-

secure low-level code. A more subtle issue is that those

transformations may assume a machine model different

from the attack model of a low-level IRM. As a simple

example, a backend transformation might assume that

a variable holds the last stored value after it is loaded

back from the memory location into which the variable

is spilled. However, many low-level IRMs such as CFI

assume the memory may change arbitrarily between any

two instructions because of memory-corruption attacks.

Under this attack model, a spilled variable cannot be as-

sumed to hold the same value. Consequently, the trans-

formation may produce insecure code according to the

attack model.

Therefore, the challenge is how to perform IR-level

rewriting while still preserve low-level security. Strato

adopts a twofold approach. First, it includes a novel con-

straint encoding and checking process to propagate as-

sumptions required by security-check optimizers. The

optimizers do not remove checks; instead, they mark

them as removable and attach constraints to them. After

the backend transformations, Strato checks whether the

constraints have been invalidated by the backend. If they

are not, the unnecessary security checks are removed or

hoisted. Otherwise, the checks are left intact to preserve

the security of the low-level code. In other words, the

security-check optimizers mark optimizations at the IR

level, but the effect is taken only at the low-level code

after ensuring constraints are not violated. To further en-

sure the trustworthiness, we implement an independent

verifier to validate the final low-level code, thus remov-

ing all the instrumentations, transformations, optimiza-

tions, and constraint checking out of the TCB. The ver-

ifier helped us uncover 35 critical bugs in early versions

of Strato.

The key contributions of our work are as follows.

• A reusable and retargetable framework is proposed,

built and evaluated to enforce low-level IRMs on a

high-level IR. To the best of our knowledge, this is

the first framework that brings the benefits of high-

level representations to low-level IRMs and loses

no trustworthiness. On top of that, we have imple-

mented two low-level IRMs including CFI and data

sandboxing for both x86-32 and x86-64. To demon-

strate the benefits of the IR-level approach, we have

implemented three conventional optimizations with

ease and the runtime overhead is lower than previ-

ous work.

2

USENIX Association 22nd USENIX Security Symposium 371

• Two techniques are proposed to ensure trustwor-

thiness, including the constraint encoding/checking

and the low-level verifier. A constraint language is

used to encode assumptions that are carried across

the code-generation barrier.

• We explore and evaluate a number of alternative

security-check instruction sequences for both CFI

and data sandboxing. Different instruction se-

quences have varying overhead on different ISAs

and programs. We have discovered more efficient

instruction sequences than previous work.

This paper is organized as follows. Section 2 de-

scribes related work. Section 3 introduces the overview

of Strato. Section 4 presents how Strato performs check

instrumentation and optimization; it also presents the

constraint language. Section 5 discusses the phase of

constraint checking and check lowering. Section 6 elab-

orates on the low-level verification process. Section 7

discusses the implementation and evaluation. The last

section concludes and proposes future work.

2 Related Work

Strato is inspired by many previous low-level security

techniques. Its special focus is to build a retargetable

infrastructure to assist the exploration and optimizations

of security techniques at a high-level representation.

2.1 Inlined Reference Monitors (IRMs)

IRMs embed checks into subject programs to enforce se-

curity policies. This approach can be carried at differ-

ent language levels, from source code, to an intermedi-

ate representation, or to low-level code. A typical ex-

ample of source-code IRM is CCured [25], which inserts

checks into C code for memory safety. At the IR level,

a number of systems insert checks for various kinds of

policies [11, 15, 17, 24]. At the low level, checks can

be inserted to enforce policies such as control-flow in-

tegrity. Clearly, this is a well-studied research area. Our

system sets itself apart by performing IR-level rewriting

and preserving low-level security. The IR-level rewriting

is adopted for retargetability and for the ease of imple-

menting optimizations. At the same time, we propose

techniques to ensure that IR-level rewriting is valid with

respect to security policies at the low-level.

Next we discuss closely related systems in the area of

IRMs and compare them with Strato.

Software-based Fault Isolation. SFI isolates un-

trusted or faulty modules from a trusted environment [21,

28, 31, 32, 34, 37]. In SFI, checks are inserted before

memory-access and control-flow instructions to ensure

memory access and control flow stay in a sandbox. A

carefully designed interface is the only pathway through

which sandboxed modules interact with the rest of the

system. One subtle requirement of SFI and other IRMs

is that the inserted security checks cannot be bypassed

by computed jumps, making some form of control flow

restriction necessary. Recent SFI implementations use

instruction alignment for a crude form of control-flow

integrity.

For efficiency, SFI is typically implemented through

a combination of static verification and inlined checks.

The safety of direct memory accesses and direct jumps

can be statically checked. For computed memory vis-

its and indirect jumps, checks are inlined to make sure

that those operations stay in the sandbox. Traditional SFI

implementations are performed through low-level rewrit-

ing. As a result, they are tightly tied to a specific target

machine and difficult to port to other ISAs. One advan-

tage of low-level rewriting is that it holds the promise

of rewriting without source code being available. How-

ever, most previous SFI implementations still ask for the

cooperation of the code producer by requiring assembly

code or a special compiler to be used. A recent SFI sys-

tem [34] makes substantial progress toward an imple-

mentation through pure binary rewriting; it remains to

be seen whether the system can be generalized to IRMs

other than SFI and how optimizations can be accommo-

dated.

Control Flow Integrity. CFI ensures that runtime

control flow follows a predetermined control flow graph

even if the whole data memory is under the control of

attackers [2, 3]. One way to enforce CFI is to insert IDs

at the targets of a control transfer and a check before the

control transfer [3]; the check ensures that the expected

ID is at the actual control transfer destination. The sys-

tem by Wang et al. enforces CFI through defunctional-

ization [33]. For computed control flow transfers, their

system encodes all potential targets in a write-protected

table and uses an index to retrieve the target. Before each

computed control transfer, the index is checked to make

sure that it falls into the table before it is used to fetch

the target address from the table. Our system implements

CFI in a way similar to the original implementation [3],

but at the IR level. In addition, we explore and evaluate

a number of instruction sequences for CFI enforcement

and find efficient instruction sequences that reduce the

runtime cost of CFI.

Combining CFI with other IRMs. On top of CFI,

XFI employs a protected shadow stack to store return ad-

dresses [14]. XFI promotes control flow precision from

Deterministic Finite Automata (DFA) to Pushdown Au-

tomata (PDA). However, XFI is platform specific and its

runtime overhead is significant.

Our previous system [38] also implements both CFI

3

372 22nd USENIX Security Symposium USENIX Association

and data sandboxing and proposes optimizations to de-

crease the runtime cost. However, that implementation

performs x86-32 assembly rewriting and cannot be re-

targeted to other ISAs. By contrast, Strato can target any

ISA that a compiler supports and the instrumentation and

optimizations are shared among different targets. In ad-

dition, optimizations in the previous system use the same

range-analysis technique adopted in its verifier, making

its trustworthiness questionable. Finally, its verifier is

path insensitive and is not as accurate as the one in the

new system.

LLVM IR rewriting. A number of systems per-

form rewriting on the LLVM IR for security. SAFE-

Code [11, 12] is an enhanced version of LLVM that

can enforce object-level integrity (which is close to type

safety). SoftBound [24] also takes the approach of IR-

level rewriting. It instruments the LLVM IR for enforc-

ing spatial memory safety. However, these systems en-

force their policies only at the IR level, not at the low

level. Our system has to solve the key challenge of how

to preserve security at the low-level even with the IR-

level rewriting.

Portable Native Client (PNaCl) is an ongoing effort at

Google. A white paper describes its initial design [13].

PNaCl requires code be transmitted in the LLVM IR for-

mat, with portability as the goal. After mobile IR code is

downloaded into the Chrome browser, PNaCl compiles

the IR code into SFI-compliant native code and reuses

NaCl to constrain native code. The important difference

between PNaCl and our system is that their architecture

does not accommodate security optimizers that remove

or hoist checks. The constraint language in our system

allows optimizers to perform optimizations and attach

constraints that can be checked at the low level.

2.2 Program Shepherding and Virtual Ma-

chines

Program shepherding utilizes an efficient program inter-

preter to enforce security at runtime [19, 27]. The inter-

preter can enforce various policies during program ex-

ecution. Similarly, virtual machines either JIT or inter-

pret high-level representations, enforcing relevant secu-

rity policies during the process. Although many policies

can be enforced conveniently in interpreters and virtual

machines, the sheer size and complexity of interpreters

or JIT compilers make their trustworthiness question-

able [10, 18]. Furthermore, the runtime performance of

interpreters and virtual machines might be problematic

compared with the IRM approach. Strato incurs lower

overhead and has a much smaller TCB.

3 Overview of Strato

This section elaborates on the workflow of Strato. We

will discuss where checks are inserted and optimized,

and where constraint checking and verification happen.

We have used Strato to implement CFI and data sand-

boxing, two specific IRMs. Therefore, we first discuss

those IRMs’ attack model and security policies.

Attack Model. Strato adopts CFI’s attack model [1].

We assume there is a separate code and data region. The

data region is under the control of an attacker, who is

modeled as a concurrent thread that can overwrite any

memory location in the data region. This rather pes-

simistic assumption is actually realistic given the abun-

dance of memory corruption vulnerabilities. In addition,

we assume that the code region and machine registers

cannot be changed by attackers. The assumption on the

code region can be discharged by hardware protection

such as DEP [22] or the W ⊕ X protection in latest x86

processors. The assumption about registers is consistent

with kernel-based multithreading. Note that even though

the attacker cannot directly modify the code region or

registers, he/she may indirectly induce such a change.

For instance, if a program loads from memory to a regis-

ter, the register’s new value is controlled by the attacker

since the data region is controlled by the attacker. If

the program further uses the register as the address of

a memory-write operation, the operation may change the

code region since the register’s value is controlled by the

attacker. Therefore, a protection mechanism must pre-

vent such indirect effects from damaging the system.

Security policy. In Strato, we have implemented two

IRMs: CFI and data sandboxing. The CFI policy is

with respect to a control-flow graph, whose edges con-

nect control-transfer instructions to allowed destination

basic blocks. We say a program obeys the CFI policy if

all control transfers in the program during runtime follow

the control-flow graph.

The data-sandboxing policy restricts memory reads

and writes. Following previous work [21, 32, 38], we

place a guard zone immediately before the data region

and another guard zone immediately after the data re-

gion. We use gz size to denote the size of both guard

zones. We assume that access to guard zones is hardware

trapped (through page protection). Guard zones facili-

tate optimizations of data sandboxing. With the guard

zones, a memory read or write is safe with respect to the

data-sandboxing policy if its address is either in the data

region or in the guard zones.

Workflow. In order for an IRM-implementation

framework to be retargetable, the majority of instrumen-

tation and optimizations need to be decoupled from a

specific ISA. A high-level representation provides such

a vehicle. A remaining question is where to insert the

4

USENIX Association 22nd USENIX Security Symposium 373

IRM-instrumentation phase inside a compiler. A typi-

cal optimizing compiler has many layers that transform

an IR program to another IR program with simplified

semantics or better performance. Therefore, the IRM-

instrumentation phase can be scheduled at any stage be-

tween IR generation and the backend.

On one end of the spectrum, we can schedule the IRM-

instrumentation pass right after the compiler frontend;

that is, after the IR is generated by the frontend. The

benefit is that it can reuse a large number of existing

IR-level optimization passes, which can optimize away

unnecessary security checks. However, it has two draw-

backs. First, since the security of low-level code gen-

erated by the compiler is what we are interested in, we

need a way to ensure those IR-level optimizations do not

wrongly optimize away security checks. One way to ac-

complish this would be to modify the optimizations to

carry enough information to the low level for certifica-

tion, similar to proof-carrying code. However, modifying

complex compiler optimizations is non-trivial. The sec-

ond and more serious drawback of scheduling the IRM-

instrumentation pass right after the frontend is that exist-

ing optimizations may not be safe according to the attack

model of an IRM. As we discussed before, the CFI attack

model assumes that data memory is untrusted. However,

a typical IR assumes a much different machine model.

As an example, LLVM IR adopts an Unlimited Register

Machine (URM) model in the SSA form [20]. A real

machine has a limited number of registers and so LLVM

IR variables may be spilled into untrusted memory loca-

tions. Therefore, if an LLVM IR optimization depends

on the URM model for correctness, then the optimized

result may not be safe according to CFI’s attack model.

On the other end of the spectrum, the IRM-

instrumentation phase can be scheduled right before the

compiler backend for code generation. This is the design

adopted in Strato. The downside is that existing com-

piler optimizations are not reused and we have to develop

our own optimizations to optimize IRM checks to im-

prove efficiency. But optimizations for security checks

can be implemented straightforwardly at the LLVM IR

level, which has a small number of instructions and is

in the SSA form. For the policy of data sandboxing, we

implemented three optimizations with ease, shared by all

targets supported by LLVM. With this design, there is

no need to trust or modify a large number of existing IR-

level compiler optimizations. Optimizing compilers have

a large code base and bugs are unavoidable [35].

Fig. 1 presents the workflow of Strato, which is imple-

mented as extra passes added to the LLVM compiler. We

next explain the steps of how source code is translated

to low-level code through Strato-augmented LLVM. We

add stars to those steps that are added in Strato to distin-

guish them from those steps already in LLVM.

Figure 1: Workflow of Strato

(1) Compiler frontend. LLVM’s clang frontend gener-

ates the IR code.

(2) Compiler optimizations. LLVM’s transformations

and optimizations change the IR code to simpler and

optimized code.

(3) *Check insertion. Security checks are inserted be-

fore dangerous instructions to generate secured IR

code. The dangerous instructions and checks in-

serted depend on the security policy. Since the cur-

rent policy is CFI and data sandboxing, security

checks are inserted before memory loads and stores

as well as computed jumps. Note this step inserts

more checks than necessary. Later steps will remove

unnecessary checks. Security checks are inserted as

LLVM intrinsic functions, which will be lowered to

machine-instruction sequences at a later step (if they

are not optimized away).

(4) *Check optimization. After check insertion, cus-

tom optimizations for removing security checks are

performed on the IR code. We implement three ef-

fective optimizations to demonstrate the amenability

of high-level IR to optimizations: redundant check

elimination, sequential memory access optimization,

and loop-based check optimization. Our optimiza-

tions differ from traditional ones in that no security

checks are removed or moved around at this step.

A check that is deemed unnecessary is marked as

removable and constraints are attached to it. The

check will be removed only after the constraints are

checked to be valid at a later step. If those con-

straints are violated by later steps of the compilation,

the check will not be removed.

(5) Code generation. The compiler backend performs

instruction selection, instruction scheduling, ISA-

5

374 22nd USENIX Security Symposium USENIX Association

specific optimizations, and register allocation. Low-

level assembly code is generated as the result.

(6) *Constraint checking. If the constraints for a check

are invalidated during compiler transformations and

optimizations, the check is kept intact. Otherwise, it

is removed.

(7) *Check lowering. Security checks are lowered to

machine-instruction sequences. Usually a security

check can be implemented by multiple machine-

instruction sequences. This step therefore provides

a convenient place to experiment with different se-

quences to evaluate which one produces the best per-

formance.

(8) *Verification. An independent verifier is run to

check the low-level code. If the verification fails,

then the code is rejected.

The above design makes it straightforward to adapt to

a different ISA. Steps including check insertion, check

optimization, and constraint checking can be reused

across ISAs. The check-lowering and the verifier com-

ponents need to be tailored for a new ISA. As we will

discuss, the amount of effort involved to retarget Strato’s

implementation from x86-32 to x86-64 is small.

4 Check Instrumentation, Optimizations

and the Constraint Language

The goal of security-check instrumentation is to guard

dangerous operations with checks so that they cannot be

abused by adversaries. For CFI, IDs are inserted before

control-flow targets. Furthermore, checks are inserted

before computed jumps, including indirect calls, indirect

jumps and return instructions2; these checks ensure that

the expected IDs are there at the targets of control-flow

transfers [1].

For data sandboxing, Strato inserts a check before

each load and store instruction; the check ensures that

the instruction’s memory address is within the data re-

gion. In addition, after a definition of a pointer variable,

a check is inserted to ensure that the pointer is within

the data region. A check is also inserted at the entry of

a function for a pointer parameter. In this step, Strato

inserts more checks than necessary.

Since checks are inserted at the IR level, the same pro-

tection strategy is adopted for all machine targets, includ-

ing x86-32 and x86-64. This provides uniformity and en-

ables most of the code to be shared between targets. In

contrast, NaCl adopts very different protection strategies

for x86-32, x86-64, and ARM (segmentation on x86-32,

large addresses and guard regions on x86-64, and address

masking on ARM).

After check instrumentation, optimizations are run on

the secured IR to mark unnecessary checks. To demon-

strate the ease of implementing optimizations at the IR

level, we have implemented three optimizations for re-

moving unnecessary data-sandboxing checks: redundant

check elimination, sequential memory access optimiza-

tion, and loop-based optimization. In these optimiza-

tions, checks are not removed. Rather, checks that are

deemed removable are marked and constraints are at-

tached to them. Checks whose constraints are still valid

after the backend processing are removed in the later

constraint-checking step.

Redundant Check Elimination. Since the check-

instrumentation step inserts a check after the definition of

a pointer variable and also before the use of the variable

via a load or store, the checks before the uses are redun-

dant at the IR level. Fig. 2 presents an example. Column

(a) presents the original C code and column (b) presents

the LLVM IR code before check instrumentation. During

check instrumentation, three checks are inserted. First,

a check is placed at the beginning of the function for

the pointer parameter ptr. Second, since there are a

load in block labeled else and a store in block labeled

then, checks need to be placed before them. check2 and

check3 are unnecessary at the IR level. However, they

cannot be removed in the IR code because ptr.safe

might be spilled into the untrusted stack during register

allocation. Instead, check2 is marked as removable and

a constraint is attached, specifying that the check can be

removed if and only if ptr.safe is not spilled between

check1 and check2. In Fig. 2(c), constraints are at lines

starting with the # symbol. check3 in block then is at-

tached with a similar constraint. After register alloca-

tion, the constraint checker checks whether ptr.safe

has been spilled. If not, the two checks are removed.

Otherwise, they are kept intact.

LLVM IR is in the SSA form, making it easy to im-

plement the above optimization. First, the def-use chain

is explicit in the SSA form. Furthermore, the SSA form

ensures that ptr.safe is not modified between check1

and check2. By contrast, if carried out on machine code,

the optimizer would have to perform dataflow analysis to

determine whether a pointer has been guarded and mod-

ified.

Sequential Memory Access Optimization. Most

programming languages support aggregate types such as

structs in C and classes in C++. A common pattern ex-

ists in member accesses: a base pointer plus a constant

offset is used to visit a specific member. With the guard

zones before and after the data region, a memory access

with a base pointer and a constant offset is safe as long

as the base pointer is within the data region and the offset

is smaller than the guard-zone size. This observation can

be exploited to remove checks if members of an object

6

USENIX Association 22nd USENIX Security Symposium 375

(a) Original C code

int foo

(int v, int *ptr)

{
int tmp = 0;

if (v > 47)

*ptr = v;

else

tmp = *ptr;

return tmp;

}

(b) Unsecured IR code

entry:

tmp = 0

if(v > 47) goto then

else:

tmp = load *ptr

goto end

then:

store v, *ptr

end:

ret tmp

(c) Secured and optimized IR code

entry:

ptr.safe = call guard(ptr) // check1

tmp = 0

if(v > 47) goto then

else:

ptr.safe1 = call guard(ptr.safe) // check2

noSpill(ptr.safe, check1, check2)

tmp = load *ptr.safe1

goto end

then:

ptr.safe2 = call guard(ptr.safe) // check3

noSpill(ptr.safe, check1, check3)

store v, *ptr.safe2

end:

ret tmp

Figure 2: An example for illustrating redundant check elimination. guard is the security check to ensure that the input

pointer is in the data region, which is implemented as an LLVM intrinsic function.

(a) Original C code

struct s

{
long x;

long y;

};
int sum

(struct s *p)

{
return p->x + p->y;

}

(b) Unsecured IR code for sum

x = gep p, 0, 0

tmp1 = load *x

y = gep p, 0, 1

tmp2 = load *y

sum = add tmp1, tmp2

ret sum

(c) Secured and optimized IR code

p.safe = call guard(p) // check1

x = gep p.safe, 0, 0

x.safe = call guard(x) // check2

noSpill(p.safe, check1, check2)

sizeof(struct s)*0 + sizeof(long)*0 < gz size

tmp1 = load *x.safe

y = gep p.safe, 0, 1

y.safe = call guard(y) // check3

noSpill(p.safe, check1, check3)

sizeof(struct s)*0 + sizeof(long)*1 < gz size

tmp2 = load *y.safe

sum = add tmp1, tmp2

ret sum

Figure 3: An example for illustrating sequential memory access optimization.

are visited sequentially and the base pointer is shared by

multiple visits.

In LLVM IR, the getelementptr instruction takes a

base pointer and multiple indices as operands and is used

to compute the address of a sub-element of an aggregate

data structure. If the base pointer has been guarded, the

offset is a constant, and the offset is determined to be

smaller than the guard zone size, then the pointer com-

puted by getelementptr does not need to be guarded

again. However, the size of each member cannot be de-

termined at the IR level because it may be target depen-

dent. For example, type long takes 4 bytes in x86-32 and

8 bytes in x86-64. As a result, the check after the defi-

nition of a pointer variable through getelementptr can

be marked as removable and attached with constraints

specifying that the base pointer cannot be spilled and the

final offset from the base pointer should be less than the

guard-zone size.

Fig. 3 presents an example. In column (a), struct s

contains two long members and the function sum com-

putes their sum. In column (c), Strato inserts check1

at the entry to function sum and check2 and check3

after each getelementptr instruction (abbreviated as

gep in the figure). The constraints for check2 spec-

ify that it can be removed if there is no spill between

check1 and check2 for pointer p.safe and the offset

sizeof(struct s)*0 + sizeof(long)*0 is smaller

than the guard-zone size (this condition can be deter-

mined to be true even at the IR level because it is always

zero; however, values of other expressions may be target

dependent). Similar constraints are attached for check3.

Loop-based check optimization. Loop optimization

is important because programs tend to spend the major-

ity of runtime in loops. Performance is improved if a

security check inside a loop can be hoisted outside the

loop. For example, if a pointer is not modified inside

7

376 22nd USENIX Security Symposium USENIX Association

(a) Original C code

long sum

(long *ar, long len)

{
long rst = 0, i;

for (i=0; i<len; ++i)

rst += ar[i];

return rst;

}

(b) Unsecured IR code

rst = 0

i = 0

if (len <= 0) goto end

for.body:

ptr = gep ar, i

tmp = load *ptr

rst += tmp

i += 1

if (i >= len) goto end

goto for.body:

end:

ret rst

(c) Secured and optimized IR code

rst = 0

i = 0

ar.safe = call guard(ar) // check1

if (len <= 0) goto end

for.body:

ptr = gep ar.safe, i

ptr.safe = call guard(ptr) // check2

noSpill (ar.safe, check1, check2)

noSpill (i, check1, check2)

sizeof(long) * 1 < gz size

tmp = load *ptr.safe

rst += tmp

i += 1

if (i >= len) goto end

goto for.body:

end:

ret rst

Figure 4: An example for illustrating loop optimization.

the loop, then a check for the pointer can be hoisted. As

another example, if a pointer is incremented or decre-

mented for a small stride (less than the guard-zone size)

inside the loop, and there is a memory access through the

pointer in the loop, then the check can be hoisted. The

reason this is safe is because access to the guard zones is

trapped; if the initial value of the pointer is checked to be

inside the data region, then the change to the pointer in

one loop iteration will make the pointer to be either in the

data region or in guard zones and the access through the

pointer serves as a check. This optimization follows the

loop optimization described by Zeng et al. [38]; please

refer to that paper for detailed analysis of the soundness

of the optimization. As another optimization example,

if there is a pointer that is calculated from the induction

variable of the loop, the increment to the induction vari-

able is a small stride (less than the guard zone size), and

there is a memory access through the pointer in the loop,

then the check can be hoisted. LLVM IR encodes loop

information explicitly, making it easy to detect induction

variables and strides.

In our optimizations, a hoistable check is not moved.

Instead, a new check is inserted into the loop preheader

and the old check is marked as removable and attached

with constraints. An important constraint is that the rele-

vant pointer cannot be spilled. Fig. 4 presents a concrete

example. The program in column (a) adds elements in

array ar. The program visits memory once per iteration.

The check can be hoisted if and only if the induction vari-

able is the only variable used to calculate the memory lo-

cation and the stride is smaller than the guard-zone size

and there is a memory visit using the memory location in

every path inside the loop.

constraint ::= noSpill [var, src, dst]

| term comparator term

term ::= term + term | term * term |
var | constant | gz size

comparator ::= < | > | == | >= | <=

Figure 5: Syntax of the constraint language.

Summary about optimizations. The three opti-

mizations demonstrate that a high-level IR can simplify

the implementations of optimizations, which are reused

among target ISAs. Additional optimizations enabled by

a high-level IR can further decrease the runtime cost of

Strato.

The constraint language. For completeness, we

present the syntax of the constraint language in Fig. 5.

A check may be attached with one or more constraints.

All constraints need to be satisfied in order for the check

to be removed; that is, there is an implicit conjunction

when interpreting a list of constraints.

The constraint noSpill [var, src, dst] denotes

that var cannot be spilled between src and dst, where

src and dst are program locations. Note the seman-

tics of this constraint is that the variable cannot be

spilled along every control-flow path from src to dst.

Therefore, the noSpill constraints in the example of

Fig. 5 effectively require that ar.safe and i cannot be

spilled in the entire loop. The comparison constraint

“term1 comparator term2” represents a relation be-

tween term1 and term2. It can be used to encode the

constraint that a constant offset should be less than the

guard-zone size, as in Fig. 3.

The design of the constraint language depends on what

optimizations Strato supports and also LLVM’s back-

8

USENIX Association 22nd USENIX Security Symposium 377

end. For instance, the noSpill constraint is there be-

cause LLVM’s backend may break this assumption by

spilling variables to memory. An IR-level optimization

may check more conditions. But if there is no possi-

bility for the backend to break a condition, that condi-

tion does not need to be encoded and propagated. For

instance, in loop optimizations, the condition that there

must be a memory access through the pointer in question

can be checked at the IR-level alone. Another point is

that it is possible new optimizations may require adding

new predicates to the constraint language. We believe the

constraint language can be extended straightforwardly.

5 Constraint Checking and Check Lower-

ing

After LLVM’s backend processing, Strato performs con-

straint checking and check lowering. Constraint check-

ing examines the constraints attached to each check and

checks whether they are valid. If the constraints are valid,

the check is removed. If they are invalid, the check is

lowered to a sequence of machine instructions.

Our constraint language is designed so that constraints

can be checked straightforwardly at the low level, with

the help of information preserved by LLVM. For exam-

ple, a comparison constraint becomes constant expres-

sions at the low level because after fixing the ISA sizes

of types become constants. To check a noSpill con-

straint, the constraint checker first identifies the corre-

spondence between IR variables and registers (LLVM

preserves enough information for this purpose) and uses

data-flow analysis to check whether the register that cor-

responds to the IR variable is moved to memory between

the source and destination locations.

Remaining checks are lowered to machine-instruction

sequences. A high-level check can be implemented by

many machine-instruction sequences. The overhead of

different sequences varies. Strato makes it easy to try dif-

ferent machine-instruction sequences—only the check-

lowering step needs to be modified. We have evalu-

ated a large number of machine-instruction sequences for

checks in CFI and data sandboxing. We discuss exam-

ples of possible sequences next, but leave the discussion

about the performance overhead of various sequences to

the evaluation section.

ID encodings. Strato’s CFI instrumentation requires

the encoding of IDs at control-flow targets. ID-encoding

instructions have to satisfy two conditions. First, the

instruction must take a long immediate value as an

operand, which is used to encode the ID. Second, the in-

struction cannot introduce side-effects that change the se-

mantics of the program. The original CFI uses prefetch

instructions for encoding IDs. We have evaluated a large

number of alternative instructions that satisfy the two

conditions. They are put into three groups. Instructions

in the first group take an immediate value and assign it

to a machine register. For example, “movl $ID, %eax”

assigns the immediate value ID to register eax. It can

be used to encode the ID as long as eax is dead at the

point where the instruction is inserted.3. Instructions in

the second group perform arithmetic operations on a reg-

ister with the ID and assign the result to a register. For

example, “add $ID, %eax” can be used to encode the

ID as long as eax and the flags register are dead. Instruc-

tions in the last group take a register and the ID value and

defines only the flags register. For example, “cmp $ID,

%eax” can be used as long as the flags register is dead at

the point of insertion.

6 Verification

Compiler optimizations and transformations are untrust-

worthy because compilers have a large code base and are

buggy [26, 36]. Bugs in optimizations that remove se-

curity checks are even harder to catch because they do

not crash programs but introduce vulnerabilities silently.

To remove those optimizations out of the TCB, Strato in-

cludes a verifier at the end of the compilation pipeline to

validate the assembly output of the compiler.

The verifier checks if the assembly code satisfies the

CFI and data sandboxing policy. CFI verification is

straightforward. The LLVM assembly preserves enough

information to reconstruct a control-flow graph, which is

used by the verifier to check if necessary ID-encoding

and ID-checking instructions are there in the assem-

bly. Data-sandboxing verification is more challeng-

ing because Strato’s optimizers may remove or hoist

checks. Strato’s verifier follows the design of a previ-

ous verifier [38] to implement range analysis for data-

sandboxing verification (with improvements; see below).

The basic idea is to compute the ranges of registers at all

program points and check if the ranges of memory ad-

dresses fall into the data region plus guard zones. The

calculation of ranges uses a standard iterative algorithm

until a fixed point is reached.

Strato’s verifier improves the previous range-analysis

verifier by adding path sensitivity. Ranges of registers

may be different along different paths after a sequence

of comparison and jump instructions. As an example,

the assembly snippet in AT&T syntax in Fig. 6 is ex-

tracted from 175.vpr in SPECint2000. The range of reg-

ister eax shrinks down to the data region after the andl

masking, where $DATA MASK is the constant mask for the

data region. The movl instruction expands the range of

eax to [bottom, top] because it loads from untrusted

memory.4 Without path sensitivity, the range of eax

would remain [bottom, top] at the entry to the two

9

378 22nd USENIX Security Symposium USENIX Association

andl $DATA MASK, %eax

movl (%eax), %eax

cmpl $3, %eax

ja .LBB5 8

movl *.LJTI(,%eax,4), %eax

.LBB2:

...

.LBB8:

...

Figure 6: An example for illustrating path sensitivity in

range analysis.

popl %ecx

cmpl $ID, 1(%ecx)

jne error

jmpl *%ecx

Figure 7: A wrong CFI sequence for return instructions.

successor blocks labeled with .LBB2 and .LBB8; conse-

quently, the verifier would report an out-of-range error

on the movl instruction because its memory address is

“.LJTI + eax*4”, where .LJTI is a constant in the data

region. With path sensitivity, the verifier computes the

range of eax to be [0, 3] before movl and successfully

validates that the address is within the data region plus

guard zones. The verifier in the previous system [38]

used instruction pattern matching to verify this pattern.

By adopting a path-sensitive analysis, Strato’s verifier is

more general and can verify all security-check optimiza-

tions we have presented.

With the help of the verifier, we discovered 35 subtle

bugs in early versions of Strato. Those bugs would be

hard to discover otherwise. We classify the bugs into

three groups as follows.

• Bugs in CFI instrumentation code. CFI implemen-

tation inserts IDs at branch targets and check in-

structions before computed jumps. The check in-

structions need to load the IDs at target locations.

Therefore, they visit memory and need to be sand-

boxed as well according to data sandboxing. As

an example, the snippet in Fig. 7 contains an early

version of a CFI check sequence for return instruc-

tions. The return address is popped into register

ecx, which is then used to load the ID for compar-

ison. The cmpl instruction visits the code region

using address ecx+1, which is unsafe because it is

from the untrusted stack. Our verifier successfully

caught this bug and we fixed the sequence by insert-

ing a data-masking instruction on ecx before cmpl.

• Bugs in the source program. Our verifier even

found a bug in the source code of 253.perlbmk,

a program in SPECint2000. The bug is a possi-

ble null-pointer dereference. The perlbmk program

has its own malloc function, which can return a

null pointer when a memory allocation fails and the

malloc is inlined by the compiler. A null pointer

is represented as value 0 and is outside the range of

data region plus guard zones. It was caught by the

verifier. We modified the source code of perlbmk

to fix this bug.

• Bugs in LLVM intrinsic functions such as

llvm.memset and llvm.memcpy. LLVM synthe-

sizes programs into intrinsic function calls as an

optimization. These intrinsic function calls can be

lowered into a sequence of machine instructions or

direct calls to the library functions depending on

the tradeoff between code size and the function-

call overhead. At the IR level, there is no way

to predict how an intrinsic function will be low-

ered. If they are lowered into machine-instruction

sequences, then their pointer arguments need to be

sandboxed as they may visit memory. Our veri-

fier caught these bugs and we fixed those machine-

instruction sequences to insert data-masking in-

structions for pointers.

The combined verifier for x86-32 and x86-64 contains

approximately 7k LOC including white space lines, com-

ments, and debug statements. The majority of the code is

a giant switch table for all the machine instructions that

the verifier has to support (In LLVM 2.9, x86-64 target

contains 3,747 machine instructions). The size of the ver-

ifier is a concern and we leave its verification for future

work [23].

Finally, we note that our verifier performs verification

at the assembly level. We use it mostly to catch bugs

in the Strato compiler so that the compiler is out of the

TCB. A more desirable design is to implement a verifier

for binaries directly. This is actually a matter of engi-

neering: we just need to modify the assembler to encode

the control-flow graph as extra information in a binary so

that the binary-level verifier can disassemble the binary

reliably; the kinds of verification tasks involved are the

same after disassembly.

7 Implementation and Evaluation

We have implemented Strato on top of LLVM 2.9. The

check-instrumentation step is implemented as a pass

and scheduled after LLVM’s IR optimization passes.

The security-check optimizations are performed right

after check instrumentation. The constraint checking

and check lowering are implemented in one pass in the

10

USENIX Association 22nd USENIX Security Symposium 379

compiler backend after register allocation. The range-

analysis based verifier is scheduled at the very end in the

backend. Constraints are encoded as LLVM metadata.

In total, the instrumentation and optimizations consist of

approximately 3,750 lines of C++ code, shared between

x86-32 and x86-64. The constraint checking and check-

lowering component has 1,420 lines of C++ code with

an additional 180 lines added for x86-64. The verifier

includes 6,960 lines of C++ code, with 1,240 lines added

for x86-64.

The object code after data-sandboxing and CFI in-

strumentation cannot run directly and needs specialized

linker scripts and a specialized loader. We have devel-

oped linker scripts for both C and C++ programs tar-

geting x86-32 and x86-64. The linker scripts link ob-

ject code generated by LLVM to three sections (includ-

ing code, data, and read-only data) at specified addresses.

We have also developed a loader that loads various sec-

tions in a binary at specified addresses in the address

space and sets up appropriate protection for those sec-

tions using the mprotect system call. We reused PittS-

FIeld’s library wrappers and libraries for x86-32 [21]; we

also adapted them for x86-64.

For evaluation, we have built and run the benchmark

suites bakeoff and SPECint2000 in Strato. The bake-

off benchmark suite contains three programs: hotlist, lld,

and md5. It has been used by previous code-sandboxing

frameworks for evaluation [14, 16, 31]. SPECint2000

contains twelve computation-intensive programs and is

widely used for compiler evaluation. All benchmark

programs in bakeoff and SPECint2000 can be success-

fully compiled in Strato. All programs were compiled

with the -O3 full optimization level except for 254.gap

in SPECint2000, which ran correctly only with -O0 en-

abled due to bugs in LLVM 2.9’s optimizations. All ex-

periments were conducted on a Ubuntu 11.10 box with

an Intel Core 2 Duo CPU at 3.16GHz and 8GB of RAM.

Experiments were averaged over three runs and the stan-

dard deviation was less than two percent of the arithmetic

mean.

Security benefits. Security benefits of Strato de-

pend on what IRMs have been incorporated. The cur-

rent implementation supports CFI and data sandboxing.

The low-level output of all programs in bakeoff and

SPECint2000 can be successfully verified by Strato’s

verifier. Assuming the verifier is correct, the compiled

code of those benchmark programs satisfies the CFI and

data sandboxing policy.

CFI and data sandboxing come with well-documented

security benefits. The original CFI work discusses that

CFI can block a test suite of 18 attack vectors, as well as

some heap-overflow attacks [3]. Data sandboxing as in

SFI is effective in isolating faults in untrusted modules,

as reported in NaCl [37] and Robusta [30].

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

hotlist lld md5 avg

prefetch
mov32ri
mov16ri

mov8ri
add32ri
add16ri
test32ri

Figure 8: Performance overhead for CFI with various ID-

encoding instructions on bakeoff programs.

0 %

5 %

10 %

15 %

20 %

25 %

30 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 9: Performance overhead for CFI with movl as

the ID-encoding instruction on SPECint2000.

CFI and data sandboxing cannot prevent all attacks.

For example, non-control data attacks [7] cannot be pre-

vented if critical data are stored inside the sandbox.

These attacks can corrupt the data without violating a

control-flow graph. However, another IRM called Data-

Flow Integrity (DFI [4]) can prevent such attacks.

Performance evaluation. IRMs insert runtime checks

into programs and slow down program execution. We

present the performance overhead as the percentage of

execution-time increase of instrumented programs com-

pared with uninstrumented programs.

We first evaluated the performance implication of al-

ternative machine-instruction sequences that implement

the same high-level checks. We have tested a large

number of alternative ID-encoding instructions, classi-

fied into three groups discussed in Sec 5. Fig. 8 presents

the runtime overhead of various ID-encoding instructions

on bakeoff programs for x86-32 when enforcing the CFI

policy. In the figure, color bars are used for different ID

encodings. The figure presents only a subset of what we

have tried due to space limit. In addition, we evaluated

different ID lengths such as 32-bit IDs, 16-bit IDs and

8-bit IDs. Shorter IDs do not necessarily have better per-

formance and they shrink the space for IDs. In the figure,

we use mov32ri to represent the case of using a 32-bit

mov instruction that moves a 32-bit immediate value to a

general register. As can be seen from the figure, most ID-

encoding instructions are more efficient than prefetch,

11

380 22nd USENIX Security Symposium USENIX Association

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

x86-32 x86-64

hotlist
lld

md5
avg

Figure 10: Performance overhead for CFI combined with

data sandboxing for both reads and writes on bakeoff.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 11: Performance overhead for CFI combined

with data sandboxing for both reads and writes on

SPECint2000.

the one used in the original CFI implementation.5 The

case of 32-bit movl instruction has the lowest runtime

overhead.

Fig. 9 presents the performance overhead of CFI alone

on SPECint2000 with movl as the ID-encoding instruc-

tion. CFI incurs an average of 5.89% and 7.95% slow-

down on x86-32 and x86-64, respectively. Our CFI im-

plementation is competitive with previous CFI systems.

The original CFI work [3] has 15% overhead and our

own previous work [38] has 7.7% overhead on x86-32.

Fig. 10 and Fig. 11 present the overhead of enforcing

CFI and data sandboxing for bakeoff and SPECint2000

programs, respectively. Both cases of x86-32 and x86-

64 are presented. The numbers are with respect to the

case of using the mov32ri instruction as the ID encod-

ing in CFI, and using the and instruction for sandboxing

memory addresses. On average, Strato incurs 37.7% on

x86-32 and 39.3% on x86-64 for bakeoff programs, and

19.9% on x86-32 and 25.3% on x86-64 for SPECint2000

programs. The high overhead on hotlist is due to the

two checks in the inner loop of two nested loops and they

cannot be optimized away or hoisted.

Strato’s performance is competitive with previous

SFI/CFI systems. We note most previous systems sand-

box only memory writes for protecting integrity, but

not memory reads for protecting confidentiality. There

are many more memory reads than writes in programs.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

x86-32 x86-64

gzip
vpr
gcc
mcf

crafty
parser

eon
perlbmk

gap
vortex
bzip2
twolf
avg

Figure 12: Code size increase on SPECint2000.

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

x86-32 x86-64

hotlist
lld

md5
avg

Figure 13: Code size increase on bakeoff.

Strato’s data sandboxing protects both memory reads and

writes. There are two other SFI/CFI systems that sand-

box both reads and writes. XFI’s average performance

overhead for bakeoff programs are 53.7% on x86-32; in

comparison, Strato’s overhead is 37.7%. XFI does not re-

port performance results for SPECint2000. Our previous

system [38] also sandboxes both reads and writes at the

assembly level. It reports an average overhead of 27.2%

for x86-32; in comparison, Strato’s overhead is 19.9%.

We believe that the performance difference is because

Strato’s optimizations can take advantage of structured

information available at the IR level. For instance, the

previous system uses the dominator-tree analysis to re-

cover loops and induction variables at the assembly level,

while LLVM IR tells explicitly where loops and induc-

tion variables are. In summary, Strato provides compet-

itive performance and provides retargetability, lacked by

previous systems.

Code Size. We measured the code-size increase on

SPECint2000 and bakeoff programs. Strato does not

alter the data sections of programs. It increases the

size of text sections by inserting extra security checks.

Fig. 12 and Fig. 13 present the text-section size increase

on SPEC CPU2000 and bakeoff programs, respectively.

On average, the text section grows 36.10% on x86-32

and 52.05% on x86-64 for SPECint2000 programs, and

5.83% on x86-32 and 5.19% on x86-64 for bakeoff pro-

grams. Text-section size inflates more on SPECint2000

because it contains larger programs with many more

12

USENIX Association 22nd USENIX Security Symposium 381

functions; the compiler aligns functions on boundaries.

Although disk space is not a major problem in a typi-

cal computing environment, it may matter in embedded

systems. Benchmark programs were compiled with -O3,

which is optimized for runtime performance, not for bi-

nary size. If the binary size is a major concern, programs

can be optimized with -Os, which uses shorter instruc-

tion sequences.

Memory Usage. We also evaluated the memory us-

age of Strato. The memory-footprint increase for bench-

mark programs is negligible since Strato does not change

the data memory. It increases memory footprint only

through the code-size increase, but the code section takes

a small fraction of total runtime memory.

8 Conclusions and Future Work

Conclusions. We have introduced an IRM framework

to enforce low-level security policies by working on a

high-level intermediate representation. For retargetabil-

ity, Strato performs its instrumentation and optimizations

on a high-level IR, which brings the benefits of struc-

tured information and a small instruction set. In addition,

we have designed techniques that deal with problems

that might arise due to backend transformations and op-

timizations. A constraint language is proposed to prop-

agate invariants across the backend for validation. Fur-

thermore, a path-sensitive verifier is implemented to ver-

ify the final output of the whole framework. Our exper-

imental results show that the framework’s performance

is competitive with previous sytems. Our framework ex-

plores an alternative design point of how low-level IRMs

can be implemented. This design point provides retar-

getability, performance, trustworthiness, and ease of im-

plementation.

Future work. There are many other low-level IRMs

that we can incorporate into Strato, including data-flow

integrity [4] and fine-grained access control of mem-

ory [5]. The workflow of Strato is general enough to

accommodate those IRMs, but individual components

such as check insertion and lowering need to be up-

dated for a particular IRM. We are interested in design-

ing a check-optimization engine that can be shared by

many IRMs; for example, optimizations such as redun-

dant check elimination can be shared. Ultimately, we are

interested in generalizing Strato so that it is parametrized

by a policy specification, which guides the phases of

check insertion, optimization, and lowering.

9 Acknowledgments

We thank Cliff Biffle for providing us with his ini-

tial development, useful documents, and suggestions.

We also thank Mengtao Sun for his help to the project

and anonymous reviewers for their insightful comments.

This research is supported by US NSF grants CCF-

0915157, CCF-1149211, CCF-1217710, and a research

award from Google.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity. In Proceedings of the 12th ACM confer-

ence on Computer and communications security (New York, NY,

USA, 2005), CCS ’05, ACM, pp. 340–353.

[2] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J. A

theory of secure control flow. In ICFEM (2005), K.-K. Lau and

R. Banach, Eds., vol. 3785 of Lecture Notes in Computer Science,

Springer, pp. 111–124.

[3] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity: principles, implementations, and applica-

tions. ACM Trans. Inf. Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[4] CASTRO, M., COSTA, M., AND HARRIS, T. Securing soft-

ware by enforcing data-flow integrity. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI) (2006),

pp. 147–160.

[5] CASTRO, M., COSTA, M., MARTIN, J.-P., PEINADO, M.,

AKRITIDIS, P., DONNELLY, A., BARHAM, P., AND BLACK, R.

Fast byte-granularity software fault isolation. In ACM SIGOPS

Symposium on Operating Systems Principles (SOSP) (2009),

pp. 45–58.

[6] CHECKOWAY, S., DAVI, L., DMITRIENKO, A., SADEGHI, A.-

R., SHACHAM, H., AND WINANDY, M. Return-oriented pro-

gramming without returns. In Proceedings of the 17th ACM con-

ference on Computer and communications security (New York,

NY, USA, 2010), CCS ’10, ACM, pp. 559–572.

[7] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,

R. K. Non-control-data attacks are realistic threats. In In

USENIX Security Symposium (2005), pp. 177–192.

[8] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,

AND ZADECK, F. K. An efficient method of computing static sin-

gle assignment form. In Proceedings of the 16th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages

(New York, NY, USA, 1989), POPL ’89, ACM, pp. 25–35.

[9] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,

AND ZADECK, F. K. Efficiently computing static single assign-

ment form and the control dependence graph. ACM Trans. Pro-

gram. Lang. Syst. 13, 4 (Oct. 1991), 451–490.

[10] DEAN, D., FELTEN, AND WALLACH. Java security: From hot-

java to netscape and beyond. In Proceedings of the 1996 IEEE

Symposium on Security and Privacy (Washington, DC, USA,

1996), SP ’96, IEEE Computer Society, pp. 190–.

[11] DHURJATI, D., AND ADVE, V. S. Backwards-compatible array

bounds checking for C with very low overhead. In ICSE (2006),

pp. 162–171.

[12] DHURJATI, D., KOWSHIK, S., AND ADVE, V. S. SAFECode:

enforcing alias analysis for weakly typed languages. In PLDI

(2006).

[13] DONOVAN, A., MUTH, R., CHEN, B., AND SEHR, D.

PNaCl: Portable Native Client Executables (white paper).

http://src.chromium.org/viewvc/native_client/

data/site/pnacl.pdf, 2010.

[14] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M., AND

NECULA, G. C. XFI: software guards for system address spaces.

13

382 22nd USENIX Security Symposium USENIX Association

In Proceedings of the 7th symposium on Operating systems de-

sign and implementation (Berkeley, CA, USA, 2006), OSDI ’06,

USENIX Association, pp. 75–88.

[15] ERLINGSSON, U., AND SCHNEIDER, F. B. IRM enforcement of

java stack inspection. In Proceedings of the 2000 IEEE Sympo-

sium on Security and Privacy (Washington, DC, USA, 2000), SP

’00, IEEE Computer Society, pp. 246–.

[16] ERLINGSSON, U., AND SCHNEIDER, F. B. SASI enforcement

of security policies: a retrospective. In Proceedings of the 1999

workshop on New security paradigms (New York, NY, USA,

2000), NSPW ’99, ACM, pp. 87–95.

[17] EVANS, D., AND TWYMAN, A. Flexible policy-directed code

safety. In IEEE Symposium on Security and Privacy (S&P)

(1999), pp. 32–45.

[18] GOVINDAVAJHALA, S., AND APPEL, A. W. Using memory er-

rors to attack a virtual machine. In Proceedings of the 2003 IEEE

Symposium on Security and Privacy (Washington, DC, USA,

2003), SP ’03, IEEE Computer Society, pp. 154–.

[19] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.

Secure execution via program shepherding. In Proceedings of the

11th USENIX Security Symposium (Berkeley, CA, USA, 2002),

USENIX Association, pp. 191–206.

[20] LATTNER, C., AND ADVE, V. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Pro-

ceedings of the 2004 International Symposium on Code Gener-

ation and Optimization (CGO’04) (Palo Alto, California, Mar

2004).

[21] MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a

CISC architecture. In Proceedings of the 15th conference on

USENIX Security Symposium - Volume 15 (Berkeley, CA, USA,

2006), USENIX-SS’06, USENIX Association.

[22] MICROSOFT. A detailed description of the data execution pre-

vention (dep) feature in windows xp service pack 2, windows

xp tablet pc edition 2005, and windows server 2003, September

2006.

[23] MORRISETT, G., TAN, G., TASSAROTTI, J., TRISTAN, J.-B.,

AND GAN, E. Rocksalt: Better, faster, stronger SFI for the x86.

In ACM Conference on Programming Language Design and Im-

plementation (PLDI) (2012), pp. 395–404.

[24] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND

ZDANCEWIC, S. Softbound: highly compatible and complete

spatial memory safety for C. In PLDI (2009), pp. 245–258.

[25] NECULA, G., MCPEAK, S., AND WEIMER, W. CCured: type-

safe retrofitting of legacy code. In 29th ACM Symposium on Prin-

ciples of Programming Languages (POPL) (2002), pp. 128–139.

[26] REGEHR, J. The future of compiler correctness, August 2010.

[27] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using

software dynamic translation. In Annual Computer Security Ap-

plications Conference (2002), pp. 209–218.

[28] SEHR, D., MUTH, R., BIFFLE, C., KHIMENKO, V., PASKO, E.,

SCHIMPF, K., YEE, B., AND CHEN, B. Adapting software fault

isolation to contemporary cpu architectures. In Proceedings of

the 19th USENIX conference on Security (Berkeley, CA, USA,

2010), USENIX Security’10, USENIX Association, pp. 1–1.

[29] SHACHAM, H. The geometry of innocent flesh on the bone:

return-into-libc without function calls (on the x86). In Proceed-

ings of the 14th ACM conference on Computer and communi-

cations security (New York, NY, USA, 2007), CCS ’07, ACM,

pp. 552–561.

[30] SIEFERS, J., TAN, G., AND MORRISETT, G. Robusta: Taming

the native beast of the JVM. In 17th ACM Conference on Com-

puter and Communications Security (CCS) (2010), pp. 201–211.

[31] SMALL, C. A tool for constructing safe extensible c++ systems.

In Proceedings of the 3rd conference on USENIX Conference on

Object-Oriented Technologies (COOTS) - Volume 3 (Berkeley,

CA, USA, 1997), COOTS’97, USENIX Association, pp. 13–13.

[32] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,

S. L. Efficient software-based fault isolation. In Proceedings of

the fourteenth ACM symposium on Operating systems principles

(New York, NY, USA, 1993), SOSP ’93, ACM, pp. 203–216.

[33] WANG, Z., AND JIANG, X. Hypersafe: A lightweight approach

to provide lifetime hypervisor control-flow integrity. In Pro-

ceedings of the 2010 IEEE Symposium on Security and Privacy

(Washington, DC, USA, 2010), SP ’10, IEEE Computer Society,

pp. 380–395.

[34] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Se-

curing untrusted code via compiler-agnostic binary rewriting. In

Proceedings of the 28th Annual Computer Security Applications

Conference (2012), pp. 299–308.

[35] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and

understanding bugs in c compilers. SIGPLAN Not. 46, 6 (June

2011), 283–294.

[36] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding

and understanding bugs in C compilers. In Proceedings of the

32nd ACM SIGPLAN conference on Programming language de-

sign and implementation (New York, NY, USA, 2011), PLDI ’11,

ACM, pp. 283–294.

[37] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,

ORM, T., OKASAKA, S., NARULA, N., FULLAGAR, N., AND

INC, G. Native client: A sandbox for portable, untrusted x86

native code. In In Proceedings of the 2007 IEEE Symposium on

Security and Privacy (2009).

[38] ZENG, B., TAN, G., AND MORRISETT, G. Combining control-

flow integrity and static analysis for efficient and validated data

sandboxing. In 18th ACM Conference on Computer and Commu-

nications Security (Oct. 2011), ACM.

Notes

1The name Strato comes from stratosphere, which is an intermedi-

ate layer of Earth’s atmosphere that contains ozone absorbing ultravio-

let light from the Sun.
2Return instructions are changed to a sequence of pop, check, and

indirect jump instructions to prevent a concurrent attacker from modi-

fying the stack after the check.
3eax is a caller-saved register and is dead at the entry to a function.

Furthermore, dead registers can be identified through liveness analysis
4In our implementation, bottom is 0 and top is the maximum un-

signed integer, which is 232 −1 for x86-32 and 264 −1 for x86-64.
5 Since the original CFI work, some versions of Intel and AMD

hardware changed the behavior of prefetch; it becomes more expen-

sive, since it pulls in TLB entries. As a result, choice of IDs used in

prefetch greatly affects its runtime cost.

14

USENIX Association 22nd USENIX Security Symposium 383

On the Security of Picture Gesture Authentication

Ziming Zhao†‡ Gail-Joon Ahn†‡ Jeong-Jin Seo† Hongxin Hu§

†Arizona State University ‡GFS Technology, Inc. §Delaware State University
{zzhao30,gahn,jseo15}@asu.edu hhu@desu.edu

Abstract
Computing devices with touch-screens have experi-

enced unprecedented growth in recent years. Such an
evolutionary advance has been facilitated by various ap-
plications that are heavily relying on multi-touch ges-
tures. In addition, picture gesture authentication has been
recently introduced as an alternative login experience to
text-based password on such devices. In particular, the
new Microsoft Windows 8TM operating system adopts
such an alternative authentication to complement tradi-
tional text-based authentication. In this paper, we present
an empirical analysis of picture gesture authentication on
more than 10,000 picture passwords collected from over
800 subjects through online user studies. Based on the
findings of our user studies, we also propose a novel at-
tack framework that is capable of cracking passwords on
previously unseen pictures in a picture gesture authen-
tication system. Our approach is based on the concept
of selection function that models users’ password selec-
tion processes. Our evaluation results show the proposed
approach could crack a considerable portion of collected
picture passwords under different settings.

1 Introduction

Using text-based passwords that include alphanumerics
and symbols on touch-screen devices is unwieldy and
time-consuming due to small-sized screens and the ab-
sence of physical keyboards. Consequently, mobile op-
erating systems, such as iOS and Android, integrate a
numeric PIN and a draw pattern as alternative authenti-
cation schemes to provide user-friendly login services.
However, the password spaces of these schemes are sig-
nificantly smaller than text-based passwords, rendering
them less secure and easy to break with some knowledge
of device owners [8].

All correspondences should be addressed to Dr. Gail-Joon Ahn at
gahn@asu.edu.

To bring a fast and fluid login experience on touch-
screen devices, the Windows 8TM operating system
comes with a picture password authentication system,
namely picture gesture authentication (PGA) [25], which
is also an instance of background draw-a-secret (BDAS)
schemes [18]. This new authentication mechanism hit
the market with miscellaneous computing devices in-
cluding personal computers and tablets. At the time of
writing, over 60 million Windows 8TM licenses have been
sold [21] and it is estimated that 400 million computers
and tablets will run Windows 8TM with this newly intro-
duced authentication scheme in one year [28]. Conse-
quently, it is imperative to examine and explore potential
attacks on picture gesture authentication in such a preva-
lent operating system for further understanding user ex-
periences and enhancing this commercially popular pic-
ture password system.

Many graphical password schemes–including
DAS [24], Face [9], Story [15], PassPoints [41] and
BDAS [18]–have been proposed in the past decade
(for more, please refer to [6, 7, 13, 14, 16, 23, 34, 37]).
Amongst these schemes, click-based schemes, such as
PassPoints, have attracted considerable attention and
some research has analyzed the patterns and predictable
characteristics shown in their passwords [12, 39]. Fur-
thermore, harvesting characteristics from passwords of
a target picture and exploiting hot-spots and geometric
patterns on the target picture have been proven effective
for attacking click-based schemes [17, 32, 38]. However,
PGA allows complex gestures other than a simple
click. Moreover, a new feature in PGA, autonomous
picture selection by users, makes it unrealistic to harvest
passwords from the target pictures for learning. In
other words, the target picture is previously unseen
to any attack models. All existing attack approaches
lack a generic knowledge representation of user choice
in password selection that should be abstracted from
specific pictures. The absence of this abstraction makes
existing attack approaches impossible or abysmal (if

384 22nd USENIX Security Symposium USENIX Association

possible) to work on previously unseen target pictures.
In this paper, we provide an empirical analysis of user

choice in PGA based on real-world usage data, show-
ing interesting findings on user choice in selecting back-
ground picture, gesture location, gesture order, and ges-
ture type. In addition, we propose a new attack frame-
work that represents and learns users’ password selec-
tion patterns from training datasets and generates ranked
password dictionaries for previously unseen target pic-
tures. To achieve this, it is imperative to build generic
knowledge of user choice from the abstraction of hot-
spots in pictures. The core of our framework is the con-
cept of a selection function that simulates users’ selection
processes in choosing their picture passwords. Our ap-
proach is not coupled with any specific pictures. Hence,
the generation of a ranked password list is then trans-
formed into the generation of a ranked selection function
list which is then executed on the target pictures. We
present two algorithms for generating the selection func-
tion list: one algorithm is to appropriately develop an op-
timal guessing strategy for a large-scale training dataset
and the other deals with the construction of high-quality
dictionaries even when the size of the training dataset is
small. We also discuss the implementation of our attack
framework over PGA, and evaluate the efficacy of our
proposed approach with the collected datasets.

The contributions of this paper are summarized as fol-
lows:

• We compile two datasets of PGA usage from user
studies2 and perform an empirical analysis on col-
lected data to understand user choice in background
picture, gesture location, gesture order, and gesture
type;

• We introduce the concept of a selection function
that abstracts and models users’ selection processes
when selecting their picture passwords. We demon-
strate how selection functions can be automatically
identified from training datasets; and

• We propose and implement a novel attack frame-
work which could be potentially redesigned as
a picture-password-strength meter for PGA. Our
evaluation results show that our approach cracked
48.8% passwords for previously unseen pictures in
one of our datasets and 24.0% in the other within
fewer than 219 guesses (the entire password space is
230.1).

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of picture gesture authentica-
tion. Section 3 discusses our empirical analysis on pic-
ture gesture authentication. In Section 4, we illustrate

2These datasets with the detailed information will be available at
http://sefcom.asu.edu/pga/.

our attack framework. Section 5 presents the implemen-
tation details and evaluation results of the proposed at-
tack framework. We discuss several research issues in
Section 6 followed by the related work in Section 7. Sec-
tion 8 concludes the paper.

2 Picture Gesture Authentication: An
Overview

Like other login systems, Windows 8TM PGA has two
independent phases, namely registration and authentica-
tion. In the registration stage, a user chooses a picture
from his or her local storage as the background. PGA
does not force users to choose pictures from a predefined
repository. Even though users may choose pictures from
common folders, such as the Picture Library folder
in Windows 8TM, the probability for different users to
choose an identical picture as the background for their
passwords is low. This phenomenon requires potential
attack approaches to have the ability to perform attacks
on previously unseen pictures. PGA then asks the user
to draw exactly three gestures on the picture with his or
her finger, mouse, stylus, or other input devices depend-
ing on the equipment he or she is using. A gesture could
be viewed as the cursor movements between a pair of
‘finger-down’ and ‘finger-up’ events. PGA does not al-
low free-style gestures, but only accepts tap (indicating
a location), line (connecting areas or highlighting paths),
and circle (enclosing areas) [29]. If the user draws a free-
style gesture, PGA will convert it to one of the three rec-
ognized gestures. For instance, a curve would be con-
verted to a line and a triangle or oval will be stored as a
circle. To record these gestures, PGA divides the longest
dimension of the background image into 100 segments
and the short dimension on the same scale to create a
grid, then stores the coordinates of the gestures. The line
and circle gestures are also associated with additional in-
formation such as directions of the finger movements.

Once a picture password is successfully registered,
the user may login the system by drawing correspond-
ing gestures instead of typing his or her text-based pass-
word. In other words, PGA first brings the background
image on the screen that the user chose in the registration
stage. Then, the user should reproduce the drawings he
or she set up as his or her password. PGA compares the
input gestures with the previously stored ones from the
registration stage. The comparison is not strictly rigid
but shows tolerance to some extent. If any of gesture
type, ordering, or directionality is wrong, the authenti-
cation fails. When they are all correct, an operation is
further taken to measure the distance between the input
password and the stored one. For tapping, the gesture
passes authentication if the predicate 12− d2 ≥ 0 satis-
fies, where d denotes the distance between the tap coordi-

2

USENIX Association 22nd USENIX Security Symposium 385

nates and the stored coordinates. The starting and ending
points of line gestures and the center of circle gestures
are measured with the same predicate [29].

The differences between PGA and the first BDAS
scheme proposed in [18] include: i) in PGA, a user up-
loads his or her picture as the background instead of
choosing one from a predefined picture repository; ii) a
user is only allowed to draw three specific types of ges-
tures in PGA, while BDAS takes any form of strokes.
The first difference makes PGA more secure than the pre-
vious scheme, because a password dictionary could only
be generated after the background picture is acquired.
However, the second characteristic reduces the theoret-
ical password space from its counterpart. Pace et al. [29]
quantified the size of the theoretical password space of
PGA which is 230.1 with current length-three configu-
ration in Windows 8TM. For more details, please refer
to [29].

3 An Empirical Analysis of Picture Ges-
ture Authentication

In this section, we present an empirical analysis on user
choice in PGA by analyzing data collected from our user
studies. Our empirical study is based on human cognitive
capabilities. Since human cognition of pictures is limited
in a similar way to their cognition of texts, the picture
passwords selected by users are probably constrained by
human cognitive limits which would be similar to the
ones in text-based passwords [42].

3.1 Experiment Design
For the empirical study, we developed a web-based PGA
system for conducting user studies. The developed sys-
tem resembles Windows 8TM PGA in terms of its work-
flow and appearance. The differences between our im-
plementation and Windows 8TM PGA include: i) our
system works with major browsers in desktop PCs and
tablets whereas Windows 8TM PGA is a stand-alone pro-
gram; ii) some information, such as the criterion for cir-
cle radius comparison, is not disclosed. In other words,
our implementation and Windows 8TM PGA differ in
some criteria (we regard radiuses the same if their dif-
ference is smaller than 6 segments in grid). In addition,
our developed system has a tutorial page that includes
a video clip educating how to use the system and a test
page on which users can practice gesture drawings.

Our study protocol, including the type of data we plan
to collect and the questionnaire we plan to use, was re-
viewed by our institution’s IRB. The questionnaire con-
sisted of four sections: i) general information of the sub-
ject (gender, age, level of education received, and race);
ii) general feeling toward PGA (is it easier to remem-
ber, faster to input, harder to guess, and easier to observe

than text-based password); iii) selection of background
picture (preferred picture type); and iv) selection of pass-
word (preferred gesture location and type).

We started user studies after receiving the IRB ap-
proval letter in August 2012 and compiled two datasets
from August 2012 to January 2013 using this system.
Dataset-1 was acquired from a testbed of picture pass-
word used by an undergraduate computer science class.
Dataset-2 was produced by advertising our studies in
schools of engineering and business in two universities
and Amazon’s Mechanical Turk crowdsourcing service
that has been used in security-related research work [26].
Turkers who had finished more than 50 tasks and had
an approval rate greater than 60% were qualified for our
user study.

For registration, subjects in Dataset-1 were asked to
provide their student IDs for a simple verification af-
ter which they were guided to upload a picture, regis-
ter a password and then use the password to access class
materials including slides, homework, assignments, and
projects. Subjects used this system for the Fall 2012
semester which lasted three and a half months at our
university. If subjects forgot their passwords during the
semester, they would inform the teaching assistant who
reset their passwords. Subjects were allowed to change
their passwords by clicking a change password link af-
ter login. There were 56 subjects involved in Dataset-1
resulting in 58 unique pictures, 86 registered passwords,
and 2,536 login attempts.

Instead of asking subjects to upload pictures for
Dataset-2, we chose 15 pictures (please refer to Ap-
pendix B for the pictures) in advance from the PAS-
CAL Visual Object Classes Challenge 2007 dataset [19].
We chose these pictures because they represent a diverse
range of pictures in terms of category (portrait, wedding,
party, bicycle, train, airplane and car) and complexity
(pictures with few and plentiful stand-out regions). Sub-
jects were asked to choose one password for each pic-
ture by pretending that it was protecting their bank in-
formation. The 15 pictures were presented to subjects in
a random order to reduce the dependency of password
selection upon the picture presentation order. 762 sub-
jects participated in the Dataset-2 collection resulting in
10,039 passwords. The number of passwords for each
picture in the Dataset-2 varies slightly, with an average
of 669, because some subjects quit the study without set-
ting up passwords for all pictures.

For both datasets, subjects were asked to finish the
aforementioned questionnaire to help us understand their
experiences. We collected 685 (33 for Dataset-1, 652 for
Dataset-2) copies of survey answers in total. According
to the demographic-related inquiries in the exit survey,
81.8% subjects in Dataset-1 are self-reported male and
63.6% are between 18 and 24 years old. While partic-

3

386 22nd USENIX Security Symposium USENIX Association

Table 1: Survey Question: Which of the following best
describes what you are considering when you choose lo-
cations to perform gestures?

Multi-choice Answers Dataset
1 2 Overall

I try to find locations where special
objects are.

24
(72.7%)

389
(59.6%)

413
(60.3%)

I try to find locations where some spe-
cial shapes are.

8
(24.2%)

143
(21.9%)

151
(22.1%)

I try to find locations where colors are
different from their surroundings.

0
(0%)

57
(8.7%)

57
(8.3%)

I randomly choose a location to
draw without thinking about the back-
ground picture.

1
(3.0%)

66
(10.1%)

67
(9.8%)

ipants in Dataset-2 are more diverse with 64.4% male,
37.2% among 18 to 24 years old, 45.4% among 25 - 34,
and 15.0% among 35 - 50. Even though the subjects in
our studies do not represent all possible demographics,
the data collected from them represents the most com-
prehensive PGA usage so far. Their tendencies could
provide us with significant insights into the user choice
in PGA.

3.2 Results
This section summarizes our empirical analysis on the
above-mentioned datasets by presenting five findings.

3.2.1 Finding 1: Relationship Between Background
Picture and User’s Identity, Personality, or In-
terests

We analyzed all unique pictures3 in Dataset-1, and
the background pictures chosen by subjects range from
celebrity to system screenshot. We categorize them into
six classes: i) people (27/58), ii) civilization (7/58),
iii) landscape (3/58), iv) computer-generated picture
(14/58), v) animals (6/58), and vi) others (1/58).

For the category of ‘people’, 6 pictures were catego-
rized as ‘me’; 12 pictures were subjects’ families; 4 were
pictures of subjects’ friends; and 5 were celebrities. The
analysis of answers to the survey question “Could you ex-
plain why you choose such types of pictures?” revealed
two opposite attitudes towards using picture of people.
The advocates for such pictures considered: i) it is more
friendly. e.g. “The image was special to me so I enjoy
seeing it when I log in”; ii) it is easier for remembering
passwords. e.g. “Marking points on a person is easier to
remember”; and iii) it makes password more secure. e.g.
“The picture is personal so it should be much harder for
someone to guess the password”. However, other partic-
ipants believed it may leak his or her identity or privacy.
e.g. “revealing myself or my family to anyone who picks
up the device”. They preferred other types of pictures

3Due to the confidentiality agreement with the subjects, we are not
able to share pictures that are marked having personally identifiable
information.

Table 2: Attributes of Most Frequently Used PoIs
Attributes # Gesture # Password # Subject

Eye 36 20 19
Nose 21 13 10

Hand/Finger 6 5 4
Jaw 5 3 3

Face (Head) 4 2 2

because “less personal if someone gets my picture” and
“landscape usually doesn’t have any information about
who you are”.

14 pictures in Dataset-1 could be categorized as
computer-generated pictures including computer game
posters, cartoons, and some geometrical graphs. 24.1%
(14/58) of such pictures were observed in Dataset-1 but
the survey results indicated 6.4% (42/652) of partici-
pants were in such a usage pattern in Dataset-2 based
on the following survey question: “Please indicate the
type of pictures you prefer to use as the background”.
We concluded the population characteristics (male, age
18-24, college students) in Dataset-1 were the major rea-
son behind this phenomenon. The answers to “Could
you explain why you choose such types of pictures?” in
Dataset-1 supported this conjecture: “computer game is
something I am interested [in] it” and “computer games
picture is personalized to my interests and enjoyable to
look at”.

It is obvious that pictures with personally identifiable
information may leak personal information. However, it
is less obvious that even pictures with no personally iden-
tifiable information may provide some clues which may
reveal the identity or persona of a device owner. Tra-
ditional text-based password does not have this concern
as long as the password is kept secure. Previous graph-
ical password schemes, such as Face and PassPoints, do
not have this concern either because pictures are selected
from a predefined repository.

3.2.2 Finding 2: Gestures on Points of Interest

The security of background draw-a-secret schemes
mostly relies on the location distribution of users’ ges-
tures. It is the most secure if the locations of users’
gestures follow a uniform distribution on any picture.
However, such passwords would be difficult to remem-
ber and may not be preferable by users. By analyz-
ing the collected passwords, we notice that subjects fre-
quently chose standout regions (points of interest, PoIs)
on which to draw. As shown in Table 1, only 9.8% sub-
jects claimed to choose locations randomly without car-
ing about the background picture. The observation is
supported by survey answers to “Could you explain the
way you choose locations to perform gestures?”: “If I
have to remember it; it [would] better stand out.” and
“Something that would make it easier to remember”.

Even though the theoretical password space of PGA is

4

USENIX Association 22nd USENIX Security Symposium 387

Table 3: Numbers of Gesture Type Combinations and Average Time Spent on Creating Them
3×t 3×l 3×c 2×t+l 2×t+c 2×l+t 2×l+c 2×c+t 2×c+l t+l+c

Dataset-1 # 60 3 0 9 1 7 1 0 0 5
Average Time (Seconds) 5.74 12.39 N/A 10.12 21.56 11.17 17.51 N/A N/A 11.22

Dataset-2 # 3438 1447 253 1211 380 1000 622 192 442 1054
Average Time (Seconds) 4.33 7.11 9.96 6.02 6.14 7.72 9.98 8.78 10.19 9.37

Table 4: Numbers of Gesture-order Patterns
H+ H- V+ V- DIAG Others

Dataset-1 43
50.0%

5
5.8%

16
18.6%

4
4.6%

22
25.5%

18
20.9%

Dataset-2 3144
31.3%

1303
12.9%

1479
14.7%

887
8.8%

2621
26.1%

3326
33.1%

larger than text-based passwords with the same length,
a background picture affects user choice in gesture loca-
tion, reducing the feasible password space tremendously.
We summarize three popular ways that subjects used to
identify standout regions: i) finding regions with objects.
e.g. “I chose eyes and other notable features” and “I
chose locations such as nose, mouth or whole face”; ii)
finding regions with remarkable shapes. e.g. “if there is
a circle there I would draw a circle around that”; and
iii) finding regions with outstanding colors. The detailed
distribution of these selection processes is shown in Ta-
ble 1. 60.3% of subjects prefer to find locations where
special objects catch their eyes while 22.1% of subjects
would rather draw on some special shapes.

3.2.3 Finding 3: Similarities Across Points of Inter-
est

We analyzed the attributes of PoIs that users preferred to
draw on. We paid more attention to the pictures of people
because it was the most popular category. In the 31 regis-
tered passwords for the 27 pictures of people uploaded by
22 subjects in Dataset-1, we analyzed the patterns of PoI
choice. As shown in Table 2, 36 gestures were drawn on
eyes and 21 gestures were drawn on noses. Other loca-
tions that attracted subjects to draw included hand/finger,
jaw, face (head), and ear. Interestingly, 19 subjects out of
22 (86.3%) drew on eyes at least once, while 10 subjects
(45.4%) performed gestures on noses. The tendencies
to choose similar PoIs by different subjects are common
in other picture categories as well. Figure 1 shows an-
other example where two subjects uploaded two versions
of Starry Night in Dataset-1. The passwords they chose
show strikingly similar patterns with three taps on stars,
even if there is no single gesture location overlap.

3.2.4 Finding 4: Directional Patterns in PGA Pass-
word

Salehi-Abari et al. [32] suggest many passwords in click-
based systems follow some directional patterns. We are
interested in whether PGA passwords show similar char-
acteristics. For simplicity, we consider the coordinates of
tap and circle gestures as their locations and the middle

Figure 1: Two Versions of Starry Night and Correspond-
ing Passwords

point of the starting and ending points of line as its loca-
tion. If the x or y coordinate of a gesture sequence fol-
lows a consistent direction regardless of the other coor-
dinate, we say the sequence follows a LINE pattern. We
divide LINE patterns into four categories: i) H+, denot-
ing left-to-right (xi ≤ xi+1); ii) H-, denoting right-to-left
(xi ≥ xi+1); iii) V+, denoting top-to-bottom (yi ≤ yi+1);
and iv) V-, denoting bottom-to-top (yi ≥ yi+1). If a se-
quence of gestures follows a horizontal pattern and a ver-
tical pattern at the same time, we say it follows a DIAG
pattern.

We examined the occurrence of each LINE and DIAG
pattern in the collected data. As shown in Table 4,
more than half passwords in both datasets exhibited some
LINE patterns, and a quarter of them exhibited some
DIAG patterns. Among four LINE patterns, H+ (drawing
from left to right) was the most popular one with 50.0%
and 31.3% occurrences in Dataset-1 and Dataset-2, re-
spectively. And, V+ (drawing from top to bottom) was
the second most popular with 18.6% and 14.7% occur-
rences in two datasets, respectively. This finding shows it
is reasonable to use gesture-order patterns as one heuris-
tic factor to prioritize generated passwords.

3.2.5 Finding 5: Time Disparity among Different
Combinations of Gesture Types

We analyzed all registered passwords to understand the
gesture patterns and the relationship between gesture
type and input time. For 86 registered passwords (258
gestures) in Dataset-1, 212 (82.1%) gesture types were
taps, 39 (15.1%) were lines, and only 7 (2.7%) were cir-
cles. However, the corresponding occurrences for 10,039
registered passwords (30,117 gestures) in Dataset-2 were
15,742 (52.2%), 10,292 (34.2%), and 4,083 (13.5%), re-
spectively. Obviously, subjects in Dataset-2 chose more
diverse gesture types than subjects in Dataset-1. As
shown in Table 3, there was a strong connection between
the time subjects spent on reproducing passwords and

5

388 22nd USENIX Security Symposium USENIX Association

the gesture types they chose. Three taps, the most com-
mon gesture combination, appeared in both datasets with
the lowest average time (5.74 seconds and 4.33 seconds
in corresponding dataset). On the other hand, the pass-
words with two circles and one line took the longest av-
erage input time (10.19 seconds in Dataset-2). In the
user studies, subjects in Dataset-2 were asked to set up
the passwords by pretending they were protecting their
bank information. However, subjects in Dataset-1 actu-
ally used these passwords to access the class materials
which they accessed more than four times a week on av-
erage. This may be a reason why subjects in Dataset-1
prefer passwords with simpler gesture type combinations
that are easier to reproduce in a timely manner.

4 Attack Framework

In this section, we present an attack framework on Win-
dows 8TM picture gesture authentication, leveraging the
findings addressed in Section 3. Our attack framework
takes the target picture’s PoIs, a set of learning pictures’
PoIs and corresponding password pairs as input, and pro-
duces a list of possible passwords, which is ranked in the
descending order of the password probabilities.

Next, we first discuss the attack models followed by
the representations of picture password and PoI. We then
illustrate the idea of a selection function and its auto-
matic identification. We also present two algorithms for
generating a selection function sequence list and describe
how it can generate picture password dictionaries for pre-
viously unseen target pictures.

4.1 Attack Models

Depending on the resources an attacker possesses, we ar-
ticulate three different attack models: i) Pure Brute-force
Attack: an attacker blindly guesses the picture password
without knowing any information of the background pic-
ture and the users’ tendencies. The password space in
this model is 230.1 in PGA [29]. ii) PoI-assisted Brute-
force Attack: an attacker assumes the user only performs
drawings on PoIs of the background picture and this
model randomly guesses passwords on identified PoIs.
The password space for a picture with 20 PoIs in this
model is 227.7 [29]. Salehi-Abari et al. [32] designed an
approach to automatically identify hot-spots in a picture
and generate passwords on them. iii) Knowledge-based
PoI-assisted Attack: in addition to the assumption for
PoI-assisted brute-force attack, an attacker ought to have
some knowledge about the password patterns learned
from collected picture and password pairs (not necessar-
ily from the target user or picture). The guessing space
in this model is the same as the one in PoI-assisted brute-
force attack. However, the generated dictionaries in this
model are ranked with the higher possibility passwords

on the top of the list.
Attack schemes could also be divided into two cate-

gories based on whether or not an attacker has the ability
to attack previously unseen pictures. The method pre-
sented in [32] is able to attack previously unseen pic-
tures for click-based graphical password. It uses click-
order heuristics to generate partially ranked dictionar-
ies. However, this approach cannot be applied directly to
background draw-a-secret schemes because the gestures
allowed in such schemes are much more complex and
the order-based heuristics could not capture users’ selec-
tion processes accurately. In contrast, our attack frame-
work could abstract generic knowledge of user choice
in picture password schemes. In addition, as a working
knowledge-based PoI-assisted model, it is able to gener-
ate ranked dictionaries for previously unseen pictures.

4.2 Password and PoI Representations

We first formalize the representation of a password in
PGA with the definition of a location-dependent gesture
which represents a single gesture on some locations in a
picture.

Definition 1 A location-dependent gesture (LdG) de-
noted as π is a 7-tuple ⟨g,x1,y1,x2,y2,r,d⟩ that consists
of gesture’s type, location, and other attributes.

In this definition, g denotes the type of LdG that must
be one of tap, line, and circle. A tap LdG is further rep-
resented by the coordinates of a gesture ⟨x1,y1⟩. A line
LdG is denoted by the coordinates of the starting and
ending points of a gesture ⟨x1,y1⟩ and ⟨x2,y2⟩. A circle
LdG is denoted by the coordinates of its center ⟨x1,y1⟩,
radius r, and direction d ∈{+,−} (clockwise or not). We
define the password space of location-dependent gesture
as Π = Πtap

∪
Πline

∪
Πcircle. A valid PGA password is

a length-three sequence of LdGs denoted as π⃗ , and the
PGA password space could be denoted as Π⃗.

A point of interest is a standout region in a picture.
PoIs could be regions with semantic-rich meanings,
such as face (head), eye, car, clock, etc. Also, they
could stand out in terms of their shapes (line, rectangle,
circle, etc.) or colors (red, green, blue, etc.). We
denote a PoI by the coordinates of its circumscribed
rectangle and some describing attributes. A PoI is a
5-tuple ⟨x1,y1,x2,y2,D⟩, where ⟨x1,y1⟩ and ⟨x2,y2⟩
are the coordinates of the top-left and bottom-right
points of the circumscribed rectangle, and D ⊆ 2D

is a set of attributes that describe this PoI. D has
three sub-categories Do,Ds and Dc and four wildcards
∗o,∗s,∗c, and ∗, where Do = {head, eye, nose, ...},
Ds = {line, rectangle, circle, ...}, and Dc =
{red, blue, yellow, ...}. Wildcards are used when
no specific information is available. For example, if a
PoI is identified with objectness measure [3] that gives

6

USENIX Association 22nd USENIX Security Symposium 389

LdGSF 1: Circle a head
i.e., (circle, {head}, Ф)

LdGSF 2: Line two noses
i.e., (line, {nose}, {nose})

LdGSF 3: Tap a nose
i.e., (tap, {nose}, Ф)

Gesture 1: Circle my father’s head

Gesture 2: Connect my little
sister’s nose to my older sister’s
nose

Gesture 3: Tap my mother’s nose

(a) (b) (c)

Figure 2: (a) Background picture and password (b)
User’s selection processes that were taken from [30]
(c) Corresponding LdGSFs that simulate user’s selection
processes

no semantics about the identified region, we mark the
PoI’s describing attribute as ∗.

4.3 Location-dependent Gesture Selection
Functions

A key concept in our framework is the location-
dependent gesture selection function (LdGSF) which
models and simulates the ways of thinking that users go
through when they select a gesture on a picture. The
motivation behind this abstraction is that the set of PoIs
and their locations differ from picture to picture, but the
ways that users think to choose locations for drawing a
gesture exhibit certain patterns. This conjecture is sup-
ported by our observations from collected data and sur-
veys discussed in Section 3. With the help of LdGSF,
the PoIs and corresponding passwords in training pic-
tures are used to generalize picture-independent knowl-
edge that describes how users choose passwords.

Definition 2 A location-dependent gesture selection
function (LdGSF) is a mapping s : G×2D ×2D ×Θ→ 2Π

which takes a gesture, two sets of PoI attributes, and a set
of PoIs in the learning picture as input to produce a set
of location-dependent gestures.

The universal set of LdGSF is defined as S. A
length-three sequence of LdGSF is denoted as s⃗, and a
set of length-three LdGSF sequences is denoted as S⃗.
s(tap,{red,apple},∅,θk) is interpreted as ‘tap a red ap-
ple in the picture pk’ and s(circle,{head},∅,θk) as ‘cir-
cle a head in pk’. Note that, no specific information of
the locations of ‘red apple’ and ‘head’ is provided here
which makes the representations independent from ac-
tual locations of objects in the picture.

One challenge we face is some PoIs may be big
enough to take several unique gestures. Let us consider
a picture with a big car image in it. Simply saying ‘tap
a car’ could result in lots of distinct tap gestures in the
circumscribed rectangle of the car. One solution to this
problem is to divide the circumscribed rectangle into a
grid with the scale of toleration threshold. However, this
solution would result in too many password entries in
the generated dictionary. For simplicity, we introduce
five inner points for one PoI, namely center, top, bot-
tom, left, and right that denote the center of the PoI and

LdG 1: <circle, 33, 15, 0, 0, 9, >

LdG 2: <line, 54, 34, 79, 27, 0, 0>

LdG 3: <tap, 16, 35, 0, 0, 0, 0>

PoI 1: <4, 23, 21, 46, {head}>
PoI 2: <23, 3, 43, 28, {head}>
PoI 3: <46, 19, 63, 43, {head}>
PoI 4: <71, 12, 90, 35, {head}>
PoI 5: <13, 33, 18, 37, {nose}>
PoI 6: <32, 17, 34, 19, {nose}>
PoI 7: <51, 31, 56, 35, {nose}>
PoI 8: <76, 24, 81, 28, {nose}>

 ...

(a) (b) (c)

Figure 3: (a) Background picture and identified PoIs (b)
Identified PoIs (c) Password representations (Colors are
used to indicate the connections between the PoIs in (b)
and LdGs in (c))

four points of the center of two consecutive corners. Any
gesture that falls into the proximities of these five points
of a PoI would be considered as an action on this PoI.
For some PoIs that are big enough to take an inner line
gesture, we put ∅ as the input of the second set of PoI
attributes. s(line,{mouth},∅,θk) denotes ‘line from the
left(right) to the right(left) on the same mouth’. While,
s(line,{mouth},{mouth},θk) means ‘connect two dif-
ferent mouths’.

Figure 2 shows an example demonstrating how
LdGSF simulates a user’s selection processes that were
taken from [30]. In reality, a user’s selection process on
a PoI and gesture selection may be determined by some
subjective knowledge and cognition. For example, ‘cir-
cle my father’s head’ and ‘tap my mother’s nose’ may
involve some undecidable computing problems. One so-
lution to handle this issue is to approximate subjective
selection processes in objective ways by including some
modifiers. ‘circle my father’s head’ may be transformed
into ‘circle the uppermost head’ or ‘circle the biggest
head’. However, it is extremely difficult, if not impossi-
ble, to accurately approximate subjective selection pro-
cesses in this way, and it may bring serious over-fitting
problems in the learning stage. Instead, we choose to
ignore subjective information by abstracting ‘circle my
father’s head’ to ‘circle a head’. A drawback of this
abstraction is that an LdGSF may return more than one
LdG and we have no knowledge to rank them directly, as
they come from the same LdGSF. Using Figure 2(a) as
an example, ‘circle a head’ outputs four different LdGs
on each head in the picture. The LdGSF sequence shown
in Figure 2(c) generates 4×(4×3)×4= 192 passwords.
To cope with this issue, we use gesture-order to rank
the passwords generated by the same LdGSF sequence
that will be detailed in Section 4.5. Next, we present an
automated approach to extract users’ selection processes
from the collected data and represent them with LdGSFs.

Figure 3 shows an example demonstrating that how
to extract users’ selection processes from PoIs automat-
ically. First, PoIs in the background picture are iden-
tified using mature computer vision techniques such as
object detection, feature detection and objectness mea-
sure. Then, each LdG in a password is compared with

7

390 22nd USENIX Security Symposium USENIX Association

PoIs based on their coordinates and sizes. If a match be-
tween PoIs and LdGs is found, a new LdGSF is created
as the combination of the LdG’s gesture type and PoI’s
attributes. For instance, the location and size of LdG 1 in
Figure 3(c) matches PoI 2 in Figure 3(b) (the locations
of the circle gesture and PoI center are compared first;
then, the radius of the circle is compared with 1/2 of PoI’s
height and width). Then, an LdGSF s(circle,{head},∅)
is created which is equivalent to the LdG shown in Fig-
ure 2(c).

To choose a password in PGA, the user selects a
length-three LdGSF sequence. With the definition of
LdGSF, the generation of ranked password list is simpli-
fied into the generation of the ranked LdGSF sequence
list. Let order: S⃗ → {1..|⃗S|} be a bijection which indi-
cates the order LdGSF sequences should be performed.
The objective of generating ranked LdGSF sequence list
is to find such a bijection.

4.4 LdGSF Sequence List Generation and
Ordering

Now we present our approach to find the aforementioned
bijection that indicates the order that the LdGSF se-
quences should be performed on a target picture for gen-
erating the password dictionary. Our framework is not
dependent on certain rules, but is adaptive to the tenden-
cies shown by users who participate in the training set.
The characteristic of adaptiveness helps our framework
generate dedicated guessing paths for different training
data. Next, we present two algorithms for obtaining such
a feature.

4.4.1 BestCover LdGSF Sequence List Generation

We first propose an LdGSF sequence list genera-
tion algorithm named BestCover that is derived from
Bemts [44]. The objective of BestCover LdGSF se-
quence list generation is to optimize the guessing order
for the sequences in the list by minimizing the expected
number of sequences that need to be tested on a random
choice of picture in the training dataset.

The problem is formalized as follows: Instance: The
collection of LdGSF sequences s⃗1, ..., s⃗n and correspond-
ing picture password π⃗1,...,π⃗n, for which s⃗i(θi) ∋ π⃗i, i ∈
{1..n} and θ1, ..,θn are the sets of PoIs in pictures
p1, .., pn. Question: Expected Min Selection Search
(emss): The objective is to find order so as to minimize
E(min{i : s⃗i(θr) ∋ π⃗r}, where s⃗i = order−1(i) and the
expectation is taken with respect to a random choice of
r ←{1..n}.

The hardness of this problem is that different LdGSFs
and LdGSF sequences may generate the same list of
LdGs and passwords. For instance, ‘tap a red object’
and ‘tap an apple’ turn out the same result on a picture

in which there is a red apple. An overlap in different
LdGSF results is similar to the coverage characteristics
in the set cover problem. We can prove the NP-hardness
of emss by reducing from emts [44]. Due to space lim-
itations, we omit the corresponding proof. We give an
approximation algorithm for emss in Algorithm 1 that is
a modification from Bmssc [20]. The time complexity of
BestCover is O(n2 + |⃗S′|log(|⃗S′|)).
Algorithm 1: BestCover((s⃗1, .., s⃗n),(π⃗1,...,π⃗n))

for i = 1..n do
T⃗si ←{k : s⃗i(θk) ∋ π⃗k};

end
S⃗′ ← {⃗s : |T⃗s|> 0};
for i = 1..|S⃗′| do

order−1(i)← s⃗k, that Ts⃗k has most elements that are not
included in

∪
i′<iorder

−1(i′);
end
return order

BestCover is good for a training dataset that consists
of comprehensive and large scale password samples, be-
cause it assumes the target passwords exhibit same or at
least very similar distributions to the training data. How-
ever, if the training dataset is small and biased, the results
from BestCover may over-fit the training data and fail in
testing data.

4.4.2 Unbiased LdGSF Sequence List Generation

The over-fitting problem in BestCover is brought about
by the biased PoI attribute distributions in training data.
For example, we have a training set with 9 pictures of
apples and 1 picture of a car, and 5 corresponding pass-
words have circles on apples and 1 has a circle on car. In
the generated LdGSF sequence list, BestCover will put
sequences with ‘circle an apple’ prior to the ones with
‘circle a car’, because the former ones have an LdGSF
that was used in more passwords. However, we can see
the probability for users to circle car (1/1) is higher than
apples (5/9) if we consider the occurrences of apple and
car in pictures.

Unbiased LdGSF sequence list generation copes with
this issue by considering the PoI attribute distributions. It
removes the biases from the training dataset by normal-
izing the occurrences of LdGSFs with the occurrences of
their corresponding PoIs. Let Ds⃗k ⊆ θ denote the event
that θ contains enough PoIs that have attributes specified
in s⃗k. If a PoI with a specific type of attributes does not
exist in a picture, the probability that a user select the PoI
with such an attribute on this picture to draw a password
is 0, denoted as Pr(s⃗k|Ds⃗k ⊆ θ)= 0, e.g. a user would not
think and perform ‘tap a red apple’ on a picture without
the existence of the red apple. We assume each LdGSF
in a sequence is independent of each other and approxi-
mately compute Pr(s⃗k|Ds⃗k ⊆ θ) with Equation 1.

8

USENIX Association 22nd USENIX Security Symposium 391

Pr(s⃗k|Ds⃗k ⊆ θ)
= Pr(s1s2s3|Ds1 ⊆ θ ∧Ds2 ⊆ θ ∧Ds3 ⊆ θ)
= Pr(s1|Ds1 ⊆ θ)×Pr(s2|Ds2 ⊆ θ)×Pr(s3|Ds3 ⊆ θ)

(1)

For each si ∈ S, we compute Pr(si|Dsi ⊆ θ) with Equa-
tion 2:

Pr(si|Dsi ⊆ θ) =
∑n

j=1 count(Dsi , π⃗ j)

∑n
j=1 count(Dsi ,θ j)

(2)

where ∑n
j=1 count(Dsi , π⃗ j) denotes the number of LdGs

in passwords of the training set that share the same
attributes with si, and ∑n

j=1 count(Dsi ,θ j) denotes the
number of PoIs in the training set that share the same
attributes with si. Pr(si|Dsi ⊆ θ) describes the probabil-
ity of using a certain LdGSF when there are enough PoIs
with the required attributes.

The Unbiased algorithm generates an LdGSF se-
quence list by ranking Pr(s⃗k|Ds⃗k ⊆ θ) instead of Pr(s⃗k)
in descending order as shown in Algorithm 2. The time
complexity of Unbiased is O(n|S|+ |⃗S|log(|⃗S|)). The Un-
biased algorithm would be better for the scenarios where
fewer samples are available or samples are highly biased.

Algorithm 2: Unbiased(S)

for s ∈ S do
Compute Pr(s|Ds ⊆ θ) with Equation 2;

end
for s⃗ ∈ S⃗ do

Compute Pr(⃗s|Ds⃗ ⊆ θ) with Equation 1;
end
for i = 1..|⃗S| do

order−1(i)← s⃗k, that Pr(s⃗k|Ds⃗k ⊆ θ) holds the i-th position
in the descending ordered Pr(⃗s|Ds⃗ ⊆ θ) list;

end
return order

4.5 Password Dictionary Generation
The last step in our attack framework is to generate the
password dictionary for a previously unseen target pic-
ture. First, the PoIs in the previously unseen picture are
identified. Then, a dictionary is acquired by applying
the LdGSF sequences on the PoIs, following the order
created by the BestCover or Unbiased algorithm. Obvi-
ously, the passwords generated by an LdGSF sequence
that holds a higher position in the LdGSF sequence list
will also be in higher positions in the dictionary. How-
ever, as addressed earlier, BestCover and Unbiased al-
gorithms do not provide extra information to rank the
passwords generated by the same LdGSF sequence. In-
spired by using the click-order patterns as the heuris-
tics for dictionary generation [32], we propose to rank

such passwords generated by the same LdGSF sequence
with gesture-orders. In the training stage, we record the
gesture-order occurrence of each LINE and DIAG pat-
tern and rank the patterns in descending order. In the
attack stage, for the passwords generated by the same
LdGSF sequence, we reorder them with their gesture-
orders in the order of LINE and DIAG patterns. Pass-
words that do not belong to any LINE or DIAG pattern
hold lower positions.

5 Implementation and Evaluation
5.1 PoI Identification

We chose OpenCV [1] as the computer vision framework
for our implementation and collected several feature de-
tection tools for automatically identifying PoIs in back-
ground pictures. The computer vision techniques we
adopted include: i) object detection: the goal of object
detection is to find the locations and sizes of semantic
objects of a certain class in a digital image. Viola-Jones
object detection framework [40] is the first computation-
ally affordable online object detection framework that
utilizes Haar-like features instead of image intensities.
Each learned classifier is represented and stored as a haar
cascade. We collected 30 proven haar cascades from [31]
for 8 different object classes including face (head), eye,
nose, mouth, ear, head, body, and clock. ii) low-level fea-
ture detection: due to the high positive and high negative
rates of object detection, we also resorted to some low-
level feature detection algorithms that identify standout
regions without extracting semantics. To identify regions
whose colors are different from their surroundings, we
first converted the color pictures to black and white, then
found the contours using algorithms in [35]. For the
circle detection, we used Canny edge detector [10] and
Hough transform algorithms [5]. iii) objectness mea-
sure: objectness measure [3] deals with class-generic
object detection. Different from detecting objects in a
specific class, the objectness measure finds the locations
and sizes of class-generic objects whose colors and tex-
tures are opposed to the background images. Objectness
measure could be considered as a technique combining
several low-level feature detectors together. We used an
objectness measure library from [2] that is able to locate
objects and give numerical confidence values with its re-
sults.

Figure 4 displays the PoI detection results on four
example pictures in Dataset-2. As we can see in Fig-
ure 4(b), circle detection could identify both bicycle
wheels and car badge, but its false positive rate is a lit-
tle high. Contour detection is the most robust algorithm
with a low false positive rate which could locate regions
whose colors are different as shown in Figure 4(c). Ob-
jectness measure shown in Figure 4(d) could also iden-

9

392 22nd USENIX Security Symposium USENIX Association

Figure 4: PoI Identification on Example Pictures in
Dataset-2: (a) Original pictures (b) Circle detection with
Hough transform (c) Contour detection (d) Objectness
measure (e) Object detection

tify regions whose colors and textures are different from
their surroundings. Since most haar cascades we used
are designed for facial landmarks, they work smoothly
on portraits as does the second picture in Figure 4(e).
However, the results show relatively high false positive
rates on pictures from other categories. In order to iden-
tify more PoIs as accurate as possible, our approach in
PoI identification leveraged two steps. In the first step,
all possible PoIs were identified using different kinds of
tools. In the second step, we examined all identified PoIs
and removed duplicates by comparing their locations,
sizes and attributes. Then, our approach generated a PoI
set called P1

A-40 and P2
A-40 for each picture in Dataset-1

and Dataset-2, respectively. Those PoI sets consisted of
at most 40 PoIs with the highest confidences.

Since our attack algorithms are independent from the
PoI identification algorithms, we are also interested in
examining how our attack framework performs with
ideal PoI annotations for pictures. Besides using the au-
tomated PoI identification techniques, we manually an-
notated pictures in Dataset-2 for some outstanding PoIs
as well. To annotate the pictures, we simply recorded the
locations and attributes of at most fifteen most appealing
regions in the pictures without referring to any password
in the collected dataset. We call this annotated PoI set
P2

L-15.

5.2 Attack Evaluation

Offline Attacks. Due to the introduction of a tolerance
threshold, picture passwords may be more difficult to
store securely compared with text-based passwords that
are normally saved after salted hashing. Even though the
approach that Windows 8TM is adopting to store picture
passwords remains undisclosed, we could consider two
attack scenarios where picture passwords are prone to
offline attacks. In the first scenario, all passwords which
fall into the vicinity (defined by the threshold) of cho-
sen passwords could be stored in a file with salted hashes
for comparison. An attacker who has access to this file

0 2 4 6 8 10 12 14 16 18
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed

BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

BestCover P1
A−40

Unbiased P1
A−40

(a)

0 2 4 6 8 10 12 14 16 18
 0%

10%

20%

30%

40%

50%

60%

70%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f L
dG

s
C

ra
ck

ed BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

BestCover P1
A−40

Unbiased P1
A−40

(b)

Figure 5: (a) Percentage of passwords cracked vs. num-
ber of password guesses, per condition. (b) Percentage
of LdGs cracked vs. number of password guesses, per
condition. For Dataset-1, there are 86 passwords that
include 258 LdGs. For Dataset-2, there are 10,039 pass-
words that have 30,117 LdGs.

could perform offline dictionary attacks like cracking
text-based password systems. In the second scenario,
picture passwords could be used for other purposes be-
sides logging into Windows 8TM, where no constraint on
the number of attempts is enforced. For example, a reg-
istered picture password could be transformed and used
as a key to encrypt a file. An attacker who acquires the
encrypted file would like to perform an offline attack.

In order to attack passwords from a previously unseen
picture, the training dataset excluded passwords from the
target picture. More specifically, to evaluate Dataset-1
(58 unique pictures), we used passwords from 57 pic-
tures as the training data and attacked the passwords for
the last picture. To evaluate Dataset-2 (15 unique pic-
tures), we used passwords for 14 pictures as training
data, learned the patterns exhibited in the training data,
and generated a password dictionary for the last picture.
The same process was carried out 58 and 15 times for
Dataset-1 and Dataset-2, respectively, in which the tar-
get picture was different in each round. The size of the
dictionary was set as 219 which is 11-bit smaller than the
theoretical password space. We compared all collected
passwords for the target picture with the generated dic-
tionary for the picture, and recorded the number of pass-
word guesses.

The offline attack results within 219 guesses in differ-
ent settings are shown in Figure 5. There are 86 pass-
words in Dataset-1, which have a total of 258 LdGs.

10

USENIX Association 22nd USENIX Security Symposium 393

0 2 4 6 8 10 12 14 16 18
 0%

 5%

10%

15%

20%

25%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed
BestCover P2

A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(a)

0 2 4 6 8 10 12 14 16 18
 0%

10%

20%

30%

40%

50%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f L
dG

s
C

ra
ck

ed BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(b)

Figure 6: (a) Percentage of passwords cracked vs. num-
ber of password guesses, per condition. (b) Percentage of
LdGs cracked vs. number of password guesses, per con-
dition. Only the first chosen password by each subject in
Dataset-2 was considered. There are 762 passwords that
have 2,286 LdGs.

And 10,039 passwords were collected in Dataset-2, con-
taining a total of 30,117 LdGs. For Dataset-1, Best-
Cover cracks 42 (48.8%) passwords out of 86 while Un-
biased cracks 40 (46.5%) passwords for the same dataset
with P1

A-40. For Dataset-1, 178 LdGs (68.9%) out of
258 are cracked with Unbiased and 171 (66.2%) are bro-
ken with BestCover. On the other hand, Unbiased with
P2

L-15 breaks 2,953 passwords (29.4%) out of 10,039 for
Dataset-2. This implies Unbiased with P2

A-40 cracking
2,418 passwords (24.0%) is the best result for all purely
automated attacks on Dataset-2. As Figure 5 suggests,
BestCover outperforms Unbiased slightly when ample
training data is available. The better performance of both
algorithms on Dataset-1 is because the password gesture
combinations in Dataset-1 are relatively simpler than the
ones in Dataset-2 as we discussed in Section 3.2.5.

In Dataset-2, subjects may not choose all 15 pass-
words with the same care as they were eager to finish
the process. To reduce this effect, we ran another analy-
sis in which only the first chosen password by each sub-
ject was considered. There are 762 passwords that have
2,286 LdGs. Like previous analysis, the training dataset
excluded passwords from the target picture. As shown in
Figure 6, results of this analysis are not as good as pre-
vious ones. Unbiased with P2

L-15 breaks 160 passwords
(21.0%) out of 762. Unbiased with P2

A-40 cracking 123
passwords (16.1%). BestCover cracks 108 (14.2%) and
116 (15.2%) with P2

L-15 and P2
A-40, respectively.

0 2 4 6 8 10 12 14 16 18
 0%

 5%

10%

15%

20%

25%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed

BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(a)

0 2 4 6 8 10 12 14 16 18
 0%

10%

20%

30%

40%

50%

Number of Password Guesses (Log−2 Scale)

Pe
rc

en
ta

ge
 o

f L
dG

s
C

ra
ck

ed BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(b)

Figure 7: (a) Percentage of passwords cracked vs. num-
ber of password guesses, per condition. (b) Percentage of
LdGs cracked vs. number of password guesses, per con-
dition. Only passwords for pictures 243, 1116, 2057,
4054, 6467, and 9899 were considered. There are 4,003
passwords that have 12,009 LdGs.

Since some pictures in Dataset-2 are similar, we ran an
additional analysis in which only passwords for pictures
243 (airplane), 1116 (portrait), 2057 (car), 4054 (wed-
ding), 6467 (bicycle), and 9899 (dog) were considered.
There are 4,003 passwords that have 12,009 LdGs. Un-
biased with P2

L-15 breaks 1,147 passwords (28.6%) while
803 passwords (20.1%) are cracked by Unbiased with
P2

A-40. BestCover cracks 829 (20.7%) and 875 (21.8%)
with P2

L-15 and P2
A-40 respectively. Results of this anal-

ysis are not as good as results with passwords from all
pictures.

Online Attacks. The current Windows 8TM allows
five failure attempts before it forces users to enter their
text-based passwords. Therefore, breaking a password
under five guesses implies the feasibility for launching
an online attack. Figure 8 shows a refined view of the
number of passwords and LdGs cracked with the first
five guesses per condition. Purely automated attack Un-
biased with P2

A-40 breaks 83 passwords (0.8%) with the
first guess and cracks 94 passwords (0.9%) within the
first five guesses, while BestCover with P2

A-40 cracked
20 passwords (0.2%) for the first guess and 38 pass-
words (0.4%) within five guesses. Additionally, Unbi-
ased with P2

A-40 breaks 1,723 LdGs (5.7%) with the first
guess. With the help of manually labeled PoI set P2

L-15,
the results are even better. For example, Unbiased breaks
195 passwords (1.9%) for the first guess and 266 (2.6%)
within the first five guesses. In the meantime, Unbi-

11

394 22nd USENIX Security Symposium USENIX Association

1 2 3
0

50

100

150

200

250

300

350

400

450

500

Number of Password Guesses

N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(a)

1 2 3
0

1000

2000

3000

4000

5000

6000

7000

Number of Password Guesses

N
um

be
r o

f L
dG

s
C

ra
ck

ed

BestCover P2
A−40

BestCover P2
L−15

Unbiased P2
A−40

Unbiased P2
L−15

(b)

Figure 8: (a) Number of passwords cracked within five
guesses, per condition. (b) Number of LdGs cracked
within five guesses, per condition.

0

500

1000

1500

2000

2500

BestCover Unbiased

A
ve

ra
ge

 N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed

60
600
~9400

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

BestCover Unbiased

A
ve

ra
ge

 N
um

be
r o

f L
dG

s
C

ra
ck

ed

60
600
~9400

(b)

Figure 9: (a) Average number of passwords cracked vs.
different training data sizes. (b) Average number of LdGs
cracked vs. different training data sizes. P2

A-40 is used for
this analysis. Average over 3 analyses, with one standard
deviation shown.

ased with P2
L-15 breaks 3,022 LdGs (10.0%) with the first

guess and 4,090 LdGs (13.5%) with five guesses.
Effects of Training Data Size. In Figure 9, we show

the password and LdG cracking results with different
sizes of training datasets. For each algorithm, we used
P2

A-40 as the PoI set and performed three analyses with 60,
600, and all available passwords (about 9,400) as train-
ing data, respectively. The sizes of 60 and 600 represent
two cases: i) a training set (60) is ten times smaller than
the target set (about 669); and ii) a training set (600) is
almost the same size as the target set (about 669). For
training datasets with the sizes of 60 and 600, we ran-
domly selected these training passwords and performed
each analysis three times to get the averages and standard
deviations.

As Figure 9 shows, BestCover with 60 training sam-
ples could only break an average of 888 passwords
(8.8%) out of 10,039. And the standard deviation is as
strong as 673. While Unbiased with 60 training sam-
ples can crack 2,352 passwords (23.4%) that is almost
the same as the results generated from all available train-
ing samples. Also, the standard deviation for three trials
is as low as 62. The results from BestCover with 600
training samples are much better than the counterparts
with 60 training samples. All these observations are ex-
pected as Unbiased could eliminate the biases considered

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Number of Password Guesses (Log−2 Scale)

N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed 243.jpg
316.jpg

(a)

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Number of Password Guesses (Log−2 Scale)

N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed

1116.jpg
7628.jpg

(b)

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Number of Password Guesses (Log−2 Scale)

N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed 1358.jpg
3026.jpg
3731.jpg
4054.jpg
5570.jpg

(c)

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Number of Password Guesses (Log−2 Scale)

N
um

be
r o

f P
as

sw
or

ds
 C

ra
ck

ed

2057.jpg
2840.jpg
6412.jpg
6467.jpg

(d)
Figure 10: (a) pictures with fewer PoIs (b) portraits (c)
pictures with people in them (d) pictures with lots of
PoIs. Unbiased algorithm on P2

A-40 is used for this analy-
sis. (Please refer to Appendix B for the pictures).

in BestCover. The results clearly demonstrate the benefit
of using the Unbiased algorithm when a training dataset
is small.

Effects on Different Picture Categories. We mea-
sured the attack results on different picture categories
as shown in Figure 10 where each subfigure depicts the
number of passwords cracked versus the number of pass-
word guesses. Each curve in a subfigure corresponds to
a picture as shown in the legend. Our approach cracks
more passwords for a picture, if the curve is skewed up-
ward. And the cracking is faster (with fewer guesses), if
the curve is leaned toward the left.

Figure 10(a) provides a view of the attack results on
target pictures 243 and 316, each of which has only one
airplane flying in the sky. Fewer PoIs in these two pic-
tures make subjects choose more similar passwords. Un-
biased with P2

A-40 breaks 261 passwords (39.0%) for the
picture 243 and 209 (31.2%) for the picture 316. The
cracking success rates are much higher than the average
success rate in Dataset-2 under the same condition. Note
that the size of generated dictionaries for these two pic-
tures are smaller than 219 due to the number of available
PoIs.

In Figure 10(b), we show the results on two portrait
pictures where Unbiased with P2

A-40 cracks 389 pass-
words (29.0%) for both in total. The attack success rate is
much higher than the average success rate in Dataset-2.
This is due to the fact that state-of-the-art computer vi-
sion algorithms work well on facial landmarks and sub-
jects’ tendencies of drawing on these features are high.
The results show that passwords on simple pictures with
fewer PoIs or portraits, for which state-of-the-art com-

12

USENIX Association 22nd USENIX Security Symposium 395

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
2

L-15
P

2

A-40

Av
er

ag
e

R
un

tim
e

Ordering LdGSF sequences
Generating password dictionary

(a) BestCover algorithm

0

2

4

6

8

10

12

14

16

18

20

P
2

L-15
P

2

A-40

Av
er

ag
e

R
un

tim
e Ordering LdGSF sequences

Generating password dictionary

(b) Unbiased algorithm

Figure 11: Average runtime in seconds to order LdGSF
sequences using BestCover and Unbiased. Average over
15 pictures in Dataset-2 with one standard deviation
shown.
puter vision techniques could detect PoIs with high ac-
curacy, are easier for attackers to break.

Figure 10(c) shows the attack results on 5 pictures of
people. Some of these pictures only have very small fig-
ures of people and others have larger figures but not big
enough to be considered as a portrait. Unbiased with
P2

A-40 cracks 726 passwords (21.7%) for these 5 pictures
in total, which is lower than the average success rate in
Dataset-2.

Figure 10(d) shows the attack results on 4 miscella-
neous pictures, two of which are bicycle pictures and the
other two are car pictures. The picture, 6412.jpg, has
a bicycle leaning against the wall. Different colors on
the bicycle and wall in this picture make it cluttered and
have lots of PoIs. Unbiased with P2

A-40 only cracks 68
passwords (10.1%) for this picture. However, Unbiased
with P2

A-40 cracked 458 (17.1%) for all 4 pictures.
Performance. We also evaluated the performance of

our attack approach. Our analyses were carried out on
a computer with dual-core processor and 4GB of RAM.
In Figure 11, we show the average runtime for our algo-
rithms to order the LdGSF sequences and generate dic-
tionary for a picture in Dataset-2. Each bar represents the
average time in seconds over 15 pictures with the stan-
dard deviation using different algorithms and PoI sets.
The results show that BestCover is much faster than Un-
biased under the same condition. The average runtime
for BestCover on P2

A-40 to order LdGSF sequences is only
0.06 seconds and to generate a dictionary is 2.68 seconds,
while Unbiased spends 18.36 and 3.96 seconds, respec-
tively. As we analyzed in Section 4.4, such a difference
is caused by the complexity of each algorithm. With such
a prompt response, BestCover could be used for online
queries.

6 Discussion

6.1 Picture-Password-Strength Meter

Our framework could enhance the security of PGA so it
would eventually protect users and their devices by pro-

viding a picture-password-strength meter. One way to
help users choose secure passwords is to enforce some
composition policies, such as ‘three taps are not al-
lowed’. However, a recent effort [26] on text-based pass-
word found that rule-based password compositions are
ineffective because they can allow weak passwords and
reject strong ones. The cornerstone of accurate strength
measurement is to quantify the strength of a password.
With a ranked password dictionary, our framework, as
the first potential picture-password-strength meter, is ca-
pable of quantifying the strength of selected picture pass-
words. More intuitively, a user could be informed of the
potential number of guesses for breaking a selected pass-
word through executing our attack framework.

6.2 Other Attacks on PGA
Besides keyloggers that record users’ finger movements,
there are some other attack methods that may affect the
security of PGA and other background draw-a-secret
schemes. Shoulder surfing, an attack where attackers
simply observe the user’s finger movements, is one of
them. In our survey, 54.3% participants believe the
picture password scheme is easier for attackers to ob-
serve when they are providing their credentials than text-
based password. Several new shoulder surfing resistant
schemes [22, 43] were proposed recently. However, the
usability is always a major concern for these approaches.
The smudge attack [4] which recovers passwords from
the oily residues on a touch-screen has also been proven
feasible to the background draw-a-secret schemes and
could pose threats to PGA.

6.3 Limitations of Our Study
While we took great efforts to maintain our studies’ va-
lidity, some design aspects of our studies and developed
system may have caused subjects to behave differently
from what they do on Windows 8TM PGA. Subjects in
Dataset-2 pretended to access their bank information but
did not have anything at risk. Schechter et al. [33] sug-
gest that role playing like this affects subjects’ security
behavior, so passwords in Dataset-2 may not be repre-
sentative of real passwords chosen by real users. Be-
sides, we did not record whether a subject used a tablet
with touch-screen or a desktop with mouse. The different
ways of input may affect the composition of passwords.
Moreover, Dataset-2 includes multiple passwords per
user and this may have impacted the results. In our anal-
yses, training password datasets include passwords from
the targeted subject. Even though this may have affected
the results, we believe it is less influential. Because,
for each analysis, there were around 9,400 training pass-
words for which only 14 came from the targeted user.

13

396 22nd USENIX Security Symposium USENIX Association

Since all training passwords were treated equally, the in-
fluence brought by the 0.14% training data is low. As
discussed in Section 5.2, even though our online attack
results showed the feasibility of our approach, it still re-
quires more realistic and significant attack cases. As part
of future work, we plan to integrate smudge attacks [4]
into our framework to improve the efficacy of our online
attacks.

7 Related Work

The security and vulnerability of text-based password
have attracted considerable attention because of several
infamous password leakage incidents in recent years.
Zhang et al. [44] studied the password choices over time
and proposed an approach to attack new passwords from
old ones. Castelluccia et al. [11] proposed an adap-
tive Markov-based password strength meter by estimat-
ing the probability of password using training data. Kel-
ley et al. [26] developed a distributed method to calcu-
late how effectively password-guessing algorithms could
guess passwords. Even though the attack framework we
presented is dedicated to cracking background draw-a-
secret passwords, the idea of abstracting users’ selection
processes of password construction introduced in this pa-
per could also be applicable to cracking and measuring
text-based passwords.

The basic idea of attacking graphical password
schemes is to generate dictionaries that consist of poten-
tial passwords [36]. However, the lack of sophisticated
mechanisms for dictionary construction affects the attack
capabilities of existing approaches. Thorpe et al. [38]
proposed a method to harvest the locations of training
subjects’ clicks on pictures in click-based passwords to
attack other users’ passwords on the same pictures. In the
same paper [38], they presented another approach which
creates dictionaries by predicting hot-spots using image
processing methods. Oorschot et al. [27] cracked DAS
using some password complexity factors, such as reflec-
tive symmetry and stroke-count. Salehi-Abari et al. [32]
proposed an automated attack on the PassPoints scheme
by ranking passwords with click-order patterns. How-
ever, the click-order patterns introduced in their approach
could not capture users’ selection processes accurately,
especially when a background image significantly affects
user choice.

8 Conclusion

We have presented a novel attack framework against
background draw-a-secret schemes with special attention
on picture gesture authentication. We have described an
empirical analysis of Windows 8TM picture gesture au-
thentication based on our user studies. Using the pro-

posed attack framework, we have demonstrated that our
approach was able to crack a considerable portion of
picture passwords in various situations. We believe the
findings and attack results discussed in this paper could
advance the understanding of background draw-a-secret
and its potential attacks.

Acknowledgements

The authors are grateful to Lujo Bauer of Carnegie Mel-
lon University and Sonia Chiasson of Carleton Univer-
sity for useful comments while this work was in progress.
The authors also thank the anonymous reviewers whose
comments and suggestions have significantly improved
the paper.

References
[1] Opencv. http://opencv.willowgarage.com.

[2] ALEXE, B., DESELAERS, T., AND FER-
RARI, V. Objectness measure v1.5.
http://groups.inf.ed.ac.uk/calvin/objectness/objectness-release-
v1.5.tar.gz.

[3] ALEXE, B., DESELAERS, T., AND FERRARI, V. Measuring the
objectness of image windows. IEEE Transactions Pattern Analy-
sis and Machine Intelligence (2012).

[4] AVIV, A., GIBSON, K., MOSSOP, E., BLAZE, M., AND SMITH,
J. Smudge attacks on smartphone touch screens. In Proceedings
of the 4th USENIX conference on Offensive technologies (2010),
USENIX Association, pp. 1–7.

[5] BALLARD, D. Generalizing the hough transform to detect arbi-
trary shapes. Pattern recognition 13, 2 (1981), 111–122.

[6] BICAKCI, K., ATALAY, N., YUCEEL, M., GURBASLAR, H.,
AND ERDENIZ, B. Towards usable solutions to graphical pass-
word hotspot problem. In Proceedings of the 33rd Annual IEEE
International on Computer Software and Applications Confer-
ence (2009), vol. 2, IEEE, pp. 318–323.

[7] BIDDLE, R., CHIASSON, S., AND VAN OORSCHOT, P. Graphi-
cal passwords: Learning from the first twelve years. ACM Com-
puting Surveys 44, 4 (2011), 2012.

[8] BONNEAU, J., PREIBUSCH, S., AND ANDERSON, R. A birthday
present every eleven wallets? the security of customer-chosen
banking pins. Financial Cryptography and Data Security (2012),
25–40.

[9] BROSTOFF, S., AND SASSE, M. Are passfaces more usable than
passwords? a field trial investigation. People And Computers
(2000), 405–424.

[10] CANNY, J. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6
(1986), 679–698.

[11] CASTELLUCCIA, C., DÜRMUTH, M., AND PERITO, D. Adap-
tive password-strength meters from markov models. In Proceed-
ings of the 19th Network and Distributed System Security Sympo-
sium (2012), vol. 2012.

[12] CHIASSON, S., FORGET, A., BIDDLE, R., AND VAN
OORSCHOT, P. User interface design affects security: Patterns
in click-based graphical passwords. International Journal of In-
formation Security 8, 6 (2009), 387–398.

14

USENIX Association 22nd USENIX Security Symposium 397

[13] CHIASSON, S., STOBERT, E., FORGET, A., BIDDLE, R., AND
VAN OORSCHOT, P. Persuasive cued click-points: Design, im-
plementation, and evaluation of a knowledge-based authentica-
tion mechanism. IEEE Transactions on Dependable and Secure
Computing 9, 2 (2012), 222–235.

[14] CHIASSON, S., VAN OORSCHOT, P., AND BIDDLE, R. Graph-
ical password authentication using cued click points. Springer,
pp. 359–374.

[15] DAVIS, D., MONROSE, F., AND REITER, M. On user choice in
graphical password schemes. In Proceedings of the 13th confer-
ence on USENIX Security Symposium (2004), USENIX Associa-
tion, pp. 11–11.

[16] DHAMIJA, R., AND PERRIG, A. Déjà vu: A user study using
images for authentication. In Proceedings of the 9th conference
on USENIX Security Symposium (2000), USENIX Association.

[17] DIRIK, A. E., MEMON, N., AND BIRGET, J.-C. Modeling user
choice in the passpoints graphical password scheme. In Proceed-
ings of the 3rd symposium on Usable privacy and security (2007),
ACM, pp. 20–28.

[18] DUNPHY, P., AND YAN, J. Do background images improve draw
a secret graphical passwords? In Proceedings of the 14th ACM
conference on Computer and communications security (2007),
ACM, pp. 36–47.

[19] EVERINGHAM, M., VAN GOOL, L., WILLIAMS, C. K. I.,
WINN, J., AND ZISSERMAN, A. The PASCAL Visual Object
Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[20] FEIGE, U., LOVÁSZ, L., AND TETALI, P. Approximating min
sum set cover. Algorithmica 40, 4 (2004), 219–234.

[21] FOLEY, M. J. Microsoft: 60 million windows 8 licenses sold
to date. http://www.zdnet.com/microsoft-60-million-windows-8-
licenses-sold-to-date-7000009549/, 2013.

[22] FORGET, A., CHIASSON, S., AND BIDDLE, R. Shoulder-
surfing resistance with eye-gaze entry in cued-recall graphical
passwords. In Proceedings of the 28th international conference
on Human factors in computing systems (2010), ACM, pp. 1107–
1110.

[23] GAO, H., GUO, X., CHEN, X., WANG, L., AND LIU, X. Yagp:
Yet another graphical password strategy. In Proceedings of the
24th Annual Computer Security Applications Conference (2008),
IEEE, pp. 121–129.

[24] JERMYN, I., MAYER, A., MONROSE, F., REITER, M., AND
RUBIN, A. The design and analysis of graphical passwords.
In Proceedings of the 8th USENIX Security Symposium (1999),
Washington DC, pp. 1–14.

[25] JOHNSON, J. Picture gesture authentication, US Patent 163201,
2012.

[26] KELLEY, P., KOMANDURI, S., MAZUREK, M., SHAY, R., VI-
DAS, T., BAUER, L., CHRISTIN, N., CRANOR, L., AND LOPEZ,
J. Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (2012),
IEEE, pp. 523–537.

[27] OORSCHOT, P., AND THORPE, J. On predictive models and user-
drawn graphical passwords. ACM Transactions on Information
and system Security (TISSEC) 10, 4 (2008), 5.

[28] OVIDE, S. Microsoft’s windows 8 test: Courting consumers.
http://online.wsj.com/article/SB1000142405297020453050457-
8078743616727514.html.

[29] PACE, Z. Signing in with a picture password.
http://blogs.msdn.com/b/b8/archive/2011/12/16/signing-in-
with-a-picture-password.aspx.

[30] PACE, Z. Signing into windows 8 with a picture password.
http://www.youtube.com/watch?v=Ek9N2tQzHOA.

[31] REIMONDO, A. Haar cascades. http://alereimondo.no-
ip.org/OpenCV/34.

[32] SALEHI-ABARI, A., THORPE, J., AND VAN OORSCHOT, P. On
purely automated attacks and click-based graphical passwords. In
Proceedings of the 24th Annual Computer Security Applications
Conference (2008), IEEE, pp. 111–120.

[33] SCHECHTER, S. E., DHAMIJA, R., OZMENT, A., AND FIS-
CHER, I. The emperor’s new security indicators. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy (2007),
IEEE, pp. 51–65.

[34] SUO, X., ZHU, Y., AND OWEN, G. Graphical passwords: A
survey. In Proceedings of the 21st Annual Computer Security
Applications Conference (2005), IEEE, pp. 10–19.

[35] SUZUKI, S., ET AL. Topological structural analysis of digitized
binary images by border following. Computer Vision, Graphics,
and Image Processing 30, 1 (1985), 32–46.

[36] THORPE, J., AND VAN OORSCHOT, P. Graphical dictionaries
and the memorable space of graphical passwords. In Proceedings
of the 13th conference on USENIX Security Symposium (2004),
USENIX Association, pp. 10–10.

[37] THORPE, J., AND VAN OORSCHOT, P. Towards secure design
choices for implementing graphical passwords. In Proceedings
of the 20th Annual Computer Security Applications Conference
(2004), IEEE, pp. 50–60.

[38] THORPE, J., AND VAN OORSCHOT, P. Human-seeded attacks
and exploiting hot-spots in graphical passwords. In Proceedings
of 16th USENIX Security Symposium (2007), USENIX Associa-
tion, p. 8.

[39] VAN OORSCHOT, P., AND THORPE, J. Exploiting predictability
in click-based graphical passwords. Journal of Computer Secu-
rity 19, 4 (2011), 669–702.

[40] VIOLA, P., AND JONES, M. Robust real-time face detection.
International journal of computer vision 57, 2 (2004), 137–154.

[41] WIEDENBECK, S., WATERS, J., BIRGET, J., BRODSKIY, A.,
AND MEMON, N. Authentication using graphical passwords: ef-
fects of tolerance and image choice. In Proceedings of the Sym-
posium on Usable privacy and security (2005), ACM, pp. 1–12.

[42] YUILLE, J. C. Imagery, memory, and cognition. Lawrence Erl-
baum Assoc Inc, 1983.

[43] ZAKARIA, N., GRIFFITHS, D., BROSTOFF, S., AND YAN, J.
Shoulder surfing defence for recall-based graphical passwords.
In Proceedings of the 7th Symposium on Usable Privacy and Se-
curity (2011), ACM, p. 6.

[44] ZHANG, Y., MONROSE, F., AND REITER, M. The security of
modern password expiration: An algorithmic framework and em-
pirical analysis. In Proceedings of the 17th ACM conference on
Computer and communications security (2010), ACM, pp. 176–
186.

A Memorability and Usability Analysis

The tolerance introduced in PGA is a trade-off between
security and usability. In order to quantify this tradeoff,
we calculate the distance between input PGA passwords
with the registered ones. When the types or directions of
gestures do not match, we regard input passwords incom-
parable with the registered ones. Otherwise, the distance

15

398 22nd USENIX Security Symposium USENIX Association

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

550

Password Distance (<10)

N
um

be
r o

f P
as

sw
or

ds

(a) Password Distance His-
togram

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Registration(1) Confirmation(2) Successful Logins(3−12)

A
ve

ra
ge

 T
im

e
Sp

en
t (

Se
co

nd
s)

(b) Average Time Spent (Seconds)

Figure 12: Memorability and Usability

is defined as the average distance of all gestures. We de-
note the password presented for the i-th attempt π⃗(i) and
π⃗(0) as the password registered for the same picture.

In the 2,536 login attempts collected in Dataset-1, 422
are unsuccessful in which 146 are type or direction er-
rors and 276 are distance errors. Figure 12(a) shows the
distance distribution for the password whose distance is
less than 10 and the red line denotes the threshold for be-
ing classified as successful. The result shows the current
setup in our system is quite reasonable to capture most
closely presented passwords.

Figure 12(b) shows the average time in seconds that
subjects spent on registering, confirming, and reproduc-
ing passwords. x = 1 denotes the registration, x = 2 de-
notes the conformation, and all others denote the later
login attempts. As we can notice, the average time for
the registration is 7.43 seconds while 4.53 seconds are
taken for the confirmation. With subjects getting used to
the picture password system, the average time spent for
successful logins is reduced to as low as 2.51 seconds.
On the other hand, the average time spent on all unsuc-
cessful login attempts is 5.86 seconds.

B Dataset-2 Pictures

Figure 13 shows 15 images that are used in Dataset-2 as
the background pictures for password selection.

Figure 13: Background Pictures Used in Dataset-2

C LdGSF Identification

We discuss the identified LdGSFs by linking PoIs and
passwords in Dataset-2 with the help of two PoI sets

P2
L-15 and P2

A-40 using our LdGSF identification algorithm
discussed in Section 4.3. The results from PL are closer to
users’ actual selection processes, while the results from
PA are the best approximations to users’ selection pro-
cesses we could get in a purely automated way with state-
of-the-art computer vision techniques.

Table 5: Top 10 Identified LdGSFs using P2
L-15

Rank Pr(sk) Pr(sk|Dsk ⊆ θ)
1 (tap,{head},∅) (tap,{nose},∅)
2 (tap,{∗c},∅) (tap,{mouth},∅)
3 (tap,{circle},∅) (tap,{circle},∅)
4 (tap,{eye},∅) (tap,{eye},∅)
5 (circle,{head},∅) (tap,{∗c},∅)
6 (tap,{nose},∅) (tap,{head},∅)
7 (circle,{circle},∅) (circle,{circle},∅)
8 (circle,{eye},∅) (tap,{ear},∅)
9 (line,{∗c},{∗c}) (line,{mouth},{mouth})

10 (line,{eye},{eye}) (tap,{forehead},∅)

The top ten identified LdGSFs using P2
L-15 are shown

in Table 5 ordered by their Pr(sk) and Pr(sk|Dsk ⊆ θ).
It also suggests that ‘tap a head’ is found the most times
in the passwords, while ‘tap a nose’ is the most popular
one when there is a nose in the picture. The result seems
unreasonable at the first glance since there is always a
nose in a head. Actually, it is because if the head in the
picture is really small, we simply annotate the circum-
scribed rectangle as head instead of marking the inner
rectangles with more specific attributes. Table 5 indi-
cates that gestures on human organs are the most popular
selection functions adopted by subjects.

Table 6: Top 10 Identified LdGSFs using P2
A-40

Rank Pr(sk) Pr(sk|Dsk ⊆ θ)
1 (tap,{circle},∅) (tap,{clock},∅)
2 (tap,{mouth},∅) (circle,{clock},∅)
3 (tap,{eye},∅) (tap,{shoulder},∅)
4 (tap,{head},∅) (tap,{eye},∅)
5 (tap,{∗c},∅) (tap,{head},∅)
6 (tap,{∗},∅) (tap,{body},∅)
7 (circle,{eye},∅) (tap,{mouth},∅)
8 (tap,{body},∅) (tap,{circle},∅)
9 (circle,{circle},∅) (tap,{∗},∅)

10 (circle,{head},∅) (tap,{∗c},∅)

The top ten identified LdGSFs using P2
A-40 are shown

in Table 6. By comparing Table 5 and Table 6, we could
notice differences caused by using annotated PoI set and
automated detected PoI set. The fact that s(tap,{∗},∅)
is among the top ten LdGSFs is an indicator that the au-
tomatic PoI identification could not classify many PoIs
and simply mark them as ∗. It is surprising to find
out there are two LdGs on clock in top ten ordered by
Pr(sk|Dsk ⊆ θ) at first, because there is no clock in
any picture in Dataset-2. The closest guess is OpenCV
falsely identified some circle shape objects as clocks, but
the number is not very big since there is no LdG on a
clock in the top ten ordered by Pr(sk).

16

USENIX Association 22nd USENIX Security Symposium 399

Explicating SDKs:
Uncovering Assumptions Underlying Secure Authentication and Authorization

Rui Wang† *, Yuchen Zhou‡ *, Shuo Chen†, Shaz Qadeer†, David Evans‡, Yuri Gurevich†

† Microsoft Research
Redmond, WA, USA

{ruiwan, shuochen, qadeer, gurevich}@microsoft.com

‡ University of Virginia
 Charlottesville, VA, USA

{yz8ra, evans}@virginia.edu

Abstract
Most modern applications are empowered by online services, so application developers frequently implement
authentication and authorization. Major online providers, such as Facebook and Microsoft, provide SDKs for
incorporating authentication services. This paper considers whether those SDKs enable typical developers to
build secure apps. Our work focuses on systematically explicating implicit assumptions that are necessary for
secure use of an SDK. Understanding these assumptions depends critically on not just the SDK itself, but on
the underlying runtime systems. We present a systematic process for identifying critical implicit assumptions
by building semantic models that capture both the logic of the SDK and the essential aspects of underlying
systems. These semantic models provide the explicit basis for reasoning about the security of an SDK. We
use a formal analysis tool, along with the semantic models, to reason about all applications that can be built
using the SDK. In particular, we formally check whether the SDK, along with the explicitly captured
assumptions, is sufficient to imply the desired security properties. We applied our approach to three widely
used authentication/authorization SDKs. Our approach led to the discovery of several implicit assumptions in
each SDK, including issues deemed serious enough to receive Facebook bug bounties and change the OAuth
2.0 specification. We verified that many apps constructed with these SDKs (indeed, the majority of apps in
our study) are vulnerable to serious exploits because of these implicit assumptions, and we built a prototype
testing tool that can detect several of the vulnerability patterns we identified.

1 Introduction

Modern applications commonly consist of a client pro-
gram and an online service that provides functionality
such as cloud storage, social networking, and geograph-
ic data. Accessing the service requires authentication of
users and authorization of resource requests. Tradi-
tionally, the authentication and authorization mechan-
isms were provided by operating systems and carefully
implemented in a few core apps such as SSH, remote
desktop, etc; with modern apps, however, many develo-
pers end up needing to implement such mechanisms. To
aid this, major identity providers have developed SDKs
that developers can use to integrate authentication and
authorization into their apps such as the three SDKs we
study in this work: the Facebook PHP SDK, the
Microsoft Live Connect SDK, and the Windows 8
Authentication Broker SDK. According to our sampling
of popular apps in Windows App Store, 52% of them
use these SDKs (see Appendix A).

Authentication/authorization SDKs are becoming a crit-
ical foundation for apps. However, no previous study
has rigorously examined the security these SDKs pro-
vide to real-world apps. Typically, SDK providers sim-
ply release SDK code, publish documentation and ex-

amples, and leave the rest to app developers. An im-
portant question remains: if developers use the SDKs in
reasonable ways, will the resulting applications be se-
cure? We show in this paper that the answer today is
“No”. The majority of apps built using the SDKs we
studied have serious security flaws. This is not due to
direct vulnerabilities in the SDK, but rather because
achieving desired security properties by using an SDK
depends on many implicit assumptions that are not
readily apparent to app developers. These assumptions
are not documented anywhere in the SDK or its develo-
per documentation. In several cases, even the SDK pro-
viders are unaware of the assumptions (see Section 5.2).

The goal of our work is to systematically identify the
assumptions needed to use an SDK to produce secure
applications. We emphasize that it is not meaningful to
verify an SDK by itself. Instead, our goal is to explicate
the assumptions upon which secure use of the SDK
depends. We do this by devising precise definitions of
desired security properties, constructing an explicit mo-
del of the SDK and the complex services with which it
interacts, and systematically exploring the space of app-
lications that can be built using the SDK. Our approach
involves a combination of manual effort and automated
formal verification. Any counterexample found by the

* The two lead authors are ordered alphabetically.

400 22nd USENIX Security Symposium USENIX Association

2

verification tool indicates either (1) that our system
models are not accurate, in which case we revisit the
real systems to correct the model; or (2) that our models
are correct, but additional assumptions need to be
captured in the model and followed by application
developers. The explication process is an iteration of
the above steps so that we document, examine and re-
fine our understanding of the underlying systems for an
SDK. At the end, we get a set of formally captured as-
sumptions and a semantic model that allow us to make
meaningful assurances about the SDK: an application
constructed using the SDK following the documented
assumptions satisfies desired security properties.

We argue that explication should be part of the engin-
eering process of developing an SDK. Identified SDK
assumptions can either be removed by modifying the
SDK, or be documented precisely. In addition, in some
cases it is feasible to develop automatic tests that detect
common ways applications violate the assumptions (we
provide an example in Section 6.2).

Results. The work presented in this paper reflects a 12
person-month effort (six months of two lead authors) in
systematically explicating the three target SDKs. The
resulting models (https://github.com/sdk‐security) are
publicly released so that the community can review and
enhance them. As a result of the explication process, we
uncovered many SDK assumptions (summarized in
Section 5). Some assumptions were especially serious
because they can be violated when an app developer
has a reasonable alternative interpretation of the develo-
per’s guide (dev guide) or when an app runs on certain
realistic platforms. These reports were treated very ser-
iously by the SDK providers: five cases that we re-
ported to Facebook have been fixed (three of which
were rewarded by Facebook bounties [14]). An issue
uncovered in the Live Connect SDK resulted in
Microsoft improving its dev guide. Our report to the
OAuth Working Group convinced the group to add a
subsection to the OAuth 2.0 draft.

With all the SDK assumptions specified, we were able
to successfully verify all the models with the uncovered
assumptions (Section 4). Uncovering these SDK as-
sumptions also enables effective app testing since a
violation of an assumption often leads to a successful
exploit. Our study shows that many released apps are
indeed vulnerable due to violations of these assump-
tions. We tested three sets of apps, including client apps
in Windows 8 App Store and service apps using Face-
book sign-on, and found that 78%, 86% and 67% of
these apps suffer from vulnerabilities related to the
implicit assumptions we uncovered (Section 6.2).

2 Illustrative Example

To motivate our work, we describe a simple example in
the context of the Live Connect SDK. It illustrates what
can go wrong when SDKs are provided without thor-
oughly specifying their underlying security assumptions.

2.1 Intended Use

Suppose we want to develop an app using Live ID as
the Identity Provider (IdP). We start with the dev guide
for Live Connect [25]. The hyperlinks in the start page
lead us to a page of detailed instructions about “signing
users in” [26] which provides code snippets in
Javascript, C#, Objective-C and Java showing how to
use Live Connect SDK to sign users into a client app.
Ignoring the specifics in these different languages, all
the code snippets essentially cover the authentication
logic shown in Figure 1.

In the figure, WL stands for “Windows Live”. A
developer first needs to call WL.login. The call takes an
argument value, "wl.basic", indicating that the app will
need to read the user’s basic information after WL.login
returns an access token in step (2). The access token is a
concept in the OAuth protocol [22]. It is an opaque
string dynamically created by the Live ID server for
each call to WL.login. Once the app gets the access to-
ken, it calls the REST API me to get the user’s basic
info using this HTTP request:

https://apis.live.net/v5.0/me?access_token=ACCESS_TOKEN
The Live ID service responds with the user’s basic in-
formation in message (4), such as her full name and
user ID. This completes the process, authenticating the
user with the provided information.

2.2 Hazardous Use

The developer guide as depicted in Figure 1 is valid for
a client-only app, but it does not make it clear that the
same logic must not be used with an app that also incor-
porates an online service. Without stating this explicitly,
developers may be inclined to use the SDK insecurely
as shown in Figure 2. The interactions with the Live ID

Live ID
Service Client

(1) WL.login(appID, "wl.basic")

(2) access_token

(3) me(access_token)

(4) user info

Figure 1. Authentication Logic for “Signing Users In”.

USENIX Association 22nd USENIX Security Symposium 401

3

service are identical in the two figures. The only differ-
ence is that in the second scenario, the access token is
sent to the service app (i.e., the server side of the app)
in message (2+) and it is the service app that calls me to
authenticate the user.

This can lead to a serious vulnerability that allows any
app on the device to sign into the service app as the user.
The rogue app sends a request to the Live ID service for
an access token to view public information for the
victim, such as a profile record on Facebook. Live ID
responds with an access token. The problem is this
token, intended for authorizing access to the public
resource, is mistakenly used by the service app to auth-
enticate its owner as the victim. This allows the rogue
app to get into the victim’s account on the service app.
This mistake is fairly common in real-world apps. Al-
though we first observed it analyzing the Live Connect
SDK, we later found that many apps using the Face-
book SDK have the same issue. As described in Section
6.2, we tested 27 apps in the Windows 8 App Store and
found that 21 of them are vulnerable due to this mistake.

2.3 Resolution

From one perspective, this is simply a matter of develo-
pers writing buggy apps, and the blame for the security
vulnerability rests with the app developers. We argue,
though, that the purpose of the SDK is to enable typical
developers to produce apps that use authentication and
authorization in a way that provides desired security
properties, and the prevalence of buggy apps created
using this SDK indicates a failure of the larger engin-
eering process. The developer exercised reasonable pru-
dence by using the access token to query the ID service
for user information and followed exactly the process
described in the SDK’s documentation (depicted in
Figure 1). The problem is lack of a deeper understand-
ing of the relationship between authentication and
authorization, and the role of the access token (i.e., why
is it safe to use the access token as shown in Figure 1
but not as used in Figure 2). Correct use depends on
subtle understanding of what kind of evidence each
message represents and whether or not the whole mes-
sage sequence establishes an effective proof for a
security decision. It is unrealistic to expect most

developers to understand these subtleties, especially
without clear guidance from the SDK.

We contacted the developers of some of the vulnerable
apps. A few apps have been fixed in response to our re-
ports. We also notified the OAuth Working Group (WG)
in June 2012 about these vulnerable apps.1 Dick Hardt,
editor of OAuth 2.0 specification (RFC 6749) [22],
emailed us requesting language to be included in the
specification dealing with this issue. We proposed the
initial text and discussed with WG members. This
resulted in Section 10.16 “Misuse of Access Token to
Impersonate Resource Owner in Implicit Flow” being
added to the OAuth specification.

The key point this example illustrates is that security of
apps constructed with an SDK depends on an under-
standing of the external services the app depends on, as
well as subtleties in the use of tokens and assumptions
about evidence used in authentication and authorization
decisions. We believe the prevalence of vulnerable apps
constructed using current SDKs is compelling evidence
that a better engineering process is needed, rather than
just passing the blame to overburdened developers. In
particular, we advocate for a process that explicates
SDKs by systematically identifying the underlying as-
sumptions upon which secure usage depends.

3 Explicating SDKs

In order to explicate the SDKs, we need to clearly de-
fine the desired security properties. This section intro-
duces our target scenario and threat model, and then de-
fines the desired security properties and overviews our
process for uncovering implicit SDK assumptions.

3.1 Scenario

A typical question about security is whether some pro-
perty holds for a system, even in the presence of an ad-
versary interacting with the system in an unconstrained
manner. We can view this as a software testing problem:
the system is a concrete program, while the adversary is
an abstract one (i.e., a test harness in the terminology of
software testing) that explores all interaction sequences
with the concrete system. In our scenario, however, the
target system is not concrete. We wish to reason about
all applications that can be built with the SDK follow-

1 Subsequently, we learned that John Bradley, a WG member,
had posted a blog post in January 2012 about a similar issue
[10]. The post considers the problem a vulnerability of the
protocol, while we view it as a consequence of an unclear
assumption about SDK usage because there are correct ways
to use OAuth for client+service authentication.

Live ID
Service

Client(1) WL.login(appID, "wl.basic")

(2) access_token

(3) me(access_token)

(4) user info
App
Server

(2+) access_token

Figure 2. Hazardous Use.

402 22nd USENIX Security Symposium USENIX Association

4

ing documented guidelines. Hence, we need to consider
both the client app and service as abstract modules.

Figure 3 illustrates the modules in our setup. There are
three main components: a client device, the application
server foo.com, and the identity provider (IdP). The
bottom layer of the client device is the client runtime,
such as the HTML engine or the HTTP layer. The mid-
dle layer is the client SDK. The client app, FooAppC, is
created by the developer to interact with the application
server. We assume FooAppC always uses the client
SDK for authentication and authorization. Like the cli-
ent, the application server has three layers: the service
runtime represents the server platform, such as PHP or
ASP.NET; the server side of the SDK we study; and the
application server code. We assume that FooAppS does
not directly interact with the service runtime, but only
uses it via the service SDK. Note that both FooAppC
and FooAppS identify themselves to IdP as “FooApp”
with an app ID pre-assigned by IdP. The IdP cannot tell
if the caller is a client or the application server.

The modules with brick pattern backgrounds are con-
crete modules with concrete implementations. They can
be divided into two layers. The SDK layer consists of
the Client SDK and the Service SDK. The underlying
system layer consists of the client runtime, the service
runtime, and the IdP. These are complex modules that
one typically does not understand in detail in the begin-
ning of the study. Developing a semantic model for
these components involves substantial systems investi-
gation effort (as described in Section 4.3) because the
seemingly clear SDK logic actually depends on a much
more mysterious (and often incompletely documented)
underlying layer. We consider the formal semantic
models resulting from this study as one of the main
contributions of this work.

The client and server application modules are abstract
modules. They do not have concrete implementations:
our goal is to reason about all possible apps built using
the SDK. Nevertheless, the app modules do have con-
straints on their behaviors: FooAppC and FooAppS are
only allowed to use the target SDKs for authentication

and authorization, and must not violate rules document-
ed in the SDK developer guides.

3.2 Threat Model

We want to reason about security properties of all apps
that could reasonably be constructed with the SDK. We
assume a malicious application, MalAppC, may be in-
stalled on the user’s device. MalAppC’s behavior is not
constrained by the client SDK, but it is limited to
functionality provided by the client runtime (e.g., it
cannot access cookies of other domains or handcraft
HTTP requests). The attacker also controls an uncon-
strained external machine, which we call “Mallory”. As
shown in Figure 4, we can think of Mallory as a
combination of a client and server that can freely com-
municate with the client, application server, and IdP.
We model MalAppC and Mallory as abstract modules.

3.3 Security Properties

Our analysis depends on a formal definition of the se-
curity properties the SDK is intended to provide.

Granularity: session. Informally, people often say
things like “a client is authenticated as Alice”, or “a ser-
ver is authorized on Alice’s behalf”. However, it is im-
portant to point out explicitly that it is not the client or
the server, but the session between them, that is authen-
ticated or authorized. More specifically, the end result
of an authentication/authorization protocol between a
client and a server is to know whom the session repre-
sents and what the session is allowed to do. It should
not affect the identity or permission of any other ses-
sion. Therefore, we always keep the session (identified
by its session ID) explicit in our modeling.

Basis of security: secrets and signed data. All mech-
anisms we study share a commonality: they use secrets
or data signed by the identity provider as unforgeable
evidence to differentiate some entities from others.
These secrets and signed data are either preconfigured
or generated at runtime at the underlying system layer.

FooAppC

Client SDK

Client runtime

Identity Provider (IdP)

FooAppS

Service SDK

Service runtime

Client Device Server (foo.com)

Figure 3. Modules in Client+Service App.

FooAppC

Client SDK

Client runtime

Identity Provider (IdP)

FooAppS

Service SDK

Service runtime

M
alApp

C

Mallory

Figure 4. Threat Model.

USENIX Association 22nd USENIX Security Symposium 403

5

We distinguish five types of secrets in the studied
SDKs: access tokens, Codes2, refresh tokens, app se-
crets and session IDs. The first four are protocol data in
OAuth, which we will explain in later examples. The
only identity-provider-signed data we have seen are
signed requests, defined by Facebook, and authentica-
tion tokens, defined by Live ID. They are signed data
structures containing some or all of the following data:
access token, Code, app ID and user ID.

The desired security properties, therefore, need to con-
sider what data the adversary may have obtained. This
is made explicit by adding a knowledge pool to the mo-
del. All secrets and signed data received by the attacker
are recorded in the knowledge pool, and can be used by
the attacker in all subsequent actions.

Desired security properties. We define the security
goal of the authentication/authorization SDKs based on
the protections they provide to apps. Apps written using
the SDK following explicit programming guidelines
should be protected from the following violations:

(1) Authentication violation. If some knowledge, k, is
about to be added to the pool, and k is sufficient to con-
vince the authentication logic of FooAppS that the
knowledge holder is Alice, it implies that Mallory (and
MalAppC, since they share the knowledge pool) can au-
thenticate as Alice, which is an authentication violation.

(2) Authorization violation. Depending on the type of k,
there are two kinds of authorization violations. If k is
Alice’s access token, Alice’s Code, or the session ID
for the session between FooAppC and FooAppS, it im-
plies that Mallory has obtained the permission to do
whatever the session can do. Another authorization vio-
lation is when k is the app secret of FooApp. This
would allow Mallory to do whatever FooAppS can do
on the identity provider.

(3) Association violation. The ultimate goal of authenti-
cation/authorization is not only to know who the user is
or what she can do, but to correctly bind three pieces of
data: the user’s identity (i.e., the authentication result),
the user’s permissions (i.e., the authorization result),
and the session’s identity (usually known as session ID).
This association is actually the end result of authentica-
tion/authorization and is what the application logic de-
pends on after the process is accomplished. Mistakes in
the association (such as binding Mallory’s identity to
Alice’s permission, or binding Alice’s identity to Mal-
lory’s session) are security violations.

2 To avoid confusion with other meanings of “code”, such as
“source code”, we always capitalize the first letter to refer to
the “OAuth Code” in this paper.

3.4 The Process of Explicating SDKs

Figure 5 rearranges the modules (from Figure 4) and
combines the concrete modules one each layer into one.
The dashed line between abstract and concrete modules
represents the interface between the test harness and the
target system. The essential question is: what assump-
tions are necessary for FooApp to achieve the desired
security properties?

Explicating SDKs is a systematic investigation effort to
explicitly document our knowledge about these mod-
ules and examine the knowledge against defined securi-
ty goals. As shown in Figure 6, it is an iterative pro-
cess, in which we repeatedly refine our model and for-
mally check if it is sufficient to establish the security
properties or additional assumptions are needed. A
failed check (i.e., a counterexample in the model) indi-
cates either that our understanding of the actual systems
needs to be revisited or that additional assumptions are
needed to ensure the desired security properties.

The outcome of the process is the assumptions we ex-
plicitly added to the model. In Section 5.2, we show
that many of the uncovered assumptions can indeed be
violated in realistic situations.

4 Semantic Modeling

This section gives an overview of the semantic model-
ing effort for the three SDKs. The resulting models are
available at https://github.com/sdk‐security/. They reflect
six months of effort by our two lead authors (i.e., 12
person-months) in creating and refining the system
models.

FooAppS

SDK Layer

Underlying System Layer

Target
System

FooAppC MalAppC Mallory
Knowledge

Pool

Test
H
arness

Figure 5. Modules Rearranged for Explicating.

Obtain new insights about
components and incorporate

them into the model

Specify desired
security properties

Check model

Refinemodel or add assumptions

Documented
assumptions

pass

fail
output

Figure 6. Engineering Process for Explicating SDKs.

404 22nd USENIX Security Symposium USENIX Association

6

4.1 Modeling language

To specify the semantics of the modules, we want a lan-
guage that has a suitable formal analysis technology for
verification. In the first period of our investigation, we
used Corral [24], a property checking tool that can per-
form bounded verification on a C program with embed-
ded assertions. Corral explores all possible execution
paths within a bound to check if the assertions can be
violated. Later, we re-implemented all the models in
Boogie [9], a language for describing proof obligations
that can then be tested using an SMT solver, which
allowed us to fully prove the desired properties. This
provides a higher assurance than the bounded verifica-
tion done by Corral, but the basic ideas and approach
are the same for both checking strategies. For con-
creteness, this section describes the Boogie version to
explain our modeling.

The key Boogie language features needed to understand
this paper are:

 The * symbol represents a non-deterministic Boolean
value.

 HAVOC v is a statement that assigns a non-deter-
ministic value to variable v.

 ASSERT(p) specifies an assertion that whenever the
program gets to this line, p holds.

 ASSUME(p) instructs Boogie to assume that p holds
whenever the program gets to this line.

 INVARIANT(p) specifies a loop invariant. Boogie
checks if p is satisfied at the entry of the loop, and
inductively prove p’s validity after each iteration.

If Boogie fails to prove an assertion or an invariant, it
reports a counter-example. This leads us to refine the
model, adding assumptions when necessary.

4.2 Modeling abstract modules

The test harness interacts with the concrete modules in
a non-deterministic manner. It implements the abstract
modules representing both the unknown (benign) appli-
cation and the attacker’s resources. The test harness
consists of a loop with the loop count depth. Each itera-
tion calls the function TestHarnessMakesCall. This func-
tion is implemented as a non-deterministic switch (i.e.,
a statement of “switch(*){…}”) that chooses to call
FooAppcRuns, MalAppcMakesCall, or MalloryMakesCall.
Eventually, through a series of non-deterministic
choices as shown in Figure 7, one of the functions in a
concrete module will be called.

Using the knowledge pool. As mentioned in Section
3.3, we use a knowledge pool to model the information

obtained by an attacker. Different types of knowledge,
such as access tokens, Codes, and session IDs, are ex-
plicitly differentiated. We do not consider attacks that
involve providing arguments of the incorrect type, e.g.,
giving a session ID to a function expecting an access to-
ken. There is an AddKnowledge function for each know-
ledge type. After each call to MalAppCMakesCall and
MalloryMakesCall, the function AddKnowledge_Type is
called to add any acquired knowledge to the pool. There
is a corresponding DrawKnowledge_Type function for
non-deterministically drawing knowledge of a particu-
lar type from the knowledge pool. It is implemented us-
ing HAVOC i, where i is the array index of the piece of
knowledge non-deterministically chosen.

4.3 Modeling concrete modules

Concrete modules do not have any non-determinism.
The key aspects of building semantic models for the
concrete modules are summarized below.

Data types. The basic data types in the models are int
and several types for enumerables. We also define
structs and arrays over the basic types. In the actual sys-
tems, the authentication logic is constructed using string
operations such as concatenation, tokenization, equality
comparison, and name/value pair parsing. We found
that most string values are essentially enumerable, ex-
cept those of domain names and user names, which we
canonicalize as Alice, Mallory, foo.com, mallory.com,
etc. Thus, the basic types, structs, and arrays are
sufficient to model data used in the concrete modules.

SDKs. The sizes of these SDKs are moderate (all under
2000 lines) and their source code is public. The SDKs
we modeled were implemented in HTML, JavaScript
and PHP, so we needed to first translate the SDKs func-
tion-by-function into Boogie. We do this translation
manually, but it is not hard to imagine tools that could
mostly automate it. Table 1 shows two functions in the
Facebook PHP SDK and our corresponding Boogie
procedures. For getUserFromAvailableData, the changes
are essentially line-by-line translations. For getLogout‐
Url, the PHP code performs a string operation and re-

TestHarnessMakesCall

FooAppcRuns MalAppcMakesCall MalloryMakesCall

depth++

CallClient
SDK

CallFoo
AppSAPI

MalAppc
CallsIdP

MalAppcCalls
ClientRuntime

MalloryCalls
IdP

Concrete modules

depth=0

Figure 7. Test Harness.
(Dotted lines represent non-deterministic choices.)

USENIX Association 22nd USENIX Security Symposium 405

7

turns a string. Our Boogie translation in this case is not
obviously line-by-line. For example, our procedure re-
turns a four-element vector instead of a string. The PHP
function calls getUrl and array_merge, which concaten-
ate substrings, therefore, are implicitly modeled by the
four-element return vector.

Underlying system layer. Unlike the SDK, which is
simple enough to model completely, the identity provi-
der, client runtime, and server runtime are very com-
plex and may not even have source code available.
Completely modeling every detail of these systems is
infeasible, but our analysis depends on developing suit-
able models of them. By studying the target SDKs, we
identified three aspects of these systems that need to be
carefully understood to perform verification. These as-
pects are the basis for the security goals the SDKs are
designed to achieve:

(1) The identity provider’s behaviors according to diff-
erent input arguments and various app settings in its
web portal. Each identity provider has a web page for
app developers to enter a number of app settings that
the identity provider needs to know, such as app ID,
app secret, service website domain, and return URL.
Many of these settings are critical for the identity
provider’s decision-making. Further, different inputs to
the provided APIs cause different responses. Because
we do not have the source code for the identity provi-
ders, we tested these behaviors by constructing different
requests and app settings. For example, in the models
we’ve built, the identity provider APIs dialog_

permissions_request(), RST2_srf() and oauth20_
authorize_srf() 3 involved 11, 8 and 6 if-statements
respectively, to describe different behaviors we observ-
ed in testing.

 (2) Data passing on the client runtime. As with the
identity providers, we do not have access to source code
to understand detailed behaviors of the client runtime.
Our models were based on observations made during
testing. We focused on the client’s decision-making
about passing data from one server to another (by redir-
ection), delivering data to FooAppC or MalAppC, and
attaching cookies to outgoing requests. These decisions
are important for security. We maintain a cookie struc-
ture for each client app, i.e., FooAppC or MalAppC. The
cookie structure contains a session ID field and some
optional fields specific to the SDK, such as
signed_request and authentication_token.

(3) Sessions, requests, and cookies on the service run-
time. In our model, the service runtime is a layer that
defines data structures for sessions, requests and cook-
ies for the service SDK and FooAppS. (Note that al-
though cookies are in the headers of requests, we separ-
ate them to flatten the data structure.) The cookie struc-
ture is the same as previously described. The request
structure is defined according to the SDK’s specifica-

3 The APIs are accessed as https://www.facebook.com/
dialog/permissions.request, https://login.live.com/RST2.srf,
and https://login.live.com/oauth20_authorize.srf

protected function getUserFromAvailableData() {
 if ($signed_request) {

...
 $this‐>setPersistentData('user_id',
 $signed_request['user_id']);
 return 0;
 }
 $user = $this‐>getPersistentData('user_id', $default = 0);
 $persist_token =

 $this‐>getPersistentData('access_token');
 $access_token = $this‐>getAccessToken();
 if ($access_token &&
 !($user && $persist_token == $access_token)) {
 $user = $this‐>getUserFromAccessToken();
 if ($user)
 $this‐>setPersistentData('user_id', $user);
 else $this‐>clearAllPersistentData();
 }
 return $user;
}

public function getLogoutUrl() {
 return $this‐>getUrl(
 'www', 'logout.php',
 array_merge(array(
 'next' => $this‐>getCurrentUrl(),
 'access_token' => $this‐>getAccessToken(),), …));
 }

procedure {:inline 1} getUserFromAvailableData() returns (user:User) {
 if (IdP_Signed_Request_Records__user_ID[signed_request] != _nobody) {
 …
 user := IdP_Signed_Request_Records__user_ID[signed_request];
 call setPersistentData__user_id(user);
 return;
 }
 call user := getPersistentData__user_id();
 call persisted_access_token := getPersistentData__access_token();
 call access_token := getAccessToken();
 if (access_token >= 0 &&
 !(user != _nobody && persisted_access_token == access_token)) {
 call user := getUserFromAccessToken(access_token);
 if (user != _nobody) {
 call setPersistentData__user_id(user);
 } else {
 call clearAllPersistentData();
 }
 }
 return;
}
procedure {:inline 1} getLogoutUrl()
 returns (API_id: API_ID, next__domain: Web_Domain, next__API: API_ID,
 access_token: int) {
 API_id := API_id_FBConnectServer_login_php;
 call access_token := getAccessToken();
 call next__domain, next__API := getCurrentUrl();
}

Table 1. Example of a PHP function and its Boogie model.

406 22nd USENIX Security Symposium USENIX Association
8

tion. For example, requests for the Facebook PHP SDK
use a structure containing a Code, a state and an option-
al signed_request. The session structure contains a ses-
sion ID and a collection of session variables (keys) de-
fined by the SDK.

4.4 Security assertions

We use ASSERT statements to document and test the de-
sired security properties, covering each of the security
violations described in Section 3.3.

Authentication violation. An authentication violation
occurs when an attacker acquires some knowledge that
could be used to convince FooAppS that the knowledge
holder is Alice. A simple example is the case we
described in Section 2.2, in which the knowledge is an
access token. In addition to access tokens, we also
consider IdP-signed data such as Facebook’s signed
messages or Live ID’s authentication tokens. To detect
these violations, when a Facebook Signed Request k is
added to the knowledge pool, we assert that

k.user_ID != _alice && k.app_ID != _foo_app_ID &&
TokenRecordsOnIdP[k.token].user_ID != _alice

where TokenRecordsOnIdP represents IdP’s database
storing the records of access tokens.4

Authorization violation. To detect authorization viola-
tions, we add ASSERT statements inside each AddKnow‐
ledge_Type function. For example, the assertion in
function AddKnowledge_Code is:

ASSERT(!(c.user_ID == _alice && c.app_ID == _foo_app_ID))

This checks that the Code added to the knowledge pool
is not associated with Alice on FooApp. Similar asser-
tions are added to the AddKnowledge functions for re-
fresh tokens and session IDs. The app secret is different
from the above knowledge types, because it is tied to
the app not the user. When k is an app secret, we assert
that k != _foo_app_secret.

Association violation. At the return point of every web
API on FooAppS, we need to ensure the correct associ-
ation of the user ID, the permission (represented by an
access token or Code), and the session ID. For example,
for Facebook PHP SDK, the assertion is the following.
It This ensures that the three session variables of the
session identified by cookie.sessionID all involve the
same user. Concrete cases are given in Section 5.2.

4 To improve presentation readability, the syntax of the above
predicate is slightly changed from the syntax allowed by
Boogie; see https://github.com/sdk‐security/ for the exact syntax.

Sessions[cookie.sessionID].user_ID ==
 CodeRecordsOnIdP[Sessions[
 cookie.sessionID].code].user_ID
 && Sessions[cookie.sessionID].user_ID ==
 TokenRecordsOnIdP[Sessions[
 cookie.sessionID].token].user_ID

5 Results

We applied our approach to explicate the Facebook
PHP SDK, Live Connect SDK and Windows 8 Authen-
tication Broker. The Facebook PHP SDK is the only
server-side SDK provided on Facebook’s developers’
website and is currently among the most widely used
authentication/authorization SDKs. Facebook also has
SDKs for Android and iOS apps, which have many
concepts similar to the PHP SDK, but we have not stud-
ied them in detail. The Live Connect SDK is provided
by Microsoft for developing metro apps that use Live
ID as the identity provider. The Windows 8 Authentica-
tion Broker is for metro apps to use an OAuth-based
(not only Live ID) identity provider, such as Facebook
or Twitter.

5.1 Assumptions Explicated

The models resulting from our study formally capture
what we learned about the SDKs and the systems. Our
assumptions are specified in two ways: (1) all the
ASSUME statements that we added; (2) when we need to
assume particular program behaviors, such as a function
call must always precede another, we model the beha-
viors accordingly, and add comment lines to state that
the modeled behaviors are assumptions, rather than
concrete facts. All the assumptions are added in order
to satisfy the assertions that described in Section 4.4.
The assertions are fairly uniform — they are all about
sensitive data added to the knowledge pool and binding
errors in associating sessions, users and permissions.

Verification. After all the assumptions were added, the
models were automatically verified by Corral with the
bound 5 set to 5, meaning that in the test harness (Figure
7), the counter of the main loop (variable depth) does
not exceed 5. Such a depth gives a reasonable confi-
dence that the security properties are achieved by the
models and the added assumptions: the properties could
only be violated by attacks consisting of six or more
steps. Running on a Windows server with two 2.67GHz
processors and 32GB RAM, it took 11.0 hours to check
the Facebook PHP SDK, 26.3 hours to check Live Con-
nect SDK and 15.1 hours to check the Windows 8 Au-
thentication Broker.

5 Corral is a fully automatic tool for exploring code paths
symbolically. The full automation, however, comes with the
limitation that it only performs a bounded search.

USENIX Association 22nd USENIX Security Symposium 407

9

The verification being bounded is a limitation of the
models built for Corral, so we subsequently re-imple-
mented all three models in Boogie language [9].
Verification of Boogie models is not automatic. It re-
quires human effort to specify preconditions and post-
conditions for procedures, as well as loop invariants
(i.e., the invariant clauses). The Boogie verifier checks
that (1) every precondition is satisfied by the caller; (2)
if all preconditions of the procedure are satisfied, then
all the postconditions will be satisfied when the proce-
dure returns; (3) every loop invariant holds initially,
and if it holds before an iteration then it will still hold
after the iteration. By induction, the verified properties
hold for an infinite number of iterations. Rewriting the
three models in Boogie took 14 person-days of effort,
including a significant portion on specifying
appropriate loop invariants. The Boogie modeling did
not find any serious case missed in the Corral modeling,
but provides a higher level of confidence.

Examining the assumptions in the real world. We
manually examined each assumption added to assess
whether it could be violated in realistic exploits. This
effort requires thinking about how apps may be
deployed and executed in real-world situations. Table 2
summarizes the assumptions uncovered by our study
that appear to be most critical. These assumptions can
be violated in the real world, and the violations result in
security compromises. Based on our experience in
communicating with SDK providers, finding realistic

violating conditions is a crucial step to convincing them
to treat the cases with high priority. This step requires
extensive knowledge about systems, and does not
appear to be easily automated. We describe these
assumptions in more detail in Section 5.2. Table 3 lists
some assumptions uncovered that, if violated, would
also lead to security compromises. But, unlike the as-
sumptions in Table 2, we have not found compelling
realistic exploits that violate these assumptions. A few
additional assumptions, listed in Appendix B, are
needed to complete the verification. They correspond to
some simplifications we made to the models. It is un-
clear if their violations lead to security compromises,
but we make it explicit that we have not considered the
situations violating these assumptions.

5.2 Confirmed Exploitable Assumptions

This subsection explains each of the critical assump-
tions in Table 2. These results show concretely how the
SDK’s security assurance depends on actual system
behaviors and app implementations, illustrating the im-
portance of explicating the underlying assumptions up-
on which secure use of the SDK relies.

5.2.1 Facebook SDK

Assumptions A1, A2, A3, and A6 concern the Face-
book PHP SDK.

Namea

(SDK) Assumptionb consequence of violation exploit opportunity vendor
response

A1
(FB)

In FooAppCMakesACall, we
assume FooAppC.cookie.sessionID
== _aliceSession.

The ASSERT in Table 1 will
be false. Mallory’s session
is associated with Alice’s
user ID.

When the SDK is used in
subdomaining situations, e.g.,
cloud domains

Counter-
measure on
service
platform

A2
(FB)

For any PHP page, if getUser is
called, then getAccessToken must
be called subsequently.

Alice’s user ID will be
associated with Mallory’s
access token.

When FooAppS contains a PHP
page that directly returns the
user ID

SDK code fix

A3
(FB)

Before getLogoutUrl returns to
client, we assume
logoutURL.params.access_token
!= getApplicationAccessToken().

App access token is added
to the knowledge pool
(owned by the adversary).

When a PHP page does not
have the second code snippet
shown in the dev guide

SDK code fix

A4
(LC)

In saveRefreshToken on FooAppS,

we assume
user_id != refresh_token.user_id.

Alice’s refresh token will
be associated with
Mallory’s session on
FooAppS.

When the term “user id on the
site” in the dev guide is inter-
preted as the user’s Live ID

Dev guide
revision

A5
(WA)

In
callAuthenticateAsyncFromMalApp,
we assume (app_id == _MalAppID
|| user == _Mallory).

Alice’s access token or
Code for FooApp is
obtained by MalAppC.

When a client allows automatic
login or one-click login

See Section
5.2.3

A6
(FB)

We assume FooAppC always logs
in as Alice, i.e., the first argument
of dialog_oauth is “_Alice”.

Alice’s session will be
associated with Mallory’s
user ID and access token.

When request forgery
protection for app logon is
missing or ineffective

Notifying
developers

Table 2. Critical assumptions uncovered in our study.
a FB stands for Facebook PHP SDK, LC for Live Connect and WA for Windows Auth Broker

b Boogie syntax does not allow the dot operator to refer to a child element. For simplicity of presentation, we use it in this column.

408 22nd USENIX Security Symposium USENIX Association

10

Assumption A1. This assumption states that the cookie
associated with Alice’s client must match Alice’s ses-
sion ID. Figure 8 is a screenshot of the usage instruc-
tions given in the readme file in the Facebook PHP
SDK [17]. It seems straightforward to understand: the
first code snippet calls getUser to get the logged-in
user’s ID (it returns null if the user is not logged in).
The second snippet demonstrates how to make an API
call, such as me. The third snippet toggles between
login and logout, so that a logged-in user will get a
logoutURL and a logged-out user will get a loginURL in
the response.

The SDK’s implementation for the getUser method is
very simple. It calls the getUserFromAvailableData

function shown in Table 1. There are two statements
(italicized in Table 1) calling setPersistantData, which
is to set a PHP session variable denoted as
_SESSION['user_id']. Setting _SESSION['user_id'] is a
binding operation because it associates the user’s iden-
tity with the session, which may affect the predicate
that we define against association violations — speci-
fically, if Alice’s user ID is assigned to the
_SESSION['user_id'] of Mallory’s session, it would allow
Mallory to act on FooAppS as Alice. Because the ses-
sion ID is a cookie in the HTTP request, the assertion
must depend on how a client runtime handles cookies.

Violating the assumption using subdomaining.
Normally, because of the same-origin-policy of the
client, cookies attached to one domain are not attached
to another. However, the policy becomes interesting
when we consider a cloud-hosting scenario. In fact,
Facebook’s developer portal makes it very easy to
deploy the application server on Heroku, a cloud plat-
form-as-a-service. Each service app runs in a
subdomain under herokuapp.com (e.g., FooAppS’s sub-
domain runs as foo.herokuapp.com). Of course, Mallory
can similarly run a service as mallory.herokuapp.com.

The standard cookie policy for subdomains allows code
on mallory.herokuapp.com to set a cookie for the parent
domain herokuapp.com. When the client makes a request
to foo.herokuapp.com, the cookie will also be attached to
the request. Therefore, if Alice’s client visits the site
mallory.herokuapp.com, Mallory will be able to make the
client’s cookie hold Mallory’s session ID. Thus,
FooAppS binds Alice’s user ID to Mallory’s session.

In response to our report, Facebook developed a coun-
termeasure, which has been applied on the Heroku plat-
form. It generates a new session ID (unknown to
Mallory) when a client is authenticated. Facebook
offered us a bounty three times the normal Bug Bounty
amount for reporting this issue, as well as the same

Figure 8. Facebook PHP SDK usage instructions.
(Screenshot from https://github.com/facebook/facebook-php-

sdk/blob/master/readme.md)

name assumption consequence of violation proposed fix
B1

(FB)
Result of getAccessToken returned to client is
not equal to getApplicationAccessToken()

App access token is added to the
knowledge pool.

Develop checker to examine the
traffic from FooAppS

B2
(FB)

In dialog_oauth, we assume
FooApp.site_domain != Mallory_domain

Alice’s access token or Code for
FooApp is obtained by Mallory.

Develop checker to examine if
the “Site Domain” app setting is
properly set

B3
(FB)

Before FooAppC sends a (non-NULL) request,
we assume
request.signed_request.userId == _Alice

Alice’s session will be associated
with Mallory’s user ID and access
token.

Enhance dev guide to require a
runtime check on FooAppC

B4
(LC)

In HandleTokenResponse, we assume
auth_token.app_ID == _foo_app_ID

Alice’s authentication token for
MalApp will be used by Mallory
to log into FooAppS as Alice

Develop checker to examine if
the signature in the auth_token
is verified.

B5
(LC)

In constructRPCookiefromMallory, we
assume (RP_Cookie.access_token.user_ID ==
RP_Cookie.authentication_token.user_ID)

Alice’s ID associate with
Mallory’s access token, or vice
versa

Enhance dev guide to require a
runtime check on FooAppS

Table 3. Assumptions uncovered that would lead to security vulnerabilities if violated but no realistic exploits known.

USENIX Association 22nd USENIX Security Symposium 409

11

award each for Assumptions A2 and A3 discussed
next.6

Assumption A2. This assumption is a case in which
Corral actually discovered a valid path for violating an
assertion completely unexpected to us. The path indi-
cated that if a PHP page on FooAppS only calls getUser
(e.g., only has the first code snippet from Figure 8),
Mallory is able to bind her user ID to Alice’s session.
The consequence is especially damaging if the session’s
access token is still Alice’s. Corral precisely suggested
the possibility (see Table 1): if there is a signed_request
containing Mallory’s user ID, then the first setPersis‐
tentData call will be made, followed by a return. The
method sets _SESSION['user_id'] to Mallory’s ID without
calling getAccessToken, which would otherwise keep
the access token consistent with the user ID. Therefore,
the association between the user ID and the access to-
ken is incorrect. The session will operate as Mallory’s
account using Alice’s access token. After investigating
our report about this, Facebook decided to add checking
code before processing the signed request to the SDK to
avoid the need for this assumption.

Assumption A3. This assumption requires that any
PHP page that includes the third snippet in Figure 8
must also include the second snippet. In the example
code in the figure, it is not obvious why the second
snippet is required before the third snippet. However,
when we modeled getAccessToken, as shown in Table 4,
we realized that in Facebook’s authentication mechan-
ism there are two subcategories of access token: user
access token, which is basically what people usually
refer to as “access token”, and application access token,
which is described in Facebook’s dev guide [18]. The
application access token is provided to a web service
for a number of special purposes, such as “publishing
instances of ‘secure Open Graph actions’”. In fact, the
app secret can be derived solely from the application
access token, so it is a serious authorization violation if
Mallory or MalAppC can obtain it.

Method getLogoutUrl in snippet 3 constructs a URL to
send back to the client. The URL contains the result of
getAccessToken. To obtain the application access token,
Mallory only needs to send a request that hits a failure
condition of getUserAccessToken, which prevents
$this‐>accessToken from being overwritten in the bold
line in Table 4. We confirmed that this can be done by
using an invalid Code in the request.

6 We donated all three bounties to charities. The donations
were one-to-one matched by Facebook.

Interestingly, getAccessToken is also called by getUser
in snippet 1 in Figure 8. If a PHP page includes
snippet 2, the access token will be used to call a REST
API. When it is an application access token, the API
will raise an exception, which foils the exploit. That is
why snippet 2 is required before snippet 3.

In response to our report on this issue, Facebook
modified the SDK so that getLogoutUrl now calls get‐
UserAccessToken instead of getAccessToken, thus avoid-
ing the need for developers to satisfy this assumption.

Assumption A6. This assumption requires that the user
on FooAppC should not be Mallory. Otherwise, Mallory
would be able to associate its access token and user id
with Alice’s session. In Section 6.2, we show that many
apps (14 out of 21 tested) indeed violate this assump-
tion. Moreover, this association violation can be parti-
cularly damaging when the service app has its own
credential system, and supports linking a Facebook ID
to Alice’s password-protected account. Once the link-
ing can be done in the session, Mallory will be able to
sign into Alice’s account using Mallory’s Facebook ID.
We confirmed that among the 14 service apps which
violate the assumption, 6 of them support linking, and
thus allow Mallory to login as Alice. We reported this
issue to Facebook, who undertook the effort of
notifying app and website developers.

5.2.2 Live Connect

Assumption A4 concerns how the Live Connect SDK
handles “single sign-on for apps and websites” [27].
The sample /LiveSDK/Samples/PHP/OAuthSample [28]
demonstrates how to implement a PHP service app that
allows single sign-on. This sample code is essentially
the dev guide given as a program skeleton, with
comment blocks for app developers to implement. The
core of the problem lies in the following function,
whose implementation is empty except for a comment:

function saveRefreshToken($refreshToken) {
 // save the refresh token associated with the
 // user id on the site.
}

This is precisely what we call a binding operation. The
refresh token is the input parameter, but it is not clear
where the user id comes from. Within the scope of this

public function getAccessToken() {
 …

 $this‐>accessToken= $this‐>getApplicationAccessToken();
 $user_access_token = $this‐>getUserAccessToken();
 if ($user_access_token) {
 $this‐>accessToken=$user_access_token;

 }
 return $this‐>accessToken;
}

Table 4. SDK source code of getAccessToken

410 22nd USENIX Security Symposium USENIX Association

12

function, the only place to obtain a user ID is from a
cookie called AUTHCOOKIE, which contains the user’s
Live ID. However, the SDK’s logic is not sufficient to
ensure that Alice’s refresh token is associated with her
user ID. Appendix C of our technical report provides
technical details [37].

We built a proof-of-concept exploit to send to Micro-
soft. The Live ID team responded that our attack is
valid, but it “does not reflect the scenarios we are tar-
geting”. The target scenario is a website which has its
own credential system, such as a university website, so
“the user id on the site” means, for example, the student
ID. We replied to the team that an unclear context like
this was exactly what we believe needs to be uncovered
and at least documented clearly (indeed, explicating
such assumptions is one of our main goals). In this case,
the context was almost completely hidden: the
OAuthSample sample is the only sample provided in
/LiveSDK/Samples/PHP/, so it is expected to target more
generic scenarios. This is why if saveRefreshToken tar-
gets a specific scenario, the context must be made
explicit. The team replied us that they would “add more
comments to that code to make the sample code clear
on this.” Recently we found that the comment has been
revised to “save the refresh token and associate it with
the user identified by your site credential system.” This
change was also made in the ASP.NET version of the
sample code.

5.2.3 Windows Authentication Broker

Assumption A5 concerns the Windows 8 Web Authen-
tication Broker, used by Windows 8 apps with OAuth-
based identity providers. For concreteness of presenta-
tion, we assume the Facebook Identity Provider. In the
Auth Broker, the only function for authentication is
authenticateAsync. Figure 9 illustrates the data passing
through this function when the app requests an access
token. The key observation is that the client does not
conform to the same-origin policy, because the 302
response is in the context of https://facebook.com, while
on Windows 8, an app runs in its own domain, ms‐
appx://packageID. Without the same-origin-policy, we
were unable to see why Alice’s access token for
FooApp is guaranteed to be passed to FooAppC, not

MalAppC. To test this, we implemented a proof-of-
concept MalAppC. It indeed got the access token, which
allowed it to do everything FooAppC can do.

We reported this finding to Microsoft and Facebook,
and learned their differing perspectives about the re-
sponsibility and severity of this issue. Microsoft consid-
ered it “a shortcoming of the OAuth protocol and not
specific to our implementation.” Facebook pointed out
that when authenticateAsync is called, an embedded
browser window (usually called a WebView) is always
prompted for Facebook password. This lowered the se-
verity of the attack. We consider this a shaky security
basis: if authenticateAsync someday allows a user to
login automatically or with one click without using a
password, the basis will become invalid.

We investigated how SDKs on other platforms handle
the data passing, and found a similar issue with the
Facebook SDK for Android. However, on Android,
there is a mechanism to skip the password prompt to get
the access token automatically. In response to our re-
port, Facebook is developing a fix for its Android SDK.

6 Automated Testing

One additional value of explicating the SDKs is that it
may be possible to provide tools that test apps for viola-
tions of critical assumptions. Such tests may not be able
to guarantee the app always upholds the assumption,
but rather focus on testing apps for common vulnerabil-
ity patterns identified as a result of the explicating pro-
cess. We developed a prototype to show the feasibility
of building such a tester.

6.1 Design

Figure 10 shows our testing framework. For each vul-
nerability pattern to test, the test case defines the ac-
tions of the tester app, the proxy, and a set of server-
side tester APIs (e.g., PHP or ASP.NET files). The
tester app behaves as MalAppC. The proxy does the ne-
cessary traffic manipulations for requests and responses.
It also behaves as the unconstrained machine Mallory.
Tester APIs implement specific checks for session
states, especially for the associations we focus on.

We implemented test cases checking for violations of
four assumptions: the vulnerability described in Sec-
tion 2 (about using an access token for authentication),
and vulnerabilities corresponding to the violations of
assumptions A1 (concerning the session ID across sub-
domains), A6 (about Mallory’s user ID associated with
Alice’s session) and A4 (about binding the user ID with
refresh token). Only the test for A4 requires a tester
API on the app server.

Facebook
IdP authenticateAsync

Client app

(requestUri,
callbackUri)

access
token

Visit https://requestUri

HTTP 302: redir to
https://callbackUri

#access_token=xxx&…

Alice’s clientms‐appx://packageID

https://facebook.com

Figure 9. Data flow through authenticateAsync.

USENIX Association 22nd USENIX Security Symposium 411

13

In the first test, the tester app performs the IdP’s sign-
on steps as Alice, requests an access token, then pre-
sents the token to the app server to see if the authenti-
cation succeeded. In the second test (regarding A1), if
the app server’s hostname is foo.a.com, the proxy
creates another hostname mallory.a.com. The test fol-
lows the steps described in Section 5.2.1. Eventually
the proxy checks if the authentication is successful, but
the associated session ID is identical to that of Mal-
lory’s session on foo.a.com. In the third test (for A6), the
proxy observes the HTTP request that FooAppC sends
to Facebook. It finds out which type of data is used as
the proof for authentication (a.k.a., the authenticator),
which can be either a Code or signed request. The
proxy also tries to find a field named state, which is an
argument supported by Facebook to prevent request
forgery for login [16]. The proxy then replaces the
authenticator and the state field (if it exists) with the
ones that Mallory’s session owns. After sending the
request, the proxy checks whether Mallory can associ-
ate her Facebook ID with Alice’s session, and reports a
violation if it sees a successful server response.

The fourth test (A4) requires the help of a tester API on
the server because it tests whether the refresh token is
associated with an appropriate user ID. The test uses the
proxy to manipulate the AUTHCOOKIE in the request
header so that it contains Mallory’s authentication to-
ken in Alice’s request. The proxy then mimics Mallory
to call the tester API, which calls readRefreshToken and
checks if it returns Alice’s refresh token.

6.2 Results

In general, the testing framework is designed for app
developers so that they can avert the common pitfalls in
their own implementations. Nevertheless, since some of
the tests do not need tester APIs on the server, they can
be used with access to the apps alone. This opens the
possibility of a third party (such as the SDK provider)
performing the tests on submitted apps.

We tried using the tests to check Windows 8 and
Facebook apps found in the wild. The sets of apps that
we tested are named Set 1, Set 2 and Set 3, correspond-
ing to the first three aforementioned tests respectively.
The test apps were obtained as objectively as possible.

To construct set 1, we queried “Facebook” in the free
apps in Windows 8 App Store, which returned about
572 apps. We ranked the apps by user ratings and
examined the apps with a rating of 3+ stars. Apps
without a backend service were excluded. We then
selected apps that authenticate users through identity
providers. This left us with a total of 27 apps.

Set 2 was constructed by doing a Google query for
“herokuapp.com login”, which gave us many URLs on
herokuapp.com. We visited each URL to see if the
website ran a PHP server and appeared reasonably
functional. This gave us a list of 20 websites. We then
examined the traffic of each website to determine if it
used the Facebook PHP SDK. Seven of the sites did,
and these were used for Set 2.

To construct Set 3, we used the Google search query
“login.php” and visited the first 40 result pages 7 to
examine which URLs correspond to PHP websites that
support Facebook sign-on. We found 21 candidate
websites that comprise Set 3.

Table 5 shows the number and percentage of apps that
matched the vulnerability pattern in each set. The
results for Set 1 show that 78% of tested services with
Facebook sign-on mechanism indeed use the access
token for server-side authentication. The results for
Set 2 reinforce the value of our SDK analysis — when
we studied the SDK, we only hypothesized the possibil-
ity of this vulnerability. The vulnerability we conceived
on a hypothetical service app (FooAppS) accurately re-
flects the reality of 86% of services tested in Set 2. The
results for Set 3 indicate that 67% of the tested apps
would allow Mallory’s Facebook ID to be associated
with Alice’s session. This violation is mainly due to
missing or insufficient request forgery protections for
user login. This association mistake can be particularly
dangerous when the service apps support certain
functionalities. For example, we found that many ser-
vice apps have their own credential systems, and allow
a user to link her Facebook ID to her password-
protected account. After the linking, the user can use a
Facebook login to sign into the password-protected
account. When assumption A6 is violated, Mallory is
able to link her Facebook ID to Alice’s account in the

7 We needed to examine so many result pages because most
webpages matched the query “login.php” for reasons not
about our intent, e.g., popular pages containing both words
“login” and “php” are often considered a match.

FooAppC

Tester’s device

Tester App

App server

Tester APIs

FooAppS

Proxy

Manipulate
traffic and

mimic Mallory’s
behaviors IdP

Figure 10. Testing Framework.
(Grey boxes constructed for testing.)

Test Set Number of Apps Vulnerable
1 (Section 2) 27 21 (78%)

2 (assumption A1) 7 6 (86%)
3 (assumption A6) 21 14 (67%)

Table 5. Test Results.

412 22nd USENIX Security Symposium USENIX Association

14

session, and thus able to sign into Alice’s account. We
confirmed that 6 of the service apps could be exploited
in this way.

7 Related Work

The idea of formally verifying properties of software
systems goes back to Alan Turing [34], although it only
recently became possible to automatically verify inter-
esting properties of complex, large scale systems. Our
work makes use of considerable advances in model
checking that have enabled model checkers to work
effectively on models as complex as the ones we use
here. Our work is most closely related to other work on
inferring and verifying properties of interfaces such as
APIs and SDKs, which we review briefly next.

API and SDK misuses. It is no longer a mystery that
APIs and SDKs can be misunderstood and the results
often include security problems. On various UNIX sys-
tems, setuid and other related system calls are non-trivi-
al for programmers to understand. Chen et al. “demysti-
fied” (that is, explicated) these functions by comparing
them on different UNIX versions and formally model-
ing these system calls as transitions in finite state auto-
mata [11]. Wang et al. showed logic bugs in how
websites integrate third-party cashier services and sin-
gle-sign-on services [35][36]. Many of the bugs found
appear to result from website developers’ confusions
about API usage. Georgiev et al. showed that SSL certi-
ficate validations in many non-browser applications are
broken, which make the applications vulnerable to
network man-in-the-middle attacks [19]. Our work
started from a different perspective — our primary goal
is not to show that SDKs can be misused, but to argue
that these misuses are so reasonable that it is SDK pro-
viders’ lapse not to explicate the SDKs to make their
assumptions clear. We expect that our approach could
be adapted to other contexts such as third-party pay-
ment and SSL certificate validation.

Interface Verification. Many researchers have con-
sidered issues related to verifying interfaces and their
use. Spinellis and Louridas [32] propose a static anal-
ysis framework for verifying Java API calls. Library
developers are required to write imperative checking
code for each API to assist the verification process.
Henzinger et al. [1][7] propose languages and tools to
help model the interfaces and find assumptions that
need to be met for two APIs to be compatible, i.e., there
is no environment for which they reach an error state.
JIST [2] uses a similar approach to synthesize interface
specifications for Java classes. This line of work is
complementary to ours. Our main effort has been to
systematically understand systems and construct se-
mantic models. Currently, we manually add assump-

tions when counterexamples are found in the models.
The assumptions could be considered as a type of
“interface specifications” of the SDKs. We believe that
our semantic models would be even more valuable with
tools that can automatically synthesize high-quality as-
sumptions.

Software testing. Static techniques such as the Static
Driver Verifier (SDV) for Windows drivers [4] and dy-
namic analysis such as symbolic execution [3][12] and
fuzz testing [13][20] are widely studied in software test-
ing community. To test websites’ of single-sign-on
authentications, Bai et al. developed AUTHSCAN [5],
which is a technology to automatically recover an au-
thentication protocol from concrete website implemen-
tations.

OAuth Protocol analyses. Bansal et al. [6] modeled
OAuth 2.0 protocol and verified it using ProVerif [8].
They also built a library for future researchers to model
web APIs into ProVerif language more easily. Pai et al.
[31] used Alloy framework [23] to verify OAuth 2.0
and discovered a previously known vulnerability. Sun
et al. discussed a number of website problems affecting
OAuth’s effectiveness, such as not using HTTPS,
having XSS and CSRF bugs [33]. Although the three
SDKs we studied are based on OAuth, our work does
not focus particularly on the OAuth protocol. The fact
that all three studied SDKs are based on OAuth is main-
ly because of its widespread adoption, but the security
issues we found concern the SDKs and services rather
than flaws inherent in the OAuth protocol.

8 Final Remarks

Security exploits nearly always stem from attackers
finding ways to violate assumptions system implement-
ers relied upon. Such assumptions are often not care-
fully documented, and often only implicit in the minds
of the system designers. Our study of three important
authentication and authorization SDKs supports the
need for systematically explicating SDKs to uncover
these assumptions. We advocate that a systematic ex-
plication process should be part of the engineering
process for developing SDKs. Although our current
process still requires considerable manual effort in
understanding and modeling system behaviors, we
believe the need for this effort reveals flaws in the
current engineering processes: SDK developers,
including those building widely-used security-focused
SDKs, have not systematically understood or
documented the SDKs’ behaviors for producing secure
applications. In our study, we found assumptions that
were critical to secure use of the SDKs, but that were
not clearly documented and were subtle enough to be
missed by the majority of tested apps.

USENIX Association 22nd USENIX Security Symposium 413

15

Acknowledgments
We thank Martín Abadi, Longze Chen, Cormac Herley,
Kevin Sullivan, Helen Wang, Yi-Min Wang, and
Westley Weimer for valuable comments on this work
and an early draft of the paper. Mike Barnett offered
great advice on building and checking the semantic
models. We also appreciate the technical help from Eric
Lawrence and David Ross about recording Live ID
traffic on Windows 8. This work was partly funded by
grants from the National Science Foundation and Air
Force Office of Scientific Research (but does not
necessary reflect the views of the US Government).
Yuchen Zhou was also supported in part by a Microsoft
Research internship.

Availability
The Boogie models of the three studied SDKs are
available at https://github.com/sdk‐security/.

References
[1] Luca de Alfaro and Thomas A. Henzinger. Interface

Automata. In 8th European Software Engineering
Conference (held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering), 2001.

[2] Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong
Nam. Synthesis of Interface Specifications for Java
Classes. In 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2005.

[3] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao,
and David Brumley. AEG: Automatic Exploit Generation.
In Network and Distributed System Security Symposium
(NDSS). February 2011.

[4] Tom Ball, Ella Bounimova, Byron Cook, Vladimir Levin,
Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek,
Sriram K. Rajamani, and Abdullah Ustuner. Thorough
Static Analysis of Device Drivers. EuroSys. 2006.

[5] Guangdong Bai, Jike Lei, Guozhu Meng, Sai
Sathyanarayan Venkatraman, Prateek Saxena, Jun Sun,
Yang Liu, and Jin Song Dong. AUTHSCAN: Automatic
Extraction of Web Authentication Protocols from
Implementations. In Network and Distributed System
Security Symposium (NDSS). February 2013.

[6] Chetan Bansal, Karthikeyan Bhargavan and Sergio
Maffeis. Discovering Concrete Attacks on Website
Authorization by Formal Analysis. IEEE Computer
Security Foundations (CSF). 2012.

[7] Dirk Beyer, Arindam Chakrabarti, and Thomas A.
Henzinger. Web Service Interfaces. In 14th International
Conference on World Wide Web (WWW). 2005.

[8] Bruno Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In 14th IEEE Computer
Security Foundations Workshop (CSFW), 2001.

[9] Boogie: An Intermediate Verification Language.
http://research.microsoft.com/en-us/projects/boogie/

[10] John Bradley. The Problem with OAuth for
Authentication. http://www.thread-safe.com/2012/01/
problem-with-oauth-for-authentication.html

[11] Hao Chen, David Wagner and Drew Dean. Setuid
Demystified. USENIX Security Symposium. 2002

[12] Chia Yuan Cho, Domagoj Babíc, Pongsin Poosankam,
Kevin Zhijie Chen, Edward XueJunWu, and Dawn Song.
MACE: Model-inference-assisted Concolic Exploration
for Protocol and Vulnerability Discovery. In 20th

USENIX Security Symposium. 2011.
[13] Adam Doupé, Ludovico Cavedon, Christopher Kruegel,

and Giovanni Vigna. Enemy of the State: a State-aware
Black-box Web Vulnerability Scanner. In 21st USENIX
Security Symposium. 2012.

[14] Facebook. “The Facebook bounty program,”
http://www.facebook.com/whitehat/bounty/

[15] Facebook. SDK Reference - Facebook SDK for PHP.
http://developers.facebook.com/docs/reference/php/

[16] Facebook. OAuth Dialog,
https://developers.facebook.com/docs/reference/dialogs/
oauth/

[17] Facebook. PHP SDK Usage.
https://github.com/facebook/facebook-php-
sdk/blob/master/readme.md

[18] Facebook. Using App Access Tokens.
http://developers.facebook.com/docs/opengraph/using-
app-tokens/

[19] Matin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, Vitaly Shmatikov. The Most
Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software. ACM CCS. 2012.

[20] Patrice Godefroid, Michael Y. Levin and David Molnar.
Automated Whitebox Fuzz Testing. Network and
Distributed System Security Symposium. 2008

[21] Google. Using OAuth 2.0 to Access Google APIs.
https://developers.google.com/accounts/docs/OAuth2

[22] Dick Hardt. The OAuth 2.0 Authorization Framework
(RFC6749). http://tools.ietf.org/html/rfc6749

[23] Daniel Jackson. Alloy: A Language and Tool for
Relational Models. http://alloy.mit.edu/alloy/index.html.

[24] Akash Lal, Shaz Qadeer, and Shuvendu Lahiri. Corral: A
Solver for Reachability Modulo Theories. Computer
Aided Verification (CAV). 2012

[25] Microsoft. Live Connect Developer Center – Metro Style
Apps. http://msdn.microsoft.com/en-
us/library/live/hh826551.aspx

[26] Microsoft. Live SDK developer guide – Signing users in.
http://msdn.microsoft.com/en-us/library/live/
hh243641#signin

[27] Microsoft. Live SDK Developer Guide – Single Sign-on
for Apps and Websites. http://msdn.microsoft.com/en-us/
library/live/ hh826544.aspx

[28] Microsoft. "LiveSDK's OAuth Sample Code in PHP,"
https://github.com/liveservices/LiveSDK/tree/master/Sa
mples/PHP/OauthSample

[29] Microsoft. Live Connect Developer Center – REST
Reference. http://msdn.microsoft.com/en-us/library/live/
hh243648.aspx

[30] Microsoft. Windows.Security.Authentication.Web
namespace, http://msdn.microsoft.com/library/windows/
apps/BR227044

[31] S. Pai, Y. Sharma, S. Kumar, R.M. Pai, and S. Singh.
Formal Verification of OAuth 2.0 Using Alloy
Framework. In Communication Systems and Network
Technologies (CSNT). 2011.

414 22nd USENIX Security Symposium USENIX Association

16

[32] Diomidis Spinellis and Panagiotis Louridas. A
Framework for the Static Verification of API Calls.
Journal of Systems and Software. July 2007.

[33] San-Tsai Sun and Konstantin Beznosov. The Devil is in
the (Implementation) Details: An Empirical Analysis of
OAuth SSO Systems. ACM CCS. 2012.

[34] Alan Turing, “Checking a Large Routine”, presented at
EDSAC Inaugural Conference, 1949. (available from
http://www.turingarchive.org/browse.php/B/8)

[35] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz
Qadeer. How to Shop for Free Online – Security
Analysis of Cashier-as-a-Service Based Web Stores.
IEEE Symposium on Security and Privacy. 2011

[36] Rui Wang, Shuo Chen, XiaoFeng Wang. Signing Me
onto Your Accounts through Facebook and Google: a
Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. IEEE
Symposium on Security and Privacy. 2012

[37] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer,
David Evans, Yuri Gurevich. Explicating SDKs:
Uncovering Assumptions Underlying Secure
Authentication and Authorization. Microsoft Research
Technical Report MSR-TR-2013-37, March 2013

Appendix A. Prevalence of SDKs.
To understand how widely-used different SDKs are we
first searched for keyword “Facebook” in the Windows
App Store and filtered the results by selecting free and
trial apps only, which left us with a total of 572 apps.
We then sorted the results by users’ rating, after which
we went through the top of the list one by one to check
if the app has Facebook or Live connect SSO built-in.
We also monitored network traffic using Fiddler on
those apps that have SSO feature, and this allows us to
eliminate the ones that do not run an online service. We
excluded non-English apps and also apps that do not
work properly. After the selection process we came up
with a total of 27 apps as listed below:

App Name SDK(s)

Soluto WA(FB)
Givit Unknown

Fliptoast WA(FB)

Donelo Unknown
IM+ WA(FB)/LC

Interference Live
Norton Satellite Unknown
Slide Ur buddy WA(FB)

EuroCup Unknown
Shufflr WA(FB)

Social Umami Unknown
SumAttack WA(FB)

Guess Who WA(FB)

Flixpicks WA(FB)/LC

TwentyOne Unknown

Apyo Unknown

Where's my stuff Unknown

Mahjong 31 Unknown

Tic Challenge WA(FB)

Color orbs Unknown

tagmap WA(FB)

word gap LC

word town Unknown

noots Unknown

RecipeHouse WA(FB)

Alaska Airlines Unknown

Captain Dash LC

WA(FB): Windows Auth Broker using Facebook IdP
LC: Live Connect
Unknown: We could not identify the observed authentication
traffic.

Appendix B. Additional Assumptions.
The following assumptions were needed to complete
the verification, but not included in Table 2 or Table 3
since they do not appear to have any likely security
consequences.

C1: (Live Connect)
There are two sets of Live Connect APIs, one of
Microsoft apps and services, such as Skydrive, the other
for non-Microsoft apps and services. We assume the
two sets of APIs cannot be called together, i.e., any
sequence of calling these APIs is confined to only one
of the two sets.

C2: (Live Connect, Windows Auth Broker)
We assume no possibility of executing a script provided
by Mallory/MalAppC inside FooAppC. (Actually, we
are concerned that DOM methods like InvokeScript and
ScriptNotify may violate this assumption, but have not
yet identified a clear security issue.)

C3: (all)
As explained in Section 4.2, we assume that access
token, Code, authentication token, app secret, app ID,
user ID, session ID and so on are of different types,
although in reality they are all strings. We do not allow
type mismatches.

USENIX Association 22nd USENIX Security Symposium 415

Enabling Fine-Grained Permissions for Augmented Reality
Applications With Recognizers

Suman Jana1, David Molnar2, Alexander Moshchuk2, Alan Dunn1, Benjamin Livshits2,
Helen J. Wang2, and Eyal Ofek2

1University of Texas at Austin
2Microsoft Research

Abstract

Augmented reality (AR) applications sense the en-
vironment, then render virtual objects on human
senses. Examples include smartphone applications
that annotate storefronts with reviews and XBox
Kinect games that show“avatars”mimicking human
movements. No current OS has special support for
such applications. As a result, permissions for AR
applications are necessarily coarse-grained : applica-
tions must ask for access to raw sensor feeds, such
as video and audio. These raw feeds expose signif-
icant additional information beyond what applica-
tions need, including sensitive information such as
the user’s location, face, or surroundings.

Instead of exposing raw sensor data to applica-
tions directly, we introduce a new OS abstraction:
the recognizer. A recognizer takes raw sensor data
as input and exposes higher-level objects, such as
a skeleton or a face, to applications. We propose
a fine-grained permission system where applications
request permissions at the granularity of recognizer
objects. We analyze 87 shipping AR applications
and find that a set of four core recognizers covers
almost all current apps. We also introduce privacy
goggles, a visualization of sensitive data exposed to
an application. Surveys of 962 people establish a
clear “privacy ordering”over recognizers and demon-
strate that privacy goggles are effective at commu-
nicating application capabilities. We build a proto-
type on Windows that exposes nine recognizers to
applications, including the Kinect skeleton tracker.
Our prototype incurs negligible overhead for single
applications, while improving performance of con-
current applications and enabling secure offloading
of heavyweight recognizer computation.

1 Introduction

An augmented reality (AR) application takes nat-
ural user interactions (such as gestures, voice, and
eye gaze) as input and overlays digital content on
top of the real world seen, heard, and experienced
by the user. For example, on mobile phones, aug-
mented reality “browsers” such as Layar and Junaio
allow users to look through the phone and see an-
notations about a magazine article or a storefront.
Furniture applications on the iPad allow users to
preview what a couch would look like in the context
of a real room before buying [17]. The Xbox Kinect
has sold over 19 million units and allows application
developers to overlay avatars on top of a user’s pose,
creating new kinds of games and natural user inter-
faces. Microsoft has released a Windows SDK for
Kinect and helped incubate multiple startup com-
panies delivering AR experiences on the PC. Even
heads-up displays, previously restricted to academic
and limited military/industrial use, are set to reach
consumers with Google Glass [25].

Today’s AR applications are monolithic. The
application itself performs sensing, rendering, and
user input interpretation (e.g., for gestures), aided
by user-space libraries, such as the Kinect SDK,
OpenCV [6, 12], or cloud object recognition ser-
vices, such as Lambda Labs or IQ Engines. Because
today’s OSes are built without AR applications in
mind, they offer only coarse-grained access to sensor
streams, such as video or audio data. This raises
a privacy challenge: it is difficult to build applica-
tions that follow the principle of least privilege, hav-
ing access to only the information they need and no
more. Today’s systems also do not have any AR-
specific permissions, relying instead on careful pre-
publication vetting of applications [5].

Motivating Example. Figure 1 illustrates the
problem with coarse-grained abstractions in today’s

1

416 22nd USENIX Security Symposium USENIX Association

Figure 1: Giving raw sensor data to applications can
compromise user privacy. This video frame captured
from a Kinect contains the user’s face, private white-
board drawings, and a bottle of medicine.

Figure 2: AR applications often need only specific ob-
jects rather than the entire sensor streams. The “Kinect
Adventures!” game only needs body position to render
an avatar and simulate game physics.

AR applications. The figure shows a video frame
captured from a camera. Today, applications must
ask for raw camera access if they want to do video-
based AR, which means the application will see
all sensitive information in the frame. In this
frame, that information includes the user’s face, (pri-
vate) drawings on the whiteboard, and a bottle of
medicine with a label that reveals a medical condi-
tion.

An application, however, may not need any of this
sensitive information to do its job. For example,
Figure 2 shows a screenshot from the “Kinect Ad-
ventures!” game that ships with the Microsoft Xbox
Kinect. First, the game estimates the body position
of the player from the video and depth stream of the
Kinect. Next, the game overlays an avatar on top
of the player’s body position. Finally the game sim-
ulates interaction between the avatar and a virtual
world, including a ball that bounces back and forth
to hit blocks. To do its job, the game needs only
body position, and not any other information from
the video and depth stream.

Kinect is just one example of an AR system; this

Figure 3: Two examples of mobile AR applications that
only need specific objects in a sensor stream. On the left,
Macy’s Believe-O-Magic only needs the location in the
frame of a special marker, on top of which it renders a
cartoon character. On the right, Layar only needs to
know the GPS location and compass position to show
geo-tagged tweets.

Application Objects recognized

Your Shape 2012 skeleton, person texture
Dance Central 3 skeleton, person texture
Nike+Kinect skeleton, person texture
Just Dance 4 skeleton, video clip
NBA 2K13 voice commands
Xbox Dashboard pointer, voice commands

Layar GPS “points of interest”
Red Bull Racing Red Bull Cans
Macy’s Believe-O-Magic Macy’s store display

Figure 4: Sample AR applications and the objects they
recognize. Kinect apps are above the line, mobile below.

principle of AR applications benefiting from “least
privilege” is more general. We show two mobile
phone examples in Figure 3. On the left, the Macy’s
Believe-O-Magic application shows a view of a child
standing next to a holiday-themed cartoon charac-
ter. While the application today must ask for raw
video access, which includes the face of the child
and of all bystanders, the only information the ap-
plication needs is the location of a special marker
to enable rendering the cartoon in the correct place.
On the right, Layar is an “AR browser” for mobile
phones, here showing a visualization of where recent
tweets have originated near the user. Again, Layar
must ask for raw video and location access, but in
fact it needs to only know the GPS position of the
tweet relative to the user.
Beyond these examples, Figure 4 shows the top 5

Amazon best-selling Kinect-enabled applications for
the Xbox 360, along with the Xbox Dashboard and
representative AR apps on mobile phones. For each
application, as well as the Xbox Dashboard, we enu-
merate the objects recognized; in Section 5 we carry
out a similar analysis for all shipping Xbox Kinect
applications. None of these applications need con-

2

USENIX Association 22nd USENIX Security Symposium 417

tinuous access to raw video and depth data, but no
current OS allows a user to restrict access at finer
granularity.

The Recognizer Abstraction. To address this
problem, we introduce a new least-privilege OS ab-
straction called a recognizer. A recognizer takes as
input a sensor stream and creates events when ob-
jects are recognized. These events contain informa-
tion about the recognized object, such as its position
in the video frame, but not the raw sensor informa-
tion. By making access to recognizer-exposed ob-
jects a first-class permission in an operating system,
we enable least privilege for AR applications. We
assume a fixed set of system-provided recognizers in
this work. This is justified by our analysis of over 87
shipping applications, which shows a set of four“core
recognizers” is sufficient for the vast majority of such
applications (Section 5).
Supporting recognizers in the OS incurs several

benefits. Besides enabling least privilege, recogniz-
ers lead to a performance improvement, as heavy-
weight object recognition can be shared among mul-
tiple applications. We show how an OS can com-
pose recognizers in a dataflow graph, which enables
precise reasoning about which recognizers should be
run, depending on the set of running applications.
Finally, we show how making dataflow explicit al-
lows us to prune spurious permission requests. These
benefits extend beyond AR applications and to any
set of applications that must interpret higher-level
objects from raw sensor data, such as building moni-
toring, stored video analysis, and health monitoring.

Challenges. We faced several challenges designing
our recognizer-based AR platform. First, other fine-
grained permission systems, such as Android, have
been shown to be difficult to interpret for users [11].
To address this problem, we introduce privacy gog-
gles: an “application’s-eye view” of the world that
shows users which recognizers are available to an
application. Users see a video representation of sen-
sitive data that will be shown to the application
(Figure 9). This, in turn, lays the foundation for
informed permission granting or permission revoca-
tion. Our surveys of 462 people show that privacy
goggles are effective at communicating capabilities
to users.
Another challenge concerned recognizer errors.

For example, an application may have permission
for a skeleton recognizer. If that recognizer mistak-
enly finds a skeleton in a frame, the application may
obtain information even though there is no person
present. This information leakage violates a user’s
expectations, even though the application sees only
a higher-level object such as the skeleton.

We address recognizer errors with a new OS
component, recognizer error correction. We evalu-
ate three approaches: blurring, frame subtraction,
and recognizer combination. The first two manipu-
late raw sensor data to reduce false positives in a
recognizer-independent way. The last reduces false
positives by using context information available to
the OS from its use of multiple recognizers that could
not be available to any individual recognizer author.
We show that our techniques reduce false positives
across a set of seven recognizers implemented in the
OpenCV library [12].

Our final challenge concerned recognizers that
require heavyweight object recognition algorithms
which may run poorly or not at all on performance-
constrained mobile devices [23, 21]. We thus build
and evaluate support for offloading of particularly
heavyweight recognizers to a remote machine.

We have implemented a prototype of our system
on Windows, using the Kinect for Windows SDK.
Our system includes nine recognizers, including face
detection, skeleton detection, and a “plane recog-
nizer” built on top of KinectFusion [23].

Contributions. We make the following contribu-
tions:

• We introduce a new OS abstraction, the rec-
ognizer, which captures the core object recog-
nition capabilities of AR applications. Our
novel fine-grained permission system for recog-
nizers enables least privilege for AR applica-
tions. We show that all shipping Kinect applica-
tions would benefit from least privilege. Based
on surveys of 500 people, we determine a pri-
vacy ordering on common recognizers.

• We introduce a novel visualization of sensitive
data provided to AR applications, which we call
privacy goggles. Privacy goggles let users in-
spect sensitive information flowing to an appli-
cation, to aid in permission granting, inspec-
tion, and revocation. Our surveys of 462 people
show that privacy goggles are effective at com-
municating capabilities to users.

• We recognize the problem of granting permis-
sions in the presence of object recognition errors
and propose techniques to mitigate it.

• We demonstrate that raising the level of ab-
straction to the “recognizer” enables the OS
to offer services such as offloading and cross-
application recognizer sharing that improve per-
formance. Our implementation has negligible

3

418 22nd USENIX Security Symposium USENIX Association

Figure 5: AR application pipeline: (1) reading raw data from hardware, (2) parsing raw data into recognized objects,
(3) manipulating these objects to add augmentations to the scene, and (4) resolving conflicts and rendering.

overhead for single applications, yet greatly in-
creases performance for concurrent applications
and allows the OS to offload heavyweight rec-
ognizer computation.

In the rest of the paper, Section 2 provides back-
ground on AR, Section 3 discusses our recognizer
abstraction, and Section 4 describes our implemen-
tation. Section 5 evaluates privacy goggles, recogniz-
ers required for shipping AR applications, recognizer
error correction, and performance of our prototype.
Sections 6 and 7 present related and future work,
and Section 8 concludes.

2 AR Overview

We characterize AR applications using a pipeline
shown in Figure 5. First, the sensing stage acquires
raw video, audio, and other sensor data from plat-
form hardware. In the figure, we show an RGB video
frame as an example. The frame was captured from
a Kinect, which also exposes a depth stream and a
high-quality microphone.

Next, the recognition stage applies object recog-
nition algorithms to the raw sensor data. For ex-
ample, voice recognition may run on audio to look
for specific keywords spoken, or a skeleton detector
may estimate the presence and pose of a human in
the video. As new advances in computer vision and
machine learning make it possible to reliably recog-
nize different objects, the resulting algorithms can
be added to this stage. The code performing object
recognition is similar to drivers in traditional operat-
ing systems: code running with high privilege main-
tains an abstraction between “bare sensing” and ap-
plications. Just as with devices in traditional OSes,
an OS with support for AR could multiplex applica-
tions across multiple object recognition components;
we will describe a new OS abstraction that enables
this in the next section. In the figure, a face and two
areas of text are recognized, one on the whiteboard
and another on a bottle of medicine. The output of
the recognition stage is a set of software objects that

“mirror” recognized real-world objects.
In the transformation stage, applications consume

the recognized objects and add virtual objects of
their own. Finally, the presentation stage creates
the final view for the user, taking as input all cur-
rent software objects and the current state of the
world. This stage must resolve any remaining logi-
cal conflicts, as well as check that desired placement
of objects is feasible. Today, this rendering is done
using standard OS abstractions, such as DirectX or
OpenGL.

3 The Recognizer OS Abstraction

We propose a new OS abstraction called a recog-
nizer. A recognizer is an OS component that takes
a sensor stream, such as video or audio, and “rec-
ognizes” objects in the sensor stream. For example,
Figure 6 shows a recognizer that wraps face detec-
tion logic. This recognizer takes a raw RGB image
and outputs a face object if a face is present. The
recognizer abstraction lets us capture that most AR
applications operate on specific entities with high-
level semantics, such as the face or the skeleton. To
enable least privilege, the OS exposes higher level
entities through recognizers.
Recognizers create events when objects are recog-

nized. A recognizer event contains structured data
that encodes information about the objects. Each
recognizer declares a public type for this structured
data that is available to applications. Applications
register callbacks with the OS that fire for events
from a particular recognizer; the callbacks accept
arguments of the specified type. For example, the
recognizer in Figure 6 declares that it will return a
list of points corresponding to facial features, plus
an RGB texture for the face itself. A callback for
an application receives the points and texture in its
arguments, but not the rest of the raw RGB frame.
The recognizer is the unit of permission granting.

Every time an application attempts to register a call-
back with the OS for a specific recognizer, the ap-
plication must be authorized by the user. Different

4

USENIX Association 22nd USENIX Security Symposium 419

Figure 6: Example of a recognizer for face detection.
The input is a feed of raw RGB video plus a region within
that video. The recognizer outputs an event if a face is
recognized in the region. Applications register callbacks
that fire on the event and are called with a list of points
outlining the face plus an RGB texture, but not the rest
of the video frame.

Figure 7: A sample directed acyclic graph of recogniz-
ers. Arrows denote how recognizers subscribe to events
from other recognizers.

applications can, depending on the user’s authoriza-
tion, have access to different recognizers.This gives
us a fine-grained permission mechanism.

Users can restrict applications to only “see” a sub-
set of the raw data stream. For example, Figure 6
shows a bounding box in the raw RGB frame that
can be associated with a specific application. If a
face happened to be present outside this bounding
box, that application would not see the resulting
event. Such regions are useful to (1) prevent an
application from seeing sensitive information in the
environment, and (2) improve efficiency and accu-
racy of recognizers (e.g., by skipping a region that
generates false positives). This bounding box works
for sensors where the data is spatial, such as RGB,
depth, or skeleton feeds. Other cutoffs would work
for other sensors, such as filtering audio to a certain
frequency range to ensure voice data is not leaked
while other sounds are kept.

Recognizers can also subscribe to events from
other recognizers, just like applications. The OS in-
cludes recognizers for raw sensor streams, such as
RGB frames from a camera. Because subscribing
to events is an explicit call to the OS, the OS can
construct a dataflow graph showing how raw sensor
streams are progressively refined into objects. Fig-
ure 7 shows an example. Having explicit data flow

Figure 8: Recognizer-based OS architecture. Applica-
tions request subscriptions to sets of recognizers, which
the OS then confirms with the user using privacy gog-
gles (Figure 9). Once the user grants permission, the OS
delivers recognizer events to subscribed applications.

helps the OS with both security and performance,
as we describe below.
Architecture and Threat Model: Figure 8 shows
the core architecture of an OS with multiple appli-
cations and multiple recognizers. “Root” recognizers
acquire raw input from sensors such as the Kinect,
then raise events that are consumed by other rec-
ognizers. An application may request a subscription
for a set of recognizers. The OS confirms this request
with the user using our “Privacy Goggles” visualiza-
tion (Section 3.3). If the user agrees to the request,
the OS then delivers events from appropriate recog-
nizers to the application. While our implementation
and example focuses on the Kinect, our architecture
applies to all forms of object recognition across dif-
ferent platforms such as mobile phones.
The applications are not trusted, while the

OS, recognizer implementations, and hardware are
trusted. This is similar to the threat model in to-
day’s mobile devices. Third-party recognizer imple-
mentations are out of scope of this paper, but we
describe in Section 7 key new challenges they raise.

3.1 Security Benefits

The recognizer abstraction has two key security ben-
efits:
Least privilege: Applications can be given access
only to the recognizers they need, instead of to raw
sensor streams. Before recognizers, OSes could ex-
pose permissions only at a coarse granularity. As
we will see in Section 5, a small set of recognizers is
sufficient to cover most shipping AR applications.
Reducing permission requests: If an applica-
tion requests access to the skeleton and hand rec-
ognizers from the DAG shown in Figure 7, a user
only needs to grant access to the skeleton recognizer.

5

420 22nd USENIX Security Symposium USENIX Association

More generally, the recognizer DAG allows us to find
such dependencies efficiently. This helps with warn-
ing fatigue, which is one of the major problems with
existing permission systems [11].

3.2 Performance Benefits

Besides the security benefits described above, recog-
nizer DAGs also allow us to achieve significant per-
formance gains.
Sharing recognizer output: Most computer vi-
sion algorithms used in recognizers are computation-
ally intensive. Since concurrently running AR appli-
cations may access the same recognizers, our recog-
nizer DAG allows us to run such shared recognizers
only once and send the output to all subscribed ap-
plications. Our experiments show that this results
in significant performance gains for concurrent ap-
plications.
On-demand invocation: The recognizer DAG
allows us to find all recognizers being accessed by
currently active applications at all times. We can
then prevent scheduling inactive recognizers.
Concurrent execution: The recognizer DAG
also allows us to find true data dependencies between
the recognizers. We leverage this to schedule inde-
pendent recognizers in multiple threads/cores and
thus minimize inter-thread/core communication.
Offloading: Some recognizers require special-
purpose hardware such as a powerful GPU that may
not be available in mobile devices. These recognizers
must be outsourced to a remote server. For exam-
ple, the real-time 3D model generation of KinectFu-
sion [23] requires a high-end nVidia desktop graphics
card, such as a GeForce GTX 680. Therefore, if we
want to use a commodity tablet with a Kinect at-
tached to scan objects and create models, we must
run the recognizer on a remote machine. While
applications could implement offloading themselves,
adding offloading support to the OS preserves least
privilege. For example, the OS can offload KinectFu-
sion without giving applications access to raw RGB
and depth inputs, which would be required if an ap-
plication were to offload it manually.

3.3 Privacy Goggles

We introduce privacy goggles, an “application-eye
view” of the world for running applications. For
example, if the application has access to a skele-
ton recognizer, a stick figure in the “privacy goggles
view” mirrors the movements of any person in view
of the system, as shown in Figure 9. A trusted visu-
alization method for each recognizer communicates

the capabilities of applications that have access to
this recognizer. If an application requests access to
more than one recognizer, the OS will compose the
appropriate visualizations. In Section 5 we survey
462 people to demonstrate that privacy goggles do
effectively communicate capabilities for “core recog-
nizers” derived from analyzing shipping AR applica-
tions. Privacy goggles are complementary to exist-
ing permission widgets, such as those of Howell and
Schechter [16], which allow users to understand how
apps perceive them in real time.

Permission Granting and Revocation. Privacy
goggles lay a foundation for permission granting, in-
spection, and revocation experiences. For example,
we can generalize existing install-time manifests to
use privacy goggles visualizations. At installation
time, a short prepared video could play showing a
“raw” data stream side by side with the privacy gog-
gles view. The user can then decide to allow access
to all, some, or none of the recognizers. We are cur-
rently evaluating this approach. Because manifest-
based systems have known problems with user at-
tention [11], we are also exploring how access-control
gadgets might interact with privacy goggles [27].

A major difference between privacy goggles and
existing permission granting systems like Android
manifests is the visual representation of the sen-
sitive data. The visual representation helps users
to make informed decisions about granting and re-
voking an application’s access to different recogniz-
ers. Traditional systems do not need this represen-
tation because they ask for permissions about well-
understood low-level hardware, such as the camera
and microphone. Because we are fine-grained and
must consider higher-level semantics, we need pri-
vacy goggles to show the impact of allowing applica-
tions access to specific recognizers.

After installation, privacy goggles are a natural
way to inspect sensitive data exposed to applica-
tions. The user can trigger a“privacy goggles control
panel” to zero in on a particular application or view
a composite for all applications at once. From the
control panel, a user can then turn off an applica-
tion’s access to a recognizer or even uninstall the
application.

3.4 Handling Recognizer Errors

Because our permission system depends on recog-
nizer outputs, we have a new challenge: recognizer
errors. Object recognition algorithms inside recog-
nizers have both false positives and false negatives.
A false negative means that applications will not
“see”an object in the world, impacting functionality.

6

USENIX Association 22nd USENIX Security Symposium 421

False negatives, however, do not concern privacy.

A false positive, on the other hand, means that
an application will see more information than was
intended. In some cases the damage will be limited,
because the recognizer will return information that
is not sensitive. For example, a false positive from a
recognizer for hand positions is unlikely to be a prob-
lem. In others, false positives could leak portions of
raw RGB frames or other more sensitive data.

To address recognizer errors, we introduce a new
OS component for recognizer error correction. While
recognizers themselves implement various techniques
to decrease errors, in our setting false positives are
damaging, while false negatives are less important.
Therefore, we are willing to tolerate more false neg-
atives and fewer false positives than a recognizer de-
veloper who is not concerned with basing permission
decisions on a recognizer’s output.

For recognizer error correction, we first consid-
ered two techniques: blurring and frame subtraction,
both of which are well-known graphics techniques
that can be applied in a recognizer-independent way.
We apply these techniques to recognizer inputs to
reduce potential false positives, accepting that they
may raise false negatives. We discuss the results and
show data in Section 5.

In addition, the OS has information not available
to an individual recognizer developer: results from
other recognizers in the same system on the same
environment. Recognizer error correction can there-
fore employ recognizer combination to reduce false
positives. For example, if a depth camera is avail-
able, the OS can use the depth camera to modify the
input to a face detection recognizer. By blanking
out all pixels past a certain depth, the OS can en-
sure a face recognizer focuses only on possible faces
near the system. While combination does require
knowing something about what a recognizer does,
it is independent of the internals of the recognizer
implementation. For another example, the OS can
combine a skeleton recognizer and a face recognizer
to release a face image only if there is also a skeleton
with its head in the appropriate place.

3.5 Adding New Recognizers.

Today’s AR platforms ship with a small fixed set of
recognizers. Applications that want capabilities out-
side that set need to both innovate on object recog-
nition and on app experience, which is rare. As the
platforms mature, we expect additional recognizers
to appear. The main incremental costs for new rec-
ognizers are 1) coming up with a privacy goggles
visualization, 2) measuring the effectiveness of this

Figure 9: Example of “privacy goggles.” The user sees
the “application-eye view” for a skeleton recognizer.

API Purpose

init Register
destruct Clean up
event_generate Notify apps of recognized objects
visualize Render recognized objects
filter Restrict domain for recognition
cache_compare Compare to previous inputs

Figure 10: The APIs implemented by each recog-
nizer. The first four are required, while filter and
cache_compare are optional.

visualization at informing users (and re-designing if
not effective), and 3) defining relationships with ex-
isting recognizers to support recognizer error correc-
tion. For example, a new “eye recognizer” would
have the invariant that every eye detected should
be on a head detected by the skeleton recognizer.
Third-party recognizers raise additional security is-
sues outside the scope of this paper; we discuss them
briefly in Section 7.

4 Implementation

We have built a prototype implementation of our ar-
chitecture. Our prototype consists of a multiplexer,
which plays the role of an OS“kernel”, and ARLib, a
library used by AR applications to communicate to
the multiplexer. Our system uses the Kinect RGB
and depth cameras for its sensor inputs.

Multiplexer. The multiplexer handles access to
the sensors and also contains implementations of
all recognizers in the system. Our applications no
longer have direct access to Kinect sensor data and
must instead interact with the multiplexer and re-
trieve this data from recognizers. The multiplexer
supports simultaneous connections from multiple ap-
plications. To simplify implementation, we built
the multiplexer as a user-space program in Windows
that links against the Kinect for Windows SDK.

The multiplexer registers each recognizer using
a static, well-known name. Applications use these
names to request access to one or more recogniz-

7

422 22nd USENIX Security Symposium USENIX Association

var client = new MultiplexerClient();

client.Connect();

client.OnFace += new FaceEventCallback(ProcessFace);

...

public void ProcessFace(FTPoint[] points)

{

if (points.Length > 0) {

DrawFace(points);

} else {

RemoveFace();

}

}
Figure 12: Code used by a sample C# application to
connect to the multiplexer, subscribe to events from the
face recognizer, and use those events to update its face
visualization.

ers. When the multiplexer receives such an access
request, it asks the user whether or not permis-
sion should be granted using privacy goggles (Sec-
tion 3.3). If the user grants permission, the mul-
tiplexer will forward future recognizer events, such
as face mesh points from a face recognizer, to the
application.

The multiplexer interacts with recognizers via an
API shown in Figure 10. All recognizers must im-
plement the first four API calls. The multiplexer
calls init to initialize a recognizer and destruct

to let a recognizer release its resources. In our
current implementation, the multiplexer calls the
event_generate function of each recognizer in a
loop, providing prerequisite recognizer inputs as pa-
rameters, to check if any new objects have been rec-
ognized. If so, the recognizer will return data that
the multiplexer will then package in an event data
structure and pass to all subscribed applications. We
plan to implement a more efficient interrupt-driven
multiplexer in the future.

The next two API calls are optional. The fil-

ter call allows the multiplexer to tell the recog-
nizer that only a specific subset of the raw inputs
should be used for recognition. For example, only a
sub-rectangle of the video frame should be consid-
ered for a face detector. Finally, cache_compare is
a recognizer-specific comparator function that takes
two sets of recognizer inputs and determines whether
they are considered equal. The multiplexer uses this
comparator to implement per-recognizer caching.
For example, the multiplexer may pass the previ-
ous and current RGB frames to the cache_compare
function of the face recognizer and potentially avoid
a recomputation of the face model if the two frames
have not sufficiently changed.

Our multiplexer and recognizers consisted of
about 3,000 lines of C++ code. We wrote a total of
nine recognizers, which we summarize in Figure 11.

Application support. Applications targeting
our multiplexer run in separate Windows processes.
Each application links against the ARLib library we
have built. ARLib communicates with the multi-
plexer over local sockets and handles marshaling and
unmarshaling of recognizer event data. By calling
ARLib functions, an application can request access
to specific recognizers and register callbacks to han-
dle recognizer events. ARLib provides two kinds
of interfaces: a low-level interface for applications
written in C++ and higher-level wrappers for .NET
applications written in C# or other managed lan-
guages. ARLib consists of about 500 lines of C++
code and 400 lines of C# code.
Sample code in Figure 12 shows a part of a test

application we wrote that detects faces and draws
pictures on the screen which follow face movements.
The application connects to the multiplexer and sub-
scribes to face recognizer events. In our implementa-
tion, these events contain approximately 100 points
corresponding to different parts of the face, or 0
points if a face is not present. The application han-
dles these events in the ProcessFace callback by
checking if a face is present and calling a separate
function (not shown) that updates the display.
In addition to face visualization, we ported a few

other sample applications bundled with the Kinect
SDK to our system. These included a skeleton vi-
sualizer and raw RGB and depth visualizers. We
found the porting effort to be modest, aided in part
by the fact that we modeled our event data formats
on existing Kinect SDK APIs. In each case, we only
changed a handful of lines dealing with event sub-
scription. We additionally wrote two applications
from scratch: a 500-line C++ application that trans-
lates hand gestures into mouse cursor movements,
and a 300-line C# application that uses face recog-
nition to annotate people with their names. Overall,
we found our multiplexer interface simple and intu-
itive to use for building AR applications.

5 Evaluation

We first evaluate how recognizers are used by an
analysis of 87 shipping AR applications and users’
mental models of AR applications. A survey of 462
respondents shows that users expect AR applica-
tions to have limited access to raw data. Fur-
thermore, no shipping application needs continuous
RGB access, and in fact a set of four recognizers is
sufficient for almost all applications. For these“core”
recognizers, we design privacy goggles visualizations
and evaluate how well users understand them. Next,
we look at how the OS can mitigate recognizer er-

8

USENIX Association 22nd USENIX Security Symposium 423

Recognizer Input dependencies Output

RGB Kinect RGB camera frames
Depth Kinect Depth camera frames
Skeleton Kinect Computed skeleton model(s)
Hand Skeleton Hand positions
FaceDetect RGB 2D face models for faces in current view
PersonTexture Depth, Skeleton Depth “cutout” of a person
Plane RGB, Depth 3D polygon coordinates constructed with KinectFusion (see Section 5.3)
FaceRecognize RGB, FaceDetect Name of person in current view (see Section 5.3)
CameraMotion Kinect Camera movements detected using an accelerometer/gyro

Figure 11: The nine recognizers implemented by our multiplexer. A “Kinect” input dependency means that the
recognizer obtains data directly from the Kinect rather than other recognizers.

rors once an application has access to recognizers.
Finally, we show that our abstraction enables perfor-
mance improvements, making this a rare case when
improved privacy leads to improved performance.

5.1 Recognizers

Core Recognizers. We analyzed 87 AR applica-
tions on the Xbox Kinect platform, including all
applications sold on Amazon.com. We focused on
Kinect because it is widely adopted and sits in a
user’s home. For each application, we manually re-
viewed their functionality, either through reading re-
views or by using the application. From this, we
extracted “recognizers” that would be sufficient to
support the application’s functionality.

Figure 13 shows the results. Four core recogniz-
ers are sufficient to support around 89% of ship-
ping AR applications. The set consists of skeleton
tracking, hand position, person texture, and keyword
voice commands. Person texture reveals a portion of
RGB video around a person detected through skele-
ton tracking, but with the image blurred or other-
wise transformed to hide all details. Fitness appli-
cations, in particular, use person texture when in-
structing the user on proper form.

After the core set, there is a “long tail” of seven
recognizers. For example, the Alvin and the Chip-
munks game uses voice modulation to “Alvin-ize”
the player’s voice, and NBA Baller Beats actually
tracks the location of a basketball to check that the
player dribbles in time to music. None of the ap-
plications in our set, however, require continuous
access to RGB data. Instead, applications take a
short video or photo of the player so that she can
share how silly she looks with friends; this could be
handled via user-driven access control [27]. Only 3
applications require audio access beyond voice com-
mand triggers. There is plenty of room to improve
privacy with least privilege enabled by the recognizer
abstraction.

Privacy Expectations for Applications. To

Recognizer % Apps

Skeleton 94.3%
Person Texture (PT) 25.3%
Voice Commands (VC) 3.44%
Hand Position (HP) 5.74%
Video Clip 3.4%
Picture Snap 1.1%
Voice Intensity 1.1%
Voice Modulation 1.1%
Speaker Recognition 1.1%
Sound Recognition 1.1%
Basketball Tracking 1.1%

Skeleton+PT+VC 82.75%
Skeleton+PT+VC+HP 89.65%

Figure 13: Analysis of all recognizers used by 87 ship-
ping Xbox applications. For each recognizer, we show
what percentage of apps use that recognizer (and possi-
bly others). We also show two sets of recognizers, and
for each set, the percentage of apps that use recogniz-
ers in this set and no others. A set of four recognizers
covers 89.65% of all applications. No application needs
continuous raw RGB access, and only 3 need audio access
beyond voice commands.

learn users’ mental models of AR application capa-
bilities, we showed 462 survey respondents a video
of a Kinect “foot piano” application in action: the
Kinect tracks foot positions and plays music. We
then asked about the capabilities of the application.
Figure 17(A) shows the results. Over 86% of all users
responded that the application could see the foot po-
sitions, while a much smaller number believed this
application had other capabilities. Overall, users ex-
pect applications will not see the entire raw sensor
stream.

Privacy Goggles for Core Recognizers. As we
discussed in Section 3, every recognizer must im-
plement a visualization method to enable the pri-
vacy goggles view. The OS uses these visualizations
to display to the user what information is obtained
by each application. We developed privacy goggles
visualizations for three of the four core recogniz-
ers: skeleton, hand position, and person texture.
While voice commands are also a core recognizer,

9

424 22nd USENIX Security Symposium USENIX Association

Figure 14: Example survey question for privacy gog-
gles. An embedded warning video shows two views: the
raw video on the right, and what the application will
see on the left. Survey respondents watched the warn-
ing video, then answered questions about what the app
could or could not do after installation. Out of 152 re-
spondents, 80% correctly identified that the app could
see body position, and 47% correctly determined the app
could see hand positions.

Figure 15: Example survey on relative sensitivity. Re-
spondents indicated which picture is more sensitive: the
“raw” RGB video frame or an image showing only the
output of a face detector. Out of 50 respondents, 86%
indicated the raw image was more sensitive.

we decided to focus first on the visual recognizers
and leave visualization of voice commands for future
work.
Privacy Attitudes for Core Recognizers. We
then conducted surveys to measure the relative sen-
sitivity of the information released by the core recog-
nizers. We also added the “face detector” recognizer,
because intuitively the face is private information,
and a “Raw” video recognizer that represents giving
all information to the application. For each pair of
recognizers, we showed a visualization from the same
underlying video frame, then asked the participant
to state which picture was “more sensitive” and why.
Figure 15 shows an example comparing raw RGB
and face detector recognizers.
For each pair of recognizers, we asked 50 people to

rate which picture contained information that was
“more sensitive.” Figure 16 shows the results. In
total we had 500 survey respondents, all from the
United States. As expected, respondents find that
the raw RGB frame is more sensitive than any other

Recognizers Left more 95%

Left Right sensitive CI

Raw Face 86% ± 9.6%
Raw Skeleton 78% ± 11.48%
Raw Texture 88% ± 9.01%
Raw Hand 88% ± 9.01%
Texture Skeleton 82% ± 10.65%
Texture Face 35% ± 13.22%
Texture Hand 84% ± 10.16%
Skeleton Face 24% ± 11.84%
Skeleton Hand 84% ± 10.16%
Hand Face 22% ± 11.48%

Figure 16: Results from relative sensitivity surveys.
Users were shown two pictures, one from each recognizer,
here shown as the “left” and the “right” recognizer. The
table reports which picture respondents thought con-
tained “more sensitive” information and the 95% con-
fidence interval. For example, in the first line, 86% of
people thought that the view from the “Raw” RGB rec-
ognizer was more sensitive than the view from a face
detector, with a 95% confidence interval of ± 9.6%.

recognizer. Based on the responses, we can order
recognizers from“most sensitive” to “least sensitive”,
as follows: Raw, Face, Person Texture, Skeleton, and
finally the least sensitive is Hand Position.

Effectiveness of Privacy Goggles. Finally, we
evaluated whether our “privacy goggles” visualiza-
tions successfully communicate the capabilities of
applications. We created three surveys, one for each
of the skeleton, person texture, and hand recogniz-
ers. We had at least 150 respondents to each survey,
with a total of 462 respondents. Our surveys are in-
spired by Felt et al.’s Android permission“quiz.” [11]

We showed a short video clip of the privacy gog-
gles visualization for the target recognizer. Figure 14
shows an example for the skeleton recognizer. The
right half shows the raw RGB video of a person writ-
ing on a whiteboard and handling a small ceramic
cat figurine. The left half shows the “application-eye
view” showing the detected skeleton. We then asked
users what they believed the capabilities of the appli-
cation would be if installed. Figure 17 shows the re-
sults, with a check mark next to correct answers. We
see that a large number of respondents (over 80%)
picked the correct result and relatively few picked in-
correct results. This shows that privacy goggles are
effective at communicating application capabilities
to the user.

Respondent Demographics. Our survey partic-
ipants were recruited from the U.S. through uS-
ample [30], a professional survey service, via the
Instant.ly web site. We did not specify any re-
strictions on demographics to recruit. As reported
by uSample, participants are 66% female and 33%

10

USENIX Association 22nd USENIX Security Symposium 425

A. Foot Piano (462 respondents)

See my body position 76 (16%)
See my foot positions � 400 (86%)
See what I look like 28 (6%)
See the entire video 52 (11%)
Learn my heart rate 21 (4%)
None of the above 20 (4%)
I don’t know 20 (4%)

B. Skeleton (152 respondents)

See what I look like 17 (11%)
See my body position � 122 (80%)
See my location 24 (16%)
Read the contents of the whiteboard 14 (9%)
Send premium SMS messages on my behalf 4 (3%)
Track the position of my hands � 71 (47%)
None of the above 4 (3%)
I don’t know 1 (1%)

C. Person Texture (156 respondents)

See what I look like 36 (23%)
See my body position � 137 (88%)
See my location 25 (16%)
See the ceramic cat 19 (12%)
Read the contents of the whiteboard 5 (3%)
Send premium SMS messages on my behalf 0 (0%)
Track the position of my hands � 60 (38%)
None of the above 2 (1%)
I don’t know 5 (3%)

D. Hand Position (154 respondents)

See what I look like 17 (11%)
See my body position 32 (21%)
See my location 14 (9%)
See the ceramic cat 12 (8%)
Read the contents of the whiteboard 7 (5%)
Send premium SMS messages on my behalf 2 (1%)
Track the position of my hands � 125 (81%)
None of the above 3 (2%)
I don’t know 4 (3%)

Figure 17: Results from privacy goggles effectiveness surveys. For each of our three core recognizers, we first asked
respondents to answer questions about the capabilities of a Kinect “foot piano” application based on a short video of
the application in use (A). We next showed a privacy goggles “permission warning video” and asked questions about
what the application could do if installed (B-D).

male, with 10.2% in the 0–22 age range, 12.9% 22–
26, 21.2% 26–34, 16.8% 34–42, 13.5% 42–50,
15.1% 50–60, 8.1% 60–70, and 1.8% 70 or older.

Human Ethics Statement. Our experiments in-
clude surveys of anonymous human participants.
Our institution does not have an Institutional Re-
view Board (IRB), but it does have a dedicated team
whose focus is privacy and human protection. This
team has pre-approved survey participant vendors
to ensure that they have privacy policies which pro-
tect participants. We followed the guidelines of this
team in choosing our survey vendor. We also dis-
cussed our surveys with a member of the team to
ensure that our questions did not ask for personally
identifiable information, that they were not overly
intrusive, and that no other issues were present.

5.2 Noisy Permissions

While privacy goggles are effective at communicat-
ing what an app should and should not see to the
user, the recognizers we use can have false positives.
These could leak information to applications. We
first evaluated a representative set of recognizers on
well-known vision data sets to quantify the prob-
lem. Next, we evaluated OS-level mitigations for
false positives.

Recognizer Accuracy. We picked three well-
known data sets for our evaluations: (1) a Berkeley
dataset consisting of pictures of objects, (2) an IN-
RIA dataset containing pictures of a talking head,
and (3) a set of pictures of a face turning toward the

Figure 19: Recognizer combination in action. The left
figure shows results of running a face detector on a raw
RGB video frame. Two faces are detected, but only one
belongs to a real person. On the right, face detection
is run after combining RGB and depth. Only the real
person is detected.

camera and then away. We then evaluated baseline
false positive and false negative rates for seven ob-
ject recognition algorithms contained in the widely
adopted OpenCV library. All seven had false posi-
tives on at least one of the data sets.

Input Massaging. We then implemented pre-
permission blurring, in which frames are put through
a blurring process using a box filter before being
passed to the face detection algorithm. We used
a 12×12 box filter. We also used frame subtraction
as a heuristic to suppress recognizer false positives.
In frame subtraction, when a recognizer detects an
object with a bounding box b in a frame F1 that it
did not detect in the previous frame F0, we compute
the difference Crop(F1,b)−Crop(F0,b) and check the
number of pixels that have a difference. If this num-

11

426 22nd USENIX Security Symposium USENIX Association

Recognizer Data Set False Positive False Negative BlurFP BlurFN SubFP SubFN

Face Objects 10.6% 0% 6% 0% 9.6% 0%
Face Talking Head 0.2% 0% 0% 0% 0% 0%
Face Turning Face 19.1% 16.1% 15% 16.1% 17.64 % 16.1%

FullBody Objects 14.8% 0% 3.5% 0% 9.6% 0%
FullBody Talking Head 0.2 % 0% 0% 0% 0% 0%
FullBody Turning Face 24.6% 0% 22.7 % 0% 20% 0%

LowBody Objects 19.5% 0% 4.6% 0% 17.9% 0%
LowBody Talking Head 6.2% 0% 0.3% 0% 0% 0%
LowBody Turning Face 33% 0% 25% 0% 28.3% 0%

UpperBody Objects 41% 0% 10% 0% 38.1% 0%
UpperBody Talking Head 5.3% 0% 0.1% 0% 0.2% 0%
UpperBody Turning Face 86% 0% 0% 0% 19.9% 0%

Eye Object 35% 0% 83% 0% 32 % 0%
Eye Talking Head 64 % 0 % 100 % 0% 30% 2%
Eye Turning Face 23 % 5% 100% 0% 9% 10%

Nose Object 17.8% 0% 57% 0% 17.1 % 0%
Nose Talking Head 90 % 0% 86% 0% 90% 0%
Nose Turning Face 24.5 % 0% 43% 7% 24% 0%

Mouth Object 61% 0% 75% 0% 59 % 0%
Mouth Talking Head 100 % 0% 75% 0% 100% 0%
Mouth Turning Face 75 % 0% 82% 0% 74% 0%

Figure 18: False positive and false negative rates for OpenCV recognizers on common data sets. False positives are
important because they could leak unintended information to an application. We also show the effect of blurring and
frame subtraction. For blurring we used a 12x12 box filter.

ber does not exceed a threshold, we ignore the de-
tected object as a false positive.

For three out of our seven recognizers, blurring
decreases false positives with no effect on false neg-
atives, with a maximum reduction for our lower
body recognizer from 19.5% false positives to 4.6%
false positives. For the remaining recognizers, false
positives decrease but false negatives also increase.
Frame subtraction decreases false positives for six
out of seven recognizers and has no effect on the sev-
enth, with no impact on false negatives. This is in
line with our goals, because false positives are more
damaging to privacy than false negatives. The full
results are in Figure 18.

Recognizer Combination. Finally, we imple-
mented recognizer combination, in which the OS can
take advantage of the fact that multiple recognizers
are available. Specifically, we combined the OpenCV
face detector with the Kinect depth sensor. We chose
the OpenCV face detector because its developers
could depend only on the presence of RGB video
data. We ran an experiment that first acquires an
RGB and depth frame, then blanks out all pixels
with depth data that is further away than a thresh-
old. Next, we fed the resulting frame to the face
detector. An example result is shown in Figure 19.
On the left, the original frame shows a false posi-
tive detected behind the real person. On the right,
recognizer combination successfully avoids the false

Recognizers Kinect SDK Our framework

RGB Video 29.87 fps 30.02 fps
Skeleton 29.59 fps 28.65 fps
Face 28.24 fps 28.00 fps

Figure 20: Frame rates for a single application using
the Kinect SDK vs. using recognizers from our system.
Our system incurs negligible overhead.

positive.

5.3 Performance

In our performance evaluation, we (1) measure the
overhead of using our system compared to using the
Kinect SDK directly, (2) quantify the benefits of rec-
ognizer sharing for multiple concurrent applications,
and (3) evaluate the benefit of recognizer offloading.

Overhead over Kinect SDK. Compared to di-
rectly using the Kinect SDK, an application that
uses our multiplexer will face extra overhead due
to recognizer event processing in the multiplexer as
well as data marshaling and transfer over local sock-
ets. To quantify this overhead, we wrote two identi-
cally functioning applications to obtain and display
a raw 640x480 RGB video feed, a skeleton model,
and points from a face model. The first application
used the Kinect SDK APIs directly, while the second

12

USENIX Association 22nd USENIX Security Symposium 427

0

10

20

30

1 5 10 15

Fr
am

e
ra

te
 (f

ra
m

es
/s

ec
)

Number of concurrent applications

 With recognizer sharing
 No recognizer sharing

Figure 21: Effect of sharing a concurrent RGB video
stream between applications. Our framework enables 25
frames per second or higher for up to six applications,
while without sharing the frame rate drops.

used our multiplexer with RGB, skeleton, and face
detection recognizers.
Figure 20 shows the frame rates when running

these two applications on a desktop HP xw8600 ma-
chine with a 4-core Core i5 processor and 4 GB of
RAM. We see that, fortunately, our current proto-
type incurs negligible overhead over the Kinect SDK
when used by a single application.

Recognizer Sharing. Next, we ran multiple con-
current copies of the two applications above to eval-
uate the benefits of recognizer sharing as well as the
scalability of our prototype. Since the Kinect SDK
does not permit concurrent applications, we wrote
a simple wrapper for simulating that functionality,
i.e., allowing multiple applications as if they were
linking to independent copies of the Kinect SDK.
Figure 21 shows the average frame rate for mul-

tiple concurrent applications using the RGB recog-
nizer. We see that without recognizer sharing, frame
rates quickly stall as the number of concurrent ap-
plications increases, becoming unusable beyond five
applications. In contrast, our approach maintains
at least 25 frames per second up to six concurrent
applications and degrades gracefully thereafter. We
experienced similar recognizer sharing benefits for
skeleton and face recognizers.
While currently shipping AR platforms do not yet

support multiple concurrent applications, the above
experiment demonstrates that our system is ready to
efficiently embrace such support. Indeed, we believe
this to be the future of AR platforms. Mobile phone
“AR Browsers” such as Layar already expose APIs
for third-party developers, with over 5,000 applica-
tions written for Layar alone [20]. Users will benefit
from running these applications concurrently; for ex-
ample, looking at a store front, one application may
show reviews of the store, while another shows in-
formation about its online catalog, and yet a third

Throughput (frames/sec)

Recognizer Tablet Offloaded Server

Plane detection 0 4.17 4.46
Face recognition 2.04 2.73 2.84

Figure 22: Frames processed per second when running
recognizers (1) locally on a client tablet, (2) offloaded to
the server and shipping results back to the tablet, and
(3) locally on the server.

application attaches a name to the face of someone
walking by.

Recognizer Offloading. We evaluated offload-
ing of two resource-intensive recognizers: plane
and face recognition. The plane recognizer recon-
structs planes in the current scene using KinectFu-
sion, which computes 3D models from Kinect depth
data [23]. The face recognizer uses the Microsoft
Face SDK [21] to identify the name of the person in
the scene using a small database of known faces.

We implemented offloading across two devices
linked by an 802.11g wireless network. For face
recognition, the client sends RGB bitmaps of the
current scene to the server as often as possible; the
client additionally includes the depth bitmap for the
plane recognizer.

Our client device was a Samsung Series 7 tablet
running Windows 8 Pro 64-bit with a 2-core Core i5
processor and 4 GB of RAM, hooked up to a Kinect.
Our server device was a desktop HP Z800 ma-
chine running Windows 8 Pro 64-bit with two 4-
core Xeon E5530 processors, 48 GB of RAM, and an
Nvidia GTX 680 GPU.

The first two columns of Figure 22 show through-
puts experienced by the client when running rec-
ognizers locally and when offloading them to the
server. The plane recognizer requires a high-end
Nvidia GPU, which prevented it from running on our
client at all; we report this as zero frames per second.
With offloading, however, the client is able to detect
planes 4.2 times per second. For face recognition,
the client processed 2.73 frames per second when of-
floading, a 34% improvement in response time com-
pared to running face recognition locally. In addi-
tion, when run locally, face recognition placed heavy
CPU load on the client, completely consuming one of
its two cores. With offloading, the client’s CPU con-
sumption dropped to 15% required to send bitmaps,
saving battery and freeing resources for processing
other recognizers. Note that our setup allows the
offloading server to service multiple clients in paral-
lel. For example, the server was able to handle eight
concurrent face recognition clients before saturating.

We also considered the overhead of our offload-

13

428 22nd USENIX Security Symposium USENIX Association

ing mechanism by plugging a Kinect into our server
and running the recognizer framework directly on
it. Column 3 of Figure 22 shows these results. We
see that offloading with the Kinect on the client
is only 4–7% slower than running the Kinect on
the server, meaning that the offloading overhead of
transferring bitmaps and recognition results is rea-
sonable.

6 Related Work

Augmented Reality. Azuma surveyed augmented
reality, defining it as real-time registration of 3-D
overlays on the real world [1], later broadening it
to include audio and other senses [2]. We take a
broader view and also consider systems that take in-
put from the world. Qualcomm now has an SDK
for augmented reality that includes features such as
marker-based tracking for mobile phones [26]. Previ-
ous work by our group has laid out a case for adding
OS support for augmented reality applications and
highlighted key challenges [7].
Common shipping object recognition algorithms

include skeleton detection [29], face and headpose
detection [31, 21], and speech recognition [22]. More
recently, Poh et al. showed that heart rate can be ex-
tracted from RGB video [24]. Our recognizer graph
and simple API allow quickly adding new recogniz-
ers to our system.
Sensor Privacy. There are several parts to sen-
sor privacy: access control on sensors, sensor data
usage control once an application obtains access to
sensor data, and access visualization; we discuss re-
lated work for each.
Access control can take the form of user permis-

sions. iOS’s permission system is to prompt a user
at the first time of the sensor access (such as a
map application first accessing GPS). Android and
latest Windows OSes use manifests at application
installation time to inform the user of sensor us-
age among other things; the installation proceeds
only if the user permits the application to perma-
nently access all the requested permissions. These
existing permission systems are either disruptive or
ask users’ permissions out-of-context. They are not
least-privilege; permanent access is often granted un-
necessarily. Felt et al [11] has shown that most peo-
ple ignore manifests, and the few who do read man-
ifests do not understand them. To address these is-
sues, access control gadgets (ACGs) [27] were intro-
duced to be trusted UI elements for sensors, which
are embeddable by applications; users’ authentic ac-
tions on an ACG (e.g., a camera trusted UI) grants
the embedding application permission to access the

represented sensor. In this paper, we argue that even
the ACG style of permission granting is too coarse-
grained for augmented reality systems because most
AR applications only require specific objects rather
than the entire RGB streams (Section 5.1).
Another form of access control is to reduce

the sensitivity of private data (e.g., GPS coordi-
nates) available to applications. MockDroid [3]
and AppFence [14] allow using fake sensor data.
Krumm [19] surveys methods of reducing sensitive
information conveyed by location readings. Differen-
tial privacy [9] uses well-known methods for comput-
ing the amount of noise to add to give strong guar-
antees against an adversary’s ability to learn about
any specific individual. Similarly, we proposed mod-
ifying sensor inputs to recognizers in specific ways
to reduce false positives that could result in privacy
leaks. Darkly [18] transforms output from computer
vision algorithms (such as contours, moments, or
recognized objects) to blur the identity of the out-
put. Darkly can be applied to the output of our
recognizers.
Once an application obtains access to sensors, in-

formation flow control approaches can be used to
control or monitor an application’s usage of the sen-
sitive data as in TaintDroid [10] and AppFence [14].
In access visualization, sensor-access widgets [15]

were proposed to reside within an application’s dis-
play with an animation to show sensor data being
collected by the application. Darkly [18] also gives
a visualization on its transforms (see above). Our
privacy goggles apply similar ideas to the AR envi-
ronment, allowing a user to visualize an application’s
eye view of the user’s world.
Abstractions for Privacy. Our notion of taking
raw sensor data and providing the higher-level ab-
straction of recognizers is similar to CondOS [4]’s
notion of Contextual Data Units. However, they nei-
ther choose a set of concrete Contextual Data Units
that are suitable for a wide variety of real-world ap-
plications nor address privacy concerns that arise
from applications having access to Contextual Data
Unit values. Koi [13] provides a location matching
abstraction to replace raw GPS coordinates in appli-
cations. The approach in Koi is limited to location
data and may require significant work to integrate
into real applications, while our recognizers cover
many types of sensor data and were specifically cho-
sen to match application needs.

7 Future Work

Further Recognizer Visualization. The recog-
nizers we evaluated had straightforward visualiza-

14

USENIX Association 22nd USENIX Security Symposium 429

tions, such as the Kinect skeleton. As we noted,
some recognizers, such as voice commands, do not
have obvious visualizations. Other recognizers might
extract features from raw video or audio for use by
a variety of object recognition algorithms, but not
in themselves have an easily understood semantics,
such as a fast Fourier transform of audio. One key
challenge here is to design visualizations for privacy
goggles that clearly communicate to users the impact
of allowing application access to the recognizer. For
example, with voice commands we might try show-
ing a video with sound where detected words are
highlighted with subtitles. A second key challenge
is characterizing the privacy impact of algorithmic
transforms on raw data, especially in the case of
computer vision features that have not been con-
sidered from a privacy perspective.

Third-Party Recognizers. All the recognizers in
this paper are assumed trusted. To enable new ex-
periences, we would like to support extension of the
platform with third-party recognizers. Supporting
third-party recognizers raises challenges, including
permissions for recognizers as well as sandboxing un-
trusted GPU code without sacrificing performance.
We have developed recognizers in a domain-specific
language that enables precise analysis [8]. Dealing
with such challenges is intriguing future work, sim-
ilar in spirit to research on third-party driver isola-
tion in an OS. For example, we might require such
recognizers to go through a vetting program and
then have their code signed, similar to drivers in
Windows or applications on mobile phone platforms.

Sensing Applications. Besides traditional AR ap-
plications, other applications employ rich sensing
but do not necessarily render on human senses. For
example, robots today use the Kinect sensor for nav-
igating environment, and video conferencing can use
the “person texture” recognizer we describe. One of
our colleagues has also suggested that video confer-
encing can benefit from a depth-limited camera [28].
These applications may also benefit from recogniz-
ers.

Bystander Privacy. Our focus is on protecting
a user’s privacy against untrusted applications. Mo-
bile AR systems such as Google Glass, however, have
already raised significant discussion of bystander pri-
vacy — the ability of people around the user to opt
out of recording and object recognition. Our archi-
tecture allows explicitly identifying all applications
that might have access to bystander information, but
it does not tell us when and how to stop sending rec-
ognizer events to applications. Making the system
aware of these issues is important future work.

8 Conclusions

We introduced a new abstraction, the recognizer, for
operating systems to support augmented reality ap-
plications. Recognizers allow applications to raise
the level of abstraction from raw sensor data, such
as audio and video streams, to ask for access to spe-
cific recognized objects. This enables applications
to act with the least privilege needed. Our analy-
sis of existing applications shows that all of them
would benefit from least privilege enabled by an OS
with support for recognizers. We then introduced
a “privacy goggles” visualization for recognizers to
communicate the impact of allowing access to users.
Our surveys establish a clear privacy ordering on
core recognizers, show that users expect AR apps to
have limited capabilities, and demonstrate privacy
goggles are effective at communicating capabilities
of apps that access recognizers. We built a prototype
on top of the Kinect for Windows SDK. Our imple-
mentation has negligible overhead for single appli-
cations, enables secure OS-level offloading of heavy-
weight recognizer computation, and improves per-
formance for concurrent applications. In short, the
recognizer abstraction improves privacy and perfor-
mance for AR applications, laying the groundwork
for future OS support of rich sensing and AR appli-
cation rendering.

9 Acknowledgements

We thank Janice Tsai, our Privacy Manager, for re-
viewing our survey. We thank Doug Burger, Loris
D’Antoni, Yoshi Kohno, Franziska Roesner, Stuart
Schechter, Margus Veanes, and John Vilk for help-
ful discussions and review of drafts. Stuart Schechter
suggested the idea of a depth-limited camera for tele-
conferencing scenarios. This work was carried out
while the first and fourth author were interning at
Microsoft Research.

References

[1] R. T. Azuma. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4):355–385,
August 1997.

[2] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner,
S. Julier, and B. MacIntyre. Recent advances in aug-
mented reality. Computer Graphics and Applications,
21(6):34–47, 2001.

[3] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading privacy for application functional-
ity on smartphones. In Workshop on Mobile Computing
Systems and Applications (HotMobile), 2011.

[4] D. Chu, A. Kansal, J. Liu, and F. Zhao. Mo-
bile apps: It’s time to move up to condOS. May

15

430 22nd USENIX Security Symposium USENIX Association

2011. http://research.microsoft.com/apps/pubs/

default.aspx?id=147238.
[5] M. Corporation. Kinect for xbox 360 privacy consid-

erations, 2012. http://www.microsoft.com/privacy/

technologies/kinect.aspx.
[6] M. Corporation. Kinect for Windows SDK, 2013. http:

//www.microsoft.com/en-us/kinectforwindows/.
[7] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits,

D. Molnar, A. Moshchuk, E. Ofek, F. Roesner,
S. Saponas, M. Veanes, and H. J. Wang. Operating sys-
tem support for augmented reality applications. In Hot
Topics in Operating Systems (HotOS), 2013.

[8] L. D’Antoni, M. Veanes, B. Livshits, and D. Mol-
nar. FAST: A transducer-based language for
tree manipulation, 2012. MSR Technical Report
2012-123 http://research.microsoft.com/apps/pubs/

default.aspx?id=179252.
[9] C. Dwork. The differential privacy frontier. In 6th The-

ory of Cryptography Conference (TCC), 2009.
[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Conference on Operating
System Design and Implementation, 2010.

[11] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention, com-
prehension, and behavior. In Symposium on Usable Pri-
vacy and Security (SOUPS), 2012.

[12] W. Garage. OpenCV, 2013. http://opencv.org/.
[13] S. Guha, M. Jain, and V. N. Padmanabhan. Koi: A

location-privacy platform for smartphone apps. In NSDI,
2012.

[14] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious
applications. In Conference on Computer and Commu-
nications Security, 2011.

[15] J. Howell and S. Schechter. What You See is What
They Get: Protecting users from unwanted use of micro-
phones, cameras, and other sensors. In Web 2.0 Security
and Privacy, IEEE, 2010.

[16] J. Howell and S. Schecter. What you see is what they
get: Protecting users from unwanted use of microphones,
cameras, and other sensors. In Web 2.0 Security and
Privacy Workshop, 2010.

[17] E. Hutchings. Augmented reality lets shop-
pers see how new furniture would look at
home, 2012. http://www.psfk.com/2012/05/

augmented-reality-furniture-app.html.
[18] S. Jana, A. Narayanan, and V. Shmatikov. DARKLY:

Privacy for perceptual applications. In IEEE Symposium
on Security and Privacy, 2013.

[19] J. Krumm. A survey of computational location pri-
vacy. Personal Ubiquitous Computing, 13(6):391–399,
Aug 2009.

[20] Layar. Layar catalogue, 2013. http://www.layar.com/

layers.
[21] Microsoft Research Face SDK Beta. http://research.

microsoft.com/en-us/projects/facesdk/.
[22] Microsoft Speech Platform. http://msdn.microsoft.

com/en-us/library/hh361572(v=office.14).aspx.
[23] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,
and A. Fitzgibbon. KinectFusion: Real-time dense sur-
face mapping and tracking. In 10th IEEE International
Symposium on Mixed and Augmented Reality, 2011.

[24] M. Poh, D. MacDuff, and R. Picard. Advancements
in non-contact, multiparameter physiological measure-

ments using a webcam. IEEE Trans Biomed Engineer-
ing, 58(1):7–11, 2011.

[25] Project Glass. https://plus.google.com/

+projectglass/posts.
[26] Qualcomm. Augmented Reality SDK, 2011.

http://www.qualcomm.com/products_services/

augmented_reality.html.
[27] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.

Wang, and C. Cowan. User-driven access control: Re-
thinking permission granting in modern operating sys-
tems. In IEEE Symposium on Security and Privacy,
2011.

[28] S. Schecter. Depth-limited camera for skype - personal
communication, 2012.

[29] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time
human pose recognition in parts from a single depth im-
age. In Computer Vision and Pattern Recognition, June
2011.

[30] uSample. Instant.ly survey creator, 2013. http://

instant.ly.
[31] P. Viola and M. Jones. Robust Real-time Object De-

tection. In International Journal of Computer Vision,
2001.

16

USENIX Association 22nd USENIX Security Symposium 431

CacheAudit: A Tool for the Static Analysis of Cache Side Channels

Goran Doychev1, Dominik Feld2, Boris Köpf1, Laurent Mauborgne1, and Jan Reineke2

1IMDEA Software Institute
2Saarland University

Abstract
We present CacheAudit, a versatile framework for the
automatic, static analysis of cache side channels. Cache-
Audit takes as input a program binary and a cache con-
figuration, and it derives formal, quantitative security
guarantees for a comprehensive set of side-channel ad-
versaries, namely those based on observing cache states,
traces of hits and misses, and execution times.

Our technical contributions include novel abstractions
to efficiently compute precise overapproximations of the
possible side-channel observations for each of these ad-
versaries. These approximations then yield upper bounds
on the information that is revealed. In case studies we ap-
ply CacheAudit to binary executables of algorithms for
symmetric encryption and sorting, obtaining the first for-
mal proofs of security for implementations with counter-
measures such as preloading and data-independent mem-
ory access patterns.

1 Introduction

Side-channel attacks recover secret inputs to programs
from non-functional characteristics of computations,
such as time [31], power [32], or memory consump-
tion [27]. Typical goals of side-channel attacks are the
recovery of cryptographic keys and private information
about users.

Processor caches are a particularly rich source of side-
channels because their behavior can be monitored in var-
ious ways, which is demonstrated by three documented
classes of side-channel attacks: (1) In time-based at-
tacks [31, 10] the adversary monitors the overall execu-
tion time of a victim, which is correlated with the number
of cache hits and misses during execution. Time-based
attacks are especially daunting because they can be car-
ried out remotely over the network [6]. (2) In access-
based attacks [40, 39, 23] the adversary probes the cache
state by timing its own accesses to memory. Access-
based attacks require that attacker and victim share the

same hardware platform, which is common in the cloud
and has already been exploited [41, 49]. (3) In trace-
based attacks [5] the adversary monitors the sequence
of cache hits and misses. This can be achieved, e.g., by
monitoring the CPU’s power consumption and is partic-
ularly relevant for embedded systems.

A number of proposals have been made for countering
cache-based side-channel attacks. Some proposals fo-
cus entirely on modifications of the hardware platform;
they either solve the problem for specific algorithms such
as AES [2] or require modifications to the platform [46]
that are so significant that their rapid adoption seems un-
likely. The bulk of proposals rely on controlling the in-
teractions between the software and the hardware layers,
either through the operating system [23, 48], the client
application [10, 39, 15], or both [29]. Reasoning about
these interactions can be tricky and error-prone because
it relies on the specifics of the binary code and the mi-
croarchitecture.

In this paper we present CacheAudit, a tool for the
automatic, static exploration of the interactions of a pro-
gram with the cache. CacheAudit takes as input a pro-
gram binary and a cache configuration and delivers for-
mal security guarantees that cover all possible executions
of the corresponding system. The security guarantees
are quantitative upper bounds on the amount of infor-
mation that is contained in the side-channel observations
of timing-, access-, and trace-based adversaries, respec-
tively. CacheAudit can be used to formally analyze the
effect on the leakage of software countermeasures and
cache configurations, such as preloading of tables or in-
creasing the cache’s line size. The design of Cache-
Audit is modular and facilitates extension with any cache
model for which efficient abstractions are in place. The
current implementation of CacheAudit supports caches
with LRU, FIFO, and PLRU replacement strategies.

We demonstrate the scope of CacheAudit in case stud-
ies where we analyze the side-channel leakage of repre-
sentative algorithms for symmetric encryption and sort-

432 22nd USENIX Security Symposium USENIX Association

ing. We highlight the following two results: (1) For the
reference implementation of the Salsa20 [11] stream ci-
pher (which was designed to be resilient to cache side-
channel attacks) CacheAudit can formally prove non-
leakage on the basis of the binary executable, for all
adversary models and replacement strategies. (2) For
a library implementation of AES 128 [3], CacheAudit
confirms that the preloading of tables significantly im-
proves the security of the executable: for most adversary
models and replacement strategies, we can in fact prove
non-leakage of the executable, whenever the tables fit
entirely in the cache. However, for access-based adver-
saries and LRU caches, CacheAudit reports small, non-
zero bounds. And indeed, with LRU (in contrast to, e.g.,
FIFO), the ordering of blocks within a cache set reveals
information about the victim’s final memory accesses.

On a technical level, we build on the fact that the
amount of leaked information corresponds to the num-
ber of possible side-channel observations, which can be
over-approximated by abstract interpretation1 and count-
ing techniques [35, 34]. To realize CacheAudit based on
this insight, we propose three novel abstract domains (i.e.
data structures that approximate properties of the pro-
gram semantics) that keep track of the observations of
access-based, time-based, and trace-based adversaries,
respectively. In particular:

1. We propose an abstract domain that tracks rela-
tional information about the memory blocks that may be
cached. In contrast to existing abstract domains used in
worst-case execution time analysis [21], our novel do-
main can retain analysis precision in the presence of ar-
ray accesses to unknown positions.

2. We propose an abstract domain that tracks the
traces of cache hits and misses that may occur during
execution. We use a technique based on prefix trees and
hash consing to compactly represent such sets of traces,
and to count their number.

3. We propose an abstract domain that tracks the pos-
sible execution times of a program. This domain captures
timing variations due to control flow and caches by asso-
ciating hits and misses with their respective latencies and
adding the execution time of the respective commands.
We formalize the connection of these domains in an ab-
stract interpretation framework that captures the relation-
ship between microarchitectural state and program code.
We use this framework to formally prove the correctness
of the derived upper bounds on the leakage to the corre-
sponding side-channel adversaries.

In summary, our main contributions are both theo-
retical and practical: On a theoretical level, we define
novel abstract domains that are suitable for the analy-
sis of cache side channels, for a comprehensive set of

1A theory of sound approximation of program semantics [16]

adversaries. On a practical level, we build CacheAudit,
the first tool for the automatic, quantitative information-
flow analysis of cache side-channels, and we show how
it can be used to derive formal security guarantees from
binary executables of sorting algorithms and state-of-the-
art cryptosystems.

Outline The remainder of the paper is structured as fol-
lows. In Section 2, we illustrate the power of CacheAudit
on a simple example program. In Section 3 we define the
semantics and side channels of programs. We describe
the analysis framework, the design of CacheAudit, and
the novel abstract domains in Sections 4, 5 and 6, re-
spectively. We present experimental results in Section 7,
before we discuss prior work and conclude in Sections 8
and 9. The source code and documentation of Cache-
Audit are available at

http://software.imdea.org/cacheaudit

2 Illustrative Example

In this section, we illustrate on a simple example pro-
gram the kind of guarantees CacheAudit can derive.
Namely, we consider an implementation of BubbleSort
that receives its input in an array a of length n. We as-
sume that the contents of a are secret and we aim to de-
duce how much information a cache side-channel adver-
sary can learn about the relative ordering of the elements
of a.

1 void BubbleSort(int a[], int n)

2 {

3 int i, j, temp;

4 for (i = 0; i < n - 1; ++i)

5 for (j = 0; j < n - 1 - i; ++j)

6 if (a[j] > a[j+1])

7 {

8 temp = a[j+1];

9 a[j+1] = a[j];

10 a[j] = temp;

11 }

12 }

To begin with, observe that the conditional swap in
lines 6–11 is executed exactly n(n−1)

2 times. A trace-
based adversary that can observe, for each instruction,
whether it corresponds to a cache hit or a miss is likely to
be able to distinguish between the two alternative paths
in the conditional swap, hence we expect this adversary

to be able to distinguish between 2
n(n−1)

2 execution traces.
A timing-based adversary who can observe the overall
execution time is likely to be able to distinguish between
n(n−1)

2 +1 possible execution times, corresponding to the
number of times the swap has been carried out. For an

USENIX Association 22nd USENIX Security Symposium 433

access-based adversary who can probe the final cache
state upon termination, the situation is more subtle: eval-
uating the guard in line 6 requires accessing both a[j]

and a[j+1], which implies that both will be present in
the cache when the swap in lines 8–10 is carried out. As-
suming we begin with an empty cache, we expect that
there is only one possible final cache state.

CacheAudit enables us to perform such analyses (for a
particular n) formally and automatically, based on actual
x86 binary executables and different cache types. Cache-
Audit achieves this by tracking compact representations
of supersets of possible cache states and traces of hits and
misses, and by counting the corresponding number of el-
ements. For the above example, CacheAudit was able to
precisely confirm the intuitive bounds, for a selection of
several n in {2, . . . ,64}.

In terms of security, the number of possible observa-
tions corresponds to the factor by which the cache obser-
vation increases the probability of correctly guessing the
secret ordering of inputs. Hence, for n = 32 and a uni-
form distribution on this order (i.e. an initial probability
of 1

32! = 3.8 ·10−36), the bounds derived by CacheAudit
imply that the probability of determining the correct in-
put order from the side-channel observation is 1 for a
trace-based adversary, 3.7 · 10−33 for a time-based ad-
versary, and remains 1

32! for an access-based adversary.

3 Caches, Programs, and Side Channels

3.1 A Primer on Caches
Caches are fast but small memories that store a subset of
the main memory’s contents to bridge the latency gap be-
tween the CPU and main memory. To profit from spatial
locality and to reduce management overhead, main mem-
ory is logically partitioned into a set of memory blocks B.
Each block is cached as a whole in a cache line of the
same size.

When accessing a memory block, the cache logic has
to determine whether the block is stored in the cache
(“cache hit”) or not (“cache miss”). To enable an effi-
cient look-up, each block can only be stored in a small
number of cache lines. For this purpose, caches are parti-
tioned into equally-sized cache sets. The size of a cache
set is called the associativity k of the cache. There is
a function set that determines the cache set a memory
block maps to.

Since the cache is much smaller than main mem-
ory, a replacement policy must decide which mem-
ory block to replace upon a cache miss. Usually, re-
placement policies treat sets independently, so that ac-
cesses to one set do not influence replacement deci-
sions in other sets. Well-known replacement policies
in this class are least-recently used (LRU), used in vari-

ous Freescale processors such as the MPC603E and the
TriCore17xx; pseudo-LRU (PLRU), a cost-efficient vari-
ant of LRU, used in the Freescale MPC750 family and
multiple Intel microarchitectures; and first-in first-out
(FIFO), also known as ROUND ROBIN, used in several
ARM and Freescale processors such as the ARM922 and
the Freescale MPC7450 family. A more comprehensive
overview can be found in [22].

3.2 Programs and Computations
A program P = (Σ, I,F,E ,T) consists of the following
components:
• Σ - a set of states
• I ⊆ Σ - a set of initial states
• F ⊆ Σ - a set of final states
• E - a set of events
• T ⊆ Σ×E ×Σ - a transition relation
A computation of P is an alternating sequence of states

and events σ0e0σ1e1 . . .σn such that σ0 ∈ I and that
for all i ∈ {0, . . . ,n− 1}, (σi,ei,σi+1) ∈ T . The set of
all computations of P is its trace collecting semantics
Col(P) ⊆ Traces, where Traces denotes the set of all al-
ternating sequences of states and events. When consider-
ing terminating programs, the trace collecting semantics
can be formally defined as the least fixpoint of the next
operator containing I:

Col(P) = I ∪next(I)∪next2(I)∪ . . . ,

where next describes the effect of one computation step:

next(S) = {t.σnenσn+1 | t.σn ∈ S∧ (σn,en,σn+1) ∈ T }

In the rest of the paper, we assume that P is fixed and
abbreviate its trace collecting semantics by Col.

3.3 Cache Updates and Cache Effects
For reasoning about cache side channels, we consider
a semantics in which the cache is part of the program
state. Namely, the state will consist of logical memories
in M (representing the values of main memory locations
and CPU registers, including the program counter) and a
cache state in C, i.e., Σ =M×C.

The memory update updM is a function updM : M→
M that is determined solely by the instruction set seman-
tics. The memory update has effects on the cache that
are described by a function effM : M→EM. The mem-
ory effect is an argument to the cache update function
updC : C ×EM →C.

In the setting of this paper, effM determines which
block of main memory is accessed, which is required
to compute the cache update updC , i.e., EM = B∪{⊥},
where ⊥ denotes that no memory block is accessed.

434 22nd USENIX Security Symposium USENIX Association

We formally describe updC only for the LRU strategy.
For formalizations of other strategies, see [22]. Upon a
cache miss, LRU replaces the least-recently-used mem-
ory block. To this end, it tracks the ages of memory
blocks within each cache set, where the youngest block
has age 0 and the oldest cached block has age k − 1.
Thus, the state of the cache can be modeled as a func-
tion that assigns an age to each memory block, where
non-cached blocks are assigned age k:

C := {c ∈ B → A | ∀a,b ∈ B : a �= b ⇒
((set(a) = set(b))⇒ (c(a) �= c(b)∨ c(a) = c(b) = k))},

where A := {0, ...,k− 1,k} is the set of ages. The con-
straint encodes that no two blocks in the same cache set
can have the same age. For readability we omit the ad-
ditional constraint that blocks of non-zero age are pre-
ceded by other blocks, i.e. that cache sets do not contain
“holes”.

The cache update for LRU is then given by

updC(c,b) := λb′ ∈ B.

0 : b′ = b
c(b′) : set(b′) �= set(b)
c(b′)+1 : set(b′) = set(b)∧ c(b′)< c(b)
c(b′) : set(b′) = set(b)∧ c(b′)≥ c(b)

In the setting of this paper, the events E consist of
cache hits and misses, which are described by the cache
effect eff C : C ×B → E :

eff C(c,m) :=

{

hit : c(m)< k
miss : else

Both updC and eff C are naturally extended to the case
where no memory access occurs. Then, the cache state
remains unchanged and the cache effect is ⊥, so E =
{hit,miss,⊥}.

With this, we can now connect the components and
obtain the global transition relation T ⊆ Σ×E ×Σ by

T = {((m1,c1), e ,(m2,c2)) | m2 = updM(m1)

∧ c2 = updC(c1,effM(m1))

∧ e = eff C(c1,effM(m1))} ,

which formally captures the asymmetric relationship be-
tween caches, logical memories, and events.

3.4 Side Channels
For a deterministic, terminating program P, the transition
relation is a function, and the program can be modeled as
a mapping P : I → Col.

We model an adversary’s view on the computations
of P as a function view : Col → O that maps computa-
tions to a finite set of observations O. The composition

C = (view◦P) : I → O

defines a function from initial states to observations,
which we call a channel of P. Whenever view is deter-
mined by the cache and event components of traces, we
call C a side channel of P.

We next define views corresponding to the obser-
vations of access-based, trace-based, and timing-based
side-channel adversaries.

The view of an access-based adversary that shares the
memory space with the victim is defined by

viewacc : (m0,c0)e0 . . .en−1(mn,cn)
→ cn

and captures that the adversary can determine (by prob-
ing) which memory blocks are contained in the cache
upon termination of the victim. An adversary that does
not share the memory space with the victim can only ob-
serve how many blocks the victim has loaded in each
cache set (by probing how many of its own blocks have
been evicted), but not which. We denote this view by
viewaccd. The view of a trace-based adversary is defined
by

viewtr : σ0e0 . . .en−1σn
→ e0 . . .en−1

and captures that the adversary can determine for each
instruction whether it results in a hit, miss, or does not
access memory. The view of a time-based adversary is
defined by

viewtime : σ0e0 . . .en−1σn
→
thit · |{i | ei = hit}|+ tmiss · |{i | ei = miss}|+
t⊥ · |{i | ei =⊥}|

and captures that the adversary can determine the overall
execution time of the program. Here, thit, tmiss, and t⊥ are
the execution times (e.g. in clock cycles) of instructions
that imply cache hits, cache misses, or no memory ac-
cesses at all. While the view of the time-based adversary
as defined above is rather simplistic, e.g. disregarding ef-
fects of pipelining and out-of-order execution, notice that
our semantics and our tool can be extended to cater for
a more fine-grained, instruction- and context-dependent
modeling of execution times. We denote the side chan-
nels corresponding to the four views by Cacc, Caccd, Ctr,
and Ctime, respectively. Figure 1 gives an overview.

3.5 Quantification of Side Channels
We characterize the security of a channel C : I →O as the
difficulty of guessing the secret input from the channel
output.

USENIX Association 22nd USENIX Security Symposium 435

Cacc Access-based adversary whose memory
space is shared with the victim’s.

Caccd Access-based adversary whose memory
space is disjoint from the victim’s.

Ctr Adversary who observes the trace of cache
hits and misses.

Ctime Adversary who observes the overall execu-
tion time.

Figure 1: Channels corresponding to different adversary
models.

Formally, we model the choice of a secret input by
a random variable X with ran(X) ⊆ I and the corre-
sponding observation by a random variable C(X) with
ran(C(X)) ⊆ O. We model the attacker as another ran-
dom variable X̂ . The goal of the attacker is to esti-
mate the value of X , i.e. it is successful if X̂ = X . We
make the assumption that the attacker does not have in-
formation about the value of X beyond what is contained
in C(X), which we formalize as the requirement that
X →C(X)→ X̂ form a Markov chain. The following the-
orem expresses a security guarantee as an upper bound
on the attacker’s success probability in terms of the size
of the range of C.

Theorem 1. Let X → C(X) → X̂ be a Markov chain.
Then

P(X = X̂)≤ max
σ∈I

P(X = σ) · |ran(C)|

For the interpretation of the statement observe that if
the adversary has no information about the value of X
(i.e., if X̂ and X are statistically independent), its suc-
cess probability is bounded by the probability of the most
likely value of X , i.e. P(X = X̂) ≤ maxσ∈I P(X = σ),
where equality can be achieved. Theorem 1 hence states
that the size of the range of C is an upper bound on the
factor by which this probability is increased when the at-
tacker sees C(X) and is, in that sense, an upper bound
for the amount of information leaked by C. We will of-
ten give bounds on |ran(C)| on a log-scale, in which case
they represent upper bounds on the number of leaked
bits. Notice that the guarantees of Theorem 1 fundamen-
tally rely on assumptions about the initial distribution of
X : if X is easy to guess to begin with, Theorem 1 does
not imply meaningful security guarantees.

For more discussion on the interpretation of the secu-
rity guarantees, see Section 7.4. For a formal connection
to traditional (entropy-based) presentations of quantita-
tive information-flow analysis [43] and a proof of Theo-
rem 1, see the extended version [19].

3.6 Adversarially Chosen Cache States
We sometimes assume that initial states are pairs consist-
ing of high and low components, i.e. I = Ihi × Ilo, where
only the high component is meant to be kept secret and
the low component may be provided by the adversary,
a common setting in information-flow analysis [42]. In
this case, a program and a view define a family of chan-
nels Cσlo : Ihi → O, one for each low component σlo ∈ Ilo.

A particularly interesting instance is the decomposi-
tion into secret memory Ihi =M and adversarially cho-
sen cache Ilo = C. While bounds for the corresponding
channel can be derived by considering all possible ini-
tial cache states, corresponding analyses suffer from poor
precision. The following lemma enables us to derive
bounds for the general case, based on the empty cache
state.

Lemma 1. For all initial cache states c ∈ C, adversaries
adv ∈ {acc,accd, time, tr}, and LRU, FIFO, or PLRU re-
placement: If no block in c is accessed during program
execution, then

∣

∣

∣
ran(Cadv

/0)
∣

∣

∣
=

∣

∣

∣
ran(Cadv

c)
∣

∣

∣
, (1)

where /0 is a shorthand for the empty cache state. For
adv ∈ {acc,accd} and LRU,

∣

∣ran(Cadv
/0)

∣

∣ ≥
∣

∣ran(Cadv
c)

∣

∣

holds without any constraints on the initial cache state c.

This lemma was proved in [34] for acc, accd and the
LRU case with the initial cache state not containing any
block of the victim. The proof is based on the fact that
memory blocks in the cache do not affect the position
of memory blocks that are accessed during computation
whenever the two sets of memory blocks are disjoint,
which allows us to construct a bijective function from
ran(Cadv

/0) to ran(Cadv
c). The argument immediately ex-

tends to FIFO, PLRU, and all adv. For LRU and access-
based adversaries, the function remains surjective even
without the disjointness requirement.

4 Automatic Quantification of Cache Side
Channels

Theorem 1 enables the quantification of side channels
by determining their range. As channels are defined in
terms of views on computations, their range can be de-
termined by computing Col and applying view. However,
this entails computing a fixpoint of the next operator and
is practically infeasible in most cases. Abstract inter-
pretation [16] overcomes this fundamental problem by
computing a fixpoint with respect to an efficiently com-
putable over-approximation of next. This new fixpoint
represents a superset of all computations, which is suf-
ficient for deriving an upper bound on the range of the
channel and thus on the leaked information.

436 22nd USENIX Security Symposium USENIX Association

In this section, we describe the interplay of the abstrac-
tions used for over-approximating next in CacheAudit
(namely, those for memory, cache, and events), and we
explain how the global soundness of CacheAudit can be
established from local soundness conditions. This mod-
ularity is key for the future extension of CacheAudit us-
ing more advanced abstractions. Our results hold for all
adversaries introduced in Section 3.4 and we omit the
superscript adv from channels and views for readability.

4.1 Sound Abstraction of Leakage

We frame a static analysis by defining a set of abstract
elements Traces� together with an abstract transfer func-
tion next� : Traces� → Traces�. Here, the elements a ∈
Traces� represent subsets of Traces, which is formalized
by a concretization function

γ : Traces�→P(Traces) .

The key requirements for next� are (1) that it be effi-
ciently computable, and (2) that it over-approximates the
effect of next on sets of computations, which is formal-
ized as the following local soundness condition:

∀a ∈ Traces� : next (γ(a))⊆ γ(next�(a)) . (2)

Intuitively, if we maintain a superset of the set of compu-
tations during each step of the transfer function as in (2),
then this inclusion must also hold for the correspond-
ing fixpoints. More formally, any post-fixpoint of next�

that is greater than an abstraction of the initial states I is
a sound over-approximation of the collecting semantics.
We use Col� to denote any such post-fixpoint.

Theorem 2 (Local soundness implies global soundness,
from [16]). If (2) holds then

Col ⊆ γ
(

Col�
)

.

The following theorem is an immediate consequence
of Theorem 2 and the fact that view(Col) = ran(C). It
states that a sound abstract analysis can be used for de-
riving bounds on the size of the range of a channel.

Theorem 3 (Upper bounds on leakage).

|ran(C)| ≤
∣

∣

∣
view

(

γ
(

Col�
))∣

∣

∣
.

With the help of Theorem 1, these bounds immediately
translate into security guarantees. The relationship of all
steps leading to these guarantees is depicted in Figure 2.

4.2 Abstraction Using a Control Flow
Graph

In order to come up with a tractable and modular analy-
sis, we design independent abstractions for cache states,
memory, and sequences of events.
• M� abstracts memory and γM : M�→P(M) for-

malizes its meaning.
• C� abstracts cache configurations and γC : C�→P(C)

formalizes its meaning.
• E � abstracts sequences of events and γE : E � →

P(E∗) formalizes its meaning.
But, since cache updates and events depend on memory
state, independent analyses would be too imprecise. In
order to maintain some of the relations, we link the three
abstract domains for memory state, caches, and events
through a finite set of labels L so that our abstract domain
is

Traces� = L→M�×C�×E � ,

where we write aM(l), aC(l) and aE(l) for the first, sec-
ond, and third components of an abstract element a(l).

Labels roughly correspond to nodes in a control flow
graph in classical data-flow analyses. One could sim-
ply use program locations as labels. But in our setting,
we use more general labels, allowing for a more fine-
grained analysis in which we can distinguish values of
flags or results of previous tests [36]. To capture that,
we associate a meaning with each label via a function
γL : L→P(Traces). If the labels are program locations,
then γL(l) is the set of traces ending in a state in lo-
cation l. The analogy with control flow graphs can be
extended to edges of that graph: using the next opera-
tor, we define the successors and predecessors of a lo-
cation l as: succ(l) = {k |next(γL(l))∩ γL(k) �= /0}, and
pred(l) = {k |next(γL(k))∩ γL(l) �= /0}.

Then we can describe the meaning of an element a ∈
Traces� with:

γ(a) = {σ0e0σ1 . . .σn ∈ Traces | ∀i ≤ n, ∀l ∈ L :
σ0e0σ1 . . .σi ∈ γL(l)⇒

σM
i ∈ γM(aM(l))∧σC

i ∈ γC(aC(l))

∧e0 . . .ei−1 ∈ γE(aE(l))
} (3)

That is, the meaning of an a ∈ Traces� is the set of
traces, such that for every prefix of a trace, if it “ends” at
program location l, then the memory state, cache state,
and the event sequence satisfy the respective abstract el-
ements for that location.

The abstract transfer function next� will be decom-
posed into:

next�(a) = λ l.(nextM�(a, l),nextC�(a, l),nextE�(a, l)) ,
(4)

USENIX Association 22nd USENIX Security Symposium 437

Col γ
(

Col�
)

Col�
Meaning

⊆
Theorem 2

|ran(C)|= |view(Col)|
∣

∣view
(

γ
(

Col�
))∣

∣≤
Monotonicity

Leakage ≤
Theorem 1

Figure 2: Relationship of collecting semantics Col, abstract fixpoint Col�, side channels C, and leakage bounds.

where each next function over-approximates the corre-
sponding concrete update function defined in the previ-
ous section. The effects used for defining the concrete
updates are reflected as information flow between other-
wise independent abstract domains, which is formalized
as a partial reduction in the abstract interpretation litera-
ture [18].

4.3 Local Soundness

The products and powers of sound abstract domains with
partial reductions are again sound abstract domains [17].
The soundness of Traces� hence immediately follows
from the local soundness of the memory, cache and event
domains. Below we describe those soundness conditions
for each domain.

The abstract next� operation is implemented using lo-
cal update functions for the memory, cache, and event
components. For the memory domain we have, for each
label k ∈ L and each l ∈ succ(k):
• an abstract memory update updM�,(k,l):M�→M�,

and
• an abstract memory effect effM�,(k,l) : M� →
P(EM).

For the cache domain, there is no need for separate func-
tions for each pair (k, l), because the cache update only
depends on the accessed block which is delivered by the
abstract memory effect. Likewise, the update of the event
domain only depends on the abstract cache effect. Thus,
we further have:
• an abstract cache update updC� : C�×P(EM)→C�,
• an abstract cache effect eff C� : C� × P(EM) →

P(EC), and
• an abstract event updE� : E �×P(EC)→E �.
With these functions, we can approximate the effect

of next on each label l, using the abstract values associ-
ated with the labels that can lead to l, pred(l). For the
example of the cache domain, this yields

nextC�(a, l)=
C�
⊔

k∈pred(l)

updC�

(

aC(k),effM�,(k,l)(a
M(k))

)

,

where
⊔C�

refers to the join function and can be thought
of as set union. That is, nextC�(a, l) collects all cache
states that can reach l within one transition when updated
with an over-approximation of the corresponding mem-
ory blocks. See the full version [19] for a description
of the corresponding update functions for memory and
effects.

Now from Equations 2, 3, and 4, we can derive con-
ditions for each domain that are sufficient to guarantee
local soundness for the whole analysis:

Definition 1 (Local soundness of abstract domains). The
abstract domains are locally sound if the abstract joins
are over-approximations of unions, and if for any func-
tion f � ∈ {updM�,(k,l),effM�,(k,l),updC� ,eff C� ,updE�}
approximating concrete function f ∈
{updM,effM,updC ,eff C ,next} and corresponding
meaning function γ f , we have for any abstract value x:

γ f

(

f �(x)
)

⊇ f
(

γ f (x)
)

.

For example, for the cache abstract domain, we have
the following local soundness conditions:

∀c� ∈ C�,M ∈ P(EM) :

γC(updC�(c�,M))⊇ updC(γC(c
�),M),

eff C�(c�,M)⊇ eff C(γC(c
�),M),

∀G� ⊆ C� : γC

C�
⊔

G�

 ⊇
⋃

G�∈G�

γC
(

G�
)

.

Lemma 2 (Local Soundness Conditions). If local sound-
ness holds on the abstract memory, cache, and events
domains, then the corresponding next� function satisfies
local soundness.

Due to the above lemma, abstract domains for the
memory, cache, and events can be separately developed
and proven correct. We exploit this fact in this paper, and
we plan to develop further abstractions in the future, tar-
geting different classes of adversaries or improving pre-
cision.

438 22nd USENIX Security Symposium USENIX Association

4.4 Soundness of Delivered Bounds
We implemented the framework described above in a
tool named CacheAudit. Thanks to the previous results,
CacheAudit provides the following guarantees.

Theorem 4. The bounds derived by CacheAudit
soundly over-approximate

∣

∣ran(Cadv)
∣

∣, for adv ∈
{acc,accd, tr, time}, and hence correspond to upper
bounds on the maximal amount of leaked information.

The statement is an immediate consequence of com-
bining Lemma 2 with Theorems 2 and 3, under the as-
sumption that all involved abstract domains satisfy local
soundness conditions, and that the corresponding count-
ing procedures are correct. We formally prove the valid-
ity of these assumptions only for our novel relational and
trace domains (see Section 6). For the other domains,
corresponding proofs are either standard (e.g. the value
domain) or out of scope of this submission.

5 Tool Design and Implementation

In this section we describe the architecture and imple-
mentation of CacheAudit.

We take advantage of the compositionality of the
framework described in Section 4 and use a generic it-
erator module to compute fixpoints, where we rely on
independent modules for the abstract domains that corre-
spond to the components of the next� operation. Figure 3
depicts the overall architecture of CacheAudit, with the
individual modules described below.

5.1 Control Flow Reconstruction
The first stage of the analysis is similar to a compiler
front end. The main challenge is that we directly ana-
lyze x86 executables with no explicit control flow graph,
which we need for guiding the fixpoint computation.

For the parsing phase, we rely on Chlipala’s parser for
x86 executables [13], which we extend to a set of in-
structions that is sufficient for our case studies (but not
yet complete). For the control-flow reconstruction, we
consider only programs without dynamically computed
jump and call targets, which is why it suffices to iden-
tify the basic blocks and link them according to the cor-
responding branching conditions and (static) branch tar-
gets. We plan to integrate more sophisticated techniques
for control-flow reconstruction [30] in the future.

5.2 Iterator
The iterator module is responsible for the computation
of the next� operator and of the approximation of its fix-
point using adequate iteration strategies [17]. Our analy-
sis uses an iterative strategy, i.e., it stabilizes components

CacheAudit
x86 parser

Cache AD

Memory AD

Stack AD
abstract
domains

Flag AD

Value ADOctagon AD

RelSet AD

Interval AD

FiniteSet AD

Iterator

Trace AD
Timing AD

Figure 3: The architecture of CacheAudit. The solid
boxes represent modules. Black-headed arrows mean
that the module at the head is an argument of the module
at the tail. White-headed arrows represent is-a relation-
ships.

of the abstract control flow graph according to a weak
topological ordering, which we compute using Bourdon-
cle’s algorithm [12].

The iterator also implements parts of the reduced car-
dinal power, based on the labels computed according to
the control-flow graph: Each label is associated with an
initial abstract state. The analysis computes the effect of
the commands executed from that label to its successors
on the initial abstract state, and propagates the resulting
final states using the abstract domains described below.
In order to increase precision, we expand locations us-
ing loop unfolding, so that we have a number of differ-
ent initial and final abstract states for each label inside
loops, depending on a parameter describing the number
of loop unfoldings we want to perform. Most of our
examples (such as the cryptographic algorithms) require
only a small, constant number of loop iterations, so that
we can choose unfolding parameters that avoid joining
states stemming from different iterations.

5.3 Abstract Domains

As described in Section 4, we decompose the abstract
domain used by the iterator into mostly independent ab-
stract domains describing different aspects of the con-
crete semantics.

Value Abstract Domains A value abstract domain
represents sets of mappings from variables to (integer)

USENIX Association 22nd USENIX Security Symposium 439

values. Value abstract domains are used by the cache
abstract domain to represent ages of blocks in the cache,
and by the flag abstract domain to represent values stored
at the addresses used in the program. We have imple-
mented different value abstract domains, such as the in-
terval domain, an exact finite sets domain (where the sets
become intervals when they are growing too large) and a
relational set domain (as described in Section 6.1).

Flag Abstract Domain In x86 binaries, there are no
high level guards: instead, most operations modify flags
which are then queried in conditional branches. In or-
der to deal precisely with such branches, we need to
record relational information between the values of vari-
ables and the values of these flags. To that end, for each
operation that modifies the flags, we compute an over-
approximation of the values of the arguments that may
lead to a particular flag combination. The flag abstract
domain represents an abstract state as a mapping from
values of flags to elements of the value abstract domain.
When the analysis reaches a conditional branch, it can
identify which combination of flag values corresponds to
the branch and propagate the appropriate abstract values.

Memory Abstract Domain The memory abstract do-
main associates memory addresses and registers with
variables and translates machine instructions into the cor-
responding operations on those variables, which are rep-
resented using flag abstract domains as described above.
One important aspect for efficiency is that variables cor-
responding to addresses are created dynamically during
the analysis whenever they are needed. The memory ab-
stract domain further records all accesses to main mem-
ory using a cache abstract domain, as described below.

Stack Abstract Domain Operations on the stack are
handled by a dedicated stack abstract domain. In this
way the memory abstract domain does not have to deal
with stack operations such as procedure calls, for which
special techniques can be implemented to achieve precise
interprocedural analysis.

Cache Abstract Domain The cache abstract domain
only tracks information about the cache state. We rep-
resent this state by sets of mappings from blocks to
ages in the cache, which we implement using an in-
stance of value abstract domains. Effects from the mem-
ory domain are passed to the cache domain through
the trace domain. The cache abstract domain tracks
which addresses are touched during computation and re-
turns information about the presence or absence of cache
hits and misses to the trace abstract domain, which we

present in Section 6.2. The timings are then obtained as
an abstraction from the traces.

6 Abstract Domains for Cache Adversaries

6.1 Cache State Domains
Abstractions of cache states are at the heart of analyses
for all three cache adversaries considered in this paper.
Thus, precise abstraction of cache states is crucial to de-
termine tight leakage bounds.

The current state-of-the-art abstraction for LRU re-
placement by Ferdinand et al. [21] maintains an upper
and a lower bound on the age of every memory block.
This abstraction was developed with the sole goal of clas-
sifying memory accesses as cache hits or cache misses.
In contrast, our goal is to develop abstractions that yield
tight bounds on the maximal leakage of a channel. For
access-based adversaries the leakage is bounded by the
size of the concretization of an abstract cache state, i.e.
the size of the set of concrete cache states represented by
the abstract state.

Intuition behind Relational Sets To derive tighter
leakage bounds, we propose a new domain called rela-
tional sets that improves previous work along two dimen-
sions:

1. Instead of intervals of ages of memory blocks, we
maintain sets of ages of memory blocks.

2. Instead of maintaining independent information
about the age of each memory blocks, we record the
relation between ages of different memory blocks.

In addition to increasing precision, moving from in-
tervals to sets allows us to analyze caches with FIFO and
PLRU replacement. Interval-based analysis of FIFO and
PLRU has been shown to be rather imprecise in the con-
text of worst-case execution time analysis [24].

Motivating Example Consider the following method,
which performs a table lookup based on a secret input, as
it may occur in e.g. an AES implementation:

unsigned int A[size];

int getElement(int secret) {

if (secret < size)

return A[secret];

}

Assume we want to determine the possible cache
states after one invocation of getElement. As the value
of secret is unknown to the analysis, every memory lo-
cation of the array might be accessed.

440 22nd USENIX Security Symposium USENIX Association

size 8 16 32 64 128 256
LRU/IV 1 2 4 8 16 32
LRU/Set 1 2 4 8 16 32
LRU/Rel 1 1.58 2.32 3.17 4.01 5.04

Figure 4: Bounds on the number of leaked bits about
the parameter secret for varying array sizes. The cache
parameters are fixed, with a block size of 32 bytes, asso-
ciativity 4 and cache size 4 KB.

Assuming the array was not cached before the invoca-
tion of getElement, the interval-based domain by Fer-
dinand et al. [21] determines a lower bound of 0 and an
upper bound of k on the age of each array element.

By tracking sets instead of intervals of ages for each
memory block, we would get 0 and k as possible ages of
each array element.

Both non-relational domains, however, are not power-
ful enough to infer or even express the fact, that only one
of the array’s memory blocks has been accessed, and can
thus be cached. Therefore, the number of possible cache
states represented by non-relational abstractions grows
exponentially in the size of the array, while the actual
number of possible cache states only grows linearly.

A relational domain, tracking the possible ages of,
e.g., pairs of memory blocks, would indeed yield a lin-
ear growth in the number of possible cache states. For
each pair of array elements, it would be able to infer that
only one of the two blocks may be cached. From this, it
follows that only one of all of the array elements may be
cached.

Figure 4 shows experimental results for the example
program with three domains: the interval domain (IV),
and two instances of the relational sets domain, tracking
sets of ages of individual blocks (Set) and sets of ages of
pairs of blocks (Rel), respectively.

We do not see an improvement of sets over intervals
in this particular example, as the information that a block
has either age 0 or age k can be inferred from the intervals
in the counting procedure. This is because the considered
arrays are small and thus no two array elements map to
the same cache set. We have, however, observed in case
studies that sets alone often improve over intervals.

A detailed formalization of relational sets and their im-
plementation, including efficient counting, is provided in
the extended version of this paper [19]. There, we also
show that the domain is locally sound according to Defi-
nition 1:

Lemma 3. The relational sets domain is locally sound.

6.2 A Trace Domain
We devise an abstract domain for keeping track of the
sets of event traces that may occur during the execution
of a program. Following the way events are computed
in the concrete, namely as a function from cache states
and memory effects (see Section 3.3), the abstract cache
domain provides abstract cache effects.

In our current implementation of CacheAudit, we use
an exact representation for sets of event traces: we can
represent any finite set of event traces, and assuming an
incoming set of traces S and a set of cache effects E, we
compute the resulting event set precisely as follows:

updE�(S,E) = {σ .e |σ ∈ S ∧ e ∈ E }
Then soundness is obvious, since the abstract opera-

tion is the same as its concrete counterpart. Due to loop
unfolding, we do not require widenings, even though
the domain contains infinite ascending chains (see Sec-
tion 5.2).

Lemma 4. The trace domain is locally sound.

Representation for Sets of Event Traces We repre-
sent sets of finite event traces corresponding to a partic-
ular program location by a directed acyclic graph (DAG)
with vertices V , a dedicated root r ∈V , and a node label-
ing � : V →P(E)∪{�}. In this graph, every node v ∈V
represents a set of traces γ(v) ∈ P(E∗) in the following
way:

1. For the root r, γ(r) = {ε}

2. For v with L(v) = � and predecessors u1, . . . ,un,
γ(v) =

⋃n
i=1 γ(ui).

3. For v with L(v) �= � and predecessors u1, . . . ,un,
γ(v) = {t.u | u ∈ L(v)∧ t ∈

⋃n
i=1 γ(ui)}

Intuitively, every v ∈ V represents a set of event traces,
namely the sequences of labels of paths from r to v.

In the context of CacheAudit, we need to implement
two operations on this data structure, namely (1) the join
�E�

of two sets of traces and the (2) addition updE�(S,E)
of a cache event to a particular set of traces.

For the join of two sets of traces represented by v and
w, we add a new vertex u with label � and add edges
from v and w to u.

For the extension of a set of traces represented by
a vertex v by a set of cache events E, we first check
whether v already has a child w labeled with E. If so, we
use w as a representation of the extended set of traces. If
not, we add a new vertex u with label E and add an edge
(u,v). In this way we make maximal use of sharing and
obtain a prefix DAG. The correctness of the representa-
tion follows by construction. In CacheAudit, we use hash
consing for efficiently building the prefix DAG.

USENIX Association 22nd USENIX Security Symposium 441

Counting Sets of Traces The following algorithm
counttr overapproximates the number of traces that are
represented by a given graph.

1. For the root r, counttr(r) = 1

2. For v with L(v) = � and predecessors u1, . . . ,un,
counttr(v) = ∑n

i=1 countτ(ui)

3. For v with L(v) �= � and predecessors u1, . . . ,un,
counttr(v) = |L(v)| ·∑n

i=1 counttr(ui)

The soundness of this counting, i.e. the fact that |γ(v)| ≤
counttr(v), follows by construction. Notice that the pre-
cision dramatically decreases with larger sets of labels.
In our case, labels contain at most three events and the
counting is sufficiently precise.

Counting Timing Variations We currently model ex-
ecution time as a simple abstraction of traces, see Sec-
tion 3. In particular, timing is computed from a trace over
E = {hit,miss,⊥} by multiplying the number of occur-
rences of each event by the time they consume: thit, tmiss,
and t⊥, respectively. The following algorithm counttime
over-approximates the set of timing behaviors that are
represented by a given graph.

1. For the root r, counttime(r) = {0}

2. For v with L(v) = � and predecessors u1, . . . ,un,
counttime(v) =

⋃n
i=1 counttime(ui)

3. For v with L(v) �= � and predecessors u1 . . . ,un,

counttime(v) =
{

tx + t

∣

∣

∣

∣

∣

x ∈ L(v)∧ t ∈
n

⋃

i=1

counttime(ui)

}

The soundness of counttime, i.e. the fact that it delivers
a superset of the number of possible timing behaviors,
follows by construction.

7 Case Studies

In this section we demonstrate the capabilities of Cache-
Audit in case studies where we use it to analyze the cache
side channels of algorithms for sorting and symmetric
encryption. All results are based on the automatic anal-
ysis of corresponding 32-bit x86 Linux executables that
we compiled using gcc.

4 8 16 32 64 128 256
0

50

100

150

200

Cache Size [KB]

L
ea

ka
ge

[b
it]

Ctr

Cacc

Caccd

Ctime

Ctr/PL

Cacc/PL

Caccd/PL

Ctime/PL

Figure 5: Effect of the attacker model and preloading
(PL) on the security guarantee, for varying cache sizes.
The results are given for a 4-way set associative cache
with a line size of 64B and the LRU replacement strategy.

4 8 16 32 64 128 256

50

100

150

200

Cache Size [KB]

L
ea

ka
ge

[b
it]

Cacc/32B

Caccd/32B

Cacc/64B

Caccd/64B

Cacc/128B

Caccd/128B

Figure 6: Effect of the cache line size on the security
guarantee, for Cacc and Caccd, for varying cache sizes.
The results are given for a 4-way set associative cache
with the LRU replacement strategy.

7.1 AES 128

We analyze the AES implementation from the PolarSSL
library [3] with keys of 128 bits, where we consider the
implementation with and without preloading of tables,
for all attacker models, different replacement strategies,
associativities, and line sizes. All results are presented as
upper bounds of the leakage in bits; for their interpreta-
tion see Theorem 1. In some cases, CacheAudit reports
upper bounds that exceed the key size (128 bits), which
corresponds to an imprecision of the static analysis. We
opted against truncating to 128 bits to illustrate the de-
gree of imprecision. The full data of our analysis are
given in the extended version of this paper [19]. Here,
we highlight some of our findings.
• Preloading almost consistently leads to better secu-

rity guarantees in all scenarios (see e.g. Figure 5). How-
ever, the effect becomes clearly more apparent for cache
sizes beyond 8KB, which is explained by the PolarSSL
AES tables exceeding the size of the 4KB cache by 256B.
For cache sizes that are larger than the preloaded ta-
bles, we can prove noninterference for Cacc and FIFO,
Caccd and LRU, and for Ctr and Ctime on LRU, FIFO, and
PLRU. For Cacc with shared memory spaces and LRU,

442 22nd USENIX Security Symposium USENIX Association

4 8 16 32 64 128 256
0

50

100

Cache Size [KB]

L
ea

ka
ge

[b
it]

LRU
FIFO

LRU/PL

FIFO/PL

Figure 7: Effect of the replacement strategy on the se-
curity guarantee for Cacc, with and without preloading
(PL), for varying cache sizes. The results are given for a
4-way set associative cache with a line size of 64B.

4 8 16 32 64 128

50

100

Cache Size [KB]

L
ea

ka
ge

[b
it]

Cacc/1-way

Cacc/2-way

Cacc/4-way

Cacc/8-way

Caccd/1-way

Caccd/2-way

Caccd/4-way

Caccd/8-way

Figure 8: Effect of the associativity on the security guar-
antee, for Cacc and Caccd, without preloading, for varying
cache sizes. The results are given for a cache with a line
size of 64B and the LRU replacement strategy.

this result does not hold because the adversary can ob-
tain information about the order of memory blocks in the
cache.
• A larger line size consistently leads to better se-

curity guarantees for access-based adversaries (see e.g.
Figure 6). This follows because more array indices map
to a line which decreases the resolution of the attacker’s
observations.
• In terms of replacement strategies, we consistently

derive the lowest bounds for LRU, followed by PLRU
and FIFO (see the extended version [19]), where the only
exception is the case of Cacc and preloading (see Fig-
ure 7). In this case FIFO is more secure because with
LRU the adversary can obtain information about the or-
dering of memory blocks in the cache.
• In terms of cache size, we consistently derive bet-

ter bounds for larger caches, with the exception of Caccd.
For this adversary model the bounds increase because
larger caches correspond to distributing the table to more
sets, which increases its possibilities to observe varia-
tions. The guarantees we obtain for Caccd and Cacc con-
verge for caches of 4 ways and sizes beyond 16KB (see
e.g. Figure 6). This is due to the fact that each cache

set can contain at most one unique block of the 4KB ta-
ble. In that way, the ability to observe ordering of blocks
within a set does not give Cacc any advantage.
• When increasing associativity, we observe oppos-

ing effects on the leakage of Cacc and Caccd (see Fig-
ure 8). This is explained by the fact that, for a fixed
cache size, increasing associativity means decreasing the
number of sets. For Caccd which can only observe the
number of blocks that have been loaded into each set,
this corresponds to a decrease in observational capabil-
ity; for Cacc which can observe the ordering of blocks,
this corresponds to an increase. This difference vanishes
for larger cache sizes because then each set contains at
most one unique block of the AES tables.

Comparison to [34]: In a recent study [34] we ana-
lyzed the PolarSSL AES implementation with respect
to access-based adversaries and LRU replacement, using
the cache component of a closed-source tool for worst-
case execution time analysis [1]. The results we obtain
using CacheAudit go beyond that analysis in that we de-
rive bounds w.r.t. access-based, trace-based, and time-
based adversaries, for LRU, FIFO, and PLRU strategies.
For access-based adversaries and LRU, the bounds we
derive are lower than those in [34]; in particular, for
Caccd we derive bounds of zero for implementations with
preloading for all caches sizes that are larger than the
AES tables—which is obtained in [34] only for caches
of 128KB. While these results are obtained for differ-
ent platforms (x86 vs. ARM) and are hence not directly
comparable, they do suggest a significant increase in pre-
cision. In contrast to [34], this is achieved without any
code instrumentation.

7.2 Salsa20

Salsa20 is a stream cipher by Bernstein [11]. Internally,
the cipher uses XOR, addition mod 232, and constant-
distance rotation operations on an internal state of 16 32-
bit words. The lack of key-dependent memory lookups
intends to avoid cache side channels in software imple-
mentations of the cipher. With CacheAudit we could for-
mally confirm this intuition by automated analysis of the
reference implementation of Salsa20 encryption, which
includes a function call to a hash function. Specifically,
we analyze the leakage of the encryption operation on
an arbitrary 512-byte message for Cacc, Ctr, and Ctime,
FIFO and LRU strategies, on 4KB caches with line size
of 32B, where we consistently obtain upper bounds of 0
for the leakage. The time required for analyzing each of
the cases was below 11s.

USENIX Association 22nd USENIX Security Symposium 443

7.3 Sorting Algorithms

In this section we use CacheAudit to establish bounds on
the cache side channels of different sorting algorithms.
This case study is inspired by an early investigation of se-
cure sorting algorithms [8]. While the authors of [8] con-
sider only time-based adversaries and noninterference as
a security property, CacheAudit allows us to give quanti-
tative answers for a comprehensive set of side-channel
adversaries, based on the binary executables and con-
crete cache models.

As examples, we use the implementations of Bubble-
Sort, InsertionSort, and SelectionSort from [4], which
are given in Section 2 and Appendix A, respectively,
where we use integer arrays of lengths from 8 to 64.

The results of our analysis are summarized in Figure 9.
In the following we highlight some of our findings.
• We obtain the same bounds for BubbleSort and Se-

lectionSort, which is explained by the similar structure
of their control flow. A detailed explanation of those
bounds is given in Section 2. InsertionSort has a differ-
ent control flow structure, which is reflected by our data.
In particular InsertionSort has only n! possible execution
traces due to the possibility of leaving the inner loop,
which leads to better bounds w.r.t. trace-based adver-
saries. However, InsertionSort leaks more information
to timing-based adversaries, because the number of iter-
ations in the inner loop varies and thus fewer executions
have the same timing.
• For access-based adversaries we obtain zero bounds

for all algorithms. For trace-based adversaries, the de-
rived bounds do not imply meaningful security guaran-
tees: the bounds reported for InsertionSort are in the or-
der of log2(n!), which corresponds to the maximum in-
formation contained in the ordering of the elements; the
bounds reported for the other sorting algorithms exceed
this maximum, which is caused by the imprecision of the
static analysis.
• We performed an analysis of the sorting algorithms

for smaller (256B) and larger (64KB) cache sizes and
obtained the exact same bounds as in Figure 9, with the
exception of the case of arrays of 64 entries and 256B
caches: there the leakage increases because the arrays do
not fit entirely into the cache due to their misalignment
with the memory blocks.

7.4 Discussion and Outlook

A number of comments are in order when interpreting
the bounds delivered by CacheAudit. First, we obtained
all of the bounds for an empty initial cache. As described
in Section 3.6, they immediately extend to bounds for ar-
bitrary initial cache states, as long as the victim does not
access any block that is contained in it. This is relevant,

e.g. for an adversary who can fill the initial cache state
only with lines from its own disjoint memory space. For
LRU and access-based adversaries, our bounds extend to
arbitrary initial cache states without further restriction.

Second, while CacheAudit relies on more accurate
models of cache and timing than any information-flow
analysis we are aware of, there are several timing-
relevant features of hardware it does not capture (and
make assertions about) yet, including out-of-order exe-
cution, which may reorder memory accesses, TLBs, and
multiple levels of caches.

Third, for the case of AES and Salsa20, the derived
bounds hold for the leakage about the key in one execu-
tion, with respect to any payload. For the case of zero
leakage (i.e., noninterference), the bounds trivially ex-
tend to bounds for multiple executions and imply strong
security guarantees. For the case of non-zero leakage, the
bounds can add up when repeatedly running the victim
process with a fixed key and varying payload, leading to
a decrease in security guarantees. One of our prime tar-
gets for future work is to derive security guarantees that
hold for multiple executions of the victim process. One
possibility to achieve this is to employ leakage-resilient
cryptosystems [20, 47], where our work can be used to
bound the range of the leakage functions.

Finally, note that the bounds delivered by CacheAudit
can only be used for certifying that a system is se-
cure; they cannot be used for proving that it is not.
There are two reasons why the bounds may be overly
pessimistic: First, CacheAudit may over-estimate the
amount of leaked information due to imprecision of the
static analysis. Second, the secret input may not be ef-
fectively recoverable from the leaked information by an
adversary that is computationally bounded.

8 Related Work

The work most closely related to ours is [34]. There,
the authors quantify cache side channels by connecting a
commercial, closed-source tool for the static analysis of
worst-case execution times [1] to an algorithm for count-
ing concretizations of abstract cache states. The appli-
cation of the tool to side-channel analysis is limited to
access-based adversaries and requires heavy code instru-
mentation. In contrast, CacheAudit provides tailored ab-
stract domains for all kinds of cache side-channel ad-
versaries, different replacement strategies, and is mod-
ular and open for further extensions. Furthermore, the
bounds delivered by CacheAudit are significantly tighter
than those reported in [34]; see Section 7.

Zhang et al. [48] propose an approach for mitigating
timing side channels that is based on contracts betweens
software and hardware. The contract is enforced on the
software side using a type system, and on the hardware

444 22nd USENIX Security Symposium USENIX Association

array length 8 16 32 64
Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc

BubbleSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0
InsertionSort 15.23 6.91 0 44.3 10.15 0 117.7 13.3 0 296 15.8 0
SelectionSort 28 4.86 0 120 6.92 0 496 8.96 0 2016 11 0

Figure 9: The table illustrates the security guarantees derived by CacheAudit for the implementations of BubbleSort, SelectionSort,
and InsertionSort, for trace-based, timing-based, and access-based adversaries, for LRU caches of 4KB and line sizes of 32B.

side, e.g., by using dedicated hardware such as parti-
tioned caches. The analysis ensures that an adversary
cannot obtain any information by observing public parts
of the memory; any confidential information the adver-
sary obtains must be via timing, which is controlled using
dedicated mitigate commands. Tiwari et al. [45] sketch a
novel microarchitecture that faciliates information-flow
tracking by design, where they use noninterference as
a baseline confidentiality property. Other mitigation
techniques include coding guidelines [15] for thwarting
cache attacks on x86 CPUs, or novel cache architectures
that are resistant to cache side-channel attacks [46]. The
goal of our approach is orthogonal to those approaches
in that we focus on the analysis of microarchitectural
side channels rather than on their mitigation. Our ap-
proach does not rely on a specific platform; rather it can
be applied to any language and hardware architecture, for
which abstractions are in place.

Kim et al. put forward StealthMem [29], a system-
level defense against cache-timing attacks in virtualized
environments. The core of StealthMem is a software-
based mechanism that locks pages of a virtual machine
into the cache and prevents their eviction by other VMs.
StealthMem can be seen as a lightweight variant of flush-
ing/preloading countermeasures. As future work, we
plan to use our tool to derive formal, quantitative guar-
antees for programs using StealthMem.

For the case of AES, there are efficient software im-
plementations that avoid the use of data caches by bit-
slicing [28]. Furthermore, a model for statistical estima-
tion of the effectiveness of AES cache attacks based on
sizes of cache lines and lookup tables has been presented
in [44]. In contrast, our analysis technique applies to ar-
bitrary programs.

Technically, our work builds on methods from quan-
titative information-flow analysis (QIF) [14], where the
automation by reduction to counting problems appears
in [9, 38, 26, 37], the connection to abstract interpreta-
tion in [35], and the application to side channel analysis
in [33]. Finally, our work goes beyond language-based
approaches that consider caching [7, 25] in that we rely
on more realistic models of caches and aim for more per-
missive, quantitative guarantees.

9 Conclusions

We presented CacheAudit, the first automatic tool for the
static derivation of formal, quantitative security guaran-
tees against cache side-channel attacks. We demonstrate
the usefulness of CacheAudit by establishing the first
formal proofs of security of software-based countermea-
sures for a comprehensive set of adversaries and based
on executable code.

The open architecture of CacheAudit makes it an ideal
platform for future research on microarchitectural side
channels. In particular, we are currently investigating
the derivation of security guarantees for concurrent ad-
versaries. Progress along those lines will provide a han-
dle for extending our security guarantees to the operating
system level. We will further investigate abstractions for
hardware features such as pipelines, out-of-order execu-
tion, and leakage-resilient cache designs, with the goal
of providing broad tool support for reasoning about side-
channels arising at the hardware/software interface.

Acknowledgments We thank Adam Chlipala and the
anonymous reviewers for the constructive feedback, and
Ignacio Echeverrı́a and Guillermo Guridi for helping
with the implementation.

This work was partially funded by European Projects
FP7-256980 NESSoS and FP7-229599 AMAROUT, by
the Spanish Project TIN2012-39391-C04-01 Strong-
Soft, by the Madrid Regional Project S2009TIC-1465
PROMETIDOS, and by the German Research Council
(DFG) as part of the Transregional Collaborative Re-
search Center AVACS.

References

[1] AbsInt aiT Worst-Case Execution Time Analyzers.
http://www.absint.com/a3/.

[2] Intel Advanced Encryption Standard (AES) In-
structions Set. http://software.intel.com/

file/24917.
[3] PolarSSL. http://polarssl.org/.
[4] Sorting algorithms. http://www.codebeach.

com/2008/09/sorting-algorithms-in-c.

html.

USENIX Association 22nd USENIX Security Symposium 445

[5] O. Aciiçmez and Ç. K. Koç. Trace-driven cache at-
tacks on AES. In ICICS, pages 112–121. Springer,
2006.

[6] O. Aciiçmez, W. Schindler, and Ç. K. Koç. Cache
based remote timing attack on the AES. In CT-RSA,
pages 271–286. Springer, 2007.

[7] J. Agat. Transforming out timing leaks. In POPL
2000, pages 40–53. ACM, 2000.

[8] J. Agat and D. Sands. On confidentiality and algo-
rithms. In SSP, pages 64–77. IEEE, 2001.

[9] M. Backes, B. Köpf, and A. Rybalchenko. Auto-
matic discovery and quantification of information
leaks. In SSP, pages 141–153. IEEE, 2009.

[10] D. Bernstein. Cache-timing attacks on
AES. http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf.
[11] D. Bernstein. Salsa20. http://cr.yp.to/

snuffle.html.
[12] F. Bourdoncle. Efficient chaotic iteration strate-

gies with widenings. In FMPA, pages 128–141.
Springer, 1993.

[13] A. Chlipala. Modular development of certified pro-
gram verifiers with a proof assistant. In ICFP,
pages 160–171. ACM, 2006.

[14] D. Clark, S. Hunt, and P. Malacaria. A static anal-
ysis for quantifying information flow in a simple
imperative language. JCS, 15(3):321–371, 2007.

[15] B. Coppens, I. Verbauwhede, K. D. Bosschere, and
B. D. Sutter. Practical mitigations for timing-based
side-channel attacks on modern x86 processors. In
SSP, pages 45–60. IEEE, 2009.

[16] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs
by construction of approximation of fixpoints. In
POPL, pages 238–252, 1977.

[17] P. Cousot and R. Cousot. Systematic design of pro-
gram analysis frameworks. In POPL, pages 269–
282, 1979.

[18] P. Cousot, R. Cousot, and L. Mauborgne. Theo-
ries, solvers and static analysis by abstract interpre-
tation. Journal of the ACM, 59(6):31, 2012.

[19] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and
J. Reineke. CacheAudit: A tool for the static anal-
ysis of cache side channels. http://eprint.

iacr.org/2013/253.
[20] S. Dziembowski and K. Pietrzak. Leakage-resilient

cryptography. In FOCS, pages 293–302. IEEE,
2008.

[21] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt.
Cache behavior prediction by abstract interpreta-

tion. Science of Computer Programming, 35(2):163
– 189, 1999.

[22] D. Grund. Static Cache Analysis for Real-Time Sys-
tems – LRU, FIFO, PLRU. PhD thesis, Saarland
University, 2012.

[23] D. Gullasch, E. Bangerter, and S. Krenn. Cache
games - bringing access-based cache attacks on
AES to practice. In SSP, pages 490–505. IEEE,
2011.

[24] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture
on the design and the results of WCET tools. IEEE
Proceedings on Real-Time Systems, 91(7):1038–
1054, 2003.

[25] D. Hedin and D. Sands. Timing aware information
flow security for a JavaCard-like bytecode. ENTCS,
141(1):163–182, 2005.

[26] J. Heusser and P. Malacaria. Quantifying informa-
tion leaks in software. In ACSAC, pages 261–269.
ACM, 2010.

[27] S. Jana and V. Shmatikov. Memento: Learning se-
crets from process footprints. In SSP, pages 143–
157. IEEE, 2012.

[28] E. Käsper and P. Schwabe. Faster and timing-attack
resistant AES-GCM. In CHES, pages 1–17, 2009.

[29] T. Kim, M. Peinado, and G. Mainar-Ruiz. Stealth-
Mem: System-level protection against cache-based
side channel attacks in the cloud. In 19th USENIX
Security Symposium. USENIX, 2012.

[30] J. Kinder, F. Zuleger, and H. Veith. An abstract
interpretation-based framework for control flow re-
construction from binaries. In VMCAI, pages 214–
228. Springer, 2009.

[31] P. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, pages 104–113. Springer, 1996.

[32] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In CRYPTO, pages 388–397. Springer,
1999.

[33] B. Köpf and D. Basin. An Information-Theoretic
Model for Adaptive Side-Channel Attacks. In CCS,
pages 286–296. ACM, 2007.

[34] B. Köpf, L. Mauborgne, and M. Ochoa. Auto-
matic quantification of cache side-channels. In
CAV, pages 564–580. Springer, 2012.

[35] B. Köpf and A. Rybalchenko. Approximation
and randomization for quantitative information-
flow analysis. In CSF, pages 3–14. IEEE, 2010.

[36] L. Mauborgne and X. Rival. Trace partition-
ing in abstract interpretation based static analyz-

446 22nd USENIX Security Symposium USENIX Association

ers. In ESOP, volume 3444 of LNCS, pages 5–20.
Springer, 2005.

[37] Z. Meng and G. Smith. Calculating bounds on in-
formation leakage using two-bit patterns. In PLAS.
ACM, 2011.

[38] J. Newsome, S. McCamant, and D. Song. Measur-
ing channel capacity to distinguish undue influence.
In PLAS, pages 73–85. ACM, 2009.

[39] D. A. Osvik, A. Shamir, and E. Tromer. Cache at-
tacks and countermeasures: the case of AES. In CT-
RSA, volume 3860 of LNCS, pages 1–20. Springer,
2006.

[40] C. Percival. Cache missing for fun and profit. In
BSDCan, 2005.

[41] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age. Hey, you, get off of my cloud: exploring infor-
mation leakage in third-party compute clouds. In
CCS, pages 199–212. ACM, 2009.

[42] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, 2003.

[43] G. Smith. On the foundations of quantitative infor-
mation flow. In FoSSaCS, pages 288–302. Springer,
2009.

[44] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen.
An analytical model for time-driven cache attacks.
In FSE, volume 4593 of LNCS, pages 399–413.
Springer, 2007.

[45] M. Tiwari, J. Oberg, X. Li, J. Valamehr, T. E. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and T. Sher-
wood. Crafting a usable microkernel, processor,
and I/O system with strict and provable informa-
tion flow security. In ISCA, pages 189–200. ACM,
2011.

[46] Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel at-
tacks. In ISCA, pages 494–505. ACM, 2007.

[47] Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung.
Practical leakage-resilient pseudorandom genera-
tors. In CCS, pages 141–151. ACM, 2010.

[48] D. Zhang, A. Askarov, and A. C. Myers. Language-
based control and mitigation of timing channels. In
PLDI, pages 99–110. ACM, 2012.

[49] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM side channels and their use to extract pri-
vate keys. In CCS. ACM, 2012.

A Example Code

Selection Sort

void SelectionSort(int a[], int array_size){

int i;

for (i = 0; i < array_size - 1; ++i){

int j, min, temp;

min = i;

for (j = i+1; j < array_size; ++j){

if (a[j] < a[min])

min = j;

}

temp = a[i];

a[i] = a[min];

a[min] = temp;

}

}

Insertion Sort

void InsertionSort(int a[], int array_size){

int i, j, index;

for (i = 1; i < array_size; ++i){

index = a[i];

for (j = i; j > 0 && a[j-1] > index; j--)

a[j] = a[j-1];

a[j] = index;

}

}

USENIX Association 22nd USENIX Security Symposium 447

Transparent ROP Exploit Mitigation using Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, Angelos D. Keromytis
Columbia University

Abstract

Return-oriented programming (ROP) has become the
primary exploitation technique for system compromise
in the presence of non-executable page protections. ROP
exploits are facilitated mainly by the lack of complete
address space randomization coverage or the presence
of memory disclosure vulnerabilities, necessitating ad-
ditional ROP-specific mitigations.

In this paper we present a practical runtime ROP ex-
ploit prevention technique for the protection of third-
party applications. Our approach is based on the detec-
tion of abnormal control transfers that take place during
ROP code execution. This is achieved using hardware
features of commodity processors, which incur negli-
gible runtime overhead and allow for completely trans-
parent operation without requiring any modifications to
the protected applications. Our implementation for Win-
dows 7, named kBouncer, can be selectively enabled for
installed programs in the same fashion as user-friendly
mitigation toolkits like Microsoft’s EMET. The results of
our evaluation demonstrate that kBouncer has low run-
time overhead of up to 4%, when stressed with specially
crafted workloads that continuously trigger its core de-
tection component, while it has negligible overhead for
actual user applications. In our experiments with in-the-
wild ROP exploits, kBouncer successfully protected all
tested applications, including Internet Explorer, Adobe
Flash Player, and Adobe Reader.

1 Introduction

Despite considerable advances in system protection and
exploit mitigation technologies, the exploitation of soft-
ware vulnerabilities persists as one of the most common
methods for system compromise and malware infection.
Recent prominent examples include in-the-wild exploits
against Internet Explorer [7], Adobe Flash Player [2],
and Adobe Reader [19, 1], all capable of successfully

bypassing the data execution prevention (DEP) and ad-
dress space layout randomization (ASLR) protections of
Windows [49], even on the most recent and fully updated
(at the time of public notice) systems.

Data execution prevention and similar non-executable
page protections [55], which prevent the execution of in-
jected binary code (shellcode), can be circumvented by
reusing code that already exists in the vulnerable pro-
cess to achieve the same purpose. Return-oriented pro-
gramming (ROP) [62], the latest advancement in the
more than a decade-long evolution of code reuse at-
tacks [30, 51, 50, 43], has become the primary exploita-
tion technique for achieving arbitrary code execution in
the presence of non-executable page protections.

Although DEP is complemented by ASLR, which
is meant to prevent code reuse attacks by randomiz-
ing the load addresses of executables and DLLs, its de-
ployment is problematic. A few code segments left in
static locations can be enough for mounting a robust
ROP attack, and unfortunately this is quite often the
case [35, 75, 40, 54]. More importantly, even if a process
is fully randomized, it might be possible to calculate the
base address of a DLL at runtime [19, 61, 44, 69, 37, 66],
or infer it in a brute-force way [63].

This situation has prompted active research on ad-
ditional defenses against return-oriented programming.
Recent proposals can be broadly classified in static
software hardening and runtime monitoring solutions.
Schemes of the former type include compiler extensions
for the protection of indirect control transfers [45, 52],
which break the chaining of the “gadgets” that comprise
a return-oriented program, and code diversification tech-
niques based on static binary rewriting [70, 53], which
randomize the locations or the outcome of the available
gadgets. The lack of source code for proprietary software
hinders the deployment of compiler-based approaches.
Depending on the applied code transformations, static
binary rewriting approaches may be applied on stripped
binaries, but their outcome depends on the accuracy

448 22nd USENIX Security Symposium USENIX Association

of code disassembly and control flow graph extraction,
while the rewriting phase is time-consuming. Depending
on the vulnerable program, fine-grained code randomiza-
tion may be circumvented by dynamically building the
ROP payload at the time of exploitation [66, 16]. Run-
time solutions monitor execution at the instruction level
to apply various protection approaches, such as perform-
ing anomaly detection by checking for an unusually high
frequency of instructions [24, 28], ensuring the in-
tegrity of the stack [29], or randomizing the locations of
code fragments [36]. The use of dynamic binary instru-
mentation allows these systems to be transparent to the
protected applications, but is also their main drawback,
as it incurs a prohibitively high runtime overhead.

Transparency is a key factor for enabling the practi-
cal applicability of techniques that aim to protect pro-
prietary software. The absence of any need for modifi-
cations to existing binaries ensures an easy deployment
process, and can even enable the protection of applica-
tions that are already installed on end-user systems [47].
At the same time, to be practical, mitigation techniques
should introduce minimal overhead, and should not af-
fect the proper execution of the protected applications
due to incompatibility issues or false positives.

Aiming to fulfill the above requirements, in this pa-
per we present a fully transparent runtime ROP exploit
mitigation technique for the protection of third-party ap-
plications. Our approach is based on monitoring the ex-
ecuted indirect branches at critical points during the life-
time of a process, and identifying abnormal control flow
transfers that are inherently exhibited during the execu-
tion of ROP code. The technique is built around Last
Branch Recording (LBR), a recent feature of Intel pro-
cessors. Relying mainly on hardware for instruction-
level monitoring allows for minimal runtime overhead
and completely transparent operation, without requiring
any modifications to the protected applications.

Inspired by application hardening toolkits like Mi-
crosoft’s EMET [47], our prototype implementation for
Windows 7, named kBouncer, can be selectively enabled
for the protection of already installed applications. Be-
sides typical ROP code, kBouncer can also identify the
execution of “jump-oriented” code that uses gadgets end-
ing with indirect or instructions. To mini-
mize context switching overhead, branch analysis is per-
formed only before critical system operations that could
cause any harm. To verify that kBouncer introduces min-
imal overhead, we stress-tested our implementation with
workloads that trigger excessively the protected system
functions. In the worst case, the average measured over-
head was 1%, and it never exceeded 4%. As the protected
operations occur several orders of magnitude less fre-
quently in regular applications, the performance impact
of kBouncer in practice is negligible. We evaluated the

effectiveness and practical applicability of our technique
using publicly available ROP exploits against widely
used software, including Internet Explorer, Adobe Flash
Player, and Adobe Reader. In all cases, kBouncer blocks
the exploit successfully, and notifies the user through a
standard error message window.

The main contributions of our work are:
• We present a practical and transparent ROP exploit

mitigation technique based on runtime monitoring
of indirect branch instructions using the LBR fea-
ture of recent CPUs.

• We have implemented the proposed approach as a
self-contained toolkit for Windows 7, and describe
in detail its design and implementation.

• We provide a quantitative analysis of the robust-
ness of the proposed ROP code execution preven-
tion technique against potential evasion attempts.

• We have experimentally evaluated the performance
and effectiveness of kBouncer, and demonstrate that
it can prevent in-the-wild exploits against popular
applications with negligible runtime overhead.

2 Practical Indirect Branch Tracing for

ROP Prevention

The proposed approach uses runtime process monitor-
ing to block the execution of code that exhibits return-
oriented behavior. In contrast to typical program code,
the code used in ROP exploits consists of several small
instruction sequences, called gadgets, scattered through
the executable segments of the vulnerable process. Gad-
gets end with an indirect branch instruction that transfers
control to the following gadget according to a sequence
of gadget addresses contained in the “payload” that is in-
jected during the attack. As the name of the technique
implies, gadgets typically end with a instruction, al-
though any combination of indirect control transfer in-
structions can be used [23].

The key observation behind our approach is that the
execution behavior of ROP code has some inherent at-
tributes that differentiate it from the execution of legit-
imate code. By monitoring the execution of a process
while focusing on those properties, kBouncer can iden-
tify and block a ROP exploit before its code accom-
plishes any critical operation.

In this section, we discuss in detail how kBouncer
leverages the Last Branch Recording feature of recent
processors to retrieve the sequence of the most recent in-
direct branch instructions that took place right before the
invocation of a system function. In the following sec-
tion, we discuss how kBouncer uses this information to
identify the execution of ROP code. As the vast major-
ity of in-the-wild ROP exploits target Windows software,

USENIX Association 22nd USENIX Security Symposium 449

Table 1: Qualitative comparison of alternative techniques
for runtime branch monitoring.

our design focuses on achieving transparent operation for
existing Windows applications without raising any com-
patibility issues or false alerts.

2.1 Branch Tracing vs. Other Approaches

Execution monitoring at the instruction level usually
comes with an increased runtime overhead. Even when
tracking only a particular subset of instructions, e.g., in
our case only indirect control transfer instructions, the
overhead of interrupting the normal flow of control and
updating the necessary accounting information is pro-
hibitive for production systems. There are several dif-
ferent approaches that can be followed for monitoring
the execution of indirect branch instructions, each of
them having different requirements, performance over-
head, transparency level, and deployment effort.

Extending the compiler to generate and embed run-
time checks in the executable binary at compile time is
one of the simplest techniques [52]. However, the high
frequency of control transfer instructions in typical code
means that a lot of additional instrumentation code must
be added. Also, deployment requires a huge effort as all
programs have to be recompiled. Another option is static
binary rewriting. Its main advantage over compiler-level
techniques is that no source code is required, but only
debug symbols (e.g., PDB files) [17]. Still, all control
transfers need to be checked. Even worse, it breaks self-
checksumming or signed code and cannot be applied to
self-modifying programs. Dynamic binary instrumenta-
tion is another alternative that can handle even stripped
binaries (no need for source code or debug symbols), but
the runtime performance overhead of existing binary in-
strumentation frameworks slows down the normal exe-
cution of an application by a factor of a few times [29].

In contrast to the above approaches, our system moni-
tors the executed indirect branch instructions using Last
Branch Recording (LBR) [39, Sec. 17.4], a recent fea-
ture of Intel processors introduced in the Nehalem archi-
tecture. When LBR is enabled, the CPU tracks the last
N (16 for the CPU model we used) most recent branches
in a set of 64-bit model-specific registers (MSR). Each
branch record consists of two MSR registers, which hold
the linear addresses of the branch instruction and its
target instruction, respectively. Records from the LBR

stack can be retrieved using a special instruction ()
from privileged mode. The processor can be configured
to track only a subset of branches based on their type:
relative/indirect calls/jumps, returns, and so on.

Table 1 shows a summarized comparison of the alter-
native strategies discussed above. For our particular case,
the use of LBR has several advantages: it incurs zero
overhead for storing the branches; it is fully transparent
to the running applications; is does not cause any incom-
patibility issues as it is completely decoupled from the
actual execution; it does not require source code or debug
symbols; and it can be dynamically enabled for already
installed applications—there is no need for recompila-
tion or instruction-level instrumentation.

2.2 Using Last Branch Recording for ROP

Prevention

Although the CPU continuously records the most recent
branches in the LBR stack with zero overhead, accessing
the LBR registers and retrieving the recorded informa-
tion unavoidably adds some overhead. Considering the
limited size (16 entries) of the LBR stack, and that it can
be accessed only from kernel-level code, checking the
targets of all indirect control transfer instructions would
incur a prohibitively high performance overhead. Indi-
rect branches occur very frequently in typical programs,
and a monitored process should be interrupted once ev-
ery 16 branches with a context switch. In fact, the im-
plementation of such a scheme is not facilitated by the
current design of the LBR feature, as it does not provide
any means of interrupting execution whenever the stack
gets full after retrieving its previous 16 records.

Fortunately, when considering the actual operations of
a ROP exploit, it is possible to dramatically reduce the
number of control transfer instructions that need to be in-
spected. The typical end goal of malicious code is to give
the attacker full control of the victim system. This usu-
ally involves just a few simple operations, such as drop-
ping and executing a malicious executable on the victim
system, which unavoidably require interaction with the
OS through the system call interface. Based on this ob-
servation, we can refine the set of indirect branches that
need to be inspected to only those along the final part
of the execution path that lead to a system call invoca-
tion. (Depending on the vulnerable program, exploita-
tion might be possible without invoking any system call,
e.g., by modifying a user authentication variable [25], but
such attacks are rarely found in the client-side applica-
tions that are typically targeted by current ROP exploits,
and are outside the scope of this work.)

Figure 1 illustrates this approach. Vertical bars corre-
spond to snapshots of the address space of a process, and
arrows correspond to indirect control transfers. The ver-

450 22nd USENIX Security Symposium USENIX Association

kernel

user
space

time system call

LBR check

Figure 1: Illustration of a basic scheme for ROP code de-
tection. Whenever control is transferred from user to ker-
nel space (vertical line), the system inspects the most re-
cent indirect branches to decide whether the system call
was invoked by ROP code or by the actual program.

tical line denotes the point at which the flow of control
is transferred from user space to kernel space through a
system call. At this point, by interposing at the OS’s sys-
tem call handler, the system can access the LBR stack
and retrieve the targets of the indirect branches that led
to the system call. It can then check the control flow path
for abnormal control transfers and distinctive properties
of ROP-like behavior using the techniques that will be
described in Sec. 3, and decide whether the system call
is part of malicious ROP code, or it is being invoked le-
gitimately by the actual program.

2.2.1 System Calls vs. API Calls

User-level programs interact with the underlying system
mainly through system calls. Unix-like systems provide
to applications wrapper functions for the available sys-
tem calls (often using the same name as the system call
they invoke) as part of the standard library. In contrast,
Windows does not expose the system call interface di-
rectly to user-level programs. Instead, programs inter-
act with the OS through the Windows API [13], which
is organized into several DLLs according to different
kinds of functionality. In turn, those DLLs call functions
from the undocumented Native API [59], implemented
in , to invoke kernel-level services.

Exploit code rarely relies on the Native API for sev-
eral reasons. One problem is that system call numbers
change between Windows versions and service pack lev-
els [18, 14], reducing the reliability of the exploit across
different targets (or increasing attack complexity by hav-
ing to adjust the exploit according to the victim’s OS ver-
sion). Most importantly, the desired functionality is often
not conveniently exposed at all through the Native API,
as for example is the case with the socket API [65]. Typi-
cally, the purpose of ROP code is to give execute permis-
sion to a second-stage shellcode using
or a similar API function [31, 27, 1, 6, 7, 2]. The

Number of indirect branches (ret, jmp, call)

0 1 10 16 100 1000 10 4

C
u
m

u
l.
 f
ra

c
ti
o
n
 o

f
A

P
I
fu

n
c
ti
o
n
s

0

0.2

0.4

0.6

0.8

1

Figure 2: LBR overwriting due to indirect branches that
take place within Windows API functions, prior to the
execution of a system call.

second-stage shellcode can be avoided altogether by im-
plementing all the necessary functionality solely using
ROP code, as is the case with a recent exploit against
Adobe Reader XI, in which the ROP code calls directly
the , , , and func-
tions to drop and execute a malicious DLL [19].

The implementation of many of the functions exported
by the Windows API is quite complex, and often involves
several internal functions that are executed before the in-
vocation of the intended system call. Due to the lim-
ited size of the LBR stack, this means that by the time
execution reaches the actual system call, the LBR stack
might be filled with indirect branches that took place af-

ter the Windows API function was called. To assess the
extent of this effect, we measured the average number
of indirect branch instructions (, , and) that
are executed between the first instruction of a Windows
API function and the system call it invokes, for a set of
52 “sensitive” functions that are commonly used in Win-
dows shellcode and ROP code implementations (a com-
plete list of the tested functions is provided in the ap-
pendix). As shown in Fig. 2, about 34% of the API func-
tions execute less that 16 indirect branches, while the rest
of them completely overwrite the LBR stack.

As these branches are made as part of legitimate ex-
ecution paths, calling a function that completely over-
writes the LBR stack would allow ROP code to evade
detection. However, this scheme can be improved to pro-
vide robust detection of ROP code that calls any sensitive
API function, irrespectively of the extent of overwriting
in the LBR stack due to code in the function body.

2.2.2 LBR Stack Inspection on API Function Entry

Given that i) exploit code usually calls Windows API
functions instead of directly invoking system calls, and
ii) most API functions overwrite the LBR stack with le-
gitimate indirect branches before invoking a system call,

USENIX Association 22nd USENIX Security Symposium 451

kernel

user
space

time

API call verification

system
DLL

LBR check

API call system call

Figure 3: Overview of the detection scheme of kBouncer.
Before the invocation of protected Windows API func-
tions, the system inspects the LBR stack to identify
whether the execution path that led to the call was part
of ROP code, and writes a checkpoint. To account for
ROP code that would bypass the check by jumping over
kBouncer’s function hook, the system then verifies the
entry point of the API function at the time of the corre-
sponding system call invocation.

kBouncer inspects the LBR stack at the time an API
function is called, instead upon system call invocation.
This allows the detection of ROP code that uses any sen-
sitive API function, irrespectively of the number of legit-
imate indirect branches executed within its body. In case
an API function is called by ROP code, all entries in the
LBR stack at the time of function entry will correspond
to the indirect branches of the gadgets that lead to the
function call, as depicted in Fig. 3.

Still, without any additional precautions, this scheme
would allow an attacker to bypass the LBR check at the
entry point of a function. An implementation of the LBR
check in the system call handler—within the kernel—
safeguards it from user-level code and any bypass at-
tempt. In contrast, implementing the LBR check as a
hook to a user-level function’s entry point does not pro-
vide the same level of protection. An attacker could
avoid the check by jumping over the hook at the func-
tion’s prologue, instead of jumping at its main entry
point, and then normally executing the function body.
Alternatively, by trading off some of its reliability, the
ROP code could avoid calling the API function alto-
gether by invoking directly the relevant Native API call.

Fortunately, as the Native API is not exposed to user-
level programs, i.e., applications never invoke Native
API calls directly; we can solve this issue by ensur-
ing that system calls are always invoked solely through
their respective Windows API functions. After a clear
LBR check at an API function’s entry point, kBouncer
writes a checkpoint that denotes a legitimate invocation
of that particular function. When the respective system
call is later invoked, the system call handler verifies that
a proper checkpoint was previously set by the expected
API function, and clears it. If the checkpoint was not

set, then this means that the flow of control did not pass
through the proper API function preamble, and kBouncer
reports a violation.

We should note that user-level ROP code cannot by-
pass kBouncer’s checks by faking a checkpoint. The
code for setting a checkpoint can only run with kernel
privileges, and the checkpoint itself is stored in kernel
space so that i) the system call handler can later access
it, and ii) any user-level code (and consequently the ROP
code itself) cannot tamper with it. The checkpoint code
is tied with and comes right after the code that inspects
the LBR stack, and both run in an atomic way at kernel
level, i.e., the checkpoint cannot be set without previ-
ously analyzing the LBR for the presence of ROP code.
This prevents any ROP code from faking a checkpoint
without being detected—the part of the ROP code with
the task of setting the checkpoint would be detected by
the LBR check before the checkpoint is actually set.

3 Identifying the Execution Behavior of

ROP Code

Before allowing a Windows API function call to proceed,
kBouncer analyzes the most recent indirect branches that
were recorded in the LBR cache prior to the function call.
LBR is configured to record only , indirect , and
indirect instructions. The execution of ROP code is
identified by looking for two prominent attributes of its
runtime behavior: i) illegal instructions that target
locations not preceded by call sites, and ii) sequences
of relatively short code fragments “chained” through any
kind of indirect branches.

Returns that do not transfer control right after call
sites is an illegitimate behavior exhibited by all pub-
licly available ROP exploits against Windows software,
which rely mainly on gadgets ending with instruc-
tions (conveniently manipulates both the program
counter and the stack pointer). The second, more generic
attribute captures an inherent property of not only purely
return-oriented code, but also of advanced (and admit-
tedly harder to construct) jump-oriented code (or even
“hybrid” ROP/JOP code that might use any combination
of gadgets ending with , , and instructions).

3.1 Illegal Returns

When focusing on the control flow behavior of ROP code
at the instruction level, we expect to observe the succes-
sive execution of several instructions, which corre-
spond to the transfer of control from each gadget to the
next one. Although this control flow pattern is quite dis-
tinctive, the same pattern can also be observed in legiti-
mate code, e.g., when a series of functions consecutively

452 22nd USENIX Security Symposium USENIX Association

call f1

mov eax, esi

...

xchg eax, edi

ret

call f2

test al, al

...

pop ecx

ret

call f3

add esp, 0Ch

...

add eax, edx

ret

pop eax

ret

normal

execution

ROP code

execution

Figure 4: In normal code, instructions target valid
call sites (left), while in ROP code, they target gadgets
found in arbitrary locations (right).

return to their callers. However, when considering the
targets of instructions, there is a crucial difference.

In a typical program, instructions are paired with
instructions, and thus the target of a legitimate

corresponds to the location right after the call site of the
respective caller function, i.e., an instruction that follows
a instruction, as illustrated in the left part of Fig. 4.
In contrast, a instruction at the end of a gadget trans-
fers control to the first instruction of the following gad-
get, which is unlikely to be preceded by a instruc-
tion. This is because gadgets are found in arbitrary lo-
cations across the code image of a process, and often
may correspond to non-intended instruction sequences
that happen to exist due to overlapping instructions [62].

At runtime, the instructions of ROP code can be
easily distinguished from the legitimate return instruc-
tions of a benign program by checking their targets. A

instruction that transfers control to an instruction not
preceded by a is considered illegal, and the obser-
vation of an illegal is flagged by kBouncer as an in-
dication of ROP code execution.

Ensuring - pairing by verifying caller-callee
semantics, e.g., using a shadow stack [29], constrains
the control flow of a process in a much stricter way
than the proposed scheme. In practice, though, enforc-
ing such a strict policy is problematic, due to the use of

constructs, “getPC” code
commonly found in position-independent executables,
tail call optimizations, and lightweight user-level threads
such as Windows fibers, in which the context switch
function called by the current thread returns to the thread
that is scheduled next.

Instead of enforcing a strict control flow, kBouncer
simply makes sure that instructions always target
any among all valid call sites (even those that correspond
to non-intended instructions). This is a more re-
laxed constraint that is not expected to be violated (and
which did not, for the set of applications tested as part
of our experimental evaluation) even in programs that
use constructs like the above. Its implementation is also
much simpler, as there is no need to track the execution
of instructions—checking that the target of each

falls right after a is enough.

Call-preceded Gadgets Although the above scheme
prohibits the execution of illegal returns, which are
prominently exhibited by typical ROP exploits, an at-
tacker might still be able to construct functional ROP
code using gadgets that begin right after instruc-
tions, to which we refer as -preceded gadgets. Note
that -preceded gadgets may begin after either in-
tended or unintended instructions. As kBouncer
cannot know which instructions were actually
emitted by the compiler, if any of the possible valid in-
structions immediately preceding the instruction at a tar-
get address is a instruction, then that address may
correspond to the beginning of a -preceded gadget.

The observation of a that targets an instruction
located right after a is considered by kBouncer
as normal, and thus ROP code comprising only -
preceded gadgets would not be identified based on the
first ROP code attribute kBouncer looks for during
branch analysis. Although such code would still be iden-
tified due to its “chained gadgets” behavior, which we
will discuss below, we first briefly explore the feasibility
of such an attempt.

For our analysis we use a set of typical Windows ap-
plications, detailed in Table 2. The data is collected us-
ing a purpose-built execution analysis framework, de-
scribed in Sec. 4.2. We consider as a gadget any (in-
tended or unintended) instruction sequence that ends
with an indirect branch, and which does not contain
any privileged or invalid instruction. In contrast to the
gadget constraints typically considered in relevant stud-
ies [62, 23, 60, 24, 73, 53, 36, 70] and the actual gadgets
used in real exploits [27, 19, 1, 6, 7, 2], i.e., contiguous
instruction sequences no longer than five instructions, we
follow a more conservative approach and consider gad-
gets that i) may be split into several fragments due to
internal conditional or unconditional relative jumps, and
ii) have a maximum length of 20 instructions.

Figure 5 shows the fraction of -preceded gadgets
among all gadgets that end with a instruction, for
different Windows applications. In the worst case, only
6.4% of the gadgets begin right after call sites, a per-
centage much smaller compared to all available gad-

USENIX Association 22nd USENIX Security Symposium 453

Table 2: Details about the dataset used for gadget analysis.

Media Player

Internet Explorer

Flash Player

MS Word

MS Excel

MS Powerpoint

Adobe Reader

Fraction of allowed RET gadgets (%)

0 1 2 3 4 5 6 7

Figure 5: Among all gadgets that end with a instruc-
tion, only a small fraction (6.4% in the worst case for
Adobe Reader) begin right after call sites.

gets. Given that many of them are longer than the typical
gadget size, and are thus harder to use in ROP code due
to the many different operations and register or memory
state changes they incur, an attacker would be left with
a severely limited set of gadgets to work with. For com-
parison, the ROP payloads of the exploits we used in our
evaluation, listed in Table 4, collectively use 44 unique
gadgets with an average length of just 2.25 instructions,
and only three of them happen to be -preceded—the
rest of them would all result in illegal returns.

3.2 Gadget Chaining

It is clear from the previous section that even a “lighter”
version of kBouncer that would just prohibit the execu-
tion of illegal returns would still significantly raise the
bar, as i) it would prevent the execution of the ROP code
typically found in publicly available Windows exploits,
and more importantly, ii) it would force attackers to ei-
ther use only a limited set of gadgets, or resort to
jump-oriented code—options of increased complexity.

To account for potential future exploits of these sorts,
the second attribute that kBouncer uses to identify the
execution of ROP code is an inherent characteristic of its
construction: the observation of several short instruction
sequences chained through indirect branches. This is a
generic constraint that holds for both return-oriented and
jump-oriented code (or potential combinations—in the
rest of this section we refer to both techniques as ROP).

Figure 6: The state of the LBR stack at the time
kBouncer blocks an exploit against Adobe Flash [2]. Di-
agonal pairs of addresses with the same shade correspond
to the first and last instruction of each gadget.

Although legitimate programs also contain an abundance
of code fragments linked with indirect branches, these
fragments are typically much larger than gadgets, and
more importantly, they do not tend to form long unin-
terrupted sequences (as we show below).

The CPU records in-sequence all executed indirect
branches, enabling kBouncer to reconstruct the chain of
gadgets used by any ROP code. Each LBR record R[b, t]
contains the address of the branch (b) and the address of
its target (t), or from the viewpoint of ROP code, the end

of a gadget and the beginning of the following one.
Figure 6 illustrates the contents of the LBR stack at

the time kBouncer blocks the ROP code of an exploit
against Adobe Flash [2] (although kBouncer blocks this
exploit due to illegal returns, we use it for illustrative pur-
poses, as we are not aware of any publicly available JOP
exploit). Starting with the most recent (bottom-most)
record, the detection algorithm checks whether the tar-

454 22nd USENIX Security Symposium USENIX Association

get (located at address Rn−1[t]) of the previous branch,
is an instruction that precedes the branch (located at ad-
dress Rn[b]) of the current record. If starting from address
Rn−1[t], there exists an uninterrupted sequence of at most
20 instructions that ends with the indirect branch at ad-
dress Rn[b], then the sequence is considered as a gadget.
Recall that kBouncer treats as gadgets even fragmented
instruction sequences linked through conditional or un-
conditional relative jumps. The same process repeats
with the previous records, moving upwards, as long as
chained gadgets are found.

The ROP code in this example consists of 11 gad-
gets, all ending with a instruction except the final
one (G11), which is a single-instruction gadget with an
indirect that transfers control to
in (note the difference in the high
bytes of the target address in record 13). The two
bottom-most records in the LBR stack correspond to
kBouncer’s function hook (from to

, which signals the kernel compo-
nent), and a from which is called
by .

A crucial question for the effectiveness of the above
algorithm is whether legitimate code could be misclas-
sified as ROP code due to excessively long chains of
gadget-like instruction sequences. To assess this possi-
bility, we measured the length of the gadget chains ob-
served across all inspected LBR stack instances for the
applications and workloads listed in Table 2. As de-
scribed in Sec. 2.2.2, kBouncer inspects the LBR stack
right before the execution of a sensitive Windows API
function. In total, kBouncer inspected 79,885 LBR stack
instances, i.e., the tested applications legitimately in-
voked a sensitive API function 79,885 times.

Figure 7 (solid line) shows the percentage of instances
with a given gadget chain length. In the worst case, there
is just one instance with a chain of five gadgets, and
there are no instances with six or more gadgets. On the
other hand, complex ROP code that would rely on -
preceded or non- gadgets would result in excessively
long gadget chains, filling the LBR stack. Indicatively, a
jump-oriented Turing-complete JOP implementation for
Linux uses 34 gadgets [23]. Furthermore, current JOP
code implementations rely on a special dispatcher gad-
get that always executes between useful gadgets, at least
doubling the amount of executed gadgets.

Although we can never rule out the possibility that
benign code in some other application might result in a
false positive, to ascertain that this possibility is unlikely,
we also analyzed 97,554,189 LBR stack instances taken
at the entry points of all executed functions during the
lifetime of the same tested applications. In this orders-
of-magnitude larger data set, the maximum gadget chain
length observed is nine (dashed line), which is still far

Gadget chain length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
B

R
 s

ta
c
k
 i
n
s
ta

n
c
e
s
 (

%
)

100

10

1

0.1

0.01

10 −3

10 −4

Protected API calls

All function calls

Figure 7: Percentage of LBR stack instances with a
given gadget chain length for i) the instances inspected
by kBouncer at the entry points of protected API func-
tion calls, and ii) the instances taken at the entry points
of all function calls.

from filling up the LBR stack. This means that even if
there is a need in the future to protect more API func-
tions, or perform LBR checks in other parts of a program,
we will more than likely still be able to set a robust detec-
tion threshold that will not result in false positives. For
the current set of protected functions we use a threshold
of eight gadgets, which allows for increased resilience to
false positives.

Finally, note that in the above benign executions, the
vast majority of the gadget-like chains stem from our
conservative choice of considering fragmented gadgets
of up to 20 instructions long—significantly more com-
plex and longer than the gadgets used in actual exploits.
Although we could choose more reasonable constraints
about what is considered as a gadget, we preferred to
stress the limits of the proposed approach.

4 Implementation

4.1 kBouncer

To demonstrate the effectiveness of our proposed ap-
proach, we developed a prototype implementation for the
x86 64-bit version of Windows 7 Professional SP1. Our
prototype, kBouncer, consists of three components: i) an
offline gadget extraction and analysis toolkit, ii) a user-
space thin interposition layer between the applications
and Windows API functions, and iii) a kernel module.

For the executable segments of a protected application,
the gadget extraction toolkit identifies any instruction se-
quence ending in an indirect branch, starting from each
and every byte of a segment. In the current version of
our prototype we assume that the complete set of an ap-
plication’s modules is available in advance. However, it
is possible to trivially relax this assumption by process-

USENIX Association 22nd USENIX Security Symposium 455

application

call VirtualProtect

detour.dll

API call:

LBR check

ntoskrnl.exe

system call handler:

API call verif cationi

user

space

LBR stackCPU

kernel32.dll

BOOL VirtualProtect() {

...

kBouncer

module

kernel

space

Figure 8: Overview of kBouncer’s implementation. At
the entry point of Windows API functions, kBouncer de-
tours the execution, inspects the LBR stack in kernel
mode, and then returns control back to the application.

ing new modules on-the-fly at the time they are loaded
by a protected application. The maximum gadget length
is given as a parameter—in our experiments we conser-
vatively used a length of 20 instructions. As discussed
in Sec. 3.1, our extraction algorithm differs from previ-
ous approaches as it considers even instruction sequences
that contain conditional or unconditional relative jumps.
For this reason, code analysis explores all possible paths
from every offset within a code segment, and follows re-
cursively any conditional branches. The output of the
analysis phase is two hash tables: one containing the off-
sets of -preceded gadgets, and another containing
the rest of the found gadgets. In the future, we will con-
sider switching to Bloom filters to save space.

The overall operation of the runtime system is de-
picted in Fig. 8. The interposition component is imple-
mented on top of the Detours framework [38], which
provides a library call interception mechanism for the
Windows platform. During initialization, it requests by
kBouncer’s kernel module to enable the LBR feature
on the CPU. The two components communicate through
control messages over a pseudo-device that is exported
by the kernel module (using the API
function). Then, it selectively hooks the set of the pro-
tected Windows API functions. Each time a protected
function is called, the detour code sends a control mes-
sage to the kernel component, instructing it to inspect the
contents of the LBR stack for abnormal control transfers.

The kernel module is responsible for three main tasks:
i) enabling or disabling the LBR facility, ii) analyzing the
recorded indirect branches, and iii) writing and verifying
the appropriate checkpoint before allowing a system call
to proceed. The first task involves reading and writing
a few Model Specific Registers (MSR) using the

and instructions. For the second task, whenever
a control request is received from the user-space compo-
nent, kBouncer analyzes the contents of the LBR stack,
looking for the attributes described in Sec. 3. The MSR
registers that hold the recorded information and configu-
ration parameters are considered part of the running pro-
cess context, and are preserved during context switches.

To identify illegal return instructions, the kernel mod-
ule fetches a few bytes before each return target and at-
tempts to decode any instruction located right be-
fore the target instruction (call site check). Gadget chain-
ing patterns are identified as follows: starting from the
most recent branch in the LBR stack, the number of con-
secutive targets that point to gadgets are counted. Any

targets are looked up in the -preceded gadgets
hash table, whereas or targets are looked up
in both hash tables, -preceded or not. The most re-
cent branch target is not considered, as it does not point
to a gadget, but to the protected API function. To pro-
tect the kernel-level component from potential crashes
when accessing invalid user-level locations, we use the

function of the Windows kernel API.
Unfortunately, the final task for API call verification

has been only partly implemented, as it is not possible
to perform system-call interposition in the current ver-
sion of Windows 7. A recently added kernel feature in
the 64-bit version of Windows, called PatchGuard [32],
protects against kernel-level rootkits by preventing any
changes to critical data structures, such as the System
Service Descriptor Table (SSDT). Although this is effec-
tive against rootkits, PatchGuard removed the ability of
legitimate applications, such as antivirus software, to in-
tercept system calls. In response, Microsoft added a set
of kernel-level APIs for filtering network and file-system
operations (Windows Filtering Platform [48]). Hope-
fully, future OS versions will provide system call filtering
capabilities as well.

Still, we did verify the correct operation of checkpoint
verification by simulating it using the dataset of Table 2.
We should note that this is not a design limitation, but
only an implementation issue stemming from our choice
of the target platform. For example, this would not have
been an issue had we decided to implement kBouner for
Linux, or any other open platform. For now, we plan to
implement the checkpointing functionality for 32-bit ap-
plications by hooking system calls at user level through
the WOW64 layer [4] (which, however, will not provide
the same protection guarantees as an actual kernel-level
implementation).

In case an attack attempt is detected after the analy-
sis of the recorded branches, the process is terminated
and the user is informed with an alert message, as shown
in Fig. 9. In this example, kBouncer blocks a mali-
cious PDF sample that exploits an (at the time of writing)

456 22nd USENIX Security Symposium USENIX Association

Figure 9: A screen capture of kBouncer in action, block-
ing a zero-day exploit against Adobe Reader XI [19].

unpatched vulnerability in the latest version of Adobe
Reader XI [19]. The displayed information, such as
branch locations and targets, is supplied from the kernel-
level module.

4.2 Analysis Framework

Moving from the basic concept to a functional prototype
required a number of decisions that were mostly based on
analyzing the behavior of large applications. To ease the
effort required to perform this type of analysis, we devel-
oped an LBR analysis framework. Its goal is to provide a
way to iterate over the LBR instances during the lifetime
of an application, while at the same time providing useful
information, such as translating addresses to function or
image names. The framework is split in two parts: data
gathering and analysis.

The data-gathering component is based on dynamic
binary instrumentation. Although the runtime overhead
of dynamic instrumentation is quite high (as discussed in
Sec. 2.1), we use it here only for data gathering, which
is an off-line and one-time operation. The tool we de-
veloped is built on top of Pin [64, 46], and records the
following information during process execution: i) the
file path and starting and ending address of any loaded
executable image, ii) the location and name of any rec-
ognized function (e.g., exported functions), iii) the thread
ID, location, and target of executed indirect branches
(, or), iv) the thread ID, location, and num-
ber of system calls, and v) the thread ID, location, and
return address of any identified function that was called.

The analysis part is a set of Python scripts that process
the gathered data for each application. It provides a con-
figurable LBR iterator which simulates different scenar-
ios, such as returning LBR stack instances before system
calls or certain function calls, or even after each branch is

Table 3: Microbenchmarks.

executed. To avoid mixing branches from different sys-
tem threads in the same LBR instance, it internally keeps
a list of separate LBRs per thread id. Finally, it provides
convenient methods to translate addresses to function or
image names when available.

5 Evaluation

In this section we present the results of our experimental
evaluation of kBouncer in terms of runtime overhead and
effectiveness against real-world ROP exploits. All exper-
iments were performed on a computer with the following
specifications: Intel i7 2600S CPU, 8GB RAM, 128GB
SSD, 64-bit Windows 7 Professional SP1.

5.1 Performance Overhead

5.1.1 Microbenchmarks

We started with some micro-benchmarks of differ-
ent parts of kBouncer’s functionality. Specifically, we
measure the average time needed for the following op-
erations, also listed in Table 3: hash table lookups
(“HashLookup”), checks for illegal returns (“Illegal-
Ret”), performing a system call (“SysNull”), reading the
contents of the LBR stack (“SysLBR”), and reading parts
of a process’ address space (“SysRead”).

In each case, we isolated the measured operation and
tried to make the experiment as realistic as possible. For
example, we extracted the hash table characteristics (do-
main size, hash table size, hit ratio) based on the dataset
shown in Table 2. The data we used for the illegal return
checks come from , and use a worst-case
workload by treating each location in its code segment
as a possible return target. The next three experiments
where measured in kernel level, as opposed to the first
two. We measured the time needed to perform a no-op
system call, a system call that only reads the LBR stack
contents, and finally, a system call that in addition to
reading the LBR stack, also fetches data from the sources
and targets of each branch.

Table 3 shows the results of these benchmarks. Each
benchmark runs the number of operations shown in the
second column ten times, and calculates the average and

USENIX Association 22nd USENIX Security Symposium 457

profile pipe mailslot file thread comm console sync process

A
v
g

.
c
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
)

0

2

4

6

8

10

12

14

Normal

kBouncer

Figure 10: Execution time with and without kBouncer
for Wine’s test suite, which resulted in
the invocation of about 100K monitored Windows API
functions. The average runtime overhead is 1%.

standard deviation (next two columns). The last column
shows the average time for a single operation. As we can
see, looking up the hash table and checking for an ille-
gal return are both very fast operations, in the order of a
few nanoseconds. Performing a system call and reading
the LBR stack are relatively more expensive, but still, in
the order of a few microseconds. When attempting to
access the instructions located at the source and target
addresses of each branch record, the measured duration
starts to fluctuate. We are not sure whether this behavior
is normal, or it is a result of non-optimal use of the ker-
nel API for accessing user-level memory. Overall, these
microbenchmarks show that kBouncer’s LBR stack anal-
ysis on each protected API function call takes on average
no more than 5 microseconds.

5.1.2 Runtime Overhead

Measuring the performance overhead impact on inter-
active applications, such as web browsers and docu-
ment viewers, is a challenging task. Instead, we de-
cided to measure the performance overhead on programs
that stress the core functionality of kBouncer, by making
heavy use of the monitored Windows API functions. For
this purpose, we used a subset of the tests provided in
the test suite of Wine [15], which repeatedly call Win-
dows API functions with different arguments. To get
more confident timing results, we kept only tests that
do not interfere with external factors, such as network
communication. The final set we used performs about
100,000 calls to Windows API functions that are pro-
tected by kBouncer, which is 20 times more than the
protected calls made by the actual applications we pre-
viously tested (listed in Table 2).

Figure 10 shows the completion time for each of the
different tests, with and without kBouncer. The average
runtime overhead is 1%, with the maximum being 4%

Table 4: Tested ROP exploits.

in the worst case. The total extra time spent across all
tests when enabling kBouncer was 0.3 sec, a result con-
sistent with the average cost of 5 µs per check based on
our microbenchmarks (100,000 calls × 5 µs = 0.5 sec).
Based on these results, which show that the performance
overhead is negligible even for workloads that continu-
ously trigger the core detection component, we believe
that kBouncer is not likely to cause any noticeable im-
pact on user experience.

5.2 Effectiveness

In the final part of our evaluation, we tested whether
our prototype can effectively protect applications that
are typically targeted by in-the-wild attacks, using the
ROP exploits shown in Table 4. All exploits except
the ones against Internet Explorer work on the latest
and up-to-date version of Windows 7 Professional SP1
64-bit. For the IE exploits to work, we had to unin-
stall the updates that fixed the relevant vulnerabilities
(KB2744842 and KB2799329). We also had to tweak the
ROP payload of the MPlayer exploit to correctly calcu-
late the offset of for the latest version
of , as the public version of the exploit
was based on a previous version of that DLL.

The ROP code in the exploit against Adobe Reader
v9.3.4 creates a file (), memory-maps the
file in RWX mode (,

), copies the shellcode in the newly mapped area,
and executes it. Similarly, the MPlayer and IE 8 ex-
ploits change the permissions of the memory region
where the shellcode resides to RWX ()
and execute it. What is interesting about the IE 8
ROP code, is that it is constructed from the statically
loaded Skype protocol handler DLL ().
The last two exploits in Table 4 were generated using
the Metasploit Framework [5]. For vulnerable applica-
tions that include widely used non-ASLR modules (like
Java’s , which is loaded in Internet Ex-
plorer), Metasploit uses the same ROP payload based
on , which has been pre-generated by
Mona [27]. This payload is similar to the one used in
the MPlayer exploit, as it also uses
to bypass Data Execution Prevention (DEP). Finally, the
Adobe Reader XI (v11.0.1) exploit is more complex,

458 22nd USENIX Security Symposium USENIX Association

as it is the first in-the-wild exploit that uses ROP-only
code, i.e., it does not carry any shellcode [19]. The mali-
cious sample we tested (“Visaform Turkey.pdf”) exploits
a first vulnerability to escape from Reader’s sandboxed
process, and a second one to hijack the execution of
its privileged process by loading a malicious DLL using

.
In the first five exploits, the embedded shellcode sim-

ply invokes using . The Reader XI
exploit drops a malicious DLL. In all cases, we verified
that the exploits worked properly on our testbed, by con-
firming that the calculator was successfully launched, or,
for the Reader XI exploit, that the malicious DLL was
loaded successfully. When kBouncer was enabled, it
successfully blocked all exploits due to the identification
of illegal returns at the time one of the ,

or functions was in-
voked by the ROP code in each case.

6 Limitations

The Last Branch Recording feature of recent Intel pro-
cessors is what enables kBouncer to achieve its transpar-
ent and low-overhead operation. Many of our design de-
cisions are corollaries of the very limited size of the LBR
stack, which in the most recent processors holds only 16
records. Given that previous processor generations had
even more size-constrained LBR implementations, this
is definitely a significant improvement, and hopefully fu-
ture processors will support even larger LBR stacks. This
would allow kBouncer to achieve even higher accuracy
by inspecting longer execution paths, making potential
evasion attempts even harder.

Currently, an attacker could evade kBouncer by ensur-
ing that the final 16 executed gadgets before the invoca-
tion of an API function are considered legitimate. Specif-
ically, given that kBouncer looks for both illegal returns
and gadget chaining in parallel, this would require i) all
16 gadgets to be either -preceded or non- gad-
gets, and ii) at least one out of every eight of them (eight
is our current gadget chaining detection threshold) to be
longer than 20 instructions.

A more thorough analysis on the feasibility of con-
structing such a payload for typical applications is part of
our future work. Our preliminary evidence (Section 3.1),
however, shows that only 6.4% of all gadgets ending
with are -preceded, and this is when consid-
ering even fragmented gadgets up to 20 instructions long
(this percentage drops to 3% when considering gadgets
with at most five instructions). On the other hand, ROP
compilers like Q [60] typically take into account non-
fragmented gadgets up to five instructions long. Longer
gadgets incur more CPU state changes, which compli-
cate the (either manual or automated) gadget arrange-

ment process. Indicatively, for a similar set of appli-
cations, even when 20% of all gadgets are available, Q
could not generate a functional payload [53]. Note that
the selection of a maximum gadget length of 20 instruc-
tions was arbitrary—four times the typically used stan-
dard seemed enough. If evasion becomes an issue, longer
gadgets could be considered during the gadget chaining
analysis of an LBR snapshot.

Alternatively, an attacker could look for a long-enough
execution path that leads to the desired API call as part
of the application’s logic. Such a path should satisfy
the following constraints: i) contain at least 16 indirect
branches, the targets of which happen to lead to the ex-
ecution of the desired API function, and ii) the executed
code along the path should not alter the state or the func-
tion arguments set by the previously executed ROP code.
Finding such a path seems quite challenging, as in many
cases the desired function might not be imported at all,
and the path should end up with the appropriate regis-
ter values and arguments to properly invoke the function.
This is even more difficult in 64-bit systems, where the
first four parameters are passed trough registers, as op-
posed to the 32-bit standard calling conventions in which
parameters are passed through the stack.

Our selection of sensitive Windows API functions was
made empirically based on a large set of different shell-
code and ROP payload implementations [5, 3, 56, 12,
27, 60]. A list of the 52 currently protected functions
is provided in the appendix. Although current ROP ex-
ploits rely mainly on only a handful of API functions
(see Sec. 5.2), we have included many others that have
been used in the past in legacy shellcode, as some ex-
ploits might implement their whole functionality using
purely ROP code (as demonstrated recently by an exploit
against the latest version of Adobe Reader XI [19]). The
set of protected functions can be easily extended with any
additional potentially sensitive functions that we might
have left out. Although it would be possible to protect
all Windows API calls, we believe that this would not
offer any additional protection benefits, and would just
introduce unnecessary overhead.

7 Related Work

Address Space Randomization and Code Diversifica-

tion As code-reuse attacks require precise knowledge
of the structure and location of the code to be reused,
diversifying the execution environment or even the pro-
gram code itself is a core concept in preventing code-
reuse exploits [26, 33]. Address space layout randomiza-
tion [55, 49] is probably one of the most widely deployed
countermeasures against code-reuse attacks. However,
it’s effectiveness is hindered by code segments left in
static locations [35, 75, 40], while, depending on the ran-

USENIX Association 22nd USENIX Security Symposium 459

domization entropy, it might be possible to circumvent
it using brute-force guessing [63]. Even if all the code
segments of a process are fully randomized, vulnerabil-
ities that allow the leakage of memory contents can en-
able the calculation of the base address of a DLL at run-
time [19, 61, 44, 69, 37, 66].

Intra-DLL randomization at the function [20, 21, 42,
9], basic block [11, 10], or instruction level [53, 36, 70]
can provide protection for executables that do not sup-
port ASLR, or against de-randomization attacks through
memory leaks. The practical deployment of these tech-
niques for the protection of third-party applications de-
pends on the availability of source code [20, 21, 42, 9],
debug symbols [11, 10], or the accuracy of disassembly
and control flow graph extraction [53, 36, 70, 74].

As kBouncer is completely transparent to user appli-
cations, it can complement all above randomization tech-
niques as an additional mitigation layer against ROP ex-
ploits, while it does not depend on source code, debug
symbols, or code disassembly.

Control Flow Integrity and Indirect Branch Protec-

tion The execution of ROP code disrupts the normal
call path of typical programs, resulting to an unantici-
pated flow of control. Control flow integrity [17] can
confine program execution within the bounds of a pre-
computed profile of allowed control flow paths, and thus
can prevent most of the irregular control flow transfers
that connect the gadgets of a ROP exploit. Depending on
program complexity, however, deriving an accurate view
of the control flow graph is often challenging. Alter-
native approaches against return-oriented programming
enforce a more relaxed policy for the integrity of indi-
rect control transfers [52, 45, 22]. Using code trans-
formations, these techniques eliminate the occurrence of
unintended indirect branch instructions in the generated
code, and safeguard all legitimate indirect branches us-
ing cookies or additional levels of indirection.

The main factor that limits the practical applicabil-
ity of the above techniques is that they require the re-
compilation of the target application, which is usually
not possible for the popular proprietary applications that
are commonly targeted by ROP exploits. In contrast,
kBouncer is completely transparent to applications and
does not require any modification to their code.

Runtime Execution Monitoring Many defenses
against return-oriented programming are based on
monitoring program execution at the instruction level.
A widely used mechanism for this purpose is dynamic
binary instrumentation (DBI), using frameworks such
as Pin [46]. DROP [24] and DynIMA [28] follow this
approach to monitor the frequency of instructions,
and raise an alert in case irregularly many of them are

observed within a small window of executed instruc-
tions. ROPdefender [29] also uses DBI to keep a shadow
stack that is updated by instrumenting and
instructions. A disruption of the expected -
pairs due to ROP code is detected by comparing the
shadow stack with the system’s stack on every function
exit. A limitation of the above techniques is that they
cannot prevent exploits that use gadgets ending with
indirect or instructions. More importantly,
though, the significant runtime overhead imposed by
the additional instrumentation instructions and the DBI
framework itself limit their practical applicability.

Similarly to kBouncer, ROPGuard [34] is based on
the observation that a ROP exploit will eventually in-
voke critical API functions, and performs various checks
before such a function is called. These include check-
ing whether is within the proper stack boundaries,
whether a proper return address is present at the top
of the stack, the consistency of stack frames, and other
function-specific attributes. Although ROPGuard fo-
cuses only on non-JOP code, and some of its checks can
result in false positives or can be easily evaded [58, 57],
they are effective against current in-the-wild exploits,
and some have been integrated in EMET [47].

Last branch recording is only one of the available
instruction tracing facilities available in modern CPUs.
Branch Trace Storage (BTS) is a debugging mechanism
that enables the recording of all branch instructions in a
user-defined memory area. However, the overhead due
to the significant number of memory accesses, combined
with the overall slower operation of the processor due
to the special debug mode in which it enters when BTS
is enabled, result to slowdowns typically in the range of
20–40× [67]. Consequently, systems that use BTS and
similar mechanisms for control flow integrity [72, 73] or
execution recording [68] suffer from significant runtime
overheads. In contrast, LBR uses on-chip registers to
store the traced branches with no additional overhead.

A recent technique against kernel-level ROP uses the
processor’s performance counters to raise an interrupt af-
ter a number of mispredicted instructions, an indica-
tion of possible ROP code execution [71]. To rule out
mispredicitons caused by legitimate code, upon an inter-
rupt, the LBR stack is used to check whether the targets
of the previously executed instructions are preceded
by a instruction. The use of JOP or call-preceded
gadgets, however, can circumvent this protection.

Branch regulation [41] is a proposal for extending cur-
rent processor architectures with a protection mechanism
against ROP attacks. Besides maintaining a secondary
call stack, the technique restricts the allowed targets of
indirect instructions to locations within the same
function, or to the entry point of any other function, and
only the latter for instructions. Besides being quite

460 22nd USENIX Security Symposium USENIX Association

restrictive for many legitimate programs, this approach
requires protected binaries to go through a static binary
instrumentation phase for annotating function bound-
aries, a process that requires precise code disassembly.

8 Conclusion

Exploit mitigation add-ons that can be readily enabled
for the protection of already installed applications are
among the most practical ways for deploying additional
layers of defenses on existing systems. To be usable in
practice, any such solution should be completely trans-
parent and should not impact in any way the normal op-
eration of the protected applications.

Starting on this basis, we have presented the design
and implementation of kBouncer, a transparent ROP ex-
ploit mitigation based on the identification of distinctive
attributes of return-oriented or jump-oriented code that
are inherently exhibited during execution. Built on top of
the Last Branch Recording (LBR) feature of recent pro-
cessors for tracking the execution of indirect branches at
critical points during the lifetime of a process, kBouncer
introduces negligible runtime overhead, and does not re-
quire any modifications to the protected applications. We
believe that the most important advantage of the pro-
posed approach is its practical applicability. We demon-
strate that our prototype implementation for Windows 7
can effectively protect complex, widely used applica-
tions, including Internet Explorer, Adobe Flash Player,
and Adobe Reader, against in-the-wild ROP exploits,
without any false positives.

As part of our future work, we plan to perform a more
extensive evaluation with real applications to ensure the
compatibility of the detection checks with existing code,
assess the feasibility of constructing ROP payloads that
could evade the currently implemented checks, and port
our prototype implementation to Linux.

Acknowledgements

This work was supported by DARPA, the US Air Force, and
ONR through Contracts DARPA-FA8750-10-2-0253, AFRL-
FA8650-10-C-7024 and N00014-12-1-0166, respectively, with
additional support from Intel. Any opinions, findings, conclu-
sions, or recommendations expressed herein are those of the
authors, and do not necessarily reflect those of the US Govern-
ment, DARPA, the Air Force, ONR, or Intel.

References

[1] Adobe CoolType SING Table “uniqueName” Stack Buffer Over-
flow.

.

[2] Adobe Flash Player 11.3 Kern Table Parsing Integer Over-
flow.

.

[3] Common Shellcode Naming Initiative.
.

[4] Intercepting System Calls on x86_64 Windows.

.

[5] Metasploit framework. .

[6] Mplayer (r33064 lite) buffer overflow + rop exploit.
.

[7] MS12-063 Microsoft Internet Explorer execCommand Use-
After-Free Vulnerability.

.

[8] MS13-008 Microsoft Internet Explorer CButton Use-After-Free
Vulnerability. .

[9] /ORDER (put functions in order).
.

[10] Profile-guided optimizations.
.

[11] Syzygy - profile guided, post-link executable reorder-
ing.

.

[12] White Phosphorus Exploit Pack.
.

[13] Windows api list.
.

[14] Windows X86 System Call Table.
.

[15] Wine. .

[16] MWR Labs Pwn2Own 2013 Write-up - Webkit Exploit,
2013.

.

[17] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity. In Proceedings of the 12th ACM confer-

ence on Computer and Communications Security (CCS), 2005.

[18] Piotr Bania. Windows Syscall Shellcode, 2005.
.

[19] James Bennett, Yichong Lin, and Thoufique Haq. The Number
of the Beast, 2013.

.

[20] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar. Address obfus-
cation: an efficient approach to combat a broad range of memory
error exploits. In In Proceedings of the 12th USENIX Security

Symposium, 2003.

[21] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proceedings of the 14th USENIX Security Symposium,
August 2005.

[22] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-
reuse attacks with control-flow locking. In Proceedings of the

27th Annual Computer Security Applications Conference (AC-

SAC), 2011.

[23] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, Hovav Shacham, and Marcel Winandy.
Return-oriented programming without returns. In Proceedings

of the 17th ACM conference on Computer and Communications

Security (CCS), 2010.

[24] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao,
and Li Xie. DROP: Detecting return-oriented programming ma-
licious code. In Proceedings of the 5th International Conference

on Information Systems Security (ICISS), 2009.

USENIX Association 22nd USENIX Security Symposium 461

[25] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Rav-
ishankar K. Iyer. Non-control-data attacks are realistic threats.
In Proceedings of the 14th USENIX Security Symposium, August
2005.

[26] Frederick B. Cohen. Operating system protection through pro-
gram evolution. Computers and Security, 12:565–584, October
1993.

[27] Corelan Team. Mona.
.

[28] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dy-
namic integrity measurement and attestation: towards defense
against return-oriented programming attacks. In Proceedings of

the 2009 ACM workshop on Scalable Trusted Computing (STC),
2009.

[29] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy.
ROPdefender: A practical protection tool to protect against
return-oriented programming. In Proceedings of the 6th Sym-

posium on Information, Computer and Communications Security

(ASIACCS), 2011.

[30] Solar Designer. Getting around non-executable stack (and fix).
.

[31] Úlfar Erlingsson. Low-level software security: Attack and de-
fenses. Technical Report MSR-TR-07-153, Microsoft Research,
2007.

.

[32] Scott Field. An introduction to kernel patch protec-
tion.

.

[33] S. Forrest, A. Somayaji, and D. Ackley. Building diverse com-
puter systems. In Proceedings of the 6th Workshop on Hot Topics

in Operating Systems (HotOS-VI), 1997.

[34] Ivan Fratric. Runtime prevention of return-oriented programming
attacks, 2012. .

[35] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari,
and Danilo Bruschi. Surgically returning to randomized lib(c). In
Proceedings of the 25th Annual Computer Security Applications

Conference (ACSAC), 2009.

[36] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and
Jack W. Davidson. ILR: Where’d my gadgets go? In Proceedings

of the 33rd IEEE Symposium on Security & Privacy (S&P), 2012.

[37] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing
side channel attacks against kernel space ASLR. In Proceedings

of the 34th IEEE Symposium on Security & Privacy (S&P), 2013.

[38] Galen Hunt and Doug Brubacher. Detours: Binary Interception
of Win32 Functions. In Proceedings of the 3rd USENIX Windows

NT Symposium, 1999.

[39] Intel. Intel 64 and IA-32 architectures software developer’s man-
ual, volume 3B: System programming guide, part 2.

.

[40] Richard Johnson. A castle made of sand: Adobe Reader X sand-
box. CanSecWest, 2011.

[41] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev.
Branch regulation: Low-overhead protection from code reuse at-
tacks. In Proceedings of the 39th Annual International Sympo-

sium on Computer Architecture (ISCA), pages 94 –105, 2012.

[42] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and
Peng Ning. Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In Proceed-

ings of the 22nd Annual Computer Security Applications Confer-

ence (ACSAC), 2006.

[43] Sebastian Krahmer. x86-64 buffer overflow exploits and the bor-
rowed code chunks exploitation technique.

.

[44] Haifei Li. Understanding and exploiting Flash ActionScript vul-
nerabilities. CanSecWest, 2011.

[45] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina
Bahram. Defeating return-oriented rootkits with “return-less”
kernels. In Proceedings of the 5th European conference on Com-

puter Systems (EuroSys), 2010.

[46] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-
tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: building customized program anal-
ysis tools with dynamic instrumentation. In Proceedings of the

2005 ACM SIGPLAN conference on Programming language de-

sign and implementation, 2005.

[47] Microsoft. The Enhanced Mitigation Experience Toolkit.
.

[48] Microsoft. Windows filtering platform.

.

[49] Matt Miller, Tim Burrell, and Michael Howard. Mitigating soft-
ware vulnerabilities, July 2011.

.

[50] Nergal. The advanced return-into-lib(c) exploits: PaX case study.
Phrack, 11(58), December 2001.

[51] Tim Newsham. Non-exec stack, 2000.
.

[52] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti,
and Engin Kirda. G-Free: defeating return-oriented programming
through gadget-less binaries. In Proceedings of the 26th Annual

Computer Security Applications Conference (ACSAC), 2010.

[53] Vasilis Pappas, Michalis Polychronakis, and Angelos D.
Keromytis. Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization. In Proceedings of

the 33rd IEEE Symposium on Security & Privacy (S&P), 2012.

[54] Parvez. Bypassing Microsoft Windows ASLR with a little help by
MS-Help, August 2012.

.

[55] PaX Team. Address space layout randomization.
.

[56] Michalis Polychronakis, Kostas G. Anagnostakis, and Evange-
los P. Markatos. An empirical study of real-world polymor-
phic code injection attacks. In Proceedings of the 2nd USENIX

Workshop on Large-scale Exploits and Emergent Threats (LEET),
April 2009.

[57] Aaron Portnoy. Bypassing all of the things. SummerCon, 2013.

[58] Dan Rosenberg. Defeating Windows 8 ROP Mitiga-
tion, 2011.

.

[59] Mark Russinovich. Inside native applications, November 2006.

.

[60] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
Q: Exploit hardening made easy. In Proceedings of the 20th

USENIX Security Symposium, 2011.

[61] Fermin J. Serna. CVE-2012-0769, the case of the perfect info
leak, February 2012.

.

[62] Hovav Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proceed-

ings of the 14th ACM conference on Computer and Communica-

tions Security (CCS), 2007.

462 22nd USENIX Security Symposium USENIX Association

[63] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagen-
dra Modadugu, and Dan Boneh. On the effectiveness of address-
space randomization. In Proceedings of the 11th ACM conference

on Computer and Communications Security (CCS), 2004.

[64] Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert Cohn,
Kim Hazelwood, Vladimir Vladimirov, and Moshe Bach. Dy-
namic program analysis of microsoft windows applications. In
International Symposium on Performance Analysis of Software

and Systems, 2010.

[65] Skape. Understanding windows shellcode, 2003.
.

[66] Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, Fabian Monrose, and Ahmad-Reza Sadeghi. Just-in-
time code reuse: On the effectiveness of fine-grained address
space layout randomization. In Proceedings of the 34th IEEE

Symposium on Security & Privacy (S&P), 2013.

[67] Mary Lou Soffa, Kristen R. Walcott, and Jason Mars. Exploit-
ing hardware advances for software testing and debugging (nier
track). In Proceedings of the 33rd International Conference on

Software Engineering (ICSE), 2011.

[68] A. Vasudevan, Ning Qu, and A. Perrig. Xtrec: Secure real-time
execution trace recording on commodity platforms. In Proceed-

ings of the 44th Hawaii International Conference on System Sci-

ences (HICSS), 2011.

[69] Peter Vreugdenhil. Pwn2Own 2010 Windows 7 Internet Explorer
8 exploit.

.

[70] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and
Zhiqiang Lin. Binary stirring: Self-randomizing instruction ad-
dresses of legacy x86 binary code. In Proceedings of the 19th

ACM Conference on Computer and Communications Security

(CCS), pages 157–168, October 2012.

[71] Georg Wicherski. Taming ROP on Sandy Bridge. SyScan, 2013.

[72] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon:
Detecting violation of control flow integrity using performance
counters. In Proceedings of the 42nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN),
2012.

[73] Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. Se-
curity breaches as PMU deviation: detecting and identifying se-
curity attacks using performance counters. In Proceedings of the

Second Asia-Pacific Workshop on Systems (APSys), 2011.

[74] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szek-
eres, Stephen McCamant, Dawn Song, and Wei Zou. Practical
control flow integrity & randomization for binary executables. In
Proceedings of the 34th IEEE Symposium on Security & Privacy

(S&P), 2013.

[75] Dino A. Dai Zovi. Practical return-oriented programming.
SOURCE Boston, 2010.

Appendix

In our current prototype implementation, kBouncer protects the
following 52 Windows API functions:

USENIX Association 22nd USENIX Security Symposium 463

FIE on Firmware:
Finding Vulnerabilities in Embedded Systems using Symbolic Execution

Drew Davidson Benjamin Moench Somesh Jha Thomas Ristenpart
University of Wisconsin–Madison, {davidson,bsmoench,jha,rist}@cs.wisc.edu

Abstract
Embedded systems increasingly use software-driven
low-power microprocessors for security-critical settings,
surfacing a need for tools that can audit the security of
the software (often called firmware) running on such de-
vices. Despite the fact that firmware programs are of-
ten written in C, existing source-code analysis tools do
not work well for this setting because of the specific ar-
chitectural features of low-power platforms. We there-
fore design and implement a new tool, called FIE, that
builds off the KLEE symbolic execution engine in order
to provide an extensible platform for detecting bugs in
firmware programs for the popular MSP430 family of
microcontrollers. FIE incorporates new techniques for
symbolic execution that enable it to verify security prop-
erties of the simple firmwares often found in practice.
We demonstrate FIE’s utility by applying it to a corpus
of 99 open-source firmware programs that altogether use
13 different models of the MSP430. We are able to ver-
ify memory safety for the majority of programs in this
corpus and elsewhere discover 21 bugs.

1 Introduction
Embedded microprocessors are already ubiquitous, pro-
viding programmatic control over critical, increasingly
Internet-connected physical infrastructure in consumer
devices, automobiles, payment systems, and more. Typ-
ical low-power embedded systems combine a software-
driven microprocessor, together with peripherals such as
sensors, controllers, etc. The software on such devices is
referred to as firmware, and it is most often written in C.

The use of firmware exposes embedded systems to
the threat of software vulnerabilities, and researchers
have recently discovered exploitable vulnerabilities in
a wide variety of deployed embedded firmware pro-
grams [12, 18, 19, 21, 22, 24, 27]. These bugs were found
using a combination of customized fuzz testing and man-
ual reverse engineering, requiring large time investments
by those with rare expertise.

To improve firmware security, one possible approach
would be to use the kinds of source-code analysis tools
that have been successful in more traditional desktop and
server settings (e.g., [2, 4, 8, 9, 11, 13, 17, 26, 28, 31, 36]).
These tools, however, prove insufficient for analyzing
firmware: the microcontrollers used in practice have a
wide range of architectures, the nuances of which frus-
trate tools designed with other architectures in mind
(most often x86). Firmware also exhibits characteris-
tics dissimilar to more traditional desktop and server pro-
grams, such as frequent interrupt-driven control flow and
continuous interaction with peripherals. All this suggests
the need to develop new analysis tools for this setting.

We initiate work in this space by building a system,
called FIE, that uses symbolic execution to audit the se-
curity of firmware programs for the popular MSP430
family of 16-bit microcontrollers. We have used FIE
to analyze 99 open-source firmware programs written
in C and of varying code complexity. To do so, FIE
had to support 13 different versions of the MSP430
family of 16-bit RISC processors. Our analyses ulti-
mately found 20 distinct memory-safety bugs and one
peripheral-misuse bug.

We designed FIE to support analysis of all potential
execution paths of a firmware. This means that, modulo
standard but important caveats (see Section 6), FIE can
verify security properties hold for the relatively simple
firmware programs often seen in practice. For example,
we verify memory safety for 53 of the 99 firmware pro-
grams in our corpus.

Overview of approach: FIE is based on the KLEE sym-
bolic execution framework [10]. In addition to the en-
gineering efforts required to make KLEE work at all for
MSP430 firmware programs, we architected FIE to in-
clude various features that render it effective for this new
domain. First, we develop a modular way to specify the
memory layout of the targeted MSP430 variant, the way
in which special memory locations related to peripherals
should be handled, and when interrupt handlers should

464 22nd USENIX Security Symposium USENIX Association

be invoked. This all allows analysts to flexibly detail pe-
ripheral behavior. We provide a default specification that
models worst-case behavior of all peripherals and inter-
rupts. This default enables analysis without any knowl-
edge or access to (simulators of) individual microcon-
trollers or peripheral components, while ensuring con-
sideration of any possible deployment environment.

Small firmware programs appear to arise frequently
(our corpus has many that have less than 100 lines of
code) and for these we might hope to achieve complete
analyses, meaning all possible paths are checked. Even
with very small firmware programs, however, deep or
infinite loops arise often and force the analysis to visit
already-analyzed states of the symbolic execution. We
therefore use a technique called state pruning [6], which
detects when a program state has been previously ana-
lyzed, and if so, removes it from further consideration.
Our realization of pruning keeps a history of all changes
made to memory at each program point, and while sim-
pler than prior approaches (see Section 7) it proves ef-
fective. We also introduce a new technique called mem-
ory smudging, which heuristically identifies loop coun-
ters and replaces them with unconstrained symbolic vari-
ables. While smudging can introduce false positives, our
experiments show them to be rare. Together, pruning and
smudging significantly improve code coverage and sup-
port the ability to analyze all possible paths of simpler
firmware programs.

Summary: This paper has the following contributions:

• We provide (to the best of our knowledge) the first
open-source tool designed for automated security
analysis of firmware for the widely used MSP430 mi-
crocontrollers.

• We explore use of state pruning and memory smudg-
ing to enhance coverage of symbolic execution and to
attempt to verify the absence of classes of bugs. Ul-
timately, FIE is able to verify memory safety on 53
open-source firmware programs.

• FIE found 21 distinct bugs in the firmware corpus,
many of which appear to be exploitable memory-
safety violations.

To do these analyses at scale, we developed a system for
managing FIE-powered analyses on Amazon EC2 [1].
The source code for FIE, the firmware corpus, and the
EC2 virtual machine images and associated management
scripts will all be made publicly available from the first
author’s website.1

Outline: The remainder of this paper is structured as
follows: In Section 2, we give background on embed-
ded systems and the MSP430 family, describe a corpus
of open-source firmware that we gathered, and explain

1http://pages.cs.wisc.edu/davidson/fie

some of the key challenges that must be overcome for
use of symbolic execution in our context. We then give
a high-level overview of how FIE works in Section 3,
and explain its mechanisms in greater detail in Section 4.
We evaluate FIE on the corpus of firmware examples and
discuss the vulnerabilities found in Section 5. Finally we
discuss limitations of FIE in Section 6, related work fur-
ther in Section 7 and conclude in Section 8.

2 Background and Analysis Targets
Our system, FIE, analyzes embedded firmware programs
for the MSP430 family of microcontrollers using sym-
bolic execution [2, 8–11, 13, 17, 28, 31, 36]. In this sec-
tion, we describe details of the MSP430 family, discuss
a representative corpus of firmware programs that we
gathered, review symbolic analysis, and explore the chal-
lenges faced in attempting to use existing tools for anal-
ysis of firmware programs.

2.1 MSP430 Microcontrollers
We chose Texas Instruments’ (TI’s) MSP430 family of
microcontrollers as our analysis target because of its
popularity. MSP430s already find use in security crit-
ical applications such as credit-card point of sale sys-
tems, smoke detectors, motion detectors, seismic sen-
sors, and more [34]. We believe porting our approach to
other, similar low-power microprocessor families would
be straightforward.

Architecture and memory layouts: MSP430s use a
custom, but simple, RISC instruction set, and have a
von Neumann architecture (instructions and data share
the same address space) with at least 16-bit addressing.
MSP430s have a set of CPU registers, which are accessed
via special memory locations. There are over 500 differ-
ent MSP430 microcontroller products. One example is
the MSP430G2x53 series, which consists of 5 different
chips. These have from 1 kB to 16 kB of non-volatile
flash memory and from 256 to 512 bytes of volatile ran-
dom access memory. The memory layouts for the differ-
ent models are distinct, meaning some physical addresses
are invalid on one variant while valid on another.

Hardware peripherals: MSP430 microcontrollers are
used in conjunction with both built-in and external hard-
ware peripherals. Built-in peripherals include flash
memory, timers, power management interfaces and
the like, whereas external peripherals (USB hardware,
modems, sensors, etc.) must be connected to the micro-
controller via I/O pins. MSP430s have a limited number
of I/O pins, and so they are multiplexed amongst vari-
ous functions. Usually, one function is general purpose
I/O and the other is an internal function. For applications
that need to use many different functions of the device, a
given pin may be switched between its multiplexed du-
ties several times during execution. Accessing periph-

2

USENIX Association 22nd USENIX Security Symposium 465

1 FCTL3 = FWKEY;

2 FCTL1 = FWKEY + ERASE;

3 *F_ptr = 0;

4 while (FCTL3 & BUSY);

5 FCTL1 = FWKEY;

6 FCTL3 = FWKEY + LOCK;

Figure 1: Code excerpt that clears a flash segment

erals works via memory-mapped I/O or special registers
(which are, in turn, accessed via special memory loca-
tions). We refer to all memory that serves internal or
external peripherals as special memory.

Peripherals often have intricate semantics. For exam-
ple, consider accessing flash memory, which is a built-
in peripheral for nearly all MSP430 models. Figure 1
gives a code snippet taken from the USB drivers in our
corpus (see next section). This code clears a segment
of flash memory using various special registers, which
is required before any writes to that segment can occur:
flash control register 3 (FCTL3) must be set to the spe-
cial flash write key (FWKEY) to unlock the memory and
allow writes to it, and flash control register 1 (FCTL1)
must contain the FWKEY value masked with the particu-
lar value to indicate the type of write. Finally, after the
memory is erased, the flash memory is re-locked by as-
signing the special value FWKEY + LOCK.

Firmware programming: Most MSP430 programs are
written in C, using one of three compilers recommended
by TI: IAR, CCS, and msp430-gcc. The first two com-
pilers are commercial products packaged in IDEs, while
the third is a port of the gcc toolchain to the MSP430.
Each of these tools provides a number of extensions to
C. Unfortunately, the extensions do not agree on a single
syntax. As a result, many programs conditionally include
code based on the compiler that is being used. we chose
to base our tool on the msp430-gcc syntax as it is popu-
lar, open-source, and has straightforward extensions.

Embedded firmware usually operates by setting up
configuration for the program and then spinning in an
infinite loop while waiting for input from the environ-
ment. These event-driven programs use interrupt han-
dlers, busy waiting (e.g., line 4 in Figure 1), and the like
to drive computation in response to I/O from peripherals,
and so interrupt handlers often contain the bulk of the
program logic. A typical firmware will initialize several
registers specifying which interrupts to activate and then
go to sleep either by setting the chip to a low-power sleep
mode or by entering an explicit infinite loop.

2.2 Firmware Corpus
As mentioned, MSP430s are used in a wide variety of
security-critical applications. The diversity of appli-
cations is reflected in the firmware programs found in

practice, ranging from simple programs for controlling
some external hardware peripheral on up to feature-rich
lightweight operating systems such as Contiki [35]. To
have a concrete set of analysis targets and as well edu-
cate our design of FIE, we have gathered a corpus of 99
open-source MSP430 firmware programs, which we now
discuss further.

Cardreader: The first firmware in our corpus is
cardreader, a secure credit card reader designed for the
MSP430g2553 and written by one of the authors inde-
pendently of the development of FIE. This was motivated
by recent attacks against smartphone-based point-of-sale
MSP430 devices [20]. Our firmware assumes the pres-
ence of a magnetic credit card stripe reader attached to
port 1 (configured for general purpose I/O), and a UART
connection on port 2 (to transmit gathered credit card
data). The cardreader gets as input card data from the
stripe reader, loads a stored cryptographic key from flash
memory, and applies AES encryption to the card data
before writing the result to the UART. cardreader is fully
functional, with 1,883 lines of C code as computed by
the cloc utility, and incorporates many of the MSP430
programming constructs that, as we will see, can thwart
traditional symbolic-execution-based analysis. We made
no efforts to tailor the code to be amenable to analysis
by FIE. We also performed extensive manual audit of
the code to verify the absence of memory or peripheral-
misuse errors.

USB drivers: We additionally use two USB driver
firmware programs, CDC Driver and HID Driver, taken
from the TI-supplied USB developers package. These
programs include a full USB code stack, and include
7,453 and 7,448 lines of C code, respectively. The partic-
ular programs we chose exercise the CDC (Communica-
tions Device Class) and HID (Human Interface Device)
USB classes, which represent different device types in
the USB specification. The CDC-using firmware, for ex-
ample, takes string commands from an attached terminal
program on a host PC, uses these commands to toggle
the LED in various ways, and sends back an acknowledg-
ment string to the host device. The code that we tested
was written for the IAR compiler, but we manually wrote
Makefiles to compile the source code for our analysis.

Community projects and GitHub: In order to increase
the size of our corpus, we searched for open source
projects both on the TI MSP430 Community Projects
website [33] and GitHub. For the former, we manually
crawled the website, and downloaded all projects with
a Makefile, of which we found 12 that compiled prop-
erly. For the latter, we used the GitHub API to automat-
ically download all projects that matched the keyword
“msp430”. There were 360 such projects. Of these, we
culled out those that either: did not include makefiles,

3

466 22nd USENIX Security Symposium USENIX Association

0 10 20 30 40

f149
f1612
f2012
f2013
f5310
f5521
f5529
g2001
g2211
g2221
g2231
g2452
g2553 LOC #

1−50 36
51−100 13

101−200 28
201−500 9
501−1000 7

1001−2000 2
≥ 2001 4

Table 2: Number of firmware program in the corpus (left) tar-
geting the indicated MSP430 models and (right) having the
number of lines of C code in the given range.

were not written in C, or did not compile properly for
the MSP430 using their given makefiles (this includes
projects such as desktop utilities for connection to an
MSP430, and thus matched the keyword without being
applicable to FIE). After this culling we had 83 firmware
programs.
Contiki: Finally, we add to the corpus Contiki [35],
which provides an operating system for microcontrollers.
To use Contiki, one writes an application against it as
a library, which is then statically linked for a complete
firmware. Since we need an entrypoint to the library
for testing, we use a “hello world” example program in-
cluded with the Contiki distribution. The resulting C file
for the firmware has only 10 lines of code, but this links
against other, larger modules. There are over 200,000
lines of C code in the full Contiki source tree. We
note that Contiki supports many architectures, including
(amongst others) motes that support MSP430x, an ex-
tension of the MSP430 that supports 20-bit addresses.
FIE only supports basic 16-bit MSP430, and thus can-
not run on these motes. Fortunately, Contiki has sup-
port for a basic MSP430 backend: the esb, based on the
msp430f1612. We use this backend in our analysis.

The table in Figure 2 shows a break down of the num-
ber of firmware programs whose number of lines of code
(computed using cloc, including C and C/C++ header
files) falls in the indicated range. As can be seen, the
range of sizes of these firmware programs is large, but
most are 2,000 lines of C code or less. This is not sur-
prising given that MSP430s are often used to drive rela-
tively simple controllers or sensors: our firmware set in-
cludes the large number of small hobbyist projects found
on GitHub and the TI community projects webpage. A
breakdown of the architectures targeted by firmware pro-
grams in the corpus is shown in the graph in Figure 2.
(When a single firmware supports multiple target archi-
tectures, we restrict attention to one, picked arbitrarily.)

2.3 Symbolic Execution and Challenges
To date, finding vulnerabilities in embedded firmware
programs has relied upon specialized fuzzing and reverse
engineering [12, 18, 20–22, 24], which requires signifi-

cant manual effort and knowledge of the firmware under
analysis. Almost all previous research on more general
software analysis tools (see Section 7) has not focused
on the setting of embedded microcontrollers, and so the
relatively unique features of our context (relatively small
firmware sizes, large diversity of architectures, and com-
plex environmental interactions) mean that traditional
approaches need to be revisited. We initiate such work,
focusing in particular on symbolic execution. We feel
it to be well-suited to firmware analysis, allowing fine-
grained modeling of architectural nuances, flexibility in
analysis approach, and typical limitations of symbolic
analysis (i.e., scalability) may not prove to be as much
of an issue for the small firmware programs seen in prac-
tice. We leave exploration of other approaches (e.g.,
static analysis, concolic execution, etc.) to future work.
Symbolic execution: In symbolic execution, variables
corresponding to inputs to a program are treated as sym-
bolic. This means one stores a representation of all of
the possible values that each symbolic variable may take
on. The program is then executed symbolically using an
execution engine. A symbolic state (just state from now
on) is a current program counter, other register contents,
stack frames, and memory contents. The latter three may
contain a mix of concrete values or symbolic variables
and the constraints over those variables. From an ini-
tial state, the engine executes the program one instruc-
tion at a time and updates the state appropriately, chang-
ing concrete values or possibly adding constraints upon
symbolic variables.

Should execution reach a control flow decision such
as a branch, the executor uses a SAT solver to deter-
mine what are the possible next instructions. A new state
is generated for each possible next instruction, with ap-
propriate constraints for the outcome. For example, if a
variable x is assigned symbolic variable α (that is uncon-
strained), and a branch if (x < 5) is encountered, two
child states will be spawned: the first executes inside the
if condition with the constraint α < 5, and the second
executes after the if condition with the constraint α ≥ 5.
Once multiple states are active, the engine decides dur-
ing each iteration which state to progress, based on some
state selection heuristic.
(Complete) analyses: Analysis is performed by inves-
tigating each state for violations of some specific prop-
erties. A common choice is memory-safety violations,
which can be checked by ensuring that all reads and
writes are to properly allocated memory ranges. Should
a state violate such a property, the execution halts and
outputs one of the paths that could lead to this state as
well as concrete values that drive the program’s execu-
tion along that path. The latter is facilitated by using the
SAT solver to provide a solution for the formulas describ-
ing constraints on the symbolic variables.

4

USENIX Association 22nd USENIX Security Symposium 467

It is well known that symbolic execution can, in the-
ory, provide both sound and complete analyses of some
programs. A sound analysis does not emit any false pos-
itives — bug reports that are spurious. We refer to a
symbolic-execution-based analysis as being complete if
it covers all of the finitely many possible symbolic states.

Obviously complete analyses are intractable for many
programs. Past work on symbolic execution has there-
fore focused on achieving high code coverage, meaning
the number of executable lines of code in a program that
have been symbolically executed along any path. High-
coverage symbolic execution enables finding bugs along
the paths that are explored. One can also use the explored
paths to generate inputs for use in testing. In our setting
of resource-constrained, small firmware programs, there
is hope that in addition to high code coverage, we may
be able to sometimes achieve complete analyses as well.

Symbolic analysis (even when sound and complete)
has inherent limitations, stemming from the possibility
of bugs in the analysis engine or compilers used, source
code that depends on memory address values, use of in-
line assembly, etc. We discuss these limitations more in
Section 6.

Challenges: We use the symbolic execution system
KLEE [10] as the foundation for FIE. Our problem do-
main, however, necessitates rethinking several aspects of
KLEE’s design and use. In particular, we face the follow-
ing three key challenges:

Challenge 1 (architecture ambiguity): Firmware pro-
grams make a number of assumptions about the hard-
ware, including the overall layout of memory and loca-
tion of memory-mapped hardware controls. These as-
sumptions are not made explicit in a firmware’s source
code. For example, it is common for a program to store
persistent configuration data at a hard-coded memory ad-
dress in flash. An architecture-agnostic analysis, or one
tailored to x86 environments (as most prior tools are),
would view code using this feature as having read from
uninitialized memory. Making matters worse, the wide
diversity of architectures mean that we will need a way
to configure an analysis to the architectures of interest.

Challenge 2 (intensive I/O): Firmware programs are
highly interactive with the environment throughout the
lifecycle of the program and are designed to interact with
a huge diversity of peripherals. Handling external inputs
to a program is a well-studied issue in prior symbolic
execution contexts, for example KLEE implements func-
tions to determine for the symbolic executor the outcome
of (a subset of) common Linux operating system calls.
In our setting, the peripheral interface is via special reg-
isters and memory-mapped I/O and there exists a huge
diversity of potential peripheral behaviors. This makes
our setting closer to the one targeted by SymDrive, which
uses the S2E [14] symbolic execution system to analyze

x86 Linux kernel drivers without hardware [26]. Like
SymDrive, we need to support analysis without (simula-
tors of) peripherals and often without even knowing the
intended peripheral. When a peripheral and its behavior
are known, we should support the detection of (what we
call) peripheral misuse bugs, in which a firmware incor-
rectly implements the (sometimes complex) operations
involving some peripheral.

Challenge 3 (event-driven programming): The event-
driven model of programming used for firmware is prob-
lematic for symbolic execution because deep or infinite
loops are frequent, and most program logic happens in,
or as a direct result of, interrupt handlers. S2E and
SymDrive both dealt with the frequent use of loops in
code, via path selection heuristics or loop elision. These
approaches do not allow complete analyses, which we
hope to sometimes achieve in our setting. We note that
since interrupts are so crucial to the operation of the
program, failure to follow possible control flow paths
through interrupt handlers will result in very low cover-
age results. Furthermore, disregarding the circumstances
under which interrupts can occur may cause infeasible
paths to be explored in the analysis. At the same time,
the number of possible paths that can occur in the pro-
gram due to interrupts causes state space explosion as, in
the worst case, we must consider every instruction as a
potential branch.

3 Overview of FIE

Our main contribution is FIE, an extensible tool
for symbolic-execution-based analysis of MSP430
firmware. It is based on KLEE [10], but with signifi-
cant modifications and embellishments to the frontend
and core engine as we will explain. In this initial work
we focus on analyzing memory safety of firmware pro-
grams, the lack of which has been exploited in many of
the recent security exploits against embedded systems.
We also report on detection of some peripheral misuse
bugs. Our analyses, by default, use a conservative threat
model in which all inputs from peripherals are untrusted.

In a departure from previous symbolic analysis sys-
tems, we target the ability to achieve complete analyses
for simple firmware programs. These appear to be com-
mon and complete analysis in this context is particularly
compelling since it means that (subject to various caveats
discussed in Section 6) one can verify security or correct-
ness properties of a firmware before deploying it. As far
as we are aware, symbolic execution has not before been
used for verification, since in most settings it is not fea-
sible under current techniques.

This goal of completeness will guide our design in sev-
eral ways, as previous optimizations (such as path selec-
tion heuristics) do not support this goal. That said, we
will not always be able to provide verification, and when

5

468 22nd USENIX Security Symposium USENIX Association

not, FIE will be useful in a more traditional role for bug-
finding and test case generation. Here its efficacy will be
measured by its ability to provide high-percentage code
coverage.

In the remainder of this section, we walk through the
workflow of FIE, shown in Figure 3.

FIE frontend: The first step to analyzing firmware is
compiling it to a form that can be symbolically exe-
cuted. The core of this process uses the CLANG com-
piler to LLVM bitcode. However, there are three neces-
sary features of this process that CLANG alone does not
provide: (1) definitions for compiler intrinsics that are
not expanded by CLANG; (2) definitions of standard li-
brary (stdlib) functions that would normally be included
at link time; and (3) definitions of hardware-defined be-
havior. Handling (1) and (2) is straightforward: we pro-
vide a wrapper around CLANG which links pre-compiled
bitcode for functions in stdlib and for compiler intrinsics.
We took the definitions for the stdlib functions from the
msp430-gcc source code, and we manually wrote stubs
for the compiler intrinsics. As a convenience to the user,
the wrapper also embeds a token into the firmware byte-
code to specify which MSP430 variant the firmware is
compiled for, which simplifies the FIE command line.
Providing definitions for hardware-defined behavior is
more involved, since it is often unknown at compile time
— for instance, the firmware may interact with a variety
of peripheral devices to the chip with varying behaviors.
We address this at runtime using an analysis specifica-
tion, which is describe in depth in Section 4.2.

The most predominant compiler in use for our corpus
is msp430-gcc, a version of gcc targeting the MSP430.
Fortunately the arguments to CLANG are largely compat-
ible with msp430-gcc, so we can drop in our CLANG
wrapper in place of msp430-gcc, and use many of the
original, unmodified Makefiles included in our corpus.

Core execution engine: Once firmware bitcode has been
generated, FIE itself can be run. To analyze the LLVM
firmware bytecode file input.bc, the user issues the
command

fie -mmodel=<mem> -imodel=<intr> input.bc

The memory spec is specified by mem, which supplies
the semantics of special memory such as attached de-
vices, flash memory, etc. FIE comes with a set of de-
fault specifications which conservatively returns uncon-
strained symbolic values to any read from special mem-
ory and ignores writes. However, the user may wish to
choose a different specification or write their own. We
discuss this process in depth in Section 4.2.

The interrupt spec intr informs the analysis of when
(and which) interrupts should be simulated to have fired
at any given point in symbolic execution. Should an in-
terrupt be deemed to fire, the state’s execution is pro-

firmware
source
code

Clang
Wrapper

intrinsic
bytecode

stdlib
bytecode

interrupt
spec

memory
spec

Symbolic
Execution

Engine
firmware
bytecode

Figure 3: The FIE workflow and system components.

gressed to the appropriate interrupt handler function
within the firmware. The interrupt spec allows us to
flexibly model different interrupt firing behaviors. Our
default is to allow any enabled interrupt to fire at every
program point. See Section 4.2.

We inherit as well from KLEE various possible
command-line options, so the user can optionally specify
the wall-clock time to spend on the analysis, the search
heuristic to use, etc.

FIE runs a modified version of the KLEE symbolic exe-
cution engine (the executor) to perform the analysis over
the firmware bitcode. In particular, we use directly from
KLEE their existing state selection heuristics, their un-
derlying SAT solver framework, and much of their state
management code. Our major changes include porting
the entire execution engine to a 16-bit architecture, which
includes a new memory manager to ensure that all mem-
ory objects are allocate within a 16-bit value, and the use
of the memory spec and interrupt library to model exe-
cution when the engine interacts with special memory or
fires an interrupt. We also implement two enhancements
to the symbolic execution engine, state pruning (Sec-
tion 4.3), first introduced by RWset [6] and adapted to
our domain, and memory smudging (Section 4.4), which
is novel to this work. These can improve code coverage
and, for some programs, enable complete analyses.

FIE finishes when it completes an analysis by visiting
every possible state, hits the requested time limit, or finds
a memory-safety (or other) violation. In the latter case it
outputs a description of a path leading to the bug. We
call this a trace. The trace includes concrete examples of
inputs (i.e., from peripherals) that cause the firmware to
trigger the bug, and includes at what points in the exe-
cution interrupts fired to cause a jump to a specific inter-
rupt handler. Currently, a trace is useful as a debugging
log, but eventually it could be used to directly drive an
MSP430 simulator to validate the potential bug.

We have additionally prepared an Amazon EC2 [1]
virtual machine image and control scripts to run analy-
ses on EC2. This made it easy to automate running FIE
on our large corpus of programs. We will publicly re-
lease an open-source version of FIE, associated scripts,
and the EC2 virtual machine image.

6

USENIX Association 22nd USENIX Security Symposium 469

4 Details of FIE’s Architecture

4.1 Main Execution Loop

For the purposes of describing FIE, we define an exe-
cution state to be an immutable snapshot of the symbolic
execution at a given point in time. That means it includes
all values used to emulate LLVM bitcode, including a
program counter, stack frames, and global memory (used
for global variables, the heap, etc.). Any memory loca-
tion may have either a concrete value or a symbolic one,
the latter represented by a set of constraints.

In our abstraction, the main execution loop of FIE op-
erates by generating successor states from the current im-
mutable state. This allows us a history of past states,
which, looking ahead, will be useful for describing our
state pruning feature. This treatment differs from [10],
which instead described states as mutable objects trans-
formed by the symbolic execution.

Figure 4 gives high-level pseudocode for the main ex-
ecution loop. A set AS contains the active states to be
run; at the start it holds just one initial state. The loop
chooses a state from AS according to a state selection
heuristic R. For this we use the KLEE heuristic that seeks
to maximize coverage. Once a state has been selected,
new successor states may be immediately spawned ac-
cording to SpawnInterrupts. This function also outputs
a boolean shouldExec that can be set to false to force an
interrupt to fire, otherwise the instruction at the current
state’s program counter is symbolically executed.

Should shouldExec be true, FIE symbolically executes
the next instruction of the current state. Here FIE in-
terposes on memory loads and stores that target mem-
ory addresses corresponding to special memory (e.g., pe-
ripherals). The addresses of special memory are pro-
vided by the memory spec as described in the next
section. Other operations are handled by Eval, which
works like KLEE’s evaluation mechanism, except with
a new special-memory-aware memory manager, support
for emulation of 16-bit firmware, and compiler intrinsics
used by msp430-gcc.

Each of SpecLoadEval, SpecStoreEval, and Eval must
check that security properties are satisfied. Should one
fail, a warning will be generated and the set of succes-
sors S output by the evaluation function will be empty.
This allows execution to continue, along other paths,
even after one path leads to an error.

The set of possible successor states SS is then taken
to be the union of those output by SpawnInterrupts and
one of the eval functions. In a normal symbolic execu-
tion engine, the full set SS would be added to AS. FIE
works a bit differently due to state pruning and memory
smudging as we explain in Sections 4.3 and 4.4.

1: AS = {Sinit}
2: while AS �=∅ do
3: Dequeue S from AS according to R
4: (shouldExec,Sint)← SpawnInterrupts(S)
5: if shouldExec then
6: Let p be the program counter of S
7: Let I be the instruction pointed to by p
8: if I is a load to special memory then
9: S ← SpecLoadEval(I,S)

10: else if I is a write to special memory then
11: S ← SpecStoreEval(I,S)
12: else
13: S ← Eval(I,S)
14: PS p ←PS p ∪{S}
15: SS ← Sint ∪S
16: for all S′ ∈ SS do
17: Let p′ be the program counter of S′

18: if Prune(S′,PS p′) = false then
19: S′′ ←MemorySmudge(S′,PS p′)
20: AS ←AS ∪S′′

Figure 4: Pseudocode of FIE’s main execution loop.

4.2 Modeling Chips and Peripherals
FIE must be aware of various aspects of the target ar-
chitecture, including what are valid memory addresses,
whether they correspond to special memory locations,
and how interrupt firing should be simulated. With over
400 chips in the MSP430 family, hard-coding this infor-
mation would be cumbersome. Instead, FIE is config-
ured at runtime to work for particular models of chips,
external peripherals, and interrupt firing. In this sec-
tion, we discuss the details of writing an analysis speci-
fication file, together with a memory spec and interrupt
spec. Combined these serve as a layer of abstraction be-
tween the symbolic execution engine and the actual tar-
get chip’s hardware details.

Analysis specification: When FIE is run, the analyst in-
dicates the target architecture on the command line. In
turn FIE loads an associated analysis specification file,
which is a plaintext file adhering to a simple format and
specifying how the analysis should be configured. An
example is shown in Figure 5.

Recall that each MSP430 chip has memory locations
that correspond to on-chip peripheral addresses. As
well there are other hardware specifics, e.g., the loca-
tion and length of non-volatile flash memory segments.
These memory locations differ amongst chips. For exam-
ple, PORT 0 input resides at memory location 0x0020

on the MSP430G2221, but resolves to 0x200 on the
MSP430F5521. This information is generally not in-
cluded in firmware source-code. The specification file
therefore includes information on the layout of memory
and what addresses correspond to special memory. In the
example, the file fixes the total size of memory on line 1,

7

470 22nd USENIX Security Symposium USENIX Association

layout 0x10000

range 0x1080 0x10bf flash

range 0x10c0 0x10ff flash

addr P1IN 0x0020 1

addr P1OUT 0x0021 1

addr P1DIR 0x0022 1

addr P1IFG 0x0023 1

interrupt PORT2_ISR check_PORT2

Figure 5: MSP430g2553 analysis specification excerpt

specifies flash regions on lines 2 and 3, and sets the lo-
cations and sizes of several special memory addresses
on lines 4–7. The final line indicates that the function
check PORT2 is used to determine when interrupts han-
dled by PORT2 ISR fire.

For any MSP430 chip that is supported by
msp430-gcc, this layout file can be synthesized
automatically from firmware source code (for ISRs) and
files included in the compiler. While we could therefore
have made specifications completely internal, we expose
the layout file explicitly to allow an analyst to modify
the hardware model if desired.

The chip layout specification explicitly fixes architec-
ture details that are implicit in firmware, but it does not
specify the actual behavior of these special features, such
as when to fire interrupts and the behavior of special
memory. These are handled by the memory and inter-
rupt specifications.

Memory spec: The expected functionality of special
memory locations is not available in a firmware, and of-
ten not really fixed until the device is deployed with at-
tached hardware peripherals. Thus, FIE uses a library of
functions that, together, form a model of special mem-
ory behavior. For each special memory location, the
memory spec contains a function n read and n write,
where n is the name of the special memory location (e.g.,
P1IN read and P1IN write). The SpecLoadEval and
SpecStoreEval functions determine which of the n read

and n write functions to invoke, based on the target ad-
dress. (Note that the target address may be symbolic,
in which case FIE resolves the set of possible addresses,
and generates new successors for each possible resulting
behavior.)

Read and write functions are passed the entire sym-
bolic execution state, and output a (possibly empty) set
of states. This allows special memory reads and writes
to define behavior as an arbitrary computation over the
state. Security and domain experts can therefore modify
a memory spec to refine models of peripheral behavior.

Although this modeling approach is flexible and ex-
pressive, previous work has noted that such models can
be quite onerous to develop [14]. To eliminate this draw-
back, we provide a default memory spec which is auto-

matically generated from the analysis spec. For mem-
ory reads, the default memory spec returns a fresh, un-
constrained symbolic value. For example, reading from
P1IN always returns a new, unconstrained, symbolic, 8-
bit variable, while writing to P1OUT is a no-op. This de-
fault conservatively assumes that an attacker has full con-
trol over all peripherals and uninitialized memory. This
means that our analysis often overapproximates special
memory behavior, and in particular might lead to finding
vulnerabilities that cannot always be exploited when spe-
cific peripherals are used. This approach is in-line with
similar work on modeling symbolic hardware [26], and
as we will see in Section 5, empirically results in few
false positives.

Interrupt spec: Deciding which interrupt is enabled at
a given program point is nontrivial: the MSP430 design
documents specify a partial order of priorities over inter-
rupts, i.e., a higher priority interrupt cannot be preempted
by a lower priority one. Furthermore, some (but not all)
interrupts are only enabled when appropriate status reg-
ister flags are set. Thus, determining the enabled set of
interrupts requires knowledge not only of the architec-
ture but also the current firmware state.

FIE handles this using an interrupt spec. It contains
a number of gate functions, one for each possible inter-
rupt that can occur on an MSP430. The SpawnInterrupts
function executes each gate function, passing each a
pointer to the entire execution state. The gate functions
return a flag indicating that the interrupt: (1) cannot fire
at the current instruction (usually indicating that the in-
terrupt is disabled at that program point); or (2) may oc-
cur at the current program point. For case (2), the gate-
way function additionally returns a successor state S′ that
is the same as the current state S except advanced to the
first instruction of the associated interrupt handler.
SpawnInterrupts collects the returned values pro-

duced into a set of successor states Sint that includes
one successor for each gateway that returned may. As
well, SpawnInterrupts determines if it’s valid for execu-
tion to proceed without an interrupt. This reflects the fact
that when the firmware is in a sleep state the only valid
successor states are in Sint (i.e., the path must traverse
an interrupt handler). In this case, SpawnInterrupts re-
turns shouldExec set to false, correctly forgoing evalua-
tion of S. Otherwise it is set to true, and S is evaluated.

FIE uses, by default, an interrupt spec that explores
an over-approximation of all feasible paths: any inter-
rupt that is enabled at a particular program point may
fire. Thus, an instruction for which n interrupts may fire
will have at least |Sint|= n successor states, and possibly
multiple more in the case that the current state is evalu-
ated. In practice, even an attacker with physical access
to the chip is unlikely to be able to exercise all possible
firing sequences. This means that FIE using the default

8

USENIX Association 22nd USENIX Security Symposium 471

interrupt spec may yield false positives, but without fur-
ther information about possible adversaries treating all
possible firing sequences is necessary for verification.

The default interrupt spec can be used for all the
MSP430 variants: if the firmware does not handle a cer-
tain type of interrupt, that gate function is simply ig-
nored. However, swapping out interrupt libraries can still
be useful as a way to tune the analysis. For example, in
Section 5 we evaluate an interrupt spec that, instead of
firing at every instruction, allows interrupts only to fire
once per basic block. While this relaxed interrupt model
misses feasible paths, it improves performance.

4.3 State Pruning
In the course of analysis, the main execution loop will of-
ten generate a set SS including one or more states S′ that
will execute equivalently to another, already seen state Ŝ.
We call such an S′ redundant. We denote states that lead
to equivalent execution by S′ ≈ Ŝ and say S′ and Ŝ are
equivalent.

Most prior symbolic execution frameworks, includ-
ing KLEE, simply add redundant states to the set of
active states, meaning they will potentially be sched-
uled for execution later. Consider Figure 4, but mod-
ified so that lines 14–18 are replaced by a single line
AS ←AS ∪Sint ∪S. That is, all successors generated
via interrupt spawning or evaluation are simply added to
the set of active states. We refer to this variant as the
PLAIN operating mode of FIE.

Redundant states arise frequently in our setting, and
as we will show experimentally in Section 5, PLAIN is
slowed down considerably by them. One reason is that
interrupt firings can lead to two different paths leading to
the same state. Figure 6(a) shows an example interrupt
handler and code. At line 1, interrupts are enabled. By
the beginning of line 4, when running PLAIN there would
be 4 states resulting from the paths P1 = 〈s2,s3,s4〉, P2 =
〈s2,s7,s3,s4〉, P3 = 〈s2,s3,s7,s4〉, P4 = 〈s2,s7,s3,s7,s4〉,
where si represents the statement at line i. The states S4
and S′4 resulting from execution along paths P2 and P3 are
equivalent, since both increment a via the interrupt han-
dler once — even though they explore distinct program
paths all variables have the same value.

A second source of redundant states arises when sym-
bolic execution of loops generates redundant states. This
situation also causes the PLAIN mode of FIE to loop in-
finitely. Consider when running PLAIN from a state S3
on the looping line 3 in the code snippet shown in Fig-
ure 6(b). The main loop will call SpecLoadEval and
in turn invoke the memory spec function associated to
P1IN. An unconstrained symbolic variable will be gen-
erated and two successor states will be returned: S4 set
to line 4 (the branch condition assumed to fail) and S′3
remaining on line 3 (the branch condition succeeded).

When S′3 runs, it will again generate two new states, S′4
and S′′3 . Yet, S′4 ≈A S4 and S′3 ≈A S′′3 . This will continue
endlessly, generating a large number of states and ulti-
mately ensuring that the analysis will never complete.

In KLEE and most prior systems redundant states were
dealt with indirectly, by way of state selection heuristics
R that favored new lines of code. We would like to sup-
port complete analyses, however, and so we go a differ-
ent route and instead build into FIE the ability to detect
and prune redundant states.

State pruning was used previously by RWset [6],
which detects if two states S′, Ŝ are equivalent by check-
ing if the set of values taken by all live variables (plus ap-
propriate context such as the call path) of S′ match those
seen in Ŝ, giving rise to a narrower notion of equivalence
that we denote by Ŝ ≈L S′. Deciding Ŝ ≈L S′ uses a live
variable analysis at each program point. We do not have
a live variable analysis that is sound in the presence of
interrupt paths, which are prevalent in our domain. We
expect that such an analysis would be costly and less ac-
curate when accounting for interrupts, and so we go a dif-
ferent route. FIE checks equivalence by investigating if
every variable, symbolic expression2, program counter,
and all other parts of the state are equal between Ŝ and
S′, denoted Ŝ ≈A S′. This embodies a trade-off between
simplicity of equivalence checking (i.e., we forgo static
analysis) and the ability to prune as aggressively as is
theoretically possible.

Lines 14–20 of Figure 4 realize state pruning. There a
function Prune checks each potential successor S′ ∈ SS
to see if it is equivalent to any of the previously generated
states in PS p′ , namely those that have the same program
counter p′ as S′. To use the ≈A equivalence relation ef-
ficiently, we modify the way KLEE maintains states in
memory, storing for each visited program counter a set
of diffs of the memory contents of all states that have
been seen at that program counter. This also allows fast
comparisons to detect redundant states.

4.4 An Optimization: Memory Smudging
As we will see in the next section, FIE as described thus
far can already be used to perform complete analyses for
some simple firmware and achieves good code-coverage
for some more complex firmware. However, it is clear
that even small programs can force FIE to attempt to ex-
plore an intractable number of states. For example, con-
sider the code snippet in Figure 6(c). The empty for loop
on line 4 will force FIE to proceed down at least one
path of length at least MAX LONG instructions. Unlike the
loop example in Figure 6(b), state pruning cannot short-
circuit evaluation of this long path because the value of

2We only consider syntactic equality of constraints, and do not at-
tempt to decide if two different sets of constraints define the same set
of possible values.

9

472 22nd USENIX Security Symposium USENIX Association

1 int main (){

2 eint ();

3 BCSCTL1 = CALBC1_1MHZ;

4 DCOCTL = CALDCO_1MHZ;

5 }

6 ISR(PORT1){

7 a += 1;

8 }

(a) Code with equivalent paths

1 uint8_t getByte (){

2 ...

3 while(P1IN & BIT2);

4 if (P1IN & BIT2){

5 goto WaitForStart;

6 }

7 ...

8 }

(b) Code with an infinite fork

1 int main (){

2 ...

3 long i = 0;

4 while(i < MAX_LONG) {

5 i++;

6 }

7 ...

8 }

(c) Code with a long loop

Figure 6: State pruning can detect and remove the redundant states produced in code samples (a) and (b). Memory smudging
replaces i in code sample (c) with a symbolic variable after t iterations (e.g., t = 100), enabling analysis to move beyond the loop
more quickly.

i is monotonically increasing and so states never repeat
along the path.

To speed analysis for such settings, while retaining
the ability to be complete, we use memory smudging.
It is represented by the function MemorySmudge on
line 19 of Figure 4. At analysis time, the analyst sup-
plies a modification threshold t to FIE. Before adding a
(non-redundant) successor state S′ to AS, the function
MemorySmudge checks if any memory locations in S′

have been modified t times. If so the location’s value is
replaced by a special value �. This wildcard value may
take any value allowed by the type and cannot be con-
strained. To implement this, FIE keeps a count of every
distinct value that an instance of a variable takes on at a
program point. The count is associated with the activa-
tion record of the variable. Thus, if a local variable is
smudged, it will again be concrete on the next call to that
function while global variables remain smudged.

Smudging allows the analysis to explore more of a
firmware at the cost of precision. To see this, con-
sider again Figure 6(c), and let the smudging threshold
be t = 100. On iteration 100, i takes on the value �.
Then, as the loop continues to iteration 101, the condi-
tion i < MAX LONG will cause the execution state to be
split into two states: a state SF that fails the loop condi-
tion and proceeds to line 7, and a state ST that executes
the body of the loop at line 5 again. By executing ST ,
code that would not be executed until MAX LONG itera-
tions of the loop can instead be executed after 100 it-
erations. This approach does lead to the addition of new
states (compared to execution without smudging), but we
have found that pruning typically eliminates states added
due to smudging. When FIE executes SF in the example
above, it will explore the (empty) body of the loop, and i
will be incremented. However, since i = �, the update to
i will be discarded. Now, SF is again at the head of the
loop, and execution state is identical to the previous iter-
ation: no variable besides i has been touched, and i= � as
it did on the previous iteration. Thus, SF ends up pruned.

Memory smudging over-approximates a state and so
can be a source of false positives, i.e., � contains values
that may never be realized along any path. For example,

a pointer modified t times and then dereferenced can re-
sult in a false positive. FIE reports in output warnings if
any involved values were smudged, making it easier for
analyst to detect such a false positive. As we see in the
next section, false positives due to smudging seem rare
in practice for reasonable values of t.

4.5 Implementation Details
The pseudocode presented in Figure 4 gives the high-
level logic of FIE but abstracts away many details for
simplicity. Our implementation includes a number of
important embellishments, which we can only briefly de-
scribe here.

Memory sharing: Since FIE creates at least one new
state at nearly every instruction, it is important that the
creation and storage of states be as efficient as possible.
Thus, we only store one complete state per calling con-
text for each PS. Additional states with the same calling
context are then compared to the existing state, and only
the incremental difference in that state are stored. We
also inherit memory optimizations from KLEE, the most
important of which is copy-on-write memory for states.

Pruning frequency: The PRUNE operation shown on
line 18 of Figure 4 can become expensive as the num-
ber of states at PS becomes large. Rather than perform-
ing this operation at each instruction, the default mode of
FIE prunes only at basic block boundaries. We preserve
the ability to configure FIE to prune at each instruction,
but have found that basic-block-level pruning improves
performance in all our tests.

5 Evaluation
To evaluate FIE, we used it to analyze the 99 firmware
programs in our corpus. We will investigate the overall
efficacy in terms of code coverage, the ability to com-
plete analyses, the utility of pruning and smudging, and
the bugs FIE helped us find.

Firmware size and coverage: We first fix some con-
ventions regarding how we measure the size of firmware
programs and analysis coverage. For our evaluations,
we measure firmware size by the number of executable
LLVM instructions, denoted by the acronym NEXI. We

10

USENIX Association 22nd USENIX Security Symposium 473

compute a firmware’s NEXI by: (1) compiling the
firmware into LLVM bitcode using CLANG; (2) running
the resulting bitcode through LLVM optimization passes
for global and local dead code elimination; and (3) tak-
ing the number of LLVM instructions in the resulting bit-
code as the NEXI. This count includes intrinsic functions
and library functions called by the firmware. We note
that some programs used external modules whose source
code was not included in their source tree; we did not
attempt to track down these libraries and FIE emits an
error should it execute an instruction calling an omitted
function. Likewise for inline assembly instructions not
supported by FIE. This did not significantly affect our
evaluation, e.g., only two programs ever reached miss-
ing functions or inline assembly in the 50 minute runs
reported on below. Note that usually FIE continues run-
ning in such cases along other paths.

Code coverage is the fraction of LLVM instructions
executed in the course of the analysis divided by the
NEXI of the target firmware. Using NEXI as opposed
to C lines of code better aligns our complexity and cov-
erage metrics with the work done by FIE, and avoids any
ambiguity in terms of overcounting coverage of partially
executed blocks or lines of C code. The NEXI sizes are,
on average, 1.5 times larger than the number of lines of
C code computed in Section 2. NEXI was smaller than
cloc for 23 of the programs due to dead code elimination.

Experimental setup: All the analyses reported on be-
low used Amazon EC2 high-memory, double-extra-large
(m2.2xlarge) instances which have 36 GB of RAM and
13 virtual CPUs (each advertised to be the equivalent of
an 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor).
Unless specified otherwise, FIE was given 50 minutes of
runtime3, and each analysis was performed on a separate
EC2 instance. To facilitate this effort, we wrote a set of
scripts for launching, monitoring, and retrieving the re-
sults of FIE run via a custom EC2 VM image.

Coverage under different FIE modes: We started by
analyzing each firmware for 50 minutes for each of five
different modes supported by FIE, for a total of 495 ex-
ecutions. The resulting NEXI coverages are shown in
Table 7. We now explain the modes and discuss their
performance.

Baseline: The BASELINE mode reflects a bare mini-
mum port of KLEE to the MSP430 environment, in par-
ticular it has support for: 16-bit addressing; a custom
memory allocator that ensures that memory objects do
not collide with special memory locations and have ad-
dresses within the chip’s address range; and implementa-
tion of intrinsics supported by msp430-gcc. It does not,
however, have any knowledge of the semantics of, spe-

3Setting the time to a bit less than one hour halves the cost of run-
ning on EC2.

%
N

EX
I

BA
SE

LI
N

E

FU
ZZ

PL
A

IN

PR
U

N
E

SM
U

D
G

E

Complete n/a n/a 7 35 52
100% 1 43 40 34 46

90–100% 1 10 9 15 15
80–90% 0 7 5 10 6
70–80% 0 5 5 6 4
60–70% 0 4 5 5 5
50–60% 0 4 6 5 3
40–50% 0 8 8 9 5
30–40% 0 0 0 2 3
20–30% 1 8 11 4 5
10–20% 10 5 5 3 3
0–10% 86 5 5 6 4
Total % 1.1 26.1 23.7 29.5 32.3
Avg. % 5.9 74.5 71.1 74.4 79.4

Median % 1.7 96.9 89.5 88.7 98.1

Table 7: Number of firmware programs for which FIE achieves
coverage in the indicated range, for 50 minute runs of FIE in
each of five operating modes. “Complete” gives the number of
programs for which the mode was able to analyze all possible
symbolic states.

cial memory or interrupts, etc. For most firmware, the
BASELINE analysis performs very poorly, with a median
of 1.7% coverage. This is because BASELINE almost
always ends prematurely with a false positive since the
firmware appears (to the analysis) as if it were reading
from an uninitialized memory location. Manual inspec-
tion of the code of the two outliers (from GitHub) re-
vealed that they are not using any features of the MSP430
architecture. The poor coverage of BASELINE for the
other firmware programs attests to the importance of pro-
viding an architecture-aware analysis.

Fuzz: We next use FIE to realize a general-purpose
fuzzing tool for MSP430 firmware. This mode, unlike
BASELINE, takes advantage of knowledge of the mem-
ory layout, special registers, and interrupt handling se-
mantics. We implemented a special memory spec in
which any read to a peripheral results in a returned value
chosen uniformly in the appropriate range. (Twice read-
ing the same peripheral location leads to two indepen-
dent values.) Writes to peripherals are ignored. We
use the conservative interrupt spec, meaning that in the
FUZZ mode the analysis branches off new states to exe-
cute interrupt handlers as appropriate. In this mode, then,
FIE never generates symbolic variables, and so is able to
quickly evaluate on concrete values along many paths.
Fuzzing provides surprisingly good coverage for many
of the firmware programs, in fact beating symbolic exe-
cution modes in many cases. This is because fuzzing can
evaluate states more quickly, and for simple programs
this can lead to good coverage in a 50 minute test.

11

474 22nd USENIX Security Symposium USENIX Association

1 25 50 75 99
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
R

el
at

iv
e

co
ve

ra
ge

1 25 50 75 99

Figure 8: Coverage of SMUDGE relative to FUZZ (top) and
SMUDGE relative to PLAIN (bottom) for the 50-minute tests.
Here SMUDGE outperforms FUZZ and PLAIN for 32% and 42%
of the programs, respectively.

Plain, Prune, and Smudge: We now turn to modes
that use FIE as a symbolic executor with the architecture-
aware analysis. To compare the efficacy of the state prun-
ing and memory smudging techniques, we use three dif-
ferent modes: PLAIN (no pruning or smudging), PRUNE
(with pruning but not smudging), and SMUDGE (pruning
and smudging, with smudging threshold t = 100). All
three modes used the most conservative interrupt model.
Overall SMUDGE provides better coverage than all oth-
ers, including FUZZ. A comparison of relative perfor-
mance for each firmware appears in the charts of Fig-
ure 8. The x-axes is the firmware (ordered by y-values)
and the y-value is (Ns−Nf)/Ntot where Ns is, for the left
chart, the number of instructions covered by SMUDGE
for this firmware, Nf is the number covered by FUZZ,
and Ntot is the NEXI for the firmware. The right chart
is the same except comparing SMUDGE with PLAIN.
These graphs surface two facts. First, there exists a large
number of firmware programs for which the analyses do
equally well (where relative coverage is 0, most often be-
cause both analyses had 100% coverage), which is due to
the large number of very simple firmware from GitHub
and the TI website. Second, SMUDGE can do worse than
others on a few firmware programs, but improves per-
formance over FUZZ for 32% of the programs and over
PLAIN for 42% of the programs.

50-minute analysis outcomes: In Table 9 we give a
breakdown of the emitted termination status for the anal-
yses. FIE can either stop because it runs out of mem-
ory (No mem), the requested amount of execution time
has been reached (Timeout), or because there exist no
more active states (Finished). Additionally, FIE will out-
put bug reports. As can be seen, pruning and smudging
help reduce memory usage and increase the number of
analyses that finish. Potential bugs were reported for 92
firmware programs by the BASELINE, all false positives.
Smudging introduced a false positive in one firmware,
since a pointer was smudged. (Smudging a pointer fre-
quently leads to a memory safety violation, because any
dereference of it will be viewed as an error.) FIE makes
it easy to determine if a warning is related to smudging

Termination status FPs
Mode No mem Timeout Finished
BASELINE 9 2 88 93
FUZZ 10 79 10 0
PLAIN 7 85 7 0
PRUNE 0 64 35 0
SMUDGE 0 46 53 1

Table 9: Counts of each termination code seen in the 50-minute
runs. “No mem”: the analysis exhausted memory; “Timeout”:
analysis ran for the full 50 minutes; “Finished”: analysis com-
pleted early. The final column is the number of firmware pro-
grams with erroneous bug reports.

by marking variables that were smudged as such in the
bug report. No true positives were found in these short
runs.

Recall that an explicit design goal for FIE was the abil-
ity to support complete analyses (all possible symbolic
states are checked). The PLAIN, PRUNE, and SMUDGE
modes do support this: an analysis is complete if the
termination status was Finished and no bugs were re-
ported. Modulo the limitations discussed in the next sec-
tion, this verifies the absence of bugs. The first row of Ta-
ble 7 shows the number of firmware programs for which
PLAIN, PRUNE, or SMUDGE were able to verify the ab-
sence of memory safety and (some kinds of) peripheral
misuse bugs, in these short 50 minute runs. As can
be seen, our pruning and smudging mechanisms enable
a huge increase in the number of analyses that FIE can
complete: a 6x increase when we use pruning and an
additional factor of 1.48x improvement when we add in
smudging. In the end, the total number of firmware pro-
grams for which one of the analysis modes completed is
53. (One firmware was completed by PRUNE but had a
false positive under SMUDGE, and so it was not counted
in the SMUDGE column of Table 7.)

We note that these complete analyses revealed that 13
firmware programs have dead code missed by the static
optimization passes, which means for these our mea-
sured coverage is lower than it should be (e.g., for one
firmware we achieved a complete analysis but only 45%
coverage). For consistency, we do not correct the NEXI
values for these firmware programs.

Firmware complexity measures: The above shows that
FIE enables complete analyses for a majority of the
firmware programs in our corpus, yet the total amount of
code covered across the full corpus indicates that FIE was
not able to explore most of the larger firmware programs
given only 50 minutes. As can be seen in Figure 10, the
coverage is uniformly poor for firmware programs with
more than 4,000 executable instructions. More subtly,
there exist many much smaller programs for which cov-
erage is also poor (the vertical trend closer to the y-axis),
which could be due to complicated but short code con-

12

USENIX Association 22nd USENIX Security Symposium 475

0 1,000 2,000 3,000 4,000 5,000 6,000
0

0.2

0.4

0.6

0.8

1

NEXI

C
ov

er
ag

e
(%

)

FUZZ

PLAIN

PRUNE

SMUDGE

Figure 10: Coverage as a function of firmware size in the 50
minute tests.

SMUDGE

Complexity Criteria # FWs coverage
low ≤ 100 NEXI 49 Avg: 93.6%

or < 2 loops Med: 100%
medium ≤ 500 NEXI 37 Avg: 79.5%

and ≥ 2 loops Med: 93.1%
high > 500 NEXI 13 Avg: 27.8%

and ≥ 2 loops Med: 24.8%

Table 11: Criteria for firmware complexity groups, the number
of firmware programs (# FWs) in each group, and SMUDGE’s
average and median coverage for each group.

structs or, perhaps, undiscovered dead code.
To focus subsequent experiments on the more chal-

lenging firmware programs, we partition the programs
into three complexity groups based on a simple static
analysis. (Using static analysis avoids biasing the set
unnecessarily by the nature of FIE’s analysis.) The cri-
teria for partitioning our programs into low-, medium-,
and high-complexity groups is described in Table 11. To
determine the number of loops in a program, we use
LLVM’s built-in loop detection. We chose this partic-
ular partitioning for its simplicity, but admit there are
many other possibilities. We give the average and me-
dian performance of the 50-minute SMUDGE runs as bro-
ken down by each group. Of the 53 programs that FIE is
able to complete analysis for in 50 minutes, 38 are low
complexity and 14 are medium complexity. The average
NEXI for these completed programs is 84.4 and the aver-
age number of loops is 2.2; the most complex completed
program has a NEXI of 414 and 17 loops.

Effect of smudging threshold: We now measure the ef-
fect of the smudging threshold t on coverage and false
positive rates for the high complexity firmware pro-
grams. By decreasing t one might hope to achieve a
trade-off between coverage improvements (by breaking
out of loops even more quickly) and increased risk in
false positives. We run SMUDGE for 50-minutes for
each of t = 1,10,1000 for the 13 firmware programs and

0

0.2

0.4

0.6

0.8

1

%
C

ov
er

ag
e

Conservative
Basic block

Figure 12: Coverage when spawning interrupts every instruc-
tion (Conservative) versus once per basic block for the 13 high-
complexity firmware programs.

use as well the t = 100 results from the runs discussed
above. The average coverages were 23.3%, 25.2%,
25.5%, 25.6% for t = 1,10,100,1000, making the dif-
ferences too small to be significant. The number of false
positives increased for small t; with t = 1 there were two
false positives, and none for the larger values of t. We
conclude that t = 100 strikes a reasonable balance, but
further performance improvements may not be easily ob-
tained by tweaking t.

Relaxing the interrupt model: Recall that we have so
far been using FIE with a very conservative interrupt
model in which all enabled interrupts fire at every pro-
gram point. This can mean that most instructions, as
opposed to just branches, end up forking off multiple
new states. We therefore implement a relaxed interrupt
model in which every enabled interrupt fires at the first
instruction of each basic block, but not during subse-
quent instructions. This means analysis will miss pos-
sible paths (barring complete analyses) but could speed
up performance and thereby increase code coverage. In
Figure 12 we compare, for the high-complexity firmware
programs, the coverage obtained by SMUDGE with t =
100 using both the conservative interrupt model (Con-
servative) and the new model that only fires at each basic
block (Basic block). The results are both from 50 minute
runs. Several of the firmware programs see drastic cover-
age improvements, the last bar on the right represents the
largest improvement at 232%. No false positives arose in
these basic block runs, however one program hit a code
construct4 currently not supported by FIE.

Finding vulnerabilities: FIE currently supports finding
two types of bugs: memory safety violations, such as
buffer overruns and out-of-bounds accesses to memory
objects like arrays, as well as peripheral-misuse errors in
which a firmware writes to a read-only memory location
or to locked flash. It will be easy to increase scope to
further security properties in the future.

4A firmware used a custom variable argument function. We plan to
add support in the public release version.

13

476 22nd USENIX Security Symposium USENIX Association

Firmware NEXI Types # bugs
CDC Driver 4,489 Memory safety 10
HID Driver 2,958 Memory safety 11
controleasy 1,255 Flash misuse 1

Table 13: Summary of vulnerabilities discovered by FIE. The
final column is the number of distinct vulnerabilities in the
firmware.

We supplemented the above analyses with runs in
which we allowed SMUDGE to run up to 24 hours, with
t = 100 and using the conservative interrupt model, on
each of the 13 high-complexity programs. Table 13 gives
a breakdown of the 22 bugs found across all of the runs.
The bugs were spread across three firmware programs,
the two USB drivers supplied by TI and one community
firmware called Controleasy. Of the bugs, 21 were mem-
ory safety violations while one was a flash misuse bug.
CDC Driver and HID Driver share some common source
files, one of the bugs spans both, while the others are
from disjoint source files. The memory safety bugs in
the two USB drivers include 18 vulnerabilities in which
a USB protocol value (received from off-chip) ends up
controlling an index into an array, allowing adversarial
reads or the ability to crash the firmware. One of the vul-
nerabilities, in HID Driver, allows an adversary over the
network to inject arbitrarily long strings due to an unpro-
tected strcat. This allows crashing the firmware, but
may also lead to a complete compromise by way of con-
trol flow hijacking. The final two memory safety bugs are
present in both programs but arise from the same source
file. The bug dereferences a value read from flash, which
in our model is untrusted but unlikely to be exploitable
in most settings.

The TI community code project controleasy has a pe-
ripheral misuse bug in which a read-only I/O port can be
written to based on the value of another peripheral. Like
the attacker-controlled reads in the USB code, this bug
can be used by an attacker that can send data to PORT 1
to cause the firmware to crash.

6 Limitations
The evaluation in the last section evidenced FIE’s effec-
tiveness at both finding bugs as well as verifying their
absence. Of course, FIE does have some limitations.

The design of FIE arises from a philosophy that sound
and complete analysis are valuable and can be feasible
for the embedded firmware often found in practice. How-
ever, it is simple to show that there exist firmware for
which complete analyses are intractable, and likewise
soundness is only with respect to the symbolic execu-
tion framework (it is possible that reported bugs may not
arise in the firmware when run natively, as discussed be-
low). Indeed some of the firmware in our corpus (e.g.,
Contiki) appear to have, in particular, an intractably large

number of reachable states. Here FIE attempts to provide
as high as possible code coverage, but improving on the
results reported in the last section might require different
techniques than currently used. For example, a combina-
tion of loop elision [14, 26] and improved state selection
heuristics might be more effective than state pruning and
memory smudging. Future work might therefore explore
incorporation of other techniques into FIE.

Both when achieving complete analyses and when
not, there exist various sources of imprecision in anal-
ysis that may lead to false positives or false negatives.
In developing FIE we often encountered analysis errors
due to bugs in the analysis software or misconfigura-
tion (e.g., using the incorrect target architecture almost
always yields false positives). These problems were sub-
sequently fixed, and while we are unaware of any out-
standing bugs in FIE and have manually verified all the
bugs reported in Section 5, it could be that some analysis
errors remain.

Imprecision can also arise due to discrepancies be-
tween the firmware as symbolically executed in FIE and
natively in deployment. In building FIE, we had to im-
plement extensions to C that are (sometimes implicitly)
defined by msp430-gcc. We encountered inconsistencies
between msp430-gcc and FIE, which were subsequently
fixed, but some may remain. These C extensions also
differ among the three MSP430 compilers, and so an-
alyzing firmware written to work for the IAR or CCS
compilers (e.g., the USB drivers in our corpus) may give
rise to analysis errors when using FIE. Even so FIE can
still be useful for finding vulnerabilities in such firmware
programs, as the bugs found in the USB drivers shows.

As a final source of imprecision, our most conserva-
tive analysis models peripherals and interrupt firing as
adversarially controlled. This means that FIE may ex-
plore states that do not arise in real executions, and errors
flagged due to such states would constitute false posi-
tives. We feel that fixing even such bugs should be en-
couraged, since it reduces the potential for latent vulner-
abilities. Moreover, it is unclear where to draw the line
in terms of adversarial access to a chip. That said, FIE
is easily customizable should such false positives prove
burdensome, or to receive the speed-ups of other envi-
ronmental models.

Finally, we note that currently FIE fails execution
paths that include inline assembly. While we added some
explicit handlers for several inline assembly instructions
(e.g., nop), this approach would struggle with complex
assembly code constructs. Future work might investigate
performing symbolic analysis starting with MSP430 as-
sembly, similarly to [7].

14

USENIX Association 22nd USENIX Security Symposium 477

7 Related Work
FIE is based off of KLEE and, in turn, builds off the work
of KLEE’s predecessors such as EXE [11]. These prior
systems target generation of high-coverage test suites for
non-embedded programs (e.g., Linux CoreUtils). As we
saw in previous sections, using KLEE with a minimal
amount of porting provides poor coverage. The many
systems that extend KLEE [2,9,13,28,31,36] do not target
embedded systems, with the exception of KleeNet [28].
It targets wireless sensor nodes running Contiki [35], but
only on x86 platforms, and so does not work for our set-
ting of MSP430 firmware programs.

Concolic execution systems extend symbolic execu-
tion by concretizing values that cannot be handled by
the constraint solver efficiently (or cannot be handled by
the constraint solver at all) [14, 30]. Whole-system con-
colic execution tools like S2E [14] can execute external
functions natively by concretizing symbolic arguments,
and then providing the concrete value in the call. Their
model of concretization makes less sense in our setting,
where we have a firmware that specifies all software on
the system and interacts only with hardware peripherals.
For the latter, we can support concretization in the sense
that a memory specification can return concrete values,
change symbolic values to concrete, etc.

SymDrive [26] builds off S2E to test Linux and
FreeBSD kernel drivers without the need for the ac-
tual hardware, and treats many of the same problems as
FIE, including modeling hardware, dealing with polling
loops, etc. SymDrive uses static analysis to help guide
execution along states that reach deep paths and to avoid
loops. This improves code coverage, but does not enable
complete analyses. We leave incorporating such static
analysis techniques into FIE, in order to increase code
coverage in conjunction with state pruning and memory
smudging, for future work.

Pruning redundant states during an analysis has been
considered before in a variety of program analysis con-
texts [3, 5, 32]. Closest to our work is RWset [6], which
extended the EXE [11] symbolic execution engine to
track live variables and to discard a state should the val-
ues of all live variables have already been executed upon.
Our state pruning approach is simpler and does not re-
quire an auxiliary live variable analysis (which can be
challenging in the face of interrupt-driven code). The
trade-off for this simplicity is that FIE may prune less
aggressively than possible. On the other hand, FIE goes
further than RWset in limiting path explosion via mem-
ory smudging, which is effective even when, for exam-
ple, variables written within a loop are live.

There is a body of work on improving the performance
of symbolic execution by merging similar states [23,25].
State merging seeks to combine identical (or similar) ac-
tive states, whereas state pruning compares active states

to both active and prior states. Only the latter enables
complete analysis. Whether the two techniques are use-
ful in conjunction is an interesting open question.

Much effort has gone into improving the scalability
of symbolic execution [7, 15, 29]. One such example
is Cloud9, which speeds symbolic execution by paral-
lelizing the execution of multiple memory states across
a cluster of commodity hardware. We note that such
techniques are applicable to FIE, and future work may
involve adopting such techniques to improve the perfor-
mance of FIE for large firmware programs.

Finally, we are aware of two commercial tools of po-
tential relevance to FIE. The first, Codenomicon [16], of-
fers a network protocol fuzzing tool for embedded med-
ical devices. It therefore targets protocol parsing logic,
which is a frequent source of vulnerabilities. FIE already
supports rudimentary fuzzing, and could perform net-
work protocol fuzzing (or a mixture of fuzzing and sym-
bolic execution) by implementing more detailed memory
specs. Second is Coverity [4], a static analysis tool that
targets a number of platforms, including the MSP430.
While we have access to Coverity, their software license
unfortunately prevents head-to-head comparisons in pub-
lished research.

8 Conclusion
In this paper, we presented the design and implementa-
tion of FIE, a tool for performing symbolic-execution-
based analysis of MSP430 firmware programs. It pro-
vides an extensible platform for finding security vulner-
abilities and other kinds of bugs, and has proven effec-
tive in analyzing a large corpus of open-source MSP430
firmware programs. To increase code coverage in a way
that supports verification of security properties, we incor-
porate into FIE the techniques of state pruning and mem-
ory smudging. We used FIE to verify memory safety for
53 firmware programs and elsewhere found 21 distinct
vulnerabilities, some of which appear to be remotely ex-
ploitable. All this shows that FIE is particularly well-
suited to the small, simple firmware programs often used
for microcontrollers and proves useful for analysis of
more complex firmware programs as well.

Acknowledgements
We would like to thank Kevin Fu, Matt Renzelmann and
the anonymous reviewers for their extensive feedback on
earlier drafts of this paper. This work was supported,
in part, by DARPA and AFRL under contracts FA8650-
10-C-7088 and CNS-1064944. The views, opinions,
and/or findings contained herein are those of the authors
and should not be interpreted as representing the official
views or policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the Depart-
ment of Defense.

15

478 22nd USENIX Security Symposium USENIX Association

References

[1] Amazon. Amazon elastic compute cloud. http://aws.

amazon.com/ec2, 2013. Last accessed Jun 2013.
[2] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG:

Automatic exploit generation. In Network and Distributed System
Security Symposium (NDSS), 2011.

[3] T. Ball, V. Levin, and S. K. Rajamani. A decade of software
model checking with SLAM. Commun. ACM, 54(7):68–76, July
2011.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: using static analysis to find bugs in the
real world. Commun. ACM, 53(2):66–75, Feb. 2010.

[5] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The soft-
ware model checker Blast: Applications to software engineering.
Int. J. Softw. Tools Technol. Transf., 9(5):505–525, Oct. 2007.

[6] P. Boonstoppel, C. Cadar, and D. Engler. RWset: Attacking path
explosion in constraint-based test generation. In C. Ramakrish-
nan and J. Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 351–366. Springer Berlin Heidelberg,
2008.

[7] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. BitScope: Automatically
dissecting malicious binaries. Technical report, In CMU-CS-07-
133, 2007.

[8] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. To-
wards automatic generation of vulnerability-based signatures. In
Proceedings of the 2006 IEEE Symposium on Security and Pri-
vacy (SP), pages 2–16. IEEE Computer Society, 2006.

[9] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In EuroSys,
pages 183–198, 2011.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams. In Proceedings of the 8th USENIX conference on Operat-
ing systems design and implementation (OSDI), pages 209–224.
USENIX Association, 2008.

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: automatically generating inputs of death. In ACM
Conference on Computer and Communications security, pages
322–335. ACM, 2006.

[12] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno.
Comprehensive experimental analyses of automotive attack sur-
faces. In Proceedings of USENIX Security, 2011.

[13] V. Chipounov and G. Candea. Reverse engineering of binary de-
vice drivers with RevNIC. In EuroSys, pages 167–180, 2010.

[14] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform for
in-vivo multi-path analysis of software systems. SIGPLAN Not.,
46(3):265–278, Mar. 2011.

[15] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea.
Cloud9: a software testing service. SIGOPS Oper. Syst. Rev.,
43(4):5–10, Jan. 2010.

[16] Codenomicon. Codenomicon defensics. http://www.

codenomicon.com, 2013. Last accessed Jun 2013.
[17] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.

Bouncer: securing software by blocking bad input. In Symposium
on Operating System Principles (SOSP), pages 117–130, 2007.

[18] A. Cui, M. Costello, and S. J. Stolfo. When firmware modifica-
tions attack: A case study of embedded exploitation. In Network
and Distributed System Security Symposium (NDSS), 2013.

[19] A. Cui and S. J. Stolfo. A quantitative analysis of the insecu-
rity of embedded network devices: results of a wide-area scan.
In Annual Computer Security Applications Conference (ACSAC),
pages 97–106. ACM, 2010.

[20] W. Frisby, B. Moench, B. Recht, and T. Ristenpart. Security

analysis of smartphone point-of-sale systems. In Proceedings of
the 6th USENIX conference on Offensive Technologies (WOOT),
pages 3–3, 2012.

[21] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. De-
fend, W. Morgan, K. Fu, T. Kohno, and W. Maisel. Pacemakers
and implantable cardiac defibrillators: Software radio attacks and
zero-power defenses. In IEEE Symposium on Security and Pri-
vacy (SP), pages 129–142, 2008.

[22] D. Halperin, T. Kohno, T. Heydt-Benjamin, K. Fu, and W. Maisel.
Security and privacy for implantable medical devices. Pervasive
Computing, IEEE, 7(1):30–39, 2008.

[23] T. Hansen, P. Schachte, and H. Søndergaard. State joining and
splitting for the symbolic execution of binaries. In Runtime Verifi-
cation, 9th International Workshop, RV 2009, pages 76–92, 2009.

[24] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al.
Experimental security analysis of a modern automobile. In 2010
IEEE Symposium on Security and Privacy, pages 447–462. IEEE,
2010.

[25] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient state
merging in symbolic execution. In PLDI, pages 193–204, 2012.

[26] M. J. Renzelmann, A. Kadav, and M. M. Swift. Symdrive: testing
drivers without devices. In Proceedings of the 10th USENIX con-
ference on Operating Systems Design and Implementation, pages
279–292. USENIX Association, 2012.

[27] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu,
M. Gruteser, W. Trappe, and I. Seskar. Security and privacy
vulnerabilities of in-car wireless networks: a tire pressure mon-
itoring system case study. In Proceedings of the 19th USENIX
conference on Security, 2010.

[28] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. Kleenet: Discovering insidious
interaction bugs in wireless sensor networks before deployment.
In ACM/IEEE International Conference on Information Process-
ing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[29] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-
extended symbolic execution on binary programs. In Inter-
national Symposium in Software Testing and Analysis (ISSTA),
pages 225–236, 2009.

[30] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit test-
ing engine for C. In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineer-
ing, ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005.
ACM.

[31] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic
excavator for reverse engineering data structures. In Network and
Distributed System Security Symposium (NDSS), 2011.

[32] U. Stern and D. L. Dill. Improved probabilistic verification by
hash compaction. In In Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, pages
206–224. Springer-Verlag, 1995.

[33] Texas Instruments. Microcontroller projects website.
http://e2e.ti.com/group/microcontrollerprojects/

m/msp430microcontrollerprojects/default.aspx. Last
accessed Jun 2013.

[34] Texas Instruments. MSP430 for security applications. http:

//www.ti.com/mcu/docs/mcuorphan.tsp?contentId=

33485&DCMP=MSP430&HQS=Other+OT+430security, January
2012.

[35] The Contiki Project. Contiki. http://www.contiki-os.org/.
Last accessed Jun 2013.

[36] C. Zamfir and G. Candea. Execution synthesis: a technique
for automated software debugging. In EuroSys, pages 321–334,
2010.

16

USENIX Association 22nd USENIX Security Symposium 479

Sancus: Low-cost trustworthy extensible networked devices with a
zero-software Trusted Computing Base

Job Noorman Pieter Agten Wilfried Daniels Raoul Strackx
Anthony Van Herrewege Christophe Huygens Bart Preneel Ingrid Verbauwhede

Frank Piessens
iMinds-DistriNet and iMinds-COSIC, KU Leuven

{Job.Noorman, Pieter.Agten, Wilfried.Daniels, Raoul.Strackx,
Christophe.Huygens, Frank.Piessens}@cs.kuleuven.be

{Anthony.VanHerrewege, Bart.Preneel, Ingrid.Verbauwhede}@esat.kuleuven.be

Abstract

In this paper we propose Sancus, a security architecture
for networked embedded devices. Sancus supports exten-
sibility in the form of remote (even third-party) software
installation on devices while maintaining strong security
guarantees. More specifically, Sancus can remotely attest
to a software provider that a specific software module
is running uncompromised, and can authenticate mes-
sages from software modules to software providers. Soft-
ware modules can securely maintain local state, and can
securely interact with other software modules that they
choose to trust. The most distinguishing feature of San-
cus is that it achieves these security guarantees without
trusting any infrastructural software on the device. The
Trusted Computing Base (TCB) on the device is only the
hardware. Moreover, the hardware cost of Sancus is low.

We describe the design of Sancus, and develop and
evaluate a prototype FPGA implementation of a Sancus-
enabled device. The prototype extends an MSP430 pro-
cessor with hardware support for the memory access con-
trol and cryptographic functionality required to run San-
cus. We also develop a C compiler that targets our device
and that can compile standard C modules to Sancus pro-
tected software modules.

1 Introduction

Computing devices and software are omnipresent in our
society, and society increasingly relies on the correct and
secure functioning of these devices and software. Two
important trends can be observed. First, network con-
nectivity of devices keeps increasing. More and more
(and smaller and smaller) devices get connected to the
Internet or local ad-hoc networks. Second, more and
more devices support extensibility of the software they
run – often even by third parties different from the de-
vice manufacturer or device owner. These two factors are
important because they enable a vast array of interesting

applications, ranging from over-the-air updates on smart
cards, over updateable implanted medical devices to pro-
grammable sensor networks. However, these two factors
also have a significant impact on security threats. The
combination of connectivity and software extensibility
leads to malware threats. Researchers have already shown
how to perform code injection attacks against embedded
devices to build self-propagating worms [18, 19]. Viega
and Thompson [45] describe several recent incidents and
summarize the state of embedded device security as “a
mess”.

For high-end devices, such as servers or desktops, the
problems of dealing with connectivity and software exten-
sibility are relatively well-understood, and there is a rich
body of knowledge built up from decades of research; we
provide a brief survey in the related work section.

However, for low-end, resource-contrained devices, no
effective low-cost solutions are known. Many embed-
ded platforms lack the standard security features (such as
privilege levels or advanced memory management units
that support virtual memory) present in high-end proces-
sors. Depending on the overall system security goals,
as well as the context in which the system must operate,
there may be more optimal solutions than just porting
the general-purpose security features from high-end pro-
cessors. Several recent results show that researchers are
exploring this idea in a variety of settings. For instance,
El Defrawy et al. propose SMART, a simple and efficient
hardware-software primitive to establish a dynamic root
of trust in an embedded processor [14], and Strackx et al.
propose a simple program-counter based memory access
control system to isolate software components [43].

In this paper we build on these primitives to propose
a security architecture that supports secure third-party
software extensibility for a network of low-end processors
(the prototypical example of such a network is a sensor
network). The architecture enables mutually distrusting
parties to run their software modules on the same nodes in
the network, while each party maintains strong assurance

480 22nd USENIX Security Symposium USENIX Association

that its modules run untampered. This kind of secure
software extensibility is very useful for applications of
sensor networks, for instance in the logistics and medical
domains. We discuss some application areas in more
detail in Section 2.4.

The main distinguishing feature of our approach is that
we achieve these security guarantees without any soft-
ware in the TCB on the device, and with only minimal
hardware extensions. Our attacker model assumes that an
attacker has complete control over the software state of
a device, and even for such attackers our security archi-
tecture ensures that any results a party receives from one
of its modules can be validated to be genuine. Obviously,
with such a strong attacker model, we can not guarantee
availability, so an attacker can bring the system down, but
if results are received their integrity and authenticity can
be verified.

More specifically, we make the following contribu-
tions:

• We propose Sancus1, a security architecture for
resource-constrained, extensible networked embed-
ded systems, that can provide remote attestation and
strong integrity and authenticity guarantees with a
minimal (hardware) TCB.

• We implement the hardware required for Sancus as
an extension of a mainstream microprocessor, and
we show that the cost of these hardware changes (in
terms of performance, area and power) is small.

• We implement a C compiler that targets Sancus-
enabled devices. Building software modules for San-
cus can be done by putting some simple annotations
on standard C files, showing that the cost in terms of
software development is also low.

To guarantee the reproducibility and verifiability of our
results, all our research materials, including the hardware
design of the processor, and the C compiler are publicly
available.

The remainder of this paper is structured as follows.
First, in Section 2 we clarify the problem we address by
defining our system model, attacker model and the secu-
rity properties we aim for. The next two sections detail
the design of Sancus and some interesting implementation
aspects. Section 5 reports on our evaluation of Sancus and
the final two sections discuss related work and conclude.

2 Problem statement

2.1 System model
We consider a setting where a single infrastructure
provider, IP, owns and administers a (potentially large)

1Sancus was the ancient Roman god of trust, honesty and oaths.

N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SM j,k · · ·

...

Figure 1: Overview of our system model. IP provides a
number of nodes Ni on which software providers SP j can
deploy software modules SM j,k.

set of microprocessor-based systems that we refer to as
nodes Ni. A variety of third-party software providers SP j
are interested in using the infrastructure provided by IP.
They do so by deploying software modules SM j,k on the
nodes administered by IP. Figure 1 provides an overview.

This abstract setting is an adequate model for many ICT
systems today, and the nodes in such systems can range
from high-performance servers (for instance in a cloud
system), over smart cards (for instance in GlobalPlatform-
based systems) to tiny microprocessors (for instance in
sensor networks). In this paper, we focus on the low
end of this spectrum, where nodes contain only a small
embedded processor.

Any system that supports extensibility (through instal-
lation of software modules) by several software providers
must implement measures to make sure that the different
modules can not interfere with each other in undesired
ways (either because of bugs in the software, or because
of malice). For high- to mid-end systems, this problem is
relatively well-understood and good solutions exist. Two
important classes of solutions are (1) the use of virtual
memory, where each software module gets its own virtual
address space, and where an operating system or hyper-
visor implements and guards communication channels
between them (for instance shared memory sections or
inter-process communication channels), and (2) the use of
a memory-safe virtual machine (for instance a Java VM)
where software modules are deployed in memory-safe
bytecode and a security architecture in the VM guards the
interactions between them.

For low-end systems with cheap microprocessors, pro-
viding adequate security measures for the setting sketched

USENIX Association 22nd USENIX Security Symposium 481

above is still an open problem, and an active area of re-
search [16]. One straightforward solution is to transplant
the higher-end solutions to these low-end systems: one
can extend the processor with virtual memory, or one
can implement a Java VM. This will be an appropriate
solution in some contexts, but there are two important
disadvantages. First, the cost (in terms of required re-
sources such as chip surface, power or performance) is
non-negligible. And second, these solutions all require
the presence of a sizable trusted software layer (either the
OS or hypervisor, or the VM implementation).

The problem we address in this paper is the design,
implementation and evaluation of a novel security archi-
tecture for low-end systems that is inexpensive and that
does not rely on any trusted software layer. The TCB
on the networked device is only the hardware. More pre-
cisely, a software provider needs to trust only his own
software modules; he does not need to trust any infras-
tructural or third-party software on the nodes, only the
hardware of the infrastructure and his own modules.

2.2 Attacker model

We consider attackers with two powerful capabilities.

First, we assume attackers can manipulate all the soft-
ware on the nodes. In particular, attackers can act as
a software provider and can deploy malicious modules
to nodes. Attackers can also tamper with the operating
system (for instance because they can exploit a buffer
overflow vulnerability in the operating system code), or
even install a completely new operating system.

Second, we assume attackers can control the commu-
nication network that is used by IP, software providers
and nodes to communicate with each other. Attackers
can sniff the network, can modify traffic, or can mount
man-in-the-middle attacks.

With respect to the cryptographic capabilities of the
attacker, we follow the Dolev-Yao attacker model [11]:
attackers can not break cryptographic primitives, but they
can perform protocol-level attacks.

Finally, attacks against the hardware are out of scope.
We assume the attacker does not have physical access
to the hardware, can not place probes on the memory
bus, can not disconnect components and so forth. While
physical attacks are important, the addition of hardware-
level protections is an orthogonal problem that is an active
area of research in itself [2, 6, 25, 26]. The addition of
hardware-level protection will be useful for many prac-
tical applications (in particular for sensor networks) but
does not have any direct impact on our proposed architec-
ture or on the results of this paper.

2.3 Security properties
For the system and attacker model described above, we
want our security architecture to enforce the following
security properties:

• Software module isolation. Software modules on
a node run isolated in the sense that no software
outside the module can read or write its runtime state,
and no software outside the module can modify the
module’s code. The only way for other software on
the node to interact with a module is by calling one
of its designated entry points.

• Remote attestation. A software provider can verify
with high assurance that a specific software module
is loaded on a specific node of IP.

• Secure communication. A software provider can
receive messages from a specific software module
on a specific node with authenticity, integrity and
freshness guarantees. For simplicity we do not con-
sider confidentiality properties in this paper, but our
approach could be extended to also provide confi-
dentiality guarantees.

• Secure linking. A software module on a node can
link to and call another module on the same node
with high assurance that it is calling the intended
module. The runtime interactions between a module
A and a module B that A links to can not be observed
or tampered with by other software on the same
node.

Obviously, these security properties are not entirely
independent of each other. For instance, it does not make
sense to have secure communication but no isolation:
given the power of our attackers, any message could then
simply be modified right after its integrity was verified by
a software module.

2.4 Application scenarios
This section illustrates some real-world application sce-
narios where the security properties above are relevant.
Today’s ICT environments involve many parties using
shared resources. This is not different for the sensor
space where applications have moved from the mono-
lithic, often static, single application domain (such as
wildlife [13] or volcano monitoring [46]) to a dynamic and
long-lived setting characterized by platform-application
decoupling [24] and resource sharing [33].

We present two illustrating scenarios. First, consider
the logistics domain [48]. Given node cost and complex-
ity, powerful nodes can be attached to containers, but
nodes attached to packages are low-end and resource-
constrained. The package is under control of the package

482 22nd USENIX Security Symposium USENIX Association

owner, the IP, a pharmaceutical company in this example
scenario. This pharmaceutical wants a software module
for continuous cold-chain visibility of the package.2 In
the warehouse, the shipping company wants to load a
radio-location software module to expedite package pro-
cessing. In the harbor, because of customs regulations
like C-TPAT [44], the container owner needs to attest
manifest validity and package integrity, requiring yet a
different software module on the package node.

Another representative scenario is found in the medi-
cal domain, where a hospital is equipped with a variety
of nodes used for many processes simultaneously, with
most of those processes security sensitive [29]. Building
nodes, for example, support facility management with
software modules for Heating, Ventilation, and Air Condi-
tioning (HVAC) or fire control and physical security, but
are also used for patient tracking and monitoring of vital
signals, an application where strong security requirements
are present with respect to health information. The same
nodes can even automate the supply chain by support-
ing asset and inventory management of medical goods
through a localization and tracking software module.

The above scenarios establish a clear need for isolation,
attestation, secure communication and secure linking of
the various software modules reflecting the dynamic ob-
jectives of the various stakeholders. We believe these
scenarios are strong evidence for the value of the Sancus
architecture.

3 Design of Sancus

The main design challenge is to realize the desired secu-
rity properties without trusting any software on the nodes,
and under the constraint that nodes are low-end resource
constrained devices. An important first design choice that
follows from the resource constrained nature of nodes
is that we limit cryptographic techniques to symmetric
key. While public key cryptography would simplify key
management, the cost of implementing public key cryp-
tography in hardware is too high [31].

We present an overview of our design, and then we
zoom in on the most interesting aspects.

3.1 Overview

Nodes. Nodes are low-cost, low-power microcon-
trollers (our implementation is based on the TI MSP430).
The processor in the nodes uses a von Neumann archi-
tecture with a single address space for instructions and
data. To distinguish actual nodes belonging to IP from
fake nodes set up by an attacker, IP shares a symmetric

2That is, the continuous monitoring of a temperature-controlled
supply chain.

key with each of its nodes. We call this key the node
master key, and use the notation KN for the node master
key of node N. Given our attacker model where the at-
tacker can control all software on the nodes, it follows
that this key must be managed by the hardware, and it is
only accessible to software in an indirect way.

Software Providers. Software providers are principals
that can deploy software to the nodes of IP. Each software
provider has a unique public ID SP.3 IP uses a key deriva-
tion function kdf to compute a key KN,SP = kdf(KN ,SP),
which SP will later use to setup secure communication
with its modules. Since node N has key KN , nodes can
compute KN,SP for any SP. The node will include a hard-
ware implementation of kdf so that the key can be com-
puted without trusting any software.

Software Modules. Software modules are essentially
simple binary files containing two mandatory sections:
a text section containing protected code and constants
and a protected data section. As we will see later, the
contents of the latter section are not attested and are there-
fore vulnerable to malicious modification before hardware
protection is enabled. Therefore, the processor will zero-
initialize its contents at the time the protection is enabled
to ensure an attacker can not have any influence on a
module’s initial state. Next to the two protected sections
discussed above, a module can opt to load a number of
unprotected sections. This is useful to, for example, limit
the amount of code that can access protected data. Indeed,
allowing code that does not need it access to protected
data increases the possibility of bugs that could leak data
outside of the module. In other words, this gives develop-
ers the opportunity to keep the trusted code of their own
modules as small as possible. Each section has a header
that specifies the start and end address of the section.

The identity of a software module consists of (1) the
content of the text section and (2) the start and end ad-
dresses of the text and protected data sections. We refer to
this second part of the identity as the layout of the module.
It follows that two modules with the exact same code and
data can coexist on the same node and will have different
identities as their layout will be different. We will use
notations such as SM or SM1 to denote the identity of a
specific software module.

Software modules are always loaded on a node on
behalf of a specific software provider SP. The loading
proceeds as expected, by loading each of the sections of
the module in memory at the specified addresses. For
each module loaded, the processor maintains the layout
information in a protected storage area inaccessible from

3Throughout this text, we will often refer to a software provider
using its ID SP.

USENIX Association 22nd USENIX Security Symposium 483

KN = Known by IP

KN,SP = kdf(KN ,SP)

KN,SP,SM = kdf(KN,SP,SM)

Figure 2: Overview of the keys used in Sancus. The node
key KN is only known by IP and the hardware. When SP
is registered, it receives its key KN,SP from IP which can
then be used to create module specific keys KN,SP,SM.

software. It follows that the node can compute the identity
of all modules loaded on the node: the layout information
is present in protected storage and the content of the text
section is in memory.

An important sidenote here is that the loading process
is not trusted. It is possible for an attacker to intervene
and modify the module during loading. However, this will
be detected as soon as the module communicates with its
provider or with other modules (see Section 3.3).

Finally, the node computes a symmetric key KN,SP,SM
that is specific to the module SM loaded on node N by
provider SP. It does so by first computing KN,SP =
kdf(KN ,SP) as discussed above, and then computing
KN,SP,SM = kdf(KN,SP,SM). All these keys are kept in
the protected storage and will only be available to soft-
ware indirectly by means of new processor instructions
we discuss later. Figure 2 gives an overview of the keys
used by Sancus.

Note that the provider SP can also compute the same
key, since he received KN,SP from IP and since he knows
the identity SM of the module he is loading on N. This
key will be used to attest the presence of SM on N to SP
and to protect the integrity of data sent from SM on N
to SP.

Figure 3 shows a schematic picture of a node with a
software module loaded. The picture also shows the keys
and the layout information that the node has to manage.

Memory protection on the nodes. The various mod-
ules on a node must be protected from interfering with
each other in undesired ways by means of some form
of memory protection. We base our design on the re-
cently proposed program-counter based memory access
control [43], as this memory access control model has
been shown to support strong isolation [42] as well as
remote attestation [14]. Roughly speaking, isolation is
implemented by restricting access to the protected data
section of a module such that it is only accessible while
the program counter is in the corresponding text section
of the same module. Moreover, the processor instructions
that use the keys KN,SP,SM will be program counter depen-
dent. Essentially the processor offers a special instruction

to compute a Message Authentication Code (MAC). If the
instruction is invoked from within the text section of a spe-
cific module SM, the processor will use key KN,SP,SM to
compute the MAC. Moreover, the instruction is only avail-
able after memory protection for module SM has been en-
abled. It follows that only a well-isolated SM installed on
behalf of SP on N can compute MACs with KN,SP,SM, and
this is the basis for implementing both remote attestation
and secure (integrity-protected) communication to SP.

Secure linking. A final aspect of our design is how
we deal with secure linking. When a software provider
sends a module SM1 to a node, this module can specify
that it wants to link to another module SM2 on the same
node, so that SM1 can call services of SM2 locally. SM1
specifies this by including a MAC of (the identity of)
SM2 computed using the key KN,SP,SM1 in an unprotected
section.4 The processor includes a new special instruction
that SM1 can call to check that (1) there is a module
loaded (with memory protection enabled) at the address
of SM2 and (2) the MAC of the identity of that module
has the expected value.

This initial authentication of SM2 is needed only once.
In Section 3.5, we will discuss a more efficient procedure
for subsequent authentications.

We currently do not incorporate caller authentication
in our design. That is, SM2 can not easily verify that it
has been called by SM1. Note that this can in principle be
implemented in software: SM1 can call SM2 providing a
secret nonce as parameter. SM2 can then call-back SM1,
passing the same nonce, asking for acknowledgement
that it had indeed been called by SM1. Future work will
include caller authentication in the core of Sancus’ design
to make it more efficient and transparent.

Separating the various uses of MACs. Sancus uses
MACs for a variety of integrity checks as well as for
key derivation. Our design includes a countermeasure to
avoid attacks where an attacker replays a MAC computed
for one purpose in another context. In order to achieve
separation between the different applications of MAC
functions, we make sure the first byte of the input to the
MAC function is different for each use case: 01 for the
derivation of KN,SP, 02 for the derivation of KN,SP,SM, 03
for attestation and 04 for MAC computations on data.

Confidentiality. As mentioned in Section 2.3, we de-
cided to not include confidentiality of communication in
our design. However, since we provide attestation of mod-
ules and authentication of messages, confidentiality can

4Note that since this MAC depends on the load addresses of SM1
and SM2, it may not be known until SM1 has been deployed. If this is
the case, SP can simply send the MAC after SM1 is deployed and the
load addresses are known.

484 22nd USENIX Security Symposium USENIX Association

Unprotected

E
nt

ry
po

in
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected
M

em
or

y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Figure 3: A node with a software module loaded. Sancus ensures the keys can never leave the protected storage area by
only making them available to software in indirect ways through new processor instructions.

be implemented in software if necessary. One possibility
is deploying a module with the public key of SP and a
software implementation of the necessary cryptographic
primitives. Another possibility is establishing a shared
secret after deployment using a method such as Diffie-
Hellman key exchange with authenticated messages. Note
that implementing this last method is non-trivial due to
the lack of a secure source of randomness. However, in
the context of wireless sensor networks, methods have
been devised to create cryptographically secure random
number generators using only commonly available hard-
ware [17].

Since the methods outlined above are expensive in
terms of computation time and increase the TCB of mod-
ules, we are currently considering adding confidentiality
to the core of Sancus’ design. Exploring this is left as
future work.

This completes the overview of our design. We now
zoom in on the details of key management, memory ac-
cess control, secure communication, remote attestation
and secure linking.

3.2 Key management
We handle key management without relying on public-
key cryptography [32]. IP is a trusted authority for key
management. All keys are generated and/or known by IP.
There are three types of keys in our design (Figure 2):

• Node master keys KN shared between node N and IP.

• Software provider keys KN,SP shared between a
provider SP and a node N.

• Software module keys KN,SP,SM shared between a
node N and a provider SP, and the hardware of N
makes sure that only SM can use this key.

We have considered various ways to manage these keys.
A first design choice is how to generate the node master
keys. We considered three options: (1) using the same
node master key for every node, (2) randomly generating
a separate key for every node using a secure random
number generator and keeping a database of these keys
at IP, and (3) deriving the master node keys from an IP
master key using a key derivation function and the node
identity N.

We discarded option (1) because for this choice the
compromise of a single node master key breaks the se-
curity of the entire system. Options (2) and (3) are both
reasonable designs that trade off the amount of secure
storage and the amount of computation at IP’s site. Our
prototype uses option (2).

The software provider keys KN,SP and software module
keys KN,SP,SM are derived using a key derivation function
as discussed in the overview section.

Finally, an important question is how compromised
keys can be handled in our scheme. Since any secure key
derivation function has the property that deriving the mas-
ter key from the derived key is computationally infeasible,
the compromise of neither a module key KN,SP,SM nor a
provider key KN,SP needs to lead to the revocation of KN .
If KN,SP is compromised, provider SP should receive a

USENIX Association 22nd USENIX Security Symposium 485

new name SP′ since an attacker can easily derive KN,SP,SM
for any SM given KN,SP. If KN,SP,SM is compromised, the
provider can still safely deploy other modules. SM can
also still be deployed if the provider makes a change to
the text section of SM.5 If KN is compromised, it needs
to be revoked. Since KN is different for every node, this
means that only one node needs to be either replaced or
have its key updated.

3.3 Memory access control

Memory can be divided into (1) memory belonging to
modules, and (2) the rest, which we refer to as unprotected
memory. Memory allocated to modules is divided into
two sections, the text section, containing code and public
constants, and the protected data section containing all
the data that should remain confidential and should be
integrity protected. Modules can also have an unprotected
data section that is considered to be part of unprotected
memory from the point of view of the memory access
control system.

Apart from application-specific data, run-time metadata
such as the module’s call stack should typically also be in-
cluded in the protected data section. Indeed, if a module’s
stack were to be shared with untrusted code, confiden-
tial data may leak through stack variables or control-data
might be corrupted by an attacker. It is the module’s
responsibility to make sure that its call stack and other
run-time metadata is in its protected data section, but our
implementation comes with a compiler that ensures this
automatically (see Section 4.2).

The memory access control logic in the processor en-
forces that (1) data in the protected data section of a
module is only accessible while code in the text section of
that module is being executed, and (2) the code in the text
section can only be executed by jumping to a well-defined
entry point. The second part is important since it prevents
attackers from misusing code chunks in the text section
to extract data from the protected data section. For exam-
ple, without this guarantee, an attacker might be able to
launch a Return-Oriented Programming (ROP) attack [7]
by selectively combining gadgets found in the text sec-
tion. Note that, as shown in Figure 3, our design allows
modules to have a single entry point only. This may seem
like a restriction but, as we will show in Section 4.2, it
is not since multiple logical entry points can easily be
dispatched through a single physical entry point. Table 1
gives an overview of the enforced access rights.

Memory access control for a module is enabled at the
time the module is loaded. First, untrusted code (for
instance the node operating system) will load the module

5For example, a random byte could be appended to the text section
without changing the semantics of the module.

Table 1: Memory access control rules enforced by Sancus
using the traditional Unix notation. Each entry indicates
how code executing in the “from” section may access the
“to” section.

From/to Entry Text Protected Unprotected

Entry r-x r-x rw- rwx

Text r-x r-x rw- rwx

Unprotected/
Other SM r-x r-- --- rwx

in memory as discussed in Section 3.1. Then, a special
instruction is issued:

protect layout,SP

This processor instruction has the following effects:

• the layout is checked not to overlap with existing
modules, and a new module is registered by storing
the layout information in the protected storage of the
processor (see Section 3.1 and Figure 3);

• memory access control is enabled as discussed
above; and

• the module key KN,SP,SM is created – using the text
section and layout of the actually loaded module –
and stored in the protected storage.

This explains why we do not need to trust the operating
system that loads the module in memory: if the content of
the text section, or the layout information would be mod-
ified before execution of the protect instruction, then
the key generated for the module would be different and
subsequent attestations or authentications performed by
the module would fail. Once the protect instruction has
succeeded, the hardware-implemented memory access
control scheme ensures that software on the node can no
longer tamper with SM.

The only way to lift the memory access control is by
calling the processor instruction:

unprotect

The effect of this instruction is to lift the memory protec-
tion of the module from which the unprotect instruction
is called. A module should only call unprotect after it
has cleared the protected data section.

Finally, it remains to decide how to handle memory
access violations. We opt for the simple design of reset-
ting the processor and clearing memory on every reset.
This has the advantage of clearly being secure for the
security properties we aim for. However an important
disadvantage is that it may have a negative impact on
availability of the node: a bug in the software may cause

486 22nd USENIX Security Symposium USENIX Association

the node to reset and clear its memory. An interesting
avenue for future work is to come up with strategies to
handle memory access violations in less severe ways. In-
valid reads could return some default value as in secure
multi-execution [10]. Invalid writes or jumps could be
dropped or modified to actions that are allowed as in
edit-automata [35]. For instance, an invalid memory read
might just return zero, and an invalid jump might be redi-
rected to an exception handler.

3.4 Remote attestation and secure commu-
nication

The module key KN,SP,SM is managed by the hardware of
the node, and it can only be used by software in two ways.
The first way is by means of the following processor
instruction (we discuss the second way in Section 3.5):

MAC-seal start address, length, result address

This instruction can only be called from within the text
section of a protected module, and the effect is that the
processor will compute the MAC of the data in memory
starting at start address and up to start address + length
using the module key of the module performing the in-
struction. The resulting MAC value is written to result
address.

Modules can use this processor instruction to protect
the integrity of data they send to their provider. The
data plus the corresponding MAC can be sent using the
untrusted operating system over an untrusted network. If
the MAC verifies correctly (using KN,SP,SM) upon receipt
by the provider SP, he can be sure that this data indeed
comes from SM running on N on behalf of SP as the
node’s hardware makes sure only this specific module can
compute MACs with the module key KN,SP,SM.

To implement remote attestation, we only need to add
a freshness guarantee (i.e. protect against replay attacks).
Provider SP sends a fresh nonce No to the node N, and
the module SM returns the MAC of this nonce using the
key KN,SP,SM, computed using the MAC-seal instruction.
This gives the SP assurance that the correct module is
running on that node at this point in time.

Building on this scheme, we can also implement secure
communication. Whenever SP wants to receive data from
SM on N, it sends a request to the node containing a nonce
No and possibly some input data I that is to be provided
to SM. This request is received by untrusted code on the
node which passes No and I as arguments to the function
of SM to be called. When SM has calculated the output
O, it asks the processor to calculate a MAC of No ||I||O
using the MAC-seal instruction. This MAC is then sent
along with O to SP. By verifying the MAC with its own
copy of the module key, the provider has strong assurance
that O has been produced by SM on node N given input I.

3.5 Secure linking and local communica-
tion

In this section, we discuss how we assure the secure link-
ing property mentioned in Section 2.3. More specifically,
we consider the situation where a module SM1 wants to
call another module SM2 and wants to be ensured that
(1) the integrity of SM2 has not been compromised, and
(2) SM2 is correctly protected by the processor. The sec-
ond point is important, and is the reason why SM1 can
not just verify the integrity of the text section of SM2
by itself. SM1 will need help from the processor to give
assurance that SM2 is loaded with the expected layout and
that protection for SM2 is enabled.

In our design, if module SM1 wants to link securely
to SM2, SM1 should be deployed with a MAC of SM2
created with the module key KN,SP,SM1 . The processor
provides a special instruction to check the existence and
integrity of a module at a specified address:

MAC-verify address, expected MAC.

This instruction will:

• verify that a module is loaded (with protection en-
abled) at the provided address;

• compute the MAC of the identity of that module
using the module key of the module calling this in-
struction;

• compare the resulting MAC with the expected MAC
parameter of the instruction; and

• if the MACs were equal, return the module’s ID (to
be explained below), otherwise return zero.

This is the second (and final) way in which a module
can use its module key (next to the MAC-seal instruction
discussed in Section 3.4).

Using this processor instruction, a module can securely
check for the presence of another expected module, and
can then call that other module.

Since this authentication process is relatively expen-
sive (it requires the computation of a MAC), our design
also includes a more efficient mechanism for repeated
authentication. The processor will assign sequential IDs6

to modules that it loads, and will ensure that – within
one boot cycle – it never reuses these IDs. A processor
instruction:

get-id address

6To avoid confusion between the two different identity concepts used
in this text, we will refer to the hardware-assigned number as ID while
the text section and layout of a module is referred to as identity.

USENIX Association 22nd USENIX Security Symposium 487

Node

SMS

SM1

SMn

S

SP1

SPn

IP... ...

Figure 4: Setup of the sensor node example discussed in
Section 3.6. Sancus ensures only module SMS is allowed
to directly communicate with the sensor S. Other modules
securely link to SMS to receive sensor data in a trusted
way.

checks that a protected module is present at address and
returns the ID of the module. Once a module has checked
using the initial authentication method that the module at a
given address is the expected module, it can remember the
ID of that module, and then for subsequent authentications
it suffices to check that the same module is still loaded at
that address using the get-id instruction.

3.6 An end-to-end example

To make the discussion in the previous sections more
concrete, this section gives a small example of how our
design may be applied in the area of sensor networks.
Figure 4 shows our example setup. It contains a single
node to which a sensor S is attached; communication with
S is done through memory-mapped I/O. The owner of
the sensor network, IP, has deployed a special module on
the processor, SMS, that is in charge of communicating
with S. By ensuring that the protected data section of SMS
contains the memory-mapped I/O region of S, IP ensures
that no software outside of SMS is allowed to configure
or communicate directly with S; all requests to S need to
go through SMS.

Figure 4 also shows a number of software providers
(SP1, . . . ,SPn) who have each deployed a module
(SM1, . . . ,SMn). In the remainder of this section, we walk
the reader through the life cycle of a module in this exam-
ple setup.

The first step for a provider SP is to contact IP and
request permission to run a module on the sensor node.
If IP accepts the request, it provides SP with its provider
key for the node, KN,SP.

Next, SP creates the module SM, that he wants to run
on the processor and calculates the associated module
key, KN,SP,SM. Since SM will communicate with SMS, SP
requests the identity of SMS from IP. A MAC of this iden-

tity, created with KN,SP,SM, is included in an unprotected
section of SM so that SM can use it to authenticate SMS.
Then SM is sent to the node for deployment.

Once SM is received on the node, it is loaded, by un-
trusted software like the operating system, into mem-
ory and the processor is requested to protect SM, using
the protect processor instruction. As discussed, the
processor enables memory protection, computes the key
KN,SP,SM and stores it in hardware.

Now that SM has been deployed, SP can start request-
ing data from it. We will assume that SM’s function is to
request data from S through SMS, perform some transfor-
mation, filtering or aggregation on it and return the result
to SP. The first step is for SP to send a request containing
a nonce No to the node. Once the request is received (by
untrusted code) on the node, SM is called passing No as
an argument.

Before SM calls SMS, it needs to verify the integrity of
module SMS. It does this by executing the MAC-verify
instruction passing the address of the known MAC of SMS
and the address of the entry point it is about to call. The
ID of SMS is then returned to SM and, if it is non-zero,
SM calls SMS to receive the sensor data from S. SM will
usually also store the returned ID of SMS in its protected
data section so that future authentications of SMS can be
done with the get-id instruction.

Once the received sensor data has been processed into
the output data O, SM will request the processor to seal
No ||O using the MAC-seal instruction. SM then passes
this MAC together with O to the (untrusted) network stack
to be sent to SP. When SP receives the output of SM, it
can verify its integrity by recalculating the MAC.

4 Implementation

This section discusses the implementation of Sancus. We
have implemented hardware support for all security fea-
tures discussed in Section 3 as well as a compiler that can
create software modules suitable for deployment on the
hardware.

4.1 The processor
Our hardware implementation is based on an open source
implementation of the TI MSP430 architecture: the
openMSP430 from the OpenCores project [20]. We have
chosen this architecture because both GCC and LLVM
support it and there exists a lot of software running na-
tively on the MSP430, for example the Contiki operating
system.

The discussion is organized as follows. First, we ex-
plain the features added to the openMSP430 in order to
implement the isolation of software modules. Then, we
discuss how we added support for the attestation related

488 22nd USENIX Security Symposium USENIX Association

Inputs Registers Output

pc RT ≥ RT

TS <

prev pc ≥

TE <

mab ≥ violation

PS <

PE

mb en EN RT

Figure 5: Schematic of the Memory Access Logic (MAL),
the hardware used to enforce the memory access rules for
a single protected module.

operations. Finally, we describe the modifications we
made to the openMSP430 core itself.

Isolation. This part of the implementation deals with
enforcing the access rights shown in Table 1. For this
purpose, the processor needs access to the layout of ev-
ery software module that is currently protected. Since
the access rights need to be checked on every instruction,
accessing these values should be as fast as possible. For
this reason, we have decided to store the layout informa-
tion in special registers inside the processor. Note that
this means the total number of software modules that
can be protected at any particular time has a fixed upper
bound. This upper bound, NSM, can be configured when
synthesizing the processor.

Figure 5 gives an overview of the Memory Access
Logic (MAL) circuit used to enforce the access rights of
a single software module. This MAL circuit is instanti-
ated NSM times in the processor. It has four inputs: pc
and prev pc are the current and previous values of the
program counter, respectively. The input mab is the mem-
ory address bus – the address currently used for load or
store operations7 – while mb en indicates whether the
address bus is enabled for the current instruction. The
MAL circuit has one output, violation, that is asserted
whenever one of of the access rules is violated.

Apart from the input and output signals, the MAL cir-
cuit also keeps state in registers. The layout of the pro-
tected software module is captured in the TS (start of text
section), TE (end of text section), PS (start of protected
section) and PE (end of protected section) registers. The
EN register is set to 1 if there is currently a module being
protected by this MAL circuit instantiation. The layout
is saved in the registers when the protect instruction is

7Of course, this includes implicit memory accesses like a call

instruction.

called at which time EN is also set. When the unprotect
instruction is called, we just unset EN which disables all
checks.

In our prototype we load new modules through a debug
interface on the node and only the debug unit is allowed
to write to the memory region where text sections are
loaded. Therefore, the read-only nature of text sections
is already enforced and the MAL does not need to check
this. In a production implementation this check should be
added and would cost two additional comparators in the
MAL circuit.

Since the circuit is purely combinational, no extra cy-
cles are needed for the enforcement of access rights. As
explained above, this is exactly what we want since these
rights need to be checked for every instruction. The only
downside this approach might have is that this large com-
binational circuit may add to the length of the critical
path of the processor. We will show in Section 5 that
this is not the case. Note that since the MAL circuits are
instantiated in parallel, NSM does not influence the length
of the critical path.

Apart from hardware circuit blocks that enforce the
access rights, we also added a single hardware circuit
to control the MAL circuit instantiations. It implements
three tasks: (1) combine the violation signals from
every MAL instantiation into a single signal; (2) keep
track of the value of the current and previous program
counter; and (3) when the protect instruction is called,
select a free MAL instantiation to store the layout of the
new software module and assign it a unique ID.

Attestation. As explained in Section 3, two crypto-
graphic features are needed to implement our design:
the ability to create MACs and a key derivation func-
tion. Since our implementation is based on a small mi-
croprocessor, one of our main goals here is to make the
implementation of these features as small as possible.

The MAC algorithm we have chosen is HMAC, the
hash-based message authentication code. One of the rea-
sons we have chosen HMAC is its simplicity: only two
calls of a hash function are needed to calculate a MAC.
Another reason is that it serves as the basic building block
for HKDF [28], a key derivation function. This means a
lot of hardware can be shared between the implementa-
tions of the MAC and the key derivation function. For the
hash function, we have chosen to use SPONGENT because
it is one of the hash functions with the smallest hardware
footprint published to date [5]. More specifically, we
use the variant SPONGENT-128/128/8 implemented us-
ing a bit-parallel, word-serial architecture, which has a
small footprint while maintaining acceptable throughput.
Since SPONGENT-128/128/8 requires 8 bit inputs and the
openMSP430 architecture is 16 bit, an 8 bit buffer and
a tiny finite state machine are required to make the hash

USENIX Association 22nd USENIX Security Symposium 489

implementation and the processor work together.
All the keys used by the processor are 128 bits long.

The node key KN is fixed when the hardware is synthe-
sized and should be created using a secure random number
generator. When a module SM is loaded, the processor
will first derive KN,SP using the HKDF implementation
which is then used to derive KN,SP,SM. The latter key will
then be stored in the hardware MAL instantiation for the
loaded module. Note that we have chosen to cache the
module keys instead of calculating them on the fly when-
ever they are needed. This is a trade-off between size
and speed which we feel is justified because SPONGENT-
128/128/8 needs about 8.75 cycles per input bit. Since
the module key is needed for every remote attestation and
whenever the module’s output needs to be signed, having
to calculate it on the fly would introduce a runtime over-
head that we expect to be too high for most applications.

Under assumptions on the underlying hash function,
HMAC is known to be a pseudo-random function [4]. It
is shown [28, Section 3] that this is sufficient for a key
derivation function, provided that the key to the pseudo-
random function (in our notation the first input to kdf(., .))
is uniformly random or pseudo-random. This is the case
in our application, hence there is no need to use the more
elaborate “extract-and-expand” construction [28].

Core modifications. The largest modification that had
to be made to the core is the decoding of the new instruc-
tions. We have identified a range of opcodes, starting at
0x1380, that is unused in the MSP430 instruction set and
mapped the new instructions in that range.

Further modifications include routing the needed sig-
nals, like the memory address bus, into the access rights
modules as well as connecting the violation signal to the
internal reset. Note that the violation signal is stored into
a register before connecting it to the reset line to avoid
the asynchronous reset being triggered by combinational
glitches from the MAL circuit.

Figure 6 gives an overview of the added hardware
blocks when synthesized with support for two protected
modules. In order to keep the figure readable, we did
not add the input and output signals of the MAL blocks
shown in Figure 5.

4.2 The compiler
Although the hardware modifications enable software
developers to create protected modules, doing this cor-
rectly is tedious, as the module can have only one en-
try point, and as modules may need to implement their
own call-stack to avoid leaking the content of stack allo-
cated variables to unprotected code or to other modules.
Hence, we have implemented a compiler extension based
on LLVM [37] that deals with these low-level details. We

have also implemented a support library that offers an API
to perform some commonly used functions like creating
a MAC of data.

Our compiler compiles standard C files.8 To benefit
from Sancus, a developer only needs to indicate which
functions should be part of the protected module being
created, which functions should be entry points and what
data should be inside the protected section. For this pur-
pose, we offer three attributes – SM FUNC, SM ENTRY and
SM DATA – that can be used to annotate functions and
global variables.

Entry points. Since the hardware supports a single en-
try point per module only, the compiler implements multi-
ple logical entry points on top of the single physical entry
point by means of a jump table. The compiler assigns
every logical entry point a unique ID. When calling one
of the logical entry points, the ID of that entry point is
placed in a register before jumping to the physical entry
point of the module. The code at the physical entry point
then jumps to the correct function based on the ID passed
in the register.

When a module calls a function outside its text section,
the same entry point is also used when this function re-
turns. This is implemented by using a special ID for the
“return entry point”. If this ID is provided when enter-
ing the module, the address to return to is loaded from
the module’s stack. Of course, this is only safe if stack
switching is also used.

Stack switching. As discussed in Section 3.3, it is
preferable to place the runtime stack of software mod-
ules inside the protected data section. Our compiler auto-
matically handles everything needed to support multiple
stacks. For every module, space is reserved at a fixed
location in its protected section for the stack. The first
time a module is entered, the stack pointer is loaded with
the address of this start location of the stack. When the
module is exited, the current value of the stack pointer is
stored in the protected section so that it can be restored
when the module is reentered.

Exiting modules. Our compiler ensures that no data
is leaked through registers when exiting from a module.
When a module exits, either by calling an external func-
tion or by returning, any register that is not part of the
calling convention is cleared. That is, only registers that
hold a parameter or a return value retain their value.

Secure linking. Calls to protected modules are auto-
matically instrumented to verify the called module. This

8We use Clang [36] as our compiler frontend. This means any
C-dialect accepted by Clang is supported.

490 22nd USENIX Security Symposium USENIX Association

HMAC control

MAL

KSM1

MAL

KSM2SM
co

nt
ro

l

Key selection

KSP

KN

SPONGENT

Data selectionH
M

A
C

Instruction
parameters

hmac mab

mem in

16

128

128

128

8

128

16

4×16
mem out

5×16

16

16

Figure 6: Overview of the hardware blocks added to the openMSP430 core.

includes automatically calculating any necessary module
keys and MACs. Of course, a software provider needs to
provide its key to the compiler for this function to work.

4.3 Deployment

Since the identity of a SM is dependent on its load ad-
dresses on node N, SP must be aware of these addresses
in order to be able to calculate KN,SP,SM. Moreover, any
MACs needed for secure linking will also be dependent
on the load addresses of other modules. Enforcing static
load addresses is obviously not a scalable solution given
that we target systems supporting dynamic loading of
software modules by third-party software providers.

Given these difficulties, we felt the need to develop
a proof-of-concept software stack providing a scalable
deployment solution. Our stack consists of two parts:
a set of tools used by SP to deploy SM on N and host
software running on N. Note that this host software is
not part of any protected module and, hence, does not
increase the size of the TCB.

We will now describe the deployment process imple-
mented by our software stack. First, SP creates a relocat-
able Executable and Linkable Format (ELF) file of SM
and sends it to N. The host software on N receives this
file, finds a free memory area to load SM and relocates it
using a custom made dynamic ELF loader. Then, hard-
ware protection is enabled for SM and a symbol table is
sent back to SP. This symbol table contains the addresses
of any global functions9 as well as the load addresses of
all protected modules on N. Using this symbol table, SP
is able to reconstruct the exact same image of SM as the
one loaded on N. This image can then be used to calcu-
late KN,SP,SM and any needed MACs. These MACs can

9For example, libc functions and I/O routines.

then be sent to N to be loaded in memory. Note that this
deployment process has been fully automated.

After SM has been deployed, the host software on N
provides an interface to be able to call its entry points.
This can be used by SP to attest that SM has not been
compromised during deployment and that the hardware
protection has been correctly activated.

5 Evaluation

In this section we evaluate Sancus in terms of runtime
performance, power consumption, impact on chip size
and provided security. All experiments were performed
using a Xilinx XC6SLX9 Spartan-6 FPGA running at
20MHz.

Performance A first important observation from the
point of view of performance is that our hardware modifi-
cations do not impact the processor’s critical path. Hence,
the processor can keep operating at the same frequency,
and any code that does not use our new instructions runs at
the same speed. This is true independent of the number of
software modules NSM supported in the processor.10 The
performance results below are also independent of NSM.

To quantify the impact on performance of our exten-
sions, we first performed microbenchmarks to measure
the cost of each of the new instructions. The get-id and
unprotect instructions are very fast: they both take one
clock cycle. The other three instructions compute hashes
or key derivations, and hence their run time cost depends
linearly on the size of the input they handle. We summa-
rize their cost in Table 2. Note that since MAC-seal and
MAC-verify both compute the HMAC of the input data,
one might expect that they would need the same number

10We verified this experimentally for values of NSM up to 8.

USENIX Association 22nd USENIX Security Symposium 491

Table 2: The number of cycles needed by the new instruc-
tions for various input sizes. The input for the instructions
is as follows: protect: the text section of the software
module being protected; MAC-seal: the data to be signed;
and MAC-verify: the text section of the software module
to be verified.

Instruction 256B 512B 1024B

protect 30,344 48,904 86,016
MAC-seal 24,284 42,848 79,968
MAC-verify 24,852 43,416 80,536

of cycles. However, since MAC-verify includes the lay-
out of the module to be verified in the input to HMAC, it
has a fixed overhead of 568 cycles.

To give an indication of the impact on performance in
real-world scenarios, we performed the following macro
benchmark. We configured our processor as in the exam-
ple shown in Figure 4. We measured the time it takes from
the moment a request arrives at the node until the response
is ready to be sent back. More specifically, the following
operations are timed: (1) The original request is passed,
together with the nonce, to SMi; (2) SMi requests SMS for
sensor data; (3) SMi performs some transformation on the
received data; and (4) SMi signs its output together with
the nonce. The overhead introduced by Sancus is due to
a call to MAC-verify in step (2) and a call to MAC-seal

in step (4) as well as the entry and exit code introduced
by the compiler. Since this overhead is fixed, the amount
of computation performed in step (3) will influence the
relative overhead of Sancus. Note that the size of the text
section of MS is 218 bytes and that nonces and output data
signed by Mi both have a size of 16 bits.

By using the Timer A module of the MSP430, we
measured the fixed overhead to be 28,420 cycles for the
first time data is requested from the module. Since the
call to MAC-verify in step (2) is not needed after the
initial verification, we also measured the overhead of any
subsequent requests, which is 6,341 cycles. Given these
values, the relative overhead can be calculated in function
of the number of cycles used during the computation in
step (3). The result is shown in Figure 7.

We believe that these numbers are clear evidence of the
practicality of our approach.

Area The unmodified Spartan-6 FPGA implementation
of the openMSP430 uses 998 slice registers and 2,322
slice LUTs. The fixed overhead11 of our modification is
586 registers and 1,138 LUTs. For each protected module,
there is an additional overhead of 213 registers and 307
LUTs.

11That is, the overhead when NSM = 0.

0 1 2 3 4 5
·104

100

101

102

103

Cycles

O
ve

rh
ea

d

1st run
nth run

Figure 7: Relative overhead, in function of the number
of cycles used for calculations, of Sancus on the macro
benchmark. The nth run is significantly faster due to the
secure linking optimization discussed in Section 3.5.

There are two easy ways to improve these numbers.
First, if computational overhead is of lesser concern, the
module key may be calculated on the fly instead of storing
it in registers. Second, in applications with lower security
requirements, smaller keys may be used reducing the
number registers used for storage as well as the internal
state of the SPONGENT implementation. Exploring other
improvements is left as future work.

Power Our static power analysis tool12 predicts an in-
crease of power consumption for the processor of around
6% for the processor running at 20MHz. We measured
power consumption experimentally, but could not detect
a significant difference between an unmodified processor
and our Sancus prototype. Of course, since Sancus intro-
duces a runtime overhead, the total overhead in energy
consumption will be accordingly.

Security We provide an informal security argument for
each of the security properties Sancus aims for (see Sec-
tion 2.3).

First, software module isolation is enforced by the
memory access control logic in the processor. Both the
access control model as well as its implementation are
sufficiently simple to have a high assurance in the correct-
ness of the implementation. Moreover, Agten et al. [1]
have shown that higher-level isolation properties (similar
to isolation between Java components) can be achieved by
compiling to a processor with program-counter dependent
memory access control. Sancus does not protect against
vulnerabilities in the implementation of a module. If a
module contains buffer-overflows or other memory safety
related vulnerabilities, attackers can exploit them using
well-known techniques [15] to get unintended access to

12We used Xilinx XPower Analyzer.

492 22nd USENIX Security Symposium USENIX Association

data or functionality in the module. Dealing with such vul-
nerabilities is an orthogonal problem, and a wide range of
countermeasures for addressing them has been developed
over the past decades [47].

The security of remote attestation and secure commu-
nication both follow from the following key observation:
the computation of MACs with the module key is only
possible by a module with the correct identity running on
top of a processor configured with the correct node key
(and of course by the software provider of the module).
As a consequence, if an attacker succeeds in completing
a successful attestation or communication with the soft-
ware provider, he must have done it with the help of the
actual module. In other words, within our attacker model,
only API-level attacks against the module are possible,
and it is indeed possible to develop modules that are vul-
nerable to such attacks, for instance if a module offers a
function to compute MACs with its module key on arbi-
trary input data. But if the module developer avoids such
API-level attacks, the security of Sancus against attackers
conforming to our attacker model follows.

The security of secure linking is the most intricate secu-
rity property of Sancus. It follows again from the fact that
computation of MACs with the module key is only possi-
ble by a module with the correct identity running on top
of a processor configured with the correct node key, or by
the software provider of the module. Hence, an attacker
can not forge MACs of other modules that a module wants
to link to and call. Because of our technique for separa-
tion of uses of MACs (Section 3.1), he can also not do
this by means of an API level attack against the module.
As a consequence, if a module implements a MAC-verify
check for any module it calls13, this verification can only
be successful for modules for which the software provider
has deployed the MAC. Hence the module will only call
modules that its provider has authorized it to call.

6 Related Work

Ensuring strong isolation of code and data is a challenging
problem. Many solutions have been proposed, ranging
from hardware-only to software-only mechanisms, both
for high-end and low-end devices.

Isolation in high-end devices. The Multics [9] operat-
ing system marked the start of the use of protection rings
to isolate less trusted software. Despite decades of re-
search, high-end devices equipped with this feature are
still being attacked successfully. More recently, research
has switched to focus on the isolation of software mod-
ules with a minimal TCB by relying on recently added
hardware support. McCune et al. propose Flicker [39], a

13Note that our compiler automatically adds these checks.

system that relies on a TPM chip and trusted computing
functionality of modern CPUs, to provide strong isolation
of modules with only a TCB of 250 LOCs. Subsequent
research [3, 38, 40, 42] focuses on various techniques to
reduce the number of TPM accesses and significantly in-
crease performance, for example by taking advantage of
hardware support for virtual machines.

The idea of deriving module specific keys from a mas-
ter key using (a digest of) the module’s code is also used
by the On-board Credentials project [27]. They use exist-
ing hardware features to enforce the isolated execution of
credential programs and securely store secret keys. Only
one credential program can effectively be loaded at any
single moment but the concept of families is introduced
to be able to share secrets between different programs.
Although secure communication is implemented using
symmetric cryptography, they rely on public key cryptog-
raphy during the deployment process.

Isolation in low-end devices. While recent research
results on commodity computing platforms are promising,
the hardware components they rely on require energy
levels that significantly exceed what is available to many
embedded devices such as pacemakers [22] and sensor
nodes. A lack of strong security measures for such devices
significantly limits how they can be applied and vendors
may be required to develop closed systems or leave their
system vulnerable to attack.

Sensor operating systems and applications, for exam-
ple, were initially compiled into a monolithic and static
image without safety considerations, as in early versions
of TinyOS [34]. The reality that sensor deployments are
long-lived, and that the full set of modules and their de-
tailed functionality is often unknown at development time,
resulted in dynamic modular operating systems such as
SOS [23] or Contiki [12]. As stated in the introduction of
this paper, the availability of networked modular update
capability creates new threats, particularly if the software
modules originate from different stakeholders and can
no longer be fully trusted. Many ideas have been put
forward to address the safety concerns of these shared
environments, and solutions to provide memory protec-
tion, isolation and (fair) multithreading have appeared.
t-kernel [21] rewrites code on the sensor at load time.
Coarse-grained memory protection (basically MMU em-
ulation) is available for the SOS operating system by
sandboxing in the Harbor system [30] through a combi-
nation of backend compile time rewriting and run time
checking on the sensor. Safe TinyOS [8] equally uses a
combination of backend compile time analysis and mini-
mal run time error handlers to provide type and memory
safety. Java’s language features and the Isolate mecha-
nism are used on the Sun SPOT embedded platform using
the Squawk VM [41]. SenShare [33] provides a virtual

USENIX Association 22nd USENIX Security Symposium 493

machine for TinyOS applications. While these proposed
solutions do not require any hardware modifications, they
all incur a software-induced overhead. Moreover, third-
party software providers must rely on the infrastructure
provider to correctly rewrite modules running on the same
device.

To increase security of embedded devices,
Strackx et al. [43] introduced the idea of a program-
counter based access control model, but without
providing any implementation. Agten et al. [1] prove that
isolation of code and data within such a model only relies
on the vendor of the module and cannot be influenced
by other modules on the same system. More recently
El Defrawy et al. [14] implemented hardware support
that allows attestation that a module executed correctly
without any interference, based on a similar access
control model. While this is a significant step forward,
it does not provide isolation as sensitive data cannot be
kept secret from other modules between invocations.

7 Conclusion

The increased connectivity and extensibility of networked
embedded devices as illustrated for instance by the trend
towards decoupling applications and platform in sensor
networks leads to exciting new applications, but also to
significant new security threats. This paper proposed a
novel security architecture called Sancus, that is low-cost
yet provides strong security guarantees with a very small,
hardware-only, TCB.

8 Availability

To ensure reproducibility and verifiability of our re-
sults, we make the hardware design and the software
of our prototype publicly available. All source files,
as well as binary packages and documentation can
be found at https://distrinet.cs.kuleuven.be/
software/sancus/.

9 Acknowledgments

This work has been supported in part by the Intel Lab’s
University Research Office. This research is also partially
funded by the Research Fund KU Leuven, and by the EU
FP7 project NESSoS. With the financial support from the
Prevention of and Fight against Crime Programme of the
European Union (B-CCENTRE).

References
[1] AGTEN, P., STRACKX, R., JACOBS, B., AND PIESSENS, F. Se-

cure compilation to modern processors. In 2012 IEEE 25th Com-

puter Security Foundations Symposium (CSF 2012) (Los Alamitos,
CA, USA, 2012), IEEE Computer Society, pp. 171–185.

[2] ANDERSON, R. J., AND KUHN, M. G. Low cost attacks on tam-
per resistant devices. In Proceedings of the 5th International Work-
shop on Security Protocols (London, UK, UK, 1998), Springer-
Verlag, pp. 125–136.

[3] AZAB, A., NING, P., AND ZHANG, X. Sice: a hardware-level
strongly isolated computing environment for x86 multi-core plat-
forms. In Proceedings of the 18th ACM conference on Computer
and communications security (2011), ACM, pp. 375–388.

[4] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. Keying
hash functions for message authentication. In Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology (London, UK, UK, 1996), CRYPTO ’96, Springer-
Verlag, pp. 1–15.

[5] BOGDANOV, A., KNEZEVIC, M., LEANDER, G., TOZ, D.,
VARICI, K., AND VERBAUWHEDE, I. Spongent: The design
space of lightweight cryptographic hashing. vol. 99, IEEE Com-
puter Society, p. 1.

[6] BONEH, D., DEMILLO, R. A., AND LIPTON, R. J. On the
importance of eliminating errors in cryptographic computations.
J. Cryptology 14 (2001), 101–119.

[7] CASTELLUCCIA, C., FRANCILLON, A., PERITO, D., AND SORI-
ENTE, C. On the difficulty of software-based attestation of em-
bedded devices. In Proceedings of the 16th ACM conference on
Computer and communications security (New York, NY, USA,
2009), CCS ’09, ACM, pp. 400–409.

[8] COOPRIDER, N., ARCHER, W., EIDE, E., GAY, D., AND
REGEHR, J. Efficient memory safety for TinyOS. In Proceed-
ings of the 5th international conference on Embedded networked
sensor systems (New York, NY, USA, 2007), SenSys ’07, ACM,
pp. 205–218.

[9] CORBATO, F., AND VYSSOTSKY, V. Introduction and overview of
the Multics system. In Proceedings of the November 30–December
1, 1965, Fall joint computer conference, part I (1965), ACM,
pp. 185–196.

[10] DEVRIESE, D., AND PIESSENS, F. Noninterference Through
Secure Multi-Execution. In Proceedings of the IEEE Symposium
on Security and Privacy (2010), pp. 109–124.

[11] DOLEV, D., AND YAO, A. C. On the security of public key
protocols. IEEE Transactions on Information Theory 29, 2 (1983),
198–208.

[12] DUNKELS, A., FINNE, N., ERIKSSON, J., AND VOIGT, T. Run-
time dynamic linking for reprogramming wireless sensor networks.
In Proceedings of the 4th international conference on Embedded
networked sensor systems (New York, NY, USA, 2006), SenSys
’06, ACM, pp. 15–28.

[13] DYO, V., ELLWOOD, S. A., MACDONALD, D. W., MARKHAM,
A., MASCOLO, C., PÁSZTOR, B., TRIGONI, N., AND
WOHLERS, R. Wildlife and environmental monitoring using
RFID and WSN technology. In Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems (New York, NY,
USA, 2009), SenSys ’09, ACM, pp. 371–372.

[14] ELDEFRAWY, K., FRANCILLON, A., PERITO, D., AND TSUDIK,
G. SMART: Secure and Minimal Architecture for (Establishing
a Dynamic) Root of Trust. In NDSS 2012, 19th Annual Network
and Distributed System Security Symposium, February 5-8, San
Diego, USA (San Diego, UNITED STATES, 02 2012).

[15] ERLINGSSON, U., YOUNAN, Y., AND PIESSENS, F. Low-level
software security by example. In Handbook of Information and
Communication Security. Springer, 2010.

[16] FAROOQ, M. O., AND KUNZ, T. Operating systems for wireless
sensor networks: A survey. Sensors 11, 6 (2011), 5900–5930.

494 22nd USENIX Security Symposium USENIX Association

[17] FRANCILLON, A., AND CASTELLUCCIA, C. TinyRNG: A cryp-
tographic random number generator for wireless sensors network
nodes. In In Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks and Workshops, 2007. WiOpt 2007. 5th Inter-
national Symposium on (2007), pp. 1–7.

[18] FRANCILLON, A., AND CASTELLUCCIA, C. Code injection
attacks on Harvard-architecture devices. In Proceedings of the
15th ACM conference on Computer and communications security
(New York, NY, USA, 2008), CCS ’08, ACM, pp. 15–26.

[19] GIANNETSOS, T., DIMITRIOU, T., AND PRASAD, N. R. Self-
propagating worms in wireless sensor networks. In Proceedings of
the 5th international student workshop on Emerging networking
experiments and technologies (New York, NY, USA, 2009), Co-
Next Student Workshop ’09, ACM, pp. 31–32.

[20] GIRARD, O. openMSP430. http://opencores.org/

project,openmsp430.

[21] GU, L., AND STANKOVIC, J. A. t-kernel: providing reliable OS
support to wireless sensor networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems
(Boulder, Colorado, USA, 2006), ACM, pp. 1–14.

[22] HALPERIN, D., HEYDT-BENJAMIN, T., RANSFORD, B.,
CLARK, S., DEFEND, B., MORGAN, W., FU, K., KOHNO, T.,
AND MAISEL, W. Pacemakers and implantable cardiac defibrilla-
tors: Software radio attacks and zero-power defenses. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on (2008), Ieee,
pp. 129–142.

[23] HAN, C.-C., KUMAR, R., SHEA, R., KOHLER, E., AND SRI-
VASTAVA, M. A dynamic operating system for sensor nodes. In
Proceedings of the 3rd international conference on Mobile systems,
applications, and services (New York, NY, USA, 2005), MobiSys
’05, ACM, pp. 163–176.

[24] HEINZELMAN, W. B., MURPHY, A. L., CARVALHO, H. S.,
AND PERILLO, M. A. Middleware to support sensor network
applications. IEEE Network 18, 1 (2004), 6–14.

[25] KOCHER, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology (London, UK, UK, 1996), CRYPTO ’96, Springer-
Verlag, pp. 104–113.

[26] KOCHER, P. C., JAFFE, J., AND JUN, B. Differential power anal-
ysis. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology (London, UK, UK, 1999),
CRYPTO ’99, Springer-Verlag, pp. 388–397.

[27] KOSTIAINEN, K., EKBERG, J.-E., ASOKAN, N., AND
RANTALA, A. On-board credentials with open provisioning. In
Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security (New York, NY, USA,
2009), ASIACCS ’09, ACM, pp. 104–115.

[28] KRAWCZYK, H., AND ERONEN, P. HMAC-based extract-and-
expand key derivation function (HKDF). http://tools.ietf.
org/html/rfc5869.

[29] KUMAR, P., AND LEE, H.-J. Security issues in healthcare appli-
cations using wireless medical sensor networks: A survey. Sensors
12, 1 (2011), 55–91.

[30] KUMAR, R., KOHLER, E., AND SRIVASTAVA, M. Harbor:
software-based memory protection for sensor nodes. In Proceed-
ings of the 6th international conference on Information processing
in sensor networks (New York, NY, USA, 2007), IPSN ’07, ACM,
pp. 340–349.

[31] LEE, Y. K., SAKIYAMA, K., BATINA, L., AND VERBAUWHEDE,
I. Elliptic-curve-based security processor for RFID. Computers,
IEEE Transactions on 57, 11 (nov. 2008), 1514 –1527.

[32] LEIGHTON, F. T., AND MICALI, S. Secret-key agreement with-
out public-key cryptography. In Proceedings of the 13th Annual
International Cryptology Conference on Advances in Cryptology
(London, UK, UK, 1994), CRYPTO ’93, Springer-Verlag, pp. 456–
479.

[33] LEONTIADIS, I., EFSTRATIOU, C., MASCOLO, C., AND
CROWCROFT, J. Senshare: transforming sensor networks into
multi-application sensing infrastructures. In Proceedings of the
9th European conference on Wireless Sensor Networks (Berlin,
Heidelberg, 2012), EWSN’12, Springer-Verlag, pp. 65–81.

[34] LEVIS, P. Experiences from a decade of tinyos development. In
Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 207–220.

[35] LIGATTI, J., BAUER, L., AND WALKER, D. Edit automata:
enforcement mechanisms for run-time security policies. Interna-
tional Journal of Information Security 4, 1-2 (2005), 2–16.

[36] LLVM DEVELOPER GROUP. Clang. http://clang.llvm.

org/.

[37] LLVM DEVELOPER GROUP. LLVM. http://llvm.org/.

[38] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB re-
duction and attestation. In Proceedings of the IEEE Symposium
on Security and Privacy (May 2010).

[39] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the ACM European Conference
in Computer Systems (EuroSys) (Apr. 2008), ACM, pp. 315–328.

[40] SAHITA R, WARRIER U., D. P. Protecting Critical Applications
on Mobile Platforms. Intel Technology Journal 13 (2009), 16–35.

[41] SIMON, D., CIFUENTES, C., CLEAL, D., DANIELS, J., AND
WHITE, D. Java™ on the bare metal of wireless sensor devices:
the squawk java virtual machine. In VEE (2006), H.-J. Boehm and
D. Grove, Eds., ACM, pp. 78–88.

[42] STRACKX, R., AND PIESSENS, F. Fides: Selectively hardening
software application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS 2012), (Oct. 2012),
ACM Press, pp. 2–13.

[43] STRACKX, R., PIESSENS, F., AND PRENEEL, B. Efficient iso-
lation of trusted subsystems in embedded systems. In Lecture
Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering: Security and Privacy in
Communication Networks (September 2010), vol. 50, Springer,
pp. 1–18.

[44] U.S. CUSTOMS AND BORDER PROTECTION. C-TPAT. http:
//www.cbp.gov/ctpat.

[45] VIEGA, J., AND THOMPSON, H. The state of embedded-device
security (spoiler alert: It’s bad). Security Privacy, IEEE 10, 5
(Sept.-Oct. 2012), 68 –70.

[46] WERNER-ALLEN, G., LORINCZ, K., JOHNSON, J., LEES, J.,
AND WELSH, M. Fidelity and yield in a volcano monitoring
sensor network. In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 381–396.

[47] YOUNAN, Y., JOOSEN, W., AND PIESSENS, F. Runtime counter-
measures for code injection attacks against c and c++ programs.
ACM Comput. Surv. 44, 3 (June 2012), 17:1–17:28.

[48] ZÖLLER, S., REINHARDT, A., MEYER, M., AND STEINMETZ,
R. Deployment of wireless sensor networks in logistics potential,
requirements, and a testbed. In Proceedings of the 9th GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze (Sep 2010), R. Kolla,
Ed., Julius-Maximilians-Universität Würzburg, pp. 67–70.

USENIX Association 22nd USENIX Security Symposium 495

Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology
and Split Manufacturing for Obfuscation

Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara

ECE, University of Waterloo, Canada
{fcimeson,aemtenan,siddharth.garg,tripunit}@uwaterloo.ca

Abstract

The fabrication of digital Integrated Circuits (ICs) is in-
creasingly outsourced. Given this trend, security is rec-
ognized as an important issue. The threat agent is an
attacker at the IC foundry that has information about the
circuit and inserts covert, malicious circuitry. The use of
3D IC technology has been suggested as a possible tech-
nique to counter this threat. However, to our knowledge,
there is no prior work on how such technology can be
used effectively. We propose a way to use 3D IC tech-
nology for security in this context. Specifically, we ob-
fuscate the circuit by lifting wires to a trusted tier, which
is fabricated separately. This is referred to as split man-
ufacturing. For this setting, we provide a precise notion
of security, that we call k-security, and a characterization
of the underlying computational problems and their com-
plexity. We further propose a concrete approach for iden-
tifying sets of wires to be lifted, and the corresponding
security they provide. We conclude with a comprehen-
sive empirical assessment with benchmark circuits that
highlights the security versus cost trade-offs introduced
by 3D IC based circuit obfuscation.

1 Introduction

The security of digital integrated circuits (ICs), the build-
ing blocks of modern computer hardware systems, can
be compromised by covertly inserted malicious circuits.
The threat from such maliciously inserted hardware is
of increasing concern to government and military agen-
cies [2] and commercial semiconductor vendors. Re-
cently, Skorobogatov et al. [28] demonstrated the pres-
ence of a backdoor in a military grade FPGA manufac-
tured by Actel that enabled access to configuration data
on the chip. The authors initially conjectured that the
backdoor was maliciously inserted since the key used to
trigger the backdoor was undocumented. Actel has since
clarified that the backdoor was inserted by design for in-

ternal test purposes [23]. Nonetheless, this incident has
further heightened the perceived threat from maliciously
inserted hardware, and effective counter-measures to de-
ter or prevent such attacks are of increasing importance.

The threat of maliciously inserted hardware arises
from two factors. First, owing to their complexity, digital
ICs are designed at sites across the world. In addition,
parts of the design are often outsourced or purchased
from external vendors. Second, a majority of semicon-
ductor design companies are fabless, i.e., they outsource
IC manufacturing to a potentially untrusted external fab-
rication facility (or foundry). Both factors make it easier
for a malicious attacker in a design team or a malicious
foundry (or a collusion between the two) to insert covert
circuitry in a digital IC.

Three-dimensional (3D) integration, an emerging IC
manufacturing technology, is a promising technique to
enhance the security of computer hardware. A 3D IC
consists of two or more independently manufactured ICs
that are vertically stacked on top of each other — each
IC in the stack is referred to as a tier. Interconnections
between the tiers are accomplished using vertical metal
pillars referred to as through-silicon vias (TSV).

3D IC manufacturing can potentially enhance hard-
ware security since each tier can be manufactured in a
separate IC foundry, and vertically stacked in a secure
facility. Thus, a malicious attacker at any one foundry
has an incomplete view of the entire circuit, reducing the
attacker’s ability to alter the circuit functionality in a de-
sired manner.

Tezarron, a leading commercial provider of 3D stack-
ing capabilities, has alluded to the enhanced security of-
fered by 3D integration in a white paper [1]. The white
paper notes that “A multi-layer circuit may be divided
among the layers in such a way that the function of each
layer becomes obscure. Assuming that the TSV connec-
tions are extremely fine and abundant, elements can be
scattered among the layers in apparently random fash-
ion.” However, the paper does not provide any formal

496 22nd USENIX Security Symposium USENIX Association

Silicon

Unlifted Wires

Bond Points Lifted Wires

Transistors/Gates

IO Pins

Bottom Tier
(Un-Trusted)

Top Tier
(Trusted)

Figure 1: A two tier 3D IC. In this instance, the top tier is
an interposer, i.e., it only implements metal wires, while
the bottom tier has both transistors/gates and wires.

notion of security for split manufacturing, nor does it
propose techniques to quantify security or achieve a cer-
tain security level. These are the open challenges that we
address in this paper.

Our threat model assumes a malicious attacker in an
IC foundry who wants to modify the functionality of a
digital IC in a specific, targeted manner. The attack pro-
posed by King et al. [19] modifies the state of hardware
registers in a processor to raise the privilege level of the
attacker — this is an example of a targeted attack since it
requires the attacker to determine the gate or wire in the
circuit that corresponds to the privilege bit. Fault inser-
tion attacks in cryptographic hardware also require that
certain vulnerable bits be targeted. For example, it has
been shown that if the LSB bit of the 14th round of a
DES implementation is set to logic zero, the secret key
can be recovered in as few as two messages [9]. How-
ever, to succeed, the attacker must be able to determine
which gate corresponds to the LSB bit of the 14th round.

To effect a targeted attack, an attacker must first iden-
tify specific logic gates or wires in the circuit that im-
plement the functionality that he wants to monitor and/or
modify; for example, the gate or wire that corresponds
to the privilege bit for the privilege escalation attack pro-
posed in [19]. A malicious foundry can identify the func-
tionality of every gate and wire in the circuit if it gets to
fabricate the entire chip, i.e., if a conventional planar, 2D
fabrication process is used. On the other hand, as we
show in this paper, 3D integration significantly reduces
the ability of an attacker in a malicious foundry to cor-
rectly identify gates or wires in the circuit that he wants
to attack.

The specific 3D integration technology that we exploit
in this work, since it is the only one that is currently in

large volume commercial production [8], splits a design
into two tiers. The bottom tier consists of digital logic
gates and metal wires used to interconnect logic gates.
The top tier, also referred to as an interposer, only con-
sists of metal wires that provide additional connections
between logic gates on the bottom tier.

The bottom tier — this tier is expensive to fabricate
since it implements active transistor devices and passive
metal — is sent to an external, untrusted foundry for fab-
rication. This is referred to as the untrusted tier. The top
tier implements only passive metal and can be fabricated
at lower cost in a trusted fabrication facility. We refer to
this tier as the trusted tier.

Assume, for the sake of argument, that all interconnec-
tions between logic gates are implemented on the trusted
tier, the attacker (who only has access to the untrusted
tier) observes only a “sea” of disconnected digital logic
gates. From the perspective of the attacker, gates of the
same type, for example all NAND gates, are therefore in-
distinguishable from each other. (Assuming that the rel-
ative size or placement of gates reveals no information
about interconnections between gates. This is addressed
in Section 4.) Assume also that the attacker wants to at-
tack a specific NAND gate in the circuit, and not just any
NAND gate. The attacker now has two choices: (a) the
attacker could randomly pick one NAND gate to attack
from the set of indistinguishable NAND gates, and only
succeed in the attack with a certain probability; or (b) the
attacker could attack all indistinguishable NAND gates,
primarily in cases where the attacker wants to monitor
but not modify gates in the circuit, at the expense of a
larger malicious circuit and thus, an increased likelihood
of the attack being detected. In either instance, the at-
tacker’s ability to effect a malicious, targeted attack on
the circuit is significantly hindered. We refer to this tech-
nique as circuit obfuscation.

In general, we define a k-secure gate as one that, from
the attacker’s perspective, cannot be distinguished from
k− 1 other gates in the circuit. Furthermore, a k-secure
circuit is defined as one in which each gate is at least
k-secure.

Contributions We make the following contributions:

• We propose a concrete way of leveraging 3D IC
technology to secure digital ICs from an active at-
tacker at the foundry. Whereas the use of 3D IC
technology for security has been alluded to before,
we are not aware of prior work like ours that dis-
cusses how it can be used meaningfully.

• We propose a formal notion of security in this con-
text that we call k-security. We give a precise char-
acterization of the underlying technical problems —
computing k-security and deciding which wires to
lift — and identify their computational complexity.

USENIX Association 22nd USENIX Security Symposium 497

• We have devised a concrete approach to address-
ing the problem of lifting wires, which comprises a
greedy heuristic to identify a candidate set of wires
to be lifted, and the use of a constraint (SAT) solver
to compute k-security.

• We have conducted a thorough empirical assess-
ment of our approach on benchmark circuits, in-
cluding a case-study of a DES circuit, that illustrates
the inability of an attacker to effectively attack cir-
cuits secured using 3D IC based obfuscation.

2 Preliminaries and Related Work

Synthesis

Technology
Library

HDL Code
always @(posedge clk)
 for(i=0;i<33;i=i+1)
 key_c_r[i+1] <= #1 key_c_r[i];

Wire Lifting

Netlist

Unlifted Netlist Lifted Wires

Placement and Routing

Layout Layout

Bottom Tier Top Tier

Final Product

Fabrication

Stacking
Malicious
Attacker

Malicious
Observer

Trusted

Fabrication

Figure 2: Secure 3D IC design and fabrication flow.

In this section, we overview the IC manufacturing pro-
cess in the specific context of 3D integration, and discuss
the attack model that we assume in this paper. We also
discuss related work on hardware security including both
attacks and countermeasures, and on the use 3D integra-
tion for enhancing the security of computer hardware.

2.1 3D IC Design and Fabrication
Digital ICs consist of a network of inter-connected dig-
ital logic gates. This network of gates is often referred
to as a netlist. Digital logic gates are built using com-
plementary metal-oxide-semiconductor (CMOS) transis-

tors. In a conventional planar/2D IC, CMOS transistors,
and by extension digital logic gates, lie in a single layer
of silicon. In addition, there are several layers of metal
wires used to inter-connect the gates.

3D integration enables the vertical stacking of two or
more planar ICs. Each IC in the vertical stack is referred
to as a tier. Vertical interconnects (TSVs) are provided
to allow the transistors and metal wires in each tier to
connect to each other.

The initial motivation for 3D integration came from
the potential reduction in the average distance between
logic gates — in a 3D IC, the third, vertical dimension
can be used to achieve a tighter packing of logic gates [6].
However, a number of issues, including high power den-
sity, temperature and cost, have plagued high volume,
commercial availability of logic-on-logic 3D ICs [13].

A more practical 3D IC technology that has been
demonstrated in a commercial product (a Xilinx
FPGA [8]) is shown in Figure 1. It consists of two tiers.
The bottom tier contains both transistors/gates and metal
wires, while the top tier, the interposer, contains only
metal wires. The two tiers are interfaced using uniformly
spaced metallic bond-points. TSVs make use of these
bond-points to provide connections between wires in the
top and bottom tiers. This technology has also been re-
ferred to as 2.5D integration [14]. In the rest of this pa-
per, we use 3D instead of 2.5D since our techniques can
easily be generalized to full 3D.

Since the bottom tier consists of CMOS transistors, it
is fabricated at one of the few foundries worldwide with
advanced lithographic capabilities at high cost. The top
tier, i.e., the interposer, only contains passive metal and
can be fabricated at significantly reduced cost [21].

Figure 2 shows a 3D IC design flow with appropri-
ate modifications for security. The design flow begins
with the design specified using a hardware description
language (HDL), which is then synthesized to a netlist of
gates. The types of gates allowed in the gate netlist are
specified in a technology library.

In the wire lifting stage, the edges (or wires) in the
netlist that are to be implemented on the top tier are se-
lected. These are referred to as lifted wires. The rest of
the netlist, implemented on the bottom tier, is referred to
as the unlifted netlist and consists of unlifted gates and
unlifted wires.

The unlifted gates are then placed on the surface of
the bottom tier, i.e., the (x,y) co-ordinates for each gate
are selected. Unlifted wires are routed using the bottom
tier metal layers. Two bond-points are selected for ev-
ery lifted wire; one each for the two gates that the wire
connects. The gates are connected to the correspond-
ing bond-points. Finally, lifted wires are routed between
pairs of bond-points in the top tier using the top tier rout-
ing resources.

498 22nd USENIX Security Symposium USENIX Association

Finally, the two tiers are fabricated at separate
foundries. The chips from the two foundries are verti-
cally stacked to create the final 3D IC chip that is shipped
to the vendor.

We now discuss the attack model that we address in
this paper, in the context of the 3D design and fabrication
flow outlined above.

2.2 Attack Model
The attack model that we address in this paper is that of a
malicious attacker in the foundry. This attack model has
been commonly used in the hardware security literature
because of the serious threat it presents [18]. We further
strengthen the attack by assuming a malicious observer
in the design stage, working in collusion with the mali-
cious attacker in the foundry.1 The malicious observer
has full knowledge of the circuit as it goes through the
design process, but can not effect any changes. The ma-
licious attacker in the foundry can, on the other hand,
effect changes in the circuit layout before the chip is fab-
ricated.

To defend against this attack, the following steps of
the design and fabrication flow are assumed to be se-
cure, i.e., executed by a trusted party: (a) the wire lift-
ing, placement and routing steps in the design, and (b)
the fabrication of the top tier (therefore also referred to
as the trusted tier).

Discussion Three aspects of the attack and defense
models deserve further mention. First, we note that the
attack model described above subsumes a number of
other practically feasible attack models. It is stronger
than a malicious attacker in the foundry working by him-
self. It is also stronger than a malicious attacker in the
foundry with partial design knowledge — for example,
the attacker is likely to know the functionality and in-
put/output behaviour of circuit he is attacking (an ALU
or a DES encryption circuit, etc.). Providing the attacker
with the precise circuit netlist can only strengthen the at-
tack.

Second, the steps in the design and fabrication process
that are assumed to be trusted are also relatively easy to
perform in a secure manner, compared to the untrusted
steps. Wire lifting and placement/routing (in the design
stage) are performed using automated software tools, the
former based on algorithms that we propose in this pa-
per, and the latter using commercially available software
from electronic design automation (EDA) vendors. In
comparison, writing the HDL code is manually intensive,
time-consuming and costly. Furthermore, only the top
tier is fabricated in a trusted foundry. The top tier only

1Note that 3D IC based circuit obfuscation cannot, and is not in-
tended to, defend against malicious attackers in the design stage who
can alter the HDL or circuit netlist.

consists of passive metal wires that are inexpensive com-
pared to the active CMOS transistors and metal wires in
the untrusted, bottom tier [21].

Finally, we assume that that all IC instances are man-
ufactured before being sent out for stacking. If this were
not the case, an attacker could intercept a stacked IC and
reverse engineer the connections on the top tier. Armed
with this knowledge, the attacker could then insert ma-
licious hardware in future batches of the IC as they are
being fabricated in the foundry.

2.3 Related Work

In this section, we discuss related work in the literature
on hardware security and, specifically, the use of 3D ICs
in this context. We also discuss the relationship of our
work to database and graph anonymizing mechanisms.

Hardware Security Malicious circuits are expected to
consist of two components, a trigger and the attack itself.
The trigger for the attack can be based on data, for exam-
ple when a specific cheat code appears at selected wires
in the circuit [19], or on time, i.e., the trigger goes off
after a certain period of time once the IC is shipped [33].

Once triggered, the malicious attack can either trans-
mit or leak sensitive information on the chip, modify the
circuit functionality or degrade the circuit performance.
Tehranipoor and Koushanfar discuss a number of specific
backdoors that fall within one of these categories [31].

Countermeasures against malicious attacks can be cat-
egorized in various ways. Design based countermea-
sures modify or add to the design of the circuit itself
to provide greater security. These include N-variant IC
design [4], data encryption for computational units [33]
and adding run-time monitors to existing hardware [32].
Our work falls within this category. In contrast, test-
ing based counter-measures use either pre-fabrication or
post-fabrication testing and validation to detect, and in
some cases, disable malicious circuits. A survey of these
techniques can be found in [11].

Another way to categorize countermeasures is by their
impact on the attack. Countermeasures to detect mali-
cious circuits include IC fingerprinting [3] and unused
circuit identification [17]. Some countermeasures can
be used to disable malicious circuitry; for example, the
power cycling based defense against timer triggers [33].
The proposed defense mechanism aims to deter attackers
by hiding a part of the circuit and making it more difficult
for the attacker to effect a successful attack.

3D Integration for Hardware Security Valamehr et
al. [32] also exploit 3D integration capabilities to en-
hance the security of computer hardware, although in
a manner orthogonal to ours. Their proposal involves
adding a “control tier” on top of a regular IC to moni-

USENIX Association 22nd USENIX Security Symposium 499

tor the activity of internal wires in the IC in a cost ef-
fective way. By monitoring internal wires on the chip,
the control tier is able to detect potentially malicious ac-
tivity and take appropriate recourse. Adding the moni-
tors vertically on top of the IC to be protected reduces
the power and performance cost of monitoring the IC. A
similar technique was proposed by Bilzor [7].

Or technique exploits 3D integration in a different
way, i.e., we use it to provide a malicious attacker in an
IC foundry with an incomplete view of the circuit netlist,
thus deterring the attack. Although the potential for this
kind of defense mechanism has been alluded to before by
Tezarron [1], ours is the first work, to our knowledge, to
address this technique in any consequential way.

Hardware Obfuscation Hardware obfuscation tech-
niques have been proposed to make circuits more diffi-
cult to reverse engineer. In particular, Roy et al. [26]
augment a combinational circuit with key bits in such a
way that the circuit only provides correct outputs when
the key bits are set to pre-determined values. Rajendran
et al. [24] further strengthen this defense mechanism by
increasing the bar on the attacker to determine the secret
key.

A difference between key-based circuit obfuscation
mechanisms and circuit obfuscation via split manufac-
turing is that the notion of security in the former is con-
ditioned on the computational capabilities of the attacker.
In contrast, our notion of security is unconditional in
that no matter the computational capabilities of the at-
tacker, he cannot distinguish each gate from k− 1 other
gates. We note that these mechanisms are not necessar-
ily mutually exclusive — it might be possible to leverage
split manufacturing based circuit obfuscation to further
strengthen key-based circuit obfuscation, or vice-versa.

Independent of this work, Rajendran et al. [25] have
recently examined the security obtained from split manu-
facturing. However, the authors provide no well-founded
notion of security for split manufacturing, as we do in
this paper. The authors do not address the wire lifting
problem at all, and implicitly assume that the circuit is
partitioned using traditional min-cut partitioning heuris-
tics. Finally, it is assumed that the attacker reconstructs
the circuit by simply connecting the closest gates with
disconnected inputs/outputs.

Anonymizing Databases and Social Networks Our
work bears relationship to prior work on anonymizing
databases and social network graphs, but also has signif-
icant differences. A database is k-anonymous if the in-
formation for each individual is indistinguishable from
k − 1 other individuals [30] in the database. The no-
tion of k-anonymity for a social network is similar, ex-
cept that instead of operating on relational data, it op-
erates on a graph. Two individuals in a social network

are indistinguishable if their local neighbourhoods are
the same [34].

In our setting, the similarity of the local neighborhood
of two gates is only a necessary but not sufficient condi-
tion for indistinguishability. This is because the attacker
is assumed to have access to the original circuit netlist
and an incomplete view of the same netlist, and must
thus match all gates in the incomplete netlist to gates in
the original netlist.

The circuit obfuscation problem also introduces a
number of distinct practical issues. These include the
additional information that might be conveyed by the
circuit layout (for example, the physical proximity of
gates), and the role of the number of gate types in the
technology library.

3 Problem Formulation

In this section, we formulate the circuit obfuscation prob-
lem that we address in this paper as a problem in the
context of directed graphs. We begin by discussing the
example circuit for a full adder that we show in Figure 3.

A
B

CIN

S

COUT

1

2

3

4

5

(a) Original circuit netlist.

A
B

CIN

S

COUT

Lifted Wires

Isomorphic
Sub-Circuits

1

2

3

4

5

(b) Unlifted netlist.

Figure 3: Original and unlifted netlists corresponding to
a full adder circuit. Grey wires in the unlifted netlist are
lifted and are not observed by the attacker.

Example As we mention in Section 1, in the most
powerful attack model we consider, an attacker is in pos-
session of two pieces of information: the originally de-
signed (complete) circuit netlist, and the layout of the
circuit that is sent to the foundry for fabrication, which
we call the unlifted netlist. The latter results from the

500 22nd USENIX Security Symposium USENIX Association

defender lifting wires from the former. Assume that the
defender chooses to lift the wires A→{1,2}, B→{1,2},
CIN →{3,4}, 1 →{3,4} and 3 → COUT.

Note that gates in the unlifted netlist in Figure 3(b) are
labeled differently from those in the original circuit in
Figure 3(a). This reflects the fact that the attacker ob-
tains the original circuit netlist and the unlifted netlist in
completely different formats. The original netlist is a set
of gates and wires in HDL format. On the other hand,
the unlifted netlist is reconstructed from the circuit lay-
out, which is a set of shapes and their locations on the
surface of the chip, as also discussed in Section 4.3. The
labeling and ordering of objects in the circuit layout file
is unrelated to that in the netlist of the original circuit.
Although not required, the defender can perform an ad-
ditional random re-labeling and re-ordering step before
the layout of H is sent to the foundry.

Given these two pieces of information, the attacker
now seeks a bijective mapping of gates in the unlifted
netlist to gates in the complete circuit netlist. If the at-
tacker is successful in obtaining the correct mapping, he
can carry out a targeted attack on any gate (or gates) of
his choosing. The security obtained from lifting wires in
the context of this example can be explained as follows.
From the attacker’s perspective, either Gate u or Gate w
in the unlifted netlist could correspond to Gate 1 in the
original netlist. Thus the attacker’s ability to carry out a
targeted attack on Gate 1 is hindered. The same can be
said for the attacker’s ability to carry out a targeted at-
tack on Gate 2, 3 or 4. However, note that the attacker
can determine the identity of Gate 5 with certainty — it
must correspond to Gate y since this is the only OR gate
in the netlist. Thus, in this example, the lifting does not
provide any security for Gate 5.

Informally, our notion of security is based on the ex-
istence of multiple isomorphisms (mappings) between
gates in the unlifted netlist and the original netlist. In
our example, there exist 4 distinct bijective mappings be-
tween the gates in the unlifted and original netlists. How-
ever, this notion of security may be seen as too permis-
sive. It can be argued that given the fact that across all
mappings, gate 5 is mapped uniquely, we have no secu-
rity at all (i.e., security of 1). A more restrictive notion
of security, one that we adopt in this paper, requires that
for each gate in the original netlist, there exist at least k
different gates in the unlifted netlist that map to it over
all isomorphisms. This is intended to capture the intu-
ition that the attacker is unable to uniquely identify even
a single gate. We now formalize our notion of security.

3.1 Formulation as a Graph Problem

We now formulate our problem as a graph problem. A
circuit can be perceived as a directed graph — gates are

vertices, and wires are edges. The direction of an edge
into or out of a vertex indicates whether it is an input or
output wire to the gate that corresponds to the vertex. If
G is a graph, we denote its set of vertices as V [G], and its
set of edges as E[G]. Each vertex in the graph is associ-
ated with a color that is used to distinguish types of gates
(e.g, AND and OR) from one another. Consequently, a
graph G is a 3-tuple, 〈V,E,c〉, where V is the set of ver-
tices, E the set of edges and the function c : V →N maps
each vertex to a natural number that denotes its color. For
example, the circuit in Figure 3 and its unlifted portion
can be represented by the graphs in Figure 4.

1

2

4
3

5
S

COUT

CIN

A

B

U

V

W
X

Y

Graph G

Graph H

Figure 4: Full adder graphs: G is the full graph represen-
tation of the full adder circuit, H is the remaining graph
after wires have been lifted.

A main challenge for the defender is to lift wires in a
way that provides security. Our notion of security corre-
sponds to a certain kind of subgraph isomorphism.

Definition 1 (Graph isomorphism). Given two graphs
G1 = 〈V1,E1,c1〉 ,G2 = 〈V2,E2,c2〉, we say that G1 is iso-
morphic to G2 if there exists a bijective mapping φ : V1 →
V2 such that 〈u,v〉 ∈ E1 if and only if 〈φ(u),φ(v)〉 ∈ E2
and c1(u) = c2(φ(u)),c1(v) = c2(φ(v)). That is, if we
rename the vertices in G1 according to φ , we get G2. A
specific such mapping φ is called an isomorphism.

Definition 2 (Subgraph isomorphism). We say that G1 =
〈V1,E1,c1〉 is a subgraph of G2 = 〈V2,E2,c2〉 if V1 ⊆V2,
and 〈u,v〉 ∈ E1 only if 〈u,v〉 ∈ E2. We say that G is sub-
graph isomorphic to H if a subgraph of G is isomorphic
to H. The corresponding mapping is called a subgraph
isomorphism.

For example, in Figure 4, a subgraph isomorphism, φ ,
is φ(1) =U,φ(2) =V,φ(3) = X ,φ(4) =W,φ(5) = Y .

Intuition Let G be the graph that represents the orig-
inal circuit with all wires, and H the graph of the circuit

USENIX Association 22nd USENIX Security Symposium 501

after wires have been lifted. Then, the attacker knows
that G is subgraph isomorphic to H. What he seeks is
the correct mapping of vertices in G to H (or vice versa).
This is equivalent to him having reconstructed the circuit,
and now, he can effect his malicious modifications to the
circuit that corresponds to H.

From the defender’s standpoint, therefore, what we
seek intuitively is that there be several subgraph isomor-
phisms between G and H. As we mention in Section
1, this then gives the kind of security in a k-anonymity
sense — the attacker cannot be sure which of the map-
pings is the correct one, and therefore is able to recon-
struct the circuit with probability 1/k only. As we men-
tion there and discuss in more detail in the related work
Section, though our notion of security has similarities to
k-anonymity, there are important differences, and we call
it k-security instead.

k-security We now specify our notion of security. We
do this in three stages. (1) We first define a problem that
captures our intuition of a gate being indistinguishable
from another gate. We do this by requiring the existence
of a particular kind of subisomorphic mapping between
graphs that represent circuits. (2) We then define the
notion of a k-secure gate. Such a gate is indistinguish-
able from at least k − 1 other gates in the circuit. (3)
Finally, we define the notion of k-security, which is secu-
rity across all gates in the circuit. This definition requires
simply that every gate in the circuit is k-secure.

In the following definition, we characterize the prob-
lem GATE-SUBISO, which captures (1) above — a notion
of what it means for a gate to be indistinguishable from
another.

Definition 3 (GATE-SUBISO). Given as input 〈G,E ′,u,v〉,
where G is a DAG, E ′ ⊆ E[G], and two distinct vertices
u,v ∈ V [G], let H be the graph we get by removing the
edges that are in E ′ from G. Then, GATE-SUBISO is the
problem of determining whether there exists a mapping
φ : V [G]→V [H] that is a subgraph isomorphism from G
to H such that φ(u) = v.

The above definition is a special case of the well-
known subgraph isomorphism problem [16]. In the sub-
graph isomorphism problem, we take as input two graphs
A,B, and ask whether B is subgraph isomorphic to A. In
GATE-SUBISO, both the graphs G,H are restricted to be
DAGs, and H is a specific subgraph of G — one with
some edges removed from G. Of course, we know that H
is subgraph isomorphic to G, with the identity mapping
from a vertex to itself serving as evidence (a certificate).
However, in the GATE-SUBISO problem, we require the ex-
istence of a subgraph isomorphism that is different from
the identity mapping, and furthermore, require that the
vertex u be mapped under that subgraph isomorphism to
a specific vertex v.

The intuition behind GATE-SUBISO is the following. G
is the graph that corresponds to the original circuit, and
H is the graph that corresponds to the circuit after wires
are lifted. The above definition for GATE-SUBISO asks
whether there exists a mapping under which the vertex
u in the original circuit is indistinguishable from v in the
unlifted circuit. That is, given that u �= v, an attacker does
not know whether u in G corresponds to u or v in H.

Based on GATE-SUBISO above, we now define the no-
tion of a k-secure gate. It captures the intuition that the
gate is indistinguishable from at least k−1 other gates.

Definition 4 (k-secure gate). Given a DAG, G, a vertex
u in it, and a subgraph H of G constructed from G by
removing some edges, E ′ ⊆ E[G] only. We say that u is
k-secure if there exist k distinct vertices v1, . . . ,vk in G
(and therefore in H), and mappings φ1, . . . ,φk from V [G]
to V [H] such that every φi is a subgraph isomorphism
from G to H, and for all i ∈ [1,k], φi(u) = vi.

The above definition expresses that u is indistinguish-
able from each of the vi’s. Of course, one of the vi’s may
be u itself. Therefore, every gate is 1-secure, and if a gate
is not 2-secure, then that gate is uniquely identifiable, for
this particular choice of E ′. The maximum that k can be
is |V [G]|, the number of a vertices in G.

Given the above definition for a k-secure gate, it is now
straightforward to extend it to the entire graph (circuit).
We do this with the following definition.

Definition 5 (k-security). Given a DAG G, and a DAG
H that we get from G by removing the edges from a set
E ′ ⊆ E[G]. We say that 〈G,E ′〉 is k-secure if every vertex
in G is k-secure.

The above definition is a natural extension of the no-
tion of a k-secure gate, to every gate in the circuit. What
it requires for k-security is that every vertex in the corre-
sponding graph is indistinguishable from at least k ver-
tices. We point out that some gates may be more than
k-secure; k-security is a minimum across all gates. As
the maximum k for any gate is |V [G]|, a graph can be,
at best, |V [G]|-secure. Every graph is 1-secure, which is
the minimum.

We denote as σ(G,E ′) the maximum k-security we are
able to achieve with G,E ′. In Figure 4, for example, we
know that σ evaluates to 1, because the node 5 can be
mapped to itself only. The nodes 1, 2, 3 and 4, however,
are 2-secure gates. The reason is that each can be mapped
either to itself, or to another node.

Computational complexity We now consider the
computational complexity of determining the maximum
k-security, σ . We consider a corresponding decision
problem, k-SECURITY-DEC, which is the following. We
are given as input 〈G,E ′,k〉 where G is a DAG, E ′ ⊆E[G]

502 22nd USENIX Security Symposium USENIX Association

is a set of edges in G, and k ∈ [1, |V [G]|]. The problem
is to determine whether lifting the edges in E ′ results in
k-security.

We point out that if we have an oracle that decides
k-SECURITY-DEC, then we can compute the maximum k-
security we can get by lifting E ′ from G using binary
search on k. That is, the problem of computing σ is easy
if deciding k-SECURITY-DEC is easy.

Theorem 1. k-SECURITY-DEC ∈ NP-complete under
polynomial-time Turing reductions.

To prove the above theorem, we need to show that
k-SECURITY-DEC is in NP, and that it is NP-hard. For the
former, we need to present an efficiently (polynomial-
sized) certificate that can be verified efficiently. Such
a certificate is k mappings each of which is a subgraph
isomorphism, for each vertex u ∈V [G]. Each such map-
ping can be encoded with size O(|V [G]|), and there are
at most k|V [G]| such mappings, and therefore the certifi-
cate is efficiently-sized. The verification algorithm sim-
ply checks that each mapping is indeed a subgraph iso-
morphism, and that u is mapped to a distinct vertex in
each of the k mappings that corresponds to it. This can
be done in time O(|V [G]|3).

We show that k-SECURITY-DEC is NP-hard un-
der polynomial-time Turing reductions in the Ap-
pendix. (Henceforth, we drop the qualification “un-
der polynomial-time Turing reductions,” and simply say
NP-complete and NP-hard.) Indeed, our proof demon-
strates that deciding even 2-security is NP-hard. The
knowledge that k-SECURITY-DEC is NP-complete imme-
diately suggests techniques for approaches for solving
k-SECURITY-DEC, and thereby computing k-security. We
discuss this further in the next section.

Choosing E ′ Lifting edges E ′ from G incurs a cost
c(G,E ′). A simple cost metric, one that we adopt in
this paper is c(G,E ′) = |E ′|, i.e., the cost is proportional
to the number of lifted edges. Given the cost of lifting
edges, the defender’s goal is to determine E ′, the set of
edges that should be lifted, such that σ(G,E ′) ≥ k and
c(G,E ′) is minimized.

We observe that from the standpoint of computational
complexity, the problem of determining E ′ given G,k,
where G is the graph and E ′ is the set of edges to be lifted
so we get k-security, is no harder than k-SECURITY-DEC.
That is, that problem is also in NP.

To prove this, we need to show that there exists an ef-
ficiently sized certificate that can be verified efficiently.
Such a certificate is E ′, and k subgraph isomorphisms
for every vertex. The latter component of the certificate
is the same as the one we used in our proof above for
k-SECURITY-DEC’s membership in NP. The verification
algorithm, in addition to doing what the verification al-

gorithm for k-SECURITY-DEC above does, also checks that
E ′ is indeed a subset of G’s edges.

We note that the k-security from lifting all the edges
in G is no worse than lifting any other set of edges, and
the k-security from lifting no edges in G is no better than
lifting any other set of edges. More generally, given any
n1,n2 such that |E[G]| ≥ n1 > n2, we know that for ev-
ery G, there exists a set of edges of size n1 that if lifted,
provides at least as much security as every set of edges
of size n2. That is, there is a natural trade-off between
the number of edges we lift, i.e., cost, and the security
we achieve. In Section 4, we outline an approach to de-
termine the cost-security trade-off using a greedy wire
lifting procedure.

3.2 Discussion

Given our notion of k-security, a natural question to ask is
whether there are stronger or different attack models for
which k-security would be inadequate. We discuss this
in the context of two attack models that differ from the
one assumed. Finally, we also discuss a related question
— that of the computational capabilities of the attacker.

General targeted attack models The notion of k-
security is premised on an attack model in which the at-
tacker needs to precisely identify one or more gates in
the unlifted netlist, for example, the privilege escalation
bit in a microprocessor [19] or the LSB of the 14th round
in a DES implementation [9]. However, one can imagine
a scenario in which the attack would be successful if the
attacker correctly identifies any one of n gates. For ex-
ample, there could be multiple privilege escalation bits
in the microprocessor implementation.

More concretely, in the example in Figure 3, assume
that the attacker wants to change the circuit functionality
by inverting the output of Gate 2. The same objective
can be accomplished by inverting the output of Gate 4.
However, as we observe before, Gate v in the unlifted
netlist must correspond to either Gate 2 or Gate 4. Thus,
although this gate is 2-secure, the attack would be suc-
cessful with probability 1.

Although our notion of security does not directly ad-
dress the alternate attack model described above, it can
be easily modified to do so. Say that the defender is
aware that Gate v and Gate x are each equally vulnera-
ble to the same kind of attack. Then, the defender can
insist that Gate v is k-secure if and only if it is indistin-
guishable from k−1 other gates excluding Gate x. Such
information that the defender may have about the rela-
tive vulnerability of gates can be built into the notion of
k-security.

Access to lifting procedure Our attack model
strengthens the attacker with access to the original cir-

USENIX Association 22nd USENIX Security Symposium 503

cuit netlist, G, along with the unlifted netlist H. Since
the attacker has access to G, it is reasonable to ask if an
even stronger attacker with access to G and the procedure
used to lift wires would compromise security. It would
not.

1

Graph G

2 3 43 4 u

Graph H

x 3 4v w

Figure 5: Example illustrating that the unlifted netlist H
is 2-secure even if the attacker knows that edge 2 → 3
was lifted from original netlist G.

In fact, even if there is a deterministic choice of edges
that must be lifted to provide a certain security level,
knowledge of which edges are lifted does not compro-
mise security, as long as G and H are differently la-
beled. We illustrate this with an example in Figure 5,
where wire 2 → 3 must be lifted to provide 2-security.
This knowledge does not compromise the security ob-
tained from lifting. When there is choice, i.e., lifting two
or more edges provides the same security, the choice is
made uniformly at random. This is discussed in Sec-
tion 4.

Computational capabilities of the attacker Our no-
tion of k-security is not predicated on the computational
capabilities of the attacker. In fact, we assume that the
attacker is able to identify (all) subgraph isomorphisms
from H to G. Nonetheless, given that the attacker’s goal
might be to identify a single gate in the netlist, it is natu-
ral to ask why (and whether) the attacker needs determine
a mapping for each gate in H.

In particular, the attacker can identify all gates in H
with the same type and connectivity, i.e., number and
type of gates it connects to, as the one he is interested in
attacking. Prior work on k-anonymity for social network
graphs assumes this kind of attack strategy. From the
perspective of the attacker, this strategy is sub-optimal.
This is because, for any gate in G that the attacker wants
to target, this strategy will provide at least as many candi-
date mappings in H as the strategy in which the attacker
enumerates all subgraph isomorphisms.

4 Approach

Having considered the computational complexity of the
problem that underlies our work in the previous section,
in this section, we propose a concrete approach for it.
As our discussions in the prior section reveal, there are
two parts to the solution: (a) computing the maximum

k-security for �G,E ��, given the graph G that represents
the complete circuit, and, (b) choosing the set E �.

We propose an approach for each in this section.
For the problem of computing security, we employ
constraint-solving. We discuss this in Section 4.1. For
the problem of choosing E �, we propose a greedy heuris-
tic. We discuss that in Section 4.2. We conclude this
section with Section 4.3 with some practical considera-
tions, specifically, scalability and layout-anonymization.

4.1 Computing Security
As shown in Section 3, the problem of determining the
security level of circuit G, given the unlifted netlist H
is NP-complete. Given the relationship of the problem
to subgraph isomorphism, a natural approach to solving
this problem would be to use graph (sub)isomorphism
algorithms proposed in literature — of these, the VF2
algorithm [12] has been empirically shown to be the most
promising [15]. However, in our experience, VF2 does
not scale for circuits with > 50 gates (more on scalability
in Section 4.3).

Instead, motivated by the recent advances in the
speed and efficiency of SAT solvers, we reduce the sub-
isomorphism problem to a SAT instance and use an off-
the-shelf SAT solver to decide the instance.

Reduction to SAT Given graphs G and H, we de-
fine a bijective mapping φ from the vertex set of H to
the vertex set of G as follows: Boolean variable φi j
is true if and only if vertex qi ∈ H maps to a vertex
r j ∈ G. Here V [G] = {r1,r2, . . . ,r|V [G]|} and V [H] =
{q1,q2, . . . ,q|V [H]|}

We now construct a Boolean formula that is true if and
only if graphs G and H are sub-isomorphic for the map-
ping φ . We will construct the formula in parts.

First, we ensure that each vertex in G maps to only one
vertex in H:

F1 =
|V [H]|
∏

i

|V [G]|
∑

j

(
φi, j

|V [G]|
∏
k �=i

¬φi,k

)

and vice-versa:

F2 =
|V [G]|
∏

j

|V [H]|
∑

i

(
φi, j

|V [H]|
∏
k �=i

¬φk, j

)

Finally we need to ensure that each edge in H
maps to an edge in G. Let E[H] = {e1,e2, . . . ,e|E[H]|}
and E[G] = { f1, f2, . . . , f|E[G]|}. Furthermore, let ek =
�qsrc(ek),qdest(ek)� ∈ E[H] and fk = �rsrc(fk),rdest(fk)� ∈
E[G]. This condition can be expressed as follows:

F3 =
|E[H]|
∏

k

|E[G]|
∑

l
φsrc(ek),src(fl)∧φdest(ek),dest(fl)

504 22nd USENIX Security Symposium USENIX Association

The formula F that is input to the SAT solver is then
expressed as a conjunction of the three formulae above:
F = F1 ∧F2 ∧F3. The formula F has O(|V [H]||V [G]|)
variables and O(|E[H]||E[G]|) clauses.

4.2 Wire Lifting Procedure
To determine a candidate set of edges, E ′, to lift, we em-
ploy a greedy heuristic. Our heuristic is shown as Algo-
rithm 1.

1 E ′ ← E[G]
2 while |E ′|> 0 do
3 s ← 0
4 foreach e ∈ E ′ do
5 E ′ ← E ′ −{e}
6 if σ(G,E ′)> s then
7 s ← σ(G,E ′)
8 eb ← e
9 E ′ ← E ′ ∪{e}

10 if s < k then return E ′

11 E ′ ← E ′ −{eb}
12 return E ′

Algorithm 1: lift wires(G, k)

In our heuristic, we begin with the best security we can
achieve. This occurs when we lift every edge in E[G];
that is, we set E ′ to E[G] at the start in Line 1. We then
progressively try to remove edges from E ′, in random
order. We do this if not lifting a particular edge e still
gives us sufficient security.

That is, we iterate while we still have candidate edges
to add back (Line 2). If we do, we identify the “best”
edge that we can add back, i.e., the one that gives us the
greatest security level if removed from E ′. If even the
best edge cannot be removed from E ′, then we are done
(Line 10).

The heuristic does not necessarily yield an optimal set
of edges. The reason is that we may greedily remove
an edge e1 from E ′ in an iteration of the above algo-
rithm. And in later iterations, we may be unable to re-
move edges e2 and e3. Whereas if we had left e1 in E ′,
we may have been able to remove both e2 and e3. Note
that removing as many edges from E ′ is good, because
our cost is monotonic in the size of E ′ (set of edges be-
ing lifted).

4.3 Practical Considerations
From a graph-theoretic perspective, the wire lifting pro-
cedure outlined provides a set of wires to lift that guaran-
tees a certain security level. However, two practical con-
siderations merit further mention — the scalability of the

proposed techniques to “large” circuits, and the security
implication of the attacker having access to the layout of
H, as opposed to just the netlist.

Scalability Although the SAT based technique for
computing security scales better than the VF2 algorithm,
we empirically observe that it times out for circuits with
> 1000 gates. To address this issue, we propose a circuit
partitioning approach that scales our technique to larger
circuits of practical interest. We note that circuit parti-
tioning is, in fact, a commonly used technique to address
the scalability issue for a large number of automated cir-
cuit design problems.

Algorithm 2 is a simplified description of the par-
titioning based wire lifting procedure. The function
partition(G) recursively partitions the vertex set of the
graph into P mutually exclusive subsets and returns sub-
graphs {G1,G2, . . . ,GP} of size such that they can be
tractably solved by the SAT based greedy wire lifting
procedure. The final set of lifted wires includes the union
of all wires that cross partitions, and those returned by
P calls to Algorithm 1. We have used this technique to
lift wires from circuits with as many as 35000 gates (see
Section 5).

1 {G1,G2, . . . ,GP}← partition(G)
2 ER ← E −

⋃

i∈[1,P] Ei

3 for i ∈ [1,P] do
4 ER ← ER

⋃

li f t wires(Gi,sreq)
5 return ER

Algorithm 2: lift wires big(G, sreq)

Layout anonymization We have, so far, assumed that
the unlifted circuit H is a netlist corresponding to the un-
lifted gates and wires. However, in practice, the attacker
observes a layout corresponding to H, from which he re-
constructs the netlist of H. We therefore need to ensure
that the layout does not reveal any other information to
the attacker besides the reconstructed netlist.

Existing commercial layout tools place gates on the
chip surface so as to minimize the average distance, typ-
ically measured as the Manhattan distance, between all
connected gates in the circuit netlist. Thus, if the com-
plete circuit G is used to place gates, the physical prox-
imity of gates will reveal some information about lifted
wires — gates that are closer in the bottom tier are more
likely to be connected in the top tier. The attacker can
use this information to his advantage.

Instead of using the netlist G to place gates, we instead
use the netlist H. Since this netlist does not contain any
lifted wires, these wires do not have any impact on the
resulting placement. Conversely, we expect the physical
proximity of gates to reveal no information about hidden

USENIX Association 22nd USENIX Security Symposium 505

wires in the top tier. In Section 5, we empirically validate
this fact. However, anonymizing the layout with respect
to the hidden wires does result in increased wire-length
between gates, which has an impact on circuit perfor-
mance. This impact is also quantified in Section 5.

5 Results

We conduct our experimental study using two exemplar
benchmarks, the c432 circuit from the ISCAS-85 bench-
mark suite [10] (a 27-channel bus interrupt controller)
with ≈ 200 gates, and a larger DES encryption circuit
with ≈ 35000 gates. We use the c432 circuit to investi-
gate security-cost trade-offs obtained from the proposed
techniques and use the larger DES circuit for a case
study.

All experimental results are obtained using an IBM
0.13µ technology. For 3D integration, bond points are
assumed to be spaced at a pitch of 4µm, allowing for one
bond-point per 16µm2. This is consistent with the design
rules specified in the Tezzaron 0.13µm technology kit.

Circuit synthesis was performed using the Berkeley
SIS tool [27]. Placement and routing is performed us-
ing Cadence Encounter. Finally, we used miniSAT as
our SAT solver [29].

5.1 Security-Cost Trade-offs
Figure 6 graphs the security level for the c432 circuit as a
function of E[H], the number of unlifted wires in the un-
trusted tier. E[H] = 0 corresponds to a scenario in which
all wires are lifted, while E[H] = E[G] corresponds to a
case in which all wires are in the untrusted tier.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

S
ec

ur
ity

|E(H)|

s1-greedy
min-max
s1-rand

min-max

Figure 6: Maximum, average and minimum security lev-
els for the c432 circuit using the proposed greedy wire
lifting procedure and random wire lifting.

Proposed Vs. Random Wire Lifting Figure 6 com-
pares the proposed greedy wire lifting technique with a

baseline technique in which wires are lifted at random.
In both cases, we show the maximum, average and mini-
mum security achieved by these techniques over all runs.

Observe that greedy wire lifting provides significantly
greater security compared to random wire lifting. With
80 unlifted wires, the greedy solution results in a 23-
secure circuit, while all random trials resulted in 1-secure
(equivalently, completely insecure) circuits.

Number of Lifted Edges vs. Security Figure 6 re-
veals that, for c432, at least 145 of the 303 (≈ 47%)
wires must be lifted to get any meaningful degree of se-
curity. If any fewer wires are lifted, circuit obfuscation
provides no security at all. However, once more than this
minimum number of wires is lifted, the security offered
increases quite rapidly.

Another observation that merits mention are the
plateaus in security level, for example between E[H] =
30 and E[H] = 55. In other words, in some cases, wires
can be retained in the untrusted tier without any degrada-
tion in security.

Impact of Layout Anonymization Figure 7 shows
three layouts for the c432 circuit. The far left corre-
sponds to the original 1-secure c432 circuit without any
wire lifting. The other two layouts correspond to the
top and bottom tiers of an 8-secure version of c432 with
≈ 66% lifted wires. Of particular interest is the wire rout-
ing in the trusted top tier — because the placement of
the corresponding gates in the untrusted bottom tier have
been anonymized, the lifted wires are routed seemingly
randomly. This is in stark contrast to the wire routing in
the original circuit that is far more structured.

Figure 8 shows the histogram of wire lengths for the
three layouts shown in Figure 7. Note that, in the origi-
nal 1-secure circuit, a large majority of wires are short; in
other words, connected gates are placed closer together.
Wire lengths on the bottom untrusted tier of the 8-secure
circuit also skew towards shorter values — however,
these wires are already observable to the attacker and he
gains no additional information from their lengths. On
the other hand, the wire length distribution of the top tier
is more evenly spread out. This reflects that fact that
the physical proximity of gates in the bottom tier reveals
very little information about the lifted wires.

A Chi Square test was performed to determine if the
distribution of wirelengths in the top tier is different from
one that would be obtained from a random placement of
gates. The test does not provide any evidence to reject
the null hypothesis (N = 11, χ2 = 0.204 and p = 0.999),
i.e., it does not reveal any significant difference between
the two distributions.

Area, Delay and Power Cost Area, delay (inversely
proportional to clock frequency) and power consumption
are important metrics of circuit performance. 3D integra-

506 22nd USENIX Security Symposium USENIX Association

(a) Original Circuit (b) Bottom Tier of 8-Secure Circuit (c) Top Tier of 8-Secure Circuit

Figure 7: Layout of c432 without any lifting (left), and the bottom (middle) and top (right) tiers of an 8-secure version
of c432. Green and red lines correspond to metal wires.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

7.9 14.8 21.7 28.6 35.5 42.4 49.3 56.2 63.1 70.0

pe
rc

en
ta

ge

dist (um)

Base
Unlifted

Lifted

Figure 8: Comparison of the c432 circuit wire lengths
the original 1-secure circuit and the bottom and top tiers
of the 8-secure circuit.

tion based circuit obfuscation introduces overheads on all
three metrics.

The area of a 3D circuit is determined by the larger of
two areas: the area consumed by the standard cells in the
bottom tier, and the area consumed by the bond-points
required to lift wires to the top tier. The bond-point den-
sity is limited by technology (1 bond-point per 16µm2 in
our case) and therefore more lifted wires correspond to
increased area.

Delay and power are strong functions of wire length,
as increased wire length results in increased wire capac-
itance and resistance. Layout anonymization results in
increased wire length as we have observed before.

Table 1 shows the area, power and delay for the c432
circuit for different security levels. Compared to the orig-
inal circuit, the 8-secure circuit has 1.6× the power con-
sumption, 1.8× delay, and about 3× the area.

Choice of Technology Library The technology li-
brary determines the type of gates that are allowed in the

circuit netlist. Diverse technology libraries with many
different gate types allow for more optimization, but also
hurt security. Figure 9 shows the security levels achiev-
able for c432 for five different technology libraries with
between three and seven gates.

5.2 Case Study: DES Circuit

We use the DES encryption benchmark circuit to demon-
strate that applicability of our techniques, including cir-
cuit partitioning based wire lifting, to larger circuits. The
DES circuit takes as input a fixed-length string of plain-
text and transforms the string into cipher text using 16
rounds of obfuscation, as shown in the block-level cir-
cuit diagram in Figure 10.

The original, 1-secure implementation of DES that we
synthesized has ≈ 35000 logic gates, which results in an
intractable SAT instance. However, using recursive cir-
cuit partitioning, we are able to lift wires to obtain a 64-
secure implementation. We note that a security level of
16 is obtained in the first few rounds of partitioning by

Table 1: Power, delay, wire length and area analysis for
different levels of security on the c432 circuit. 1∗ is the
base circuit with no wires lifted and 48∗ has all of the
wires lifted.

Power Delay Total Wire Total
Security Ratio Ratio Length (µm) Area (µm2)

1∗ 1.00 1.00 2739 1621
2 1.54 1.73 6574 4336
4 1.55 1.76 7050 4416
8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248
24 1.71 1.98 9476 6048
32 1.73 1.99 9836 6368
48∗ 1.92 2.14 13058 8144

USENIX Association 22nd USENIX Security Symposium 507

Table 2: Technology libraries used for the experiment in
Figure 9. lib-x corresponds to a library with x different
gate types.

Library max(S1) |V (G)| |E(G)| Gates
lib-3 48 209 303 inv, nor, nand
lib-4 24 181 271 +nand 3
lib-5 13 169 259 +nor 3
lib-6 7 165 252 +nand 4
lib-7 4 159 246 +nor 4

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

S
ec

ur
ity

|E(H)|

lib-3
lib-4
lib-5
lib-6
lib-7

Figure 9: Obtainable security levels for the c432 circuit
with different technology libraries.

removing only 13% of the wires, i.e., all wires that lie
between successive DES rounds. This is because the cir-
cuit description of each DES round is identical — thus,
once the wires between the rounds have been removed,
each round can be confused for any other round. The fi-
nal 64-secure implementation has only 30% of the wires
unlifted, and consumes 2.38× the area of the original 1-
secure circuit.

Attack Scenario Boneh et al. [9] have shown that spe-
cific bits in a DES implementation are particularly sus-
ceptible to fault attacks. For example, if the attacker is
able to insert an attack such that the LSB output of the
14th round is stuck at logic zero, the secret key can be
recovered using as few as two messages.

Figure 11 shows how such an attack might be effected
using a trigger (we do not address here how this trigger
may be activated) and three additional gates in an inse-
cure (or 1-secure) circuit. When the trigger is set, the out-
put is set to zero, but is equal to the correct value when
the trigger is at logic zero.

Now, assume that wire lifting is performed to make the
circuit 64-secure. Given the set of lifted wires, we note
that the LSB of the 14th round is, in fact, 256-secure, i.e.,
there are 255 other gates in the circuit that are indistin-
guishable from the LSB of the 14th round.

Plaintext

Round 01

Round 14

IP

FB

Round 16

Ciphertext

Round 15

Figure 10: Block diagram of the DES encryption circuit.

The attacker now has two choices. he can either attack
one of the 256 options, and only succeed with probabil-
ity 1

256 , or he can choose to carry out a multiplexed attack
on all 256 gates. This is shown in Figure 11. In this at-
tack, the trigger transmits a sequence of 8-bits that iden-
tify which of the 256 signals the attacker wants to attack.
These 8-bits feed an 8:256 demultiplexer that generates
individual triggers for each of the 256 signals that are
indistinguishable.

The attacker can now iteratively insert attacks in each
gate one at a time and conceivably determine which iter-
ation actually corresponds to the LSB of the 14th round.
However, in doing so, the attacker incurs two costs: (i)
the modified attack circuit now requires 1280 gates in-
stead of just 3, a 420× overhead; (ii) the attacker would
require, in the worst case 255× more messages to re-
cover the key.

5.3 Discussion

We have so far illustrated the quantitative trade-off be-
tween cost and security using benchmark circuits. We
now discuss this trade-off qualitatively. In particular, we
address aspects relating to both the security that 3D IC
based split manufacturing can provide and the cost that it
incurs in doing so.

From a security standpoint, we note that our notion of
k-security is conservative. This is for two reasons. First,
we have assumed a strong attack model in which the at-
tacker has access to the original circuit netlist. In prac-

508 22nd USENIX Security Symposium USENIX Association

Modified
Target

Target

Trigger

8:256
t1

t255

t2

FSM

Trigger

Attacking a non-secure circuit

target1

t1

Attacking a k-secure circuit

target2

t2

target255

t255

Attacking all k
possible targets

Figure 11: Attack scenarios of 1- and k-secure circuits.

tice, the attacker might only have access to the Boolean
functionality of the circuit under attack, but not its gate
level implementation. Second, in realistic attack scenar-
ios, the attacker might need to identify more than one
gate in the netlist. In both settings k-security serves as a
lower bound on the security obtained from 3D IC based
split manufacturing.

Furthermore, hardware attacks that are inserted in the
foundry are different from other attack scenarios in that
they are single shot, and require more effort, risk and ex-
pense to carry out. Thus, even relatively low values of k
are likely to act as a significant deterrent for the attacker.
If the attacker picks one gate to attack at random from
the candidate set, he is only successful with probability
1
k and receives a payoff which is greater than his cost.
However, with probability k−1

k , the attacker incurs a (sig-
nificant) cost and receives no payoff. With k = 100 for
example, the attacker’s payoff must be > 99× his cost
for him to break even (on average). Alternatively, the at-
tacker could try attacking all 100 gates that are candidate
mappings for his desired target (as shown in Figure 11),
but this would incur a significantly increased risk of de-
tection during post-fabrication testing.

From a cost standpoint, our empirical evaluations sug-
gest a 1.5×−2× overhead in area, performance (perfor-
mance is proportional to circuit delay) and power con-
sumption, which is the price we pay for security. Al-
though there is relatively little work in this area, these
overheads compare well to those of competing solutions
such as field programmable gate arrays (FPGAs). In
an FPGA, the desired circuit netlist is programmed on
the FPGA after fabrication, so an attacker in a foundry
receives no information about the circuit the designer
wants to implement. However, benchmark studies have

shown that FPGAs are 20×, 12× and 4× worse than cus-
tom digital ICs in terms of area, power and performance,
respectively [20]. In addition, the FPGA itself could be
attacked during fabrication in a way that allows an at-
tacker in the field (after fabrication) to recover the circuit
that has been programmed on it.

Finally, we note that the proposed technique can be se-
lectively applied to only small, security critical parts of
the design. Thus the area, performance and power over-
heads of split manufacturing would be amortized over the
parts of the design that are conventionally implemented.
It might also be possible to use split manufacturing in
conjunction with other security techniques proposed in
the literature such as key-based obfuscation [26, 24].
Key-based obfuscation is only conditionally secure, con-
ditioned on the attacker’s computational capabilities. We
believe that split manufacturing can be used to further
strengthen key-based obfuscation and make it uncondi-
tionally secure, although we leave this investigation as
future work.

6 Conclusion

In this paper, we have proposed the use of 3D integration
circuit technology to enhance the security of digital ICs
via circuit obfuscation. The specific 3D technology we
exploit allows gates and wires on the bottom tier, and
only metal wires on the top. By implementing a subset of
wires on the top tier, which is manufactured in a trusted
fabrication facility, we obfuscate the identity of gates in
the bottom tier, thus deterring malicious attackers.

We introduce a formal notion of security for 3D in-
tegration based circuit obfuscation and characterize the
complexity of computing security under this notion. We
propose practical approaches to determining the security
level given a subset of lifted wires, and of identifying a
subset of wires to lift to achieve a desired security level.
Our experimental results on the c432 and DES bench-
mark circuits allow us to quantify the power, area and
delay costs to achieve different security levels. In addi-
tion, we show, using a DES circuit case study, that 3D
IC based circuit obfuscation can significantly reduce the
ability of an attacker to carry out an effective attack.

Acknowledgements

We thank our shepherd, Cynthia Sturton, and the anony-
mous reviewers for their feedback and comments. We
thank also Vijay Ganesh and Supreeth Achar for their in-
puts at the initial stages of this research. The work was
supported by funding from the NSERC Discovery and
Strategic grant programs.

USENIX Association 22nd USENIX Security Symposium 509

References
[1] 3D-ICs and Integrated Circuit Security. Tech. rep., Tezzarron

Semiconductors, 2008.

[2] ADEE, S. The hunt for the kill switch. IEEE Spectrum 45, 5
(may 2008), 34 –39.

[3] AGRAWAL, D., BAKTIR, S., KARAKOYUNLU, D., ROHATGI,
P., AND SUNAR, B. Trojan detection using IC fingerprinting.
In Proceedings of the IEEE Symposium on Security and Privacy
(2007), IEEE, pp. 296–310.

[4] ALKABANI, Y., AND KOUSHANFAR, F. N-variant IC design:
Methodology and applications. In Proceedings of the 45th annual
Design Automation Conference (2008), ACM, pp. 546–551.

[5] ARORA, S., AND BARAK, B. Computational Complexity: A
Modern Approach. Cambridge University Press, 2009.

[6] BANERJEE, K., SOURI, S. J., KAPUR, P., AND SARASWAT,
K. C. 3-D ICs: A novel chip design for improving deep-
submicrometer interconnect performance and systems-on-chip
integration. Proceedings of the IEEE 89, 5 (2001), 602–633.

[7] BILZOR, M. 3D execution monitor (3D-EM): Using 3D circuits
to detect hardware malicious inclusions in general purpose pro-
cessors. In Proceedings of the 6th International Conference on
Information Warfare and Security (2011), Academic Conferences
Limited, p. 288.

[8] BOLSENS, I. 2.5D ICs: Just a stepping stone or a long term
alternative to 3D? In Keynote Talk at 3-D Architectures for Semi-
conductor Integration and Packaging Conference (2011).

[9] BONEH, D., DEMILLO, R., AND LIPTON, R. On the importance
of checking cryptographic protocols for faults. In Advances in
Cryptology – EUROCRYPT (1997), Springer, pp. 37–51.

[10] BRGLEZ, F. Neutral netlist of ten combinational benchmark cir-
cuits and a target translator in fortran. In Special session on
ATPG and fault simulation, Proc. IEEE International Symposium
on Circuits and Systems, June 1985 (1985), pp. 663–698.

[11] CHAKRABORTY, R. S., NARASIMHAN, S., AND BHUNIA, S.
Hardware trojan: Threats and emerging solutions. In Proceed-
ings of the IEEE International Workshop on High Level Design
Validation and Test (HLDVT) (2009), IEEE, pp. 166–171.

[12] CORDELLA, L. P., FOGGIA, P., SANSONE, C., AND VENTO,
M. Performance evaluation of the vf graph matching algorithm.
In Proceedings of the International Conference on Image Analy-
sis and Processing (1999), IEEE, pp. 1172–1177.

[13] DAVIS, W. R., WILSON, J., MICK, S., XU, J., HUA, H., MI-
NEO, C., SULE, A. M., STEER, M., AND FRANZON, P. D. De-
mystifying 3D ICs: the pros and cons of going vertical. Design
& Test of Computers, IEEE 22, 6 (2005), 498–510.

[14] DENG, Y., AND MALY, W. 2.5 D system integration: a de-
sign driven system implementation schema. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC) (2004), IEEE, pp. 450–455.

[15] FOGGIA, P., SANSONE, C., AND VENTO, M. A performance
comparison of five algorithms for graph isomorphism. In Pro-
ceedings of the 3rd IAPR TC-15 Workshop on Graph-based Rep-
resentations in Pattern Recognition (2001), pp. 188–199.

[16] GARY, M., AND JOHNSON, D. Computers and intractability: A
guide to the theory of np-completeness, 1979.

[17] HICKS, M., FINNICUM, M., KING, S. T., MARTIN, M. M.,
AND SMITH, J. M. Overcoming an untrusted computing base:
Detecting and removing malicious hardware automatically. In
Proceedings of the IEEE Symposium on Security and Privacy
(2010), IEEE, pp. 159–172.

[18] IRVINE, C. E., AND LEVITT, K. Trusted hardware: Can it be
trustworthy? In Proceedings of the 44th Annual Design Automa-
tion Conference (2007), ACM, pp. 1–4.

[19] KING, S., TUCEK, J., COZZIE, A., GRIER, C., JIANG, W.,
AND ZHOU, Y. Designing and implementing malicious hard-
ware. In Proceedings of the 1st USENIX Workshop on Large-
scale Exploits and Emergent Threats (2008), USENIX Associa-
tion, pp. 1–8.

[20] KUON, I., AND ROSE, J. Measuring the gap between fpgas and
asics. In Proceedings of the 2006 ACM/SIGDA 14th international
Symposium on Field programmable gate arrays (2006), ACM,
pp. 21–30.

[21] LAU, J. H. TSV interposer: The most cost-effective integrator
for 3D IC integration. Chip Scale Review (2011), 23–27.

[22] MICCIANCIO, D., AND GOLDWASSER, S. Complexity of Lat-
tice Problems: a cryptographic perspective, vol. 671 of The
Kluwer International Series in Engineering and Computer Sci-
ence. Kluwer Academic Publishers, Boston, Massachusetts, Mar.
2002.

[23] MICROSEMI. Microsemi ProASIC3 FPGA security overview,
2012. Available from www.microsemi.com/documents/.

[24] RAJENDRAN, J., PINO, Y., SINANOGLU, O., AND KARRI, R.
Security analysis of logic obfuscation. In Proceedings of the 49th
Annual Design Automation Conference (2012), ACM, pp. 83–89.

[25] RAJENDRAN, J., SINANOGLU, O., AND KARRI, R. Is split man-
ufacturing secure? In Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition (DATE) (2013), IEEE,
pp. 1259–1264.

[26] ROY, J. A., KOUSHANFAR, F., AND MARKOV, I. L. Epic: End-
ing piracy of integrated circuits. In Proceedings of the confer-
ence on Design, Automation and Test in Europe (2008), ACM,
pp. 1069–1074.

[27] SENTOVICH, E. M., SINGH, K. J., MOON, C., SAVOJ, H.,
BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. Se-
quential circuit design using synthesis and optimization. In Pro-
ceedings of the IEEE International Conference on Computer De-
sign (ICCD) (1992), IEEE, pp. 328–333.

[28] SKOROBOGATOV, S., AND WOODS, C. Breakthrough silicon
scanning discovers backdoor in military chip. Cryptographic
Hardware and Embedded Systems–CHES (2012), 23–40.

[29] SORENSSON, N., AND EEN, N. Minisat v1. 13-a sat solver with
conflict-clause minimization. SAT 2005 (2005), 53.

[30] SWEENEY, L. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 10, 05 (2002), 557–570.

[31] TEHRANIPOOR, M., AND KOUSHANFAR, F. A survey of hard-
ware trojan taxonomy and detection. Design & Test of Comput-
ers, IEEE 27, 1 (2010), 10–25.

[32] VALAMEHR, J., TIWARI, M., SHERWOOD, T., KASTNER, R.,
HUFFMIRE, T., IRVINE, C., AND LEVIN, T. Hardware as-
sistance for trustworthy systems through 3-D integration. In
Proceedings of the 26th Annual Computer Security Applications
Conference (2010), ACM, pp. 199–210.

[33] WAKSMAN, A., AND SETHUMADHAVAN, S. Silencing hard-
ware backdoors. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (2011), IEEE, pp. 49–63.

[34] ZHOU, B., AND PEI, J. Preserving privacy in social networks
against neighborhood attacks. In Proceedings of the 24th IEEE
International Conference on Data Engineering (ICDE) (2008),
IEEE, pp. 506–515.

510 22nd USENIX Security Symposium USENIX Association

A k-SECURITY-DEC is NP-hard

In this section, we provide outlines of the proofs that un-
derlie our assertion in Section 3 that k-SECURITY-DEC is
NP-hard under polynomial-time Turing, or Cook, reduc-
tions [5]. Such reductions work the following way. Sup-
pose we want to reduce problem A to B. We show that if
we have an oracle for B, then A ∈ P.

Such reductions are unlikely to be as strong as Karp-
reductions [5], that are customarily used to show NP-
hardness. Indeed, the Karp-reduction is a special case
of the Cook-reduction, and some of our reductions be-
low are Karp-reductions. Nevertheless, the existence of
a Cook-reduction from a problem that is NP-hard is ev-
idence of intractability [22]. In particular, in the above
example, if A reduces to B, then if B ∈ P, then A ∈ P.

Recall from Section 3 that k-SECURITY-DEC is the fol-
lowing decision problem. Given as input 〈G,E ′,k〉
where E ′ ⊆ E[G], does lifting the edges in E ′ give us
k-security? We show that k-SECURITY-DEC is NP-hard
in three steps. First, we show that SUB-ISO-SELF (de-
fined below) is NP-hard. We then reduce SUB-ISO-SELF

to GATE-SUBISO (see Section 3), thereby showing that
GATE-SUBISO is NP-hard. Finally, we reduce GATE-SUBISO

to k-SECURITY-DEC.
All graphs we consider are directed, acyclic (DAGs).

Thus, all subisomorphisms we consider are for the spe-
cial case that the graphs are DAGs. It turns out that the
subgraph isomorphism problem is NP-hard for even the
restricted case, SUB-ISO-9, below.

Definition 6 (SUB-ISO-9). SUB-ISO-9 is the following spe-
cial case of the subgraph isomorphism problem. Given
as input 〈G,H〉 where G is a DAG and H is a directed
tree, SUB-ISO-9 is the problem of determining whether
there exists a subgraph of G that is isomorphic to H.

SUB-ISO-9 is known to be NP-hard [16].

Definition 7 (SUB-ISO-SELF). Given as input 〈G,H〉 such
that G is a DAG and H is obtained from G by removing
the edges in a set E ′ ⊆ E[G], SUB-ISO-SELF is the problem
of determining whether there exists a subgraph isomor-
phism φ from G to H that is not the identity mapping.

Theorem 2. SUB-ISO-SELF ∈ NP-hard.

Note that the above theorem is not qualified that it is
under Cook-reductions. This is because we have a Karp-
reduction from SUB-ISO-9 ro SUB-ISO-SELF. The reduction
proceeds in several steps. First, we show that SUB-ISO-9
restricted to the case that |V [G]|= |V [H]| leaves the prob-
lem NP-hard. We do this by first observing that for any
prospective instance 〈G,H〉 of SUB-ISO-9, we can assume
that |V [H]| ≤ |V [G]|. We simply add |V [G]|−|V [H]| ver-
tices to H.

Then, we show that if we add the further restriction
that G and H are strongly connected (i.e., every vertex
reachable from every other vertex), the problem is still
NP-hard. For this reduction, we first check whether the
two graphs are strong connected. If not, we introduce a
new vertex of a colour distinct from every vertex in the
graphs which has an edge to and from every other vertex.

We then show that SUB-ISO-SELF is NP-hard as follows.
We introduce into G an exact copy of H that is disjoint
from G. We call this new graph G′, and the subgraph
of G′ that is the copy of H, H ′. We further restrict H
and H ′ to not have any automorphisms. To achieve this,
we introduce |V [H]| vertices each of a distinct colour,
associated with each u ∈ V [H]. Call this vertex vu. We
connect u and vu with an edge. We do the same in H ′. We
also add a subgraph G′′ to H which has |V [G]| vertices
and no edges. (This guarantees that the new subgraph is
subgraph isomorphic to G.) We call this new graph H ′′.

We use the same technique as above of adding
coloured vertices to ensure that G (within G′) and G′′ in
H ′′ are not automorphic. Finally, we connect every new
vertex added above to the vertices of G, to every original
vertex of H ′, and every new vertex added to H ′ to every
original vertex of G. We do the same in H ′′. We now are
able to show that 〈G,H〉 is a true instance of SUB-ISO-9 if
and only if 〈G′,H ′′〉 is an instance of SUB-ISO-SELF.

Theorem 3. GATE-SUBISO ∈ NP-hard under Cook-
reductions.

Recall that GATE-SUBISO comprises those instances
〈G,E ′,u,v〉, where, if H is produced from G by remov-
ing the edges in E ′, and u,v are distinct vertices in G (and
therefore H), there is a subgraph isomorphism from G to
H that maps u to v. In our reduction, we assume that we
have an oracle for GATE-SUBISO. We simply invoke it for
every pair of vertices u,v ∈ G. If any of them is true, then
we know that 〈G,H〉 is a true instance of SUB-ISO-SELF.
Otherwise, it is not.

Theorem 4. k-SECURITY-DEC ∈ NP-hard under Cook-
reductions.

We Karp-reduce GATE-SUBISO to k-SECURITY-DEC. Let
〈G,E ′,k〉 be a prospective instance of k-SECURITY-DEC,
and H is produced from G by removing the edges in E ′.
We first ensure that every vertex other than u is 2-secure.
We do this by introduce a new vertex for every vertex
other than u that has exactly the same connectivity. Then,
in G, we introduce a new vertex of a completely new
colour and attach it to u and v. We include the edge be-
tween v and this new vertex in E ′. Call the G so modified
G′′, and the new set of edges E ′′. We can now show that
〈G′′,E ′′,2〉 is a true instance of k-SECURITY-DEC if and
only if 〈G,E ′,u,v〉 is a true instance of GATE-SUBISO.

USENIX Association 22nd USENIX Security Symposium 511

KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for
Mutable Kernel Object

Hojoon Lee1, Hyungon Moon2, Daehee Jang1, Kihwan Kim1, Jihoon Lee2, Yunheung Paek2, and
Brent ByungHoon Kang∗1

1Graduate School of Information Security, KAIST
{hojoon.lee,daehee87,abc,brentkang}@kaist.ac.kr

2Department of Electrical and Computer Engineering, Seoul National University
{hgmoon,jhlee}@sor.snu.ac.kr and ypaek@snu.ac.kr

Abstract
Kernel rootkits undermine the integrity of system by
manipulating its operating system kernel. External
hardware-based monitors can serve as a root of trust
that is resilient to rootkit attacks. The existing exter-
nal hardware-based approaches lack an event-triggered
verification scheme for mutable kernel objects. To ad-
dress the issue, we present KI-Mon, a hardware-based
platform for event-triggered kernel integrity monitor. A
refined form of bus traffic monitoring efficiently verifies
the update values of the objects, and callback verifica-
tion routines can be programmed and executed for a des-
ignated event space. We have built a KI-Mon prototype
to demonstrate the efficacy of KI-Mon’s event-triggered
mechanism in terms of performance overhead for the
monitored host system and the processor usage of the
KI-Mon processor.

1 Introduction

Kernel rootkits are a special class of malware that com-
promise an OS kernel; they pose severe threat to the mon-
itored host system as they can hide their attack traces to
stay undetected while persisting in their malicious ac-
tivities. Since rootkits place themselves in the lowest
kernel layer that has the highest privilege level in a sys-
tem, they can trick and compromise any host-based intru-
sion detection system running on the above layer, mak-
ing the detection system ineffective. Many researchers
have made active efforts to address rootkit attacks by
providing a safe execution environment where kernel in-
tegrity monitors can run with the root of trust estab-
lished below the kernel OS layer. These efforts can be
categorized into two types of approaches: Virtual Ma-
chine Monitor (VMM) based [19, 34, 31, 28, 37], and
hardware-based [29, 26, 10, 40]. Both VMM and hard-
ware platforms are used as safe execution environments

∗corresponding author

for integrity monitoring, as a root of trust under the OS
kernel. However, since they are implemented in soft-
ware, VMMs also have to suffer from software vulner-
abilities. As the discoveries of VMM vulnerability con-
tinue [5, 4, 2, 3], more attacks can subvert the VMM
layer underneath the OS kernel [32].

External hardware-based approaches [29, 26] attempt
to utilize the underlying hardware as another root of
trust for integrity monitors, seeking physical isolation
from the monitored system. By deploying the integrity
monitor on an external hardware device, the monitor-
ing can persist even when the entire OS on the moni-
tored host system is compromised. One of the earlier ex-
ternal hardware-based monitors, Copilot [29] presented
a snapshot-based kernel integrity monitor implemented
as a peripheral device. It utilized periodically collected
snapshots of memory contents of the kernel static region
to perform a hash value comparison with a known good
value. In such approaches, increasing the frequency of
snapshot to monitor all the modifications of a rapidly
changing target leads to significant performance over-
head [26]. Therefore, we believe that event-triggered
verification is needed for monitoring mutable kernel ob-
jects.

Event-triggered monitoring techniques are relatively
common in VMM-based approaches. Hypercall inter-
ception, page fault interception, exception handling in-
terception, and other techniques using VM Exits in Hard-
ware Virtual Machines (HVM) [37, 17, 34, 38] are well-
known examples. By inserting additional codes into the
handlers of those events, a preset verifier routine can be
executed upon the occurrence of the events. However, in
contrast to VMM-based approaches, the hardware-based
event-triggered approaches are still in their infancy.

The first external hardware-based event-triggered
monitoring scheme was introduced in Vigilare [26]. Vig-
ilare is an immutable region snooper that is limited to the
detection of the existence of any write traffic, destined
for the monitored memory region on the host bus. In

512 22nd USENIX Security Symposium USENIX Association

other words, an event in Vigilare only signifies an occur-
rence of a memory modification while it does not provide
any ability to extract the data value in the write traffic for
the invariant verification, nor does it provide any call-
back mechanism that could further verify the event for
consistent modification with respect to other related data
objects. Vigilare’s rudimentary scheme has been suffi-
cient for the immutable regions. However, it is incapable
of monitoring mutable kernel objects.

The contents of mutable objects in dynamic regions,
or dynamic data structures, are frequently modified by
the operating system kernel. Such a characteristic intro-
duces complexities in monitoring the mutable kernel ob-
jects. Since the modifications made to the mutable ob-
jects could be legitimate changes, resulting from the nor-
mal operations of a kernel, simply detecting the occur-
rence of modification to these structures does not provide
decisive evidence in determining whether the modifica-
tions are malicious or benign. In addition, there are cases
in which verifying the update value against a known good
value is not sufficient for integrity verification. Consider
the example of a linked list manipulation attack, where
the adversary removes an entry from a linked list to hide
the entry. Inspecting the linked list will reveal that the
entry has been removed. However, from this observa-
tion alone, we cannot determine if the entry was removed
by an adversary or legitimately removed by the kernel.
In these cases, additional semantic verification to check
the consistent modification of other related kernel data
structures is required to confirm the legitimacy of these
changes.

We propose an external hardware-based Kernel In-
tegrity Monitoring platform, called KI-Mon. To explore
possibilities of monitoring mutable kernel objects with
an event-triggered mechanism, KI-Mon presents archi-
tectural foundations of hardware-assisted event-triggered
detection and verification mechanism. KI-Mon is ca-
pable of generating an event which reports the address
and value pair of memory modification, occurred on the
monitored object. Event generation is refined with a sup-
port for whitelist-based filtering to eliminate unnecessary
software involvement in value verification. KI-Mon also
allows an event-triggered callback verification routine
to be programmed and executed for a designated event
space. In addition, we developed the KI-Mon API to
ensure the programmability of the platform, which sup-
ports development of monitoring rules. Example mon-
itoring rules were developed and tested against attacks
from real-world rootkits to confirm the effectiveness of
the platform. Also, our evaluation shows the efficacy of
event-triggered monitoring in terms of the performance
overhead to the monitored system using benchmarking
tools.

We built the KI-Mon prototype on a FPGA-based de-

velopment board, and evaluated the effectiveness of KI-
Mon with experiments. We used the STREAMBENCH
and RAMSPEED benchmarking tools for measuring the
performance overhead on the monitored system’s mem-
ory bandwidth. The results showed that the snapshot-
only monitor incurred a significant overhead to the mon-
itored host system’s memory bandwidth while KI-Mon
consumed significantly less CPU cycles due to its event-
triggered mechanism. This is because KI-Mon detects
memory modifications at hardware level using VTMU
which features an event filtering mechanism to eliminate
CPU cycles consumed by snapshot-based polling by 6
orders of magnitude.

2 KI-Mon Design

KI-Mon is an external hardware-based Kernel Integrity
Monitor that adapts an event-triggered mechanism to en-
able monitoring of dynamic-content data structures. To
achieve the desired functionality, we designed and im-
plemented a prototype of a platform that includes both
hardware and software components. The design objec-
tives for KI-Mon are summarized as the following:
O1. Safe Execution Environment: The most funda-
mental requirement for any kernel integrity monitor is a
safe execution environment. That is, a kernel integrity
monitor should be designed to be resilient to any type of
interference from the compromised monitored system.
O2. Event-triggered Monitoring: For an external mon-
itor to trace mutable kernel objects, it should be able to
identify any modification as an event that is comprised
of an address and value pair. As previously mentioned,
the update value is essential for verification of the legiti-
macy of the modification. In addition, there needs to be
a mechanism that allows a semantic verification routine
to be executed when the value of an event alone cannot
serve as proof that the modification is malicious. Fur-
thermore, KI-Mon deviates from periodic state captur-
ing techniques such as memory snapshots, implementing
a hardware platform that focuses on events, rather than
states. We further define the desiderata for an event-
triggered monitoring mechanism as below, in O2.1 to
O2.4.

O2.1 Refined event generation: For an external moni-
tor to trace mutable kernel objects, it should be able
to identify any modification as an event, comprised
of an address and a value pair. Furthermore, a re-
fined event can be generated from raw events by
suppressing commonly occurring benign updates at
the snooping hardware module, so that the verifier
can be engaged only when it is necessary.

O2.2 Event-triggered semantic verification: As
previously mentioned, the value is essential for

2

USENIX Association 22nd USENIX Security Symposium 513

verification of the legitimacy of the modification. In
addition, there needs to be a mechanism that allows
a semantic verification routine to be executed when
the value of an event alone cannot serve as a proof
that the modification is malicious. The routine
should reference other related kernel objects in
order to verify the semantic consistency.

O2.3 Minimal overhead on monitored system:
KI-Mon deviates from periodic state capturing
techniques such as memory snapshots, imple-
menting a hardware platform that focuses on
events, rather than states. An event-triggered
mechanism should also minimize performance
overhead inflicted on the monitored system during
its operation.

O2.4 Efficient monitoring processor usage: An
event-triggered scheme is expected to minimize
the workload, imposed on the monitoring proces-
sor. This minimization can be beneficial when
the amount of monitored data is larger and the
hardware cost of the monitoring processor needs to
be limited.

O3. Programmability: The operating systems maintain
a large number of various dynamic data structures during
run-time, and the format and usage of these data struc-
tures vary across different operating systems. Moreover,
kernel updates to the operating systems often change the
behavior of kernel operations that are related to the data
structures or the format of the data structures. For this
reason, KI-Mon needs to be highly programmable, in or-
der to guarantee a certain degree of portability across dif-
ferent operating system versions and to support develop-
ment of new monitoring algorithms. The details of the
KI-Mon design that address the above design objectives
will be explained in the rest of this section. Design objec-
tive O1 is achieved using KI-Mon’s hardware platform
by design. We developed KI-Mon API to provide pro-
grammability to KI-Mon. This programmability satisfies
design objective O3. Design objective O2.1 is addressed
by KI-Mon’s HAW mechanism; O2.2 is achieved by the
emphEvent-triggered Semantic Verification mechanism.
O2.3 and O2.4 will be further evaluated in Section 4.

2.1 Safe Execution Environment
The KI-Mon hardware platform is a complete
microprocessor-based system like those in existing
external independent processor approaches [26]. While
KI-Mon operates independently from the monitored
host system, it is capable of monitoring host memory
modifications with a bus traffic monitoring module
called Value Table Management Unit (VTMU) and a

Figure 1: KI-Mon Monitoring Mechanism

Direct Memory Access (DMA) Module for the monitored
system. The in-depth capabilities of VTMU and the
use of DMA will be further discussed in the rest of
this section, but it should be noted that their operations
do not involve the monitored system’s processor, nor
any other components on the monitored system. This
is made possible by the shared bus architecture, which
enables KI-Mon to inspect the monitored system. On
the other hand, the monitored system has no physical
connection to KI-Mon through which it could interact
with. In fact, the monitored system is not aware of the
existence of KI-Mon. Hence, KI-Mon ensures that its
monitoring activities are safe even when the monitored
host system is compromised by a rootkit. In this way,
KI-Mon achieves its first design objective O1: Safe
Execution Environment.

2.2 Event-triggered Monitoring
KI-Mon incorporates its hardware and software plat-
form. The hardware platform generates events when
modifications occur in the monitored regions. The soft-
ware platform verifies events as shown in Figure 1. The
explanation of this mechanism will start from the captur-
ing of host bus traffic in the hardware platform. It will
then explore how these captured instances of traffic are
passed up to the software platform for the further verifi-
cation.

2.2.1 Refined Event Generation

VTMU is the core component that monitors the host
memory bus traffic to generate events. Its operation can
be divided into three stages: bus traffic snooping, ad-
dress filtering, and value filtering. The bus of the mon-
itored system is fed into VTMU, and VTMU extracts
only write signals from the stream of the host’s memory

3

514 22nd USENIX Security Symposium USENIX Association

I/O traffic. As the collected write signals pass through
the address filter, all signals except the ones correspond-
ing to the monitored region are discarded. Finally, the
signals are once again filtered in the comparator units.
The signals are compared against the preloaded values in
the whitelist registers. The signals with the address and
value pair, that survived the two-stage filtering, are re-
ported to the software platform, running on the KI-Mon
processor. We call this mechanism hardware-assisted
whitelisting (HAW); the reports, sent to the software plat-
form, are called HAW-Events.

Also, it should be noted that the VTMU is a highly
configurable hardware component, and our software
platform can readily adjust the monitored regions and the
whitelisted values. For instance, the whitelist registers
can be configured to be inactive, so that all write signals
to the monitored regions generate HAW-Events. In addi-
tion to VTMU, the DMA module is also implemented
and included in the KI-Mon hardware platform. The
module steals memory cycles of host processor to fetch
the contents from the host memory on an on-demand ba-
sis. When the software platform requests the contents
of a certain region of the host memory, the DMA mod-
ule takes a snapshot of the region and provides it to the
kernel integrity monitor. In summary, VTMU is capable
of monitoring host memory without constantly polling
host memory. It can also reduce the generation of benign
events by using a whitelist.

2.2.2 KI-Veri and MonitoringRules

Kernel Integrity Verifier (KI-Veri) is the main component
in the software platform, enabling the event-triggered
monitoring mechanism. It interfaces with Monitor-
ingRules, which are high-level objects implemented on
top of the KI-Mon API. Each MonitoringRule defines the
target regions to be monitored by VTMU, and such re-
gions are called critical regions. VTMU generates HAW-
Events when the contents of these regions are modified.
For this reason, the regions should be chosen prudently
so that a modification of the regions will serve as an
effective trigger to the monitoring mechanism. Critical
regions and their whitelists are stored in VTMU upon
the registration of MonitoringRules.A MonitoringRule
is also required to have predetermined actions such as
an HAW-Event Handler and an Integrity Verifier, to be
executed when HAW-Events occur in the critical re-
gions. These actions are fetched and executed by KI-
Veri. HAW-Event Handlers verify HAW-Events in or-
der to invoke other actions, such as Integrity Verifiers, as
needed.

In summary, VTMU monitors critical regions reg-
istered by MonitoringRules in KI-Veri, and generates
HAW-Events when a write signal that does not match any

of the values in the whitelist registers appears in critical
regions. Upon receiving a HAW-Event, KI-Veri executes
the HAW-event handler of the MonitoringRule, that is
responsible for the HAW-Event. Then, the HAW-event
handler triggers an action that corresponds to the pair of
the address and the update value.

2.2.3 Detection Methodology of MonitoringRule
Templates

The main focus of the current implementation of KI-Mon
is to propose an event-triggered monitoring scheme for
mutable kernel objects. Rootkit attacks on mutable ker-
nel objects can be classified into two categories: control
flow components and data components [19]. Control-
flow components are usually function pointers that store
the addresses of kernel functions. Since such control
flow components are referenced to execute the functions
located at the addresses, rootkits often place hooks on
such components to inject their routine into the control
flow.

Many data components or non-control-flow compo-
nents, store critical pieces of information that reflect the
current state of the kernel. Critical data components such
as lists of processes, kernel modules, and network con-
nections lists can be subverted by rootkits so that the
traces of rootkits are hidden. KI-Mon deploys two types
of MonitoringRule templates in its prototype for moni-
toring of control flow and data components: Hardware-
Assisted Whitelisting (HAW)-based Verification for con-
trol flow components and Callback-based Semantic Ver-
ification for data components.

Hardware-Assisted Whitelisting (HAW)-based
Verification: As we discussed in the previous section,
update value verification can serve as an indication of
malicious manipulations in some cases; semantic veri-
fication is otherwise imperative. Recall that a semantic
verification references other semantically related kernel
objects to find semantic inconsistencies. We observe
that value verification is particularly effective against
attacks on control flow components. All control flow
components should point to the functions in the kernel
code section, or functions in the known kernel drivers
loaded via loadable kernel modules. More specifically,
many control flow components in kernel dynamic data
structures always point to one possible landing site. We
define such property as the value set invariant of a kernel
object. We take advantage of this property in modeling
the monitoring scheme for control flow components.
HAW-based Verification is a MonitoringRule, where
the address of the control flow component is set as a
critical region and its possible landing sites as a whitelist
in VTMU. HAW-events, generated from this type of
MonitoringRule, are simply considered malicious.

4

USENIX Association 22nd USENIX Security Symposium 515

Callback-based Semantic Verification: Callback-
based Semantic Verification is a type of MonitoringRule,
which is designed to serve as a template for monitor-
ing kernel data components. The monitoring scheme
for control flow components is not suitable for monitor-
ing of modifications on data components that require se-
mantic verification because the processes of identifying
memory modifications and their values are inadequate
for detecting manipulation attacks on semantic informa-
tion. The HAW-Event handler can invoke the Integrity
Verifier for further inspection, which involves acquisi-
tion of semantically related data structures. This type of
Integrity checking is called the enforcement of seman-
tic invariants [12]. Note that the HAW-Event handler
can be programmed to call functions other than Integrity
Verifiers. This feature can be used to update the infor-
mation on the monitored data structure. For example,
detection of a newly inserted entry in a linked list can be
programmed and invoked by the HAW-Event handler.

2.3 KI-Mon API for Programmability

As previously mentioned, the MonitoringRules that op-
erate in KI-Mon are built with the KI-Mon API. The
KI-Mon API, as shown in Figure 4, includes high-level
software stacks and low-level drivers for the hardware
platform, to enable convenient and rapid development
of kernel integrity monitoring rules. KI-Mon API is de-
veloped so that writing new MonitoringRules, based on
our detection methodology, become convenient. It is
even possible to create entirely new algorithms. Thus,
KI-Mon API corresponds to our third design objective:
O3:Programmability. A more detailed explanation of the
internals of the API will be given in the following sec-
tion.

Figure 2: KI-Mon Hardware Platform. (Gray box shows
bus architecture)

3 Prototype Implementation

3.1 KI-Mon Hardware Platform Prototype

The KI-Mon platform, including the monitored host sys-
tem, is implemented as an System on a Chip (SoC) on
an FPGA-based prototyping system for rapid prototyp-
ing. Figure 2 shows the overall structure of our SoC
implementation. The monitored system, running on a
Leon3 [7] processor, configured to operate at 50 MHz.
Snapgear Linux with a kernel version of 2.6.21.1 [18],
provided from the provider of the Leon3 processor, was
used as the operating system for the monitored system.
Both KI-Mon and the host processor use an S-compatible
shared bus [9] as an interconnection network. As can be
seen from Figure 2, the KI-Mon hardware platform has
been built on the same architecture base as that of the
host processor system, being augmented with new fea-
tures with event-triggered monitoring capabilities.

Other than VTMU, the hardware platform also in-
cludes a DMA module and a hash accelerator to support
snapshot-related features. As previously discussed, the
DMA module takes snapshots of the monitored system’s
memory and stores them in KI-Mon’s private memory.
The DMA module has two master interfaces and one
slave interface. One of the two master interfaces is con-
nected to the monitored system’s bus. The other is con-
nected to KI-Mon’s bus. With the master interfaces, the
module is capable of reading any regions of the mon-
itored system’s memory; it can then copy the contents
to the designated space in KI-Mon. The slave interface,
which is connected to the KI-Mon bus, is used for KI-
Veri in the software platform to make requests for snap-
shots. The hash accelerator generates SHA-1 hash val-
ues from given memory contents. The hash accelerator
has both slave and master interfaces to the KI-Mon bus.
The slave interface is used to receive requests for hashing
a certain region and returning the calculated hash value
to KI-Mon, and the master interface is used to read the
memory regions to be hashed.

VTMU is a core component of the KI-Mon hardware
platform. It generates HAW-events by snooping the host
bus traffic for modifications, filtering the traffic based on
the addresses and the values being written. By doing so,
traffic with addresses that do not belong to the monitored
regions is ignored, as are benign modifications in which
a whitelisted value is written. As mentioned in the pre-
vious section, VTMU registers are configurable via the
driver we implemented. The addresses of the monitored
regions and corresponding whitelists can be passed to
VTMU at any time, so the operation of VTMU can be
controlled even during runtime. In addition, the monitor-
ing capacity, such as the total number of regions moni-
tored simultaneously or the length of the whitelist, can

5

516 22nd USENIX Security Symposium USENIX Association

Figure 3: VTMU Internal Architecture Overview

be adjusted easily. More specifically, one can increase
the number of registers or simply place multiple VTMU
units in KI-Mon.

The operation of VTMU consists of three stages: bus
traffic snooping, address filtering, and value filtering.
The first stage of VTMU operations, bus traffic snoop-
ing, is implemented based on a shared bus architecture
that conforms to the AMBA 2 protocol. Modules at-
tached to the AMBA 2 AHB protocol bus are categorized
into masters and slaves. Masters are active modules that
access slave modules as needed, whereas slaves are pas-
sive modules that respond to the requests of masters. In
our implementation, the processor and DMA module are
master modules, and the memory controller (MCTRL),
serial port (UART), and VTMU are slave modules. The
gray box in Figure 2 shows the bus architecture of the
monitored system and the KI-Mon hardware platform.
Also, the connections of VTMU on the KI-Mon hard-
ware platform are shown. MuxM is a multiplexer unit
that passes only one master’s traffic to a slave. MuxM
is controlled by hardware logics called arbiters and de-
coders. These modules decide which master utilizes the
bus at each clock cycle. That is, only one master can
utilize the bus at each clock cycle, and all slaves receive
the same traffic from the master at each time. With this
hardware principle, we designed the bus traffic snoop-
ing stage of VTMU to acquire all memory traffic from
the monitored system by duplicating the output signals
of MuxM. The type of the traffic – whether the traffic in-
dicates a write operation or not – is checked with a simple
comparator, so that this stage only passes write-traffic to
the address filtering stage. The value filtering process is
the last stage of VTMU operations. The value filter is an
extension of the address filter in terms of the hardware
structure. While the address filter has 8 sets of 2 address
registers that store the starting and ending addresses of
the monitored regions, the value filter has 8 sets of 6 reg-
isters. This is because the 6 whitelist values correspond
to each of the 8 monitored regions.

Figure 4: KI-Mon API

The FIFO buffer stores the output of the filter until
that output is fetched by KI-Mon. Although a larger
FIFO would be more robust against bursty traffic, a
buffer length of 16 was sufficient for our current pro-
totype and experiment settings. The tag registers keep
track of whitelist values that match the occurred traffic.
The register is set once traffic hits the registers. With this
feature, KI-Mon can replace the values in the whitelist
registers as needed with the recently used values. For
instance, KI-Mon keeps the recently used values in the
whitelist registers and replaces those that have not re-
cently been used. The traffic that has passed through the
second stage is fed into the value filters. The value of
the traffic, or the value being written to the monitored re-
gions, is compared with the values stored in the whitelist
registers. If the traffic matches–meaning that this traf-
fic indicates benign changes–it is discarded; if the traffic
does not match, such bus traffic is stored in the FIFO
buffer unit. Finally, a HAW event is generated and trig-
gers KI-Veri to acquire the address and value pair, gener-
ated from the FIFO buffer. The overall view of VTMU’s
internal structure is illustrated in Figure 3.

3.2 KI-Mon Software Platform Prototype
KI-Veri, which is the main operator of the software plat-
form, is positioned at the monitor layer to coordinate
the monitoring rules, the API, and interactions with the
hardware components. The semantic layer implements
MonitoringRule, which defines the monitored regions,
whitelists, and corresponding actions. The data structure
layer adds abstractions to access the monitored system’s
raw memory contents, so that the raw data is parsed into
appropriate types and structures. Lastly, the raw data
layer contains the low-level drivers for the hardware plat-
form, which directly interacts with the monitored host
system’s memory interface. KI-Mon API consists of 913
lines of C code.

Upon the occurrence of an event, KI-Veri searches the
VTMU registers to find the MonitoringRule instance for
which the registers are reserved. Then, KI-Veri executes

6

USENIX Association 22nd USENIX Security Symposium 517

the HAW-event handler of the MonitoringRule instance
to verify which action needs to be invoked for the HAW-
event.

As shown in Figure 5, KI-Veri retrieves the pointer
to the MonitoringRule that is responsible for the HAW-
event. The HAW-event handler of this MonitoringRule
determines the action that needs to be taken for the given
addr and value pair. The pair contains the address, where
the modification has occurred and the value of the modi-
fication.

The class MonitoringRule is implemented as an
object-oriented C structure. It is designed to serve as a
template for writing a kernel integrity monitoring rule
on KI-Mon’s event-triggered mechanism. The class in-
cludes critical regions, corresponding whitelists, an ini-
tializer function, and the action functions. Figure 6 is a
pseudo code definition of the class MonitoringRule.

The CriticalRegion data structure defines the starting
and ending address of the monitored region as well as the
whitelist for the region. The initMonitoringRule can con-
tain initialization procedures such as acquiring of the ad-
dresses of the monitored data structures, which addresses
will be stored in the criticalRegion variable. The on-
HawEvent defines the action to be taken upon the arrival
of HAW-events from the hardware layer. If the Moni-
toringRule was of a HAW-based Verification template –
all write attempts to the monitored regions are consid-
ered malicious if they are not in the whitelist – the func-
tion can simply declare that an attack was detected. For
the MonitoringRules, which were written for a Callback-
based Semantic Verification template, onHawEvent can
call inspectIntegrity passing arguments as needed. Then,
the inspectIntegrity function verifies the modification re-
ported via HAW-event with memory snapshots collected
from the monitored system. Similarly, traceDataStruc-
tures can be called if onHawEvent sees that the HAW-
event generated signifies change in the location or size
of the monitored structure.

onHawEventFromVTMU(addr,value) {

monitoringRule = getMonitoringRuleFor(addr);

requiredAction = \

monitoringRule->HawEventHandler(addr,value);

if(requiredAction == INSPECT_NEEDED) {

monitoringRule->inspectIntegrity(argArray);

}

else if(requiredAction == RAISE_ALERT) {

monitoringRule->traceDataStructures(argArray);

}

else {

//Other requiredAction can be here

}

Figure 5: KI-Veri’s Main Routine

typedef struct MonitoringRuleType {

CriticalRegion criticalRegion;

void initMonitoringRule();

int (*onHawEvent)(addr,value);

int (*inspectIntegrity)(argArray);

int (*traceDataStructures)();

}MonitoringRule;

Figure 6: Class MonitoringRule

The functions and macros defined in the data struc-
ture layer can be used as building blocks for implement-
ing the action functions in MonitoringRules. The Data
Structure Acquisition Engine is the actual implementa-
tion of the layer. Memory snapshots extracted from the
monitored system’s memory are raw memory contents.
Since KI-Mon or any other external hardware monitor
does not have OS-managed metadata of the monitored
data structures, additional parsing and constructing of a
meaningful data structure out of the raw data is essential.

The Raw Data Layer consists of the low-level hard-
ware drivers that provide core functionalities for the up-
per layers. The VTMU Driver manages the memory
value verification units, which count up to 16 in our cur-
rent implementation. Each unit consists of 6 registers:
the first two registers store the starting and ending ad-
dresses of the interval to be monitored. The rest of the
registers store the whitelisted values referenced by the
comparators. It should be noted that the VTMU driver
only engages in the configuration of the hardware. That
means, the memory bus traffic monitoring can be effort-
lessly done in the hardware layer thus it is not neces-
sary for the driver to be running during the monitoring.
VTMU notifies the software stack of an event when a
write event to the monitored regions is detected. The
DMA Driver makes DMA requests to the monitored sys-
tem memory to acquire memory snapshots. The func-
tionality of the driver is rather straightforward: given
an address and size of a snapshot, it fetches the region
from the monitored system memory. The aforemen-
tioned Data Structure Acquisition Engine adds usabil-
ity to the snapshot-taking capability of the DMA mod-
ule. The Address Translation Engine translates the vir-
tual addresses of the monitored system into a physical
address. The Address Translation Engine implements
a virtual to physical address translation process of the
monitored system in KI-Mon. The Address Translation
Engine performs page table walks by fetching the corre-
sponding entries of the page table in the monitored sys-
tem’s memory.

7

518 22nd USENIX Security Symposium USENIX Association

3.3 KI-Mon MonitoringRule Examples

In order to illustrate the monitoring capabilities of KI-
Mon and the programmability of its API, we developed
two MonitoringRule examples against the two real-world
rootkit attacks, ported to operate on the Linux kernel
running on our prototype, where the VFS hooking at-
tack from Adore-NG is an example of an attack on ker-
nel control-flow components and the LKM hiding attack
from EnyeLKM is a kernel data component manipulation
attack.

The two examples that we choose, represent real-
world rootkit attacks on control-flow and data compo-
nents. We analyzed the open source real-world rootk-
its [39, 16, 27, 33, 1] and referenced works that analyzed
the behaviors of well-known rootkits [42, 35, 22, 19]. Ta-
ble 1 summarizes some of the attacks on kernel mutable
objects identified from the rootkits. These well-known
rootkits manipulate both the control-flow and the data
components. It is noticeable that the VFS hooking at-
tack and its variants, which manipulates the control-flow
components of Linux Virtual File System including the
proc file system (VFS) [24, 14], are popular for being
deployed to hide files, processes, and network connec-
tions. Also, the LKM hiding was a common behavior
among the analyzed rootkits. The attack manipulates a
module->list structure to hide an entry in the Loadable
Kernel Module (LKM) list. The rootkits utilize LKMs
as a means to inject kernel-level code into the victimized
kernel, and they launch the LKM hiding attack once their
malicious code is loaded in the kernel memory space.

One of the two MonitoringRules we implemented is
built using the HAW-based verification template to de-
tect the VFS hooking attack. The other MonitoringRule
is built using the Callback-based Semantic Verification
template to demonstrate the detection of the LKM hid-
ing attack. The rest of this subsection provides the two
attack examples and our MonitoringRules in detail.

VFS Hooking Attack: The Virtual File System
(VFS) [24, 14] provides an abstraction to accessing file
systems in the Linux kernel; all file access is made
through VFS in the modern Linux kernel. The kernel
maintains a unique inode data structure for each file,
which includes a fops data structure that stores pointers
to the VFS operation functions such as open, close, read,
write, and so forth. Various critical information about the
kernel, such as the network connections and the system
logs, are stored in the form of a file and are queried via
the VFS interface. Rootkits are capable of directly ma-
nipulating the functionalities of VFS. More specifically,
they can hook the VFS operation functions of the fops
data structure in a file to manipulate the contents read
from it. Examples of malicious exploitation of VFS in-
clude hiding network connections or running processes,

Table 1: Examples of Attacks on Mutable Kernel Objects

Rootkit
Name

Target
Object Type

Object
Type

Adore-NG 0.41 inode->i ops Control-flow
component

task struct->
{flags,uid,...}

Data
component

module->list Data
component

Knark 2.4.3 proc dir entry Control-flow
component

task struct->
flags

Data
component

module->list Data
component

Kis 0.9 proc dir entry Control-flow
component

tcp4 seq fops Control-flow
component

module->list Data
component

EnyeLKM 1.3 module->list Data
component

associated with the attacker. In Linux, /proc [24] con-
tains important files that maintain system information.
By hooking the VFS data structure that corresponds to
/proc, the adversary can deceive administrative tools that
rely on /proc for retrieving system information.

VFS MonitoringRule: The implemented VFS Moni-
toringRule applies the HAW-based Verification method
to detect VFS hooking attacks on /proc in the Linux
filesystem. We observe that the VFS operation func-
tion pointers in the fops data structure store the addresses
of the legitimate filesystem functions. For instance, the
VFS function pointers of the data structure of a file in
a ext3 filesystem, point to ext3 operations in the kernel
static region. In the same way, the fops data structure of
a file in an NTFS file system includes pointers to NTFS
operations. Using this property, we apply HAW-based
Verification to detect this particular attack. The procedu-
ral flow of the monitor is as follows: First, we trace the
exact location of the fops data structure using the DMA
module and Address Translation Engine. Next, we set
the function pointers as critical regions of the Monitor-
ingRule, and the location of the operation functions of
the known file systems – such as ext3, ext2, and NTFS –
as the whitelist. With these settings, VTMU notifies the
onHawEvent function of the MonitoringRule, which will
subsequently provide notification of this likely malicious

8

USENIX Association 22nd USENIX Security Symposium 519

event.
LKM Hiding Attack: Many rootkits take advantage

of the Linux kernel’s support of LKM. Initially designed
to support extending of the kernel code during runtime
without modifying and recompiling the entire kernel,
LKMs often serve as a means to inject malicious code
into the highest privilege level in a system. Moreover,
adversaries often manipulate the linked list data structure
that maintains the list of loaded LKMs in order to con-
ceal malicious LKM loaded in the kernel. The following
code line frequently appears in rootkits that are injected
via LKMs:

list_del_init(&__this_module.list);

The kernel function list del init removes the given en-
try from the list in which it belongs. The developers of
rootkits insert the code into the module init function, so
that the malicious LKM will be removed from the linked
list upon its load. If the snapshot is not taken immedi-
ately, this attack cannot be detected because it removes
itself from the linked list as soon as it gets loaded.

LKM MonitoringRule: LKM MonitoringRule ex-
emplifies the Callback-based Semantic Verification tem-
plate used in KI-Mon. By setting the next pointer of the
LKM linked list head as the critical region of the Mon-
itoringRule, KI-Mon gets notified of the insertion of a
new LKM as well as the address of the newly inserted
module structure. When a new LKM is inserted, the on-
HawEvent function of the MonitoringRule is triggered,
and it requests the DMA module to obtain a snapshot of
the new module’s code region and the hash accelerator to
hash the contents of the region.

The rest of the procedure to verify if the new LKM
is hidden from the list is as follows. First, the monitor
waits for 30 milliseconds. Note that the wait time before
this check is arbitrary. However, many rootkit LKMs in-
clude codes that hide the LKMs in the initialization func-
tion [39, 16, 27, 33]. Second, the linked list is traversed
with the Data Structure Acquisition Engine to check if
the inserted LKM is still in the list. Third, if the LKM
is not found in the list, we walk the page table using the
Address Translation Engine to verify that the virtual to
physical address mapping that correspond to the LKM’s
code region has been deleted. The Linux kernel frees the
memory regions of the LKM upon its removal. There-
fore, the absence of the page table mapping to the region
once occupied by the LKM indicates that the LKM was
normally removed. In case mapping does exist, the last
step of the procedure is executed. Recall that the monitor
took a hash of the LKM’s code region: we compare this
hash against the hash of the current contents of the phys-
ical memory. If the two hashes match, this indicates that
the LKM that was not found in the linked list iteration,
is not properly freed from the memory. In other words,

the inconsistency between the LKM linked list and the
memory contents reveals the LKM hiding attack.

A page table consistency check is used to avoid the
hash comparison of the memory contents, which requires
additional processing time and memory bandwidth. The
Linux kernel allocates the memory space for LKMs us-
ing vmalloc and de-allocates with vfree. The vmalloc
function allocates a physically non-contiguous region of
the requested size. That is, the allocated region is not
necessarily contiguous in the physical memory, but is
mapped to contiguous virtual addresses. Such non-linear
mapping in the page table is deleted as the region is freed,
using the vfree function. Therefore, the fact that the map-
ping is deleted in the page table assures that the LKM
object is freed in the memory.

Even when page table mapping exists, it does not nec-
essarily mean that a hidden LKM attack has occurred be-
cause the region that had been allocated for the LKM
was possibly freed already and reallocated for another
data object. Thus, a hash comparison of the region is
necessary to verify the contents of the region. The ker-
nel constantly allocates and de-allocates memory blocks
from the non-contiguous memory regions for vmalloc re-
quests. Therefore, it is likely that the freed region that
used to hold a data structure object will soon be allocated
for new one.

The consistency check is performed once, 30 millisec-
onds after the detection of a new LKM. This Monitor-
ingRule for the LKM hiding attack, is effective against
known LKM hiding technique, deployed in many real-
world rootkits. However, it is possible that rootkits evade
the single fixed-timed check by delaying the execution
of LKM hiding using a timer. To cope with such eva-
sions, we can simply adjust the MonitoringRule to sched-
ule multiple random-interval checks for each occurrence
of an LKM loading. For instance, we let the time of first
check in seconds t1 at the interval [0,5], the t2 at [5,20],
and so forth. By setting the lower bound of the random
interval of tn sufficiently long, we render the hiding at-
tack ineffective; the longer the attacker has to wait, the
effectiveness of the attack substantially diminishes.

4 Evaluation

In this section, we explain the experiments conducted to
prove the effectiveness of the event-triggered mechanism
employed in KI-Mon. The VFS MonitoringRule and
LKM MonitoringRule were implemented as explained
in the previous section. Both successfully detected the
example rootkit attacks. In this section, we discuss the
implications of the experiment with respect to evaluating
the design objectives O2.3: Minimal overhead on mon-
itored region and O2.4: Efficient monitoring processor
usage, which are defined in Section 2.

9

520 22nd USENIX Security Symposium USENIX Association

In addition to the experiments that will be presented
and discussed in this section, we conducted an experi-
ment on VTMU whitelist register replacement scheme
for large whitelists. While the replacement scheme im-
proves the scalability aspect of KI-Mon, it is rather sup-
plemental to the main experiments. Therefore the exper-
iment is not discussed in this section, but included in the
Appendix section.

In the first experiment, we measured the performance
overheads, inflicted on the monitored host system by KI-
Mon and by a snapshot-only monitor using the LKM
MonitoringRule example. Using the same example, KI-
Mon’s efficiency, in terms of the CPU usage of the
monitoring processor, is presented in the second exper-
iment. The third experiment, which is performed using
the LKM MonitoringRule example, compares the detec-
tion rate of KI-Mon’s event-triggered mechanism with
that of the snapshot-only monitor against frequently re-
curring LKM hiding attacks.

One desirable requirement for an external kernel in-
tegrity monitor is to minimize the performance overhead
imposed on the target system. Taking exhaustive mem-
ory snapshots would incur a memory bus contention,
which in turn would be a major cause of performance
degradation of the monitored system. KI-Mon mini-
mizes the performance degradation by applying efficient
event-triggered monitoring based on the VTMU hard-
ware module. The snapshot-only version of the VFS
monitor was implemented for this experiment. In ad-
dition to the monitoring of the inode data structure of
/proc, the monitor also performs hash checking on the
static regions of the kernel. This corresponds to the de-
fault MonitoringRule, which thwarts all modifications to
the static regions, in KI-Mon. Here, two benchmarks are
used, STREAMBENCH [25], and RAMSPEED [20] to
measure the impact on the memory bandwidth perfor-
mance of the monitored system. These two open-source
benchmark tools were ported to our platform with minor
modifications: we replaced the floating-point tests with
integer tests because the processor on our current proto-
type does not support floating-point instructions. In ad-
dition, we modified the total size of the memory used for
the benchmark because the monitored system only has
64 MB of RAM.

Figure 7 shows the average of 10 trials of the measure-
ment using the two benchmark tools. The snapshot-only
monitor inevitably incurs performance overhead that is
directly proportional to the frequency of the snapshot
taking. In order to monitor more dynamic data struc-
tures in the dynamic regions of a kernel, the frequency
needs to be increased accordingly. This is, however, an
inefficient approach to the monitoring of the dynamic re-
gions. KI-Mon implements an event-triggered monitor-
ing mechanism that overcomes this inherent limitation

Figure 7: Performance Impact of Snapshots on Moni-
tored System (Avg. of 10 trials): The performance over-
head caused by snapshot-only monitor increases as the
snapshot interval shortens. When the snapshot interval
falls below 1ms, the memory bandwidth of the monitored
system drops more than 20%.

of the snapshot-only monitor for an efficient form of dy-
namic region monitoring. The detection of modifications
in KI-Mon does not operate on a periodic basis; VTMU
filters memory modification events and trigger the soft-
ware platform only when an event requires further veri-
ficaiton.

4.1 Monitor Processor’s CPU Usage
Efficient usage of the CPU and memory bandwidth is
another beneficial aspect for a hardware-based external
monitor, such that the monitor can be implemented even
with less powerful hardware components. We inserted
checkpoints in the software components of KI-Mon and
the snapshot-only monitor to analyze the CPU usage of
the two monitoring mechanisms. We used the LKM hid-
ing attack example to illustrate the difference in CPU us-
age between KI-Mon and the snapshot-only monitor.

Figure 8 shows the execution timeline of the two mon-
itoring schemes. The clock() function, which is from the
standard Linux library, was placed at the beginning and
in the end of each functions to record processor times.
The snapshot-only monitor repeats the snapshot-based
polling before eventually capturing the existence of a
newly inserted LKM, whereas KI-Mon stays idle until a
HAW-event is received from VTMU. The snapshot-only
monitor keeps the external monitor’s CPU active with the
snapshot polling until the occurrence of an event.

Each block represents functions that are executed by
the LKM MonitoringRule upon the insertion of an LKM
by KI-Mon and the snapshot-only monitor. Note that the
functions executed after the detection of the events are
the same for both monitors. Each snapshot used in the
polling takes 400 microseconds of CPU time to read 16
bytes of the LKM linked list head. The getLKMHash()
took 5600 microseconds for 280 bytes to take a snapshot

10

USENIX Association 22nd USENIX Security Symposium 521

of the code section of the LKM. The checkLKM() spent
2000 microseconds of CPU time to iterate the LKM
linked list of 6 entries to find the newly inserted mod-
ule. Because it found that the newly inserted module is
missing in the list, it took another 1750 microseconds
of CPU time to look up the page table entry of the LKM
address. The compareHash() is finally executed and took
5600 microseconds to take a snapshot of the region that is
supposedly the code section of the hidden LKM to con-
firm that the LKM is indeed hidden. Thus, a total of
14950 microseconds of CPU time were used to verify the
event. KI-Mon only uses a total of 14950 microseconds
of CPU time for the example, whereas the snapshot-only
monitor uses additional CPU time for snapshot polling.
Although only a part of the snapshot polling is shown in
Figure 8, it should be noted that the polling is constantly
running to consume CPU time.

In addition, this particular trial represents a case in
which the snapshot-only monitor detects the LKM inser-
tion event; the snapshot-only monitor does not always
detect the event. Discussion of the detection rates will be
presented later in this section.

While Figure 8 shows the state of the CPU, Figure
9 compares CPU usage rates between the snapshot-only
monitor and KI-Mon. The CPU cycles consumed were
calculated from the processor times that we obtained for
8. Before the occurrence of the attack, the snapshot-only
monitor shows a steady usage over 106 cycles per sec-
ond while KI-Mon does not consume any CPU cycles.
At 18 seconds from the origin, an LKM hiding attack
was launched using the rootkit sample and both mon-
itoring mechanisms detected the modification and exe-
cuted the verification procedures, which consume CPU

Figure 8: CPU State during Operation of KI-Mon
and Snapshot-only Monitor: X-axis represents the time
elapsed in microseconds, and Y-axis represents the CPU
state as either busy or idle. The labels in each blocks are
the names of the functions being executed during that
time.

Figure 9: CPU Cycles Consumed in Operation of KI-
Mon and Snapshot-only monitor: X-axis represents the
time elapsed in seconds, and Y-axis represents the sum
of CPU cycles of the external monitor used in log-
scale. The vent at 18th second is the LKM hiding attack.
Snapshot-only monitor constantly consumes CPU cycles
whereas KI-Mon stays idle until an event is occurred.

cycles. The snapshot-only monitor consumes additional
CPU cycles to verify the event on top of the periodic
polling, whereas KI-Mon consumes only the required
number of cycles for verification.

The fundamental difference in the monitoring mech-
anisms is shown in this experiment. For the snapshot-
only monitor to detect an event that occurs with a time
interval of t seconds with a snapshot-polling frequency
of f hz, a total number of snapshots n is calculated as
t ∗ f . The times of occurrences of modification events
on the monitored data structures are often unpredictable.
For instance, connecting a new USB device to a Linux
machine might trigger the loading of a corresponding
driver LKM. Even for such unpredictable rare events,
however, the snapshot-only monitor has no choice but
to keep taking snapshots for possible events. Moreover,
the frequency of the snapshots may need to be increased
to keep up with frequently-changing objects, and this in-
creases the number of snapshots used for polling.

KI-Mon does not consume CPU cycles until an event
triggers its operation, whereas the snapshot-only moni-
tor continuously consumes a significant number of CPU
cycles until an event is captured. KI-Mon overcomes the
inefficiency of the snapshot-only model with its event-
triggered mechanism. VTMU replaces the snapshot
polling with bus traffic without consuming any CPU cy-
cles because it snoops the bus traffic for modification
events. Also, not all events need to be inspected in KI-
Mon’s mechanism since VTMU filters known legitimate
changes with HAW.

11

522 22nd USENIX Security Symposium USENIX Association

Table 2: Detection rate against 100 trials of recurring
LKM hiding attack

1khz Snapshot Max-frequency
Snapshot
(over 10khz)

KI-Mon

4% detected 70% detected 100% detected

4.2 Detection Rate Against Recurring At-
tacks

The detection rates against frequent and recurring mod-
ifications were measured using an LKM hiding attack.
As explained in the previous section, many real-world
rootkits [1] hide themselves from the LKM linked list
when they load. Therefore, the head of the linked list
changes for a short period of time, then reverts to the
original value. We tested the detection rate for 100 oc-
currences of such an attack with KI-Mon and with the
snapshot-only monitor using 1khz and 10khz, the maxi-
mum frequency.

Table 2 shows the results of this experiment. The
snapshot-only monitor only detected 4% of the attacks
with a frequency of 1khz, and 70%, with a maximum
frequency that is over 10khz. On the other hand, KI-Mon
detected all occurrences of attacks. As shown in this
experiment, the snapshot-only monitor cannot reliably
detect all modifications even with full-throttle snapshot
polling. However, KI-Mon maintains a continuous view
on mutable kernel object with its event-triggered mon-
itoring mechanism. That is, VTMU’s bus traffic moni-
toring enables tracing of the history of the modifications
made to the monitored region. This indicates that KI-
Mon is capable of keeping a history of all modifications
of the monitored region.

There are cases in which the history of modifications
can be used for validation of integrity. This means that
the fact that value x was written to the region becomes
a trigger for the integrity verification condition y. To be
more concrete with the LKM hiding example, KI-Mon
detects all LKM insertion events, and then performs an
integrity validation for each one of those events. On the
other hand, the snapshot-only monitor only detects 70%
of the LKM insertions, with 30% of the events were not
even given an attempt for verification. The experiment
shows the inherent difference in the monitoring mecha-
nisms and proves why KI-Mon is more suitable for mon-
itoring of the dynamic regions of the kernel.

5 Related Work

KI-Mon is an external hardware-based platform that en-
ables event-triggered kernel integrity monitoring. Moni-
toring rules can be implemented using the KI-Mon API

to monitor mutable kernel objects with invariants. In
order to discuss the novelty of our work, we introduce
previous works about hardware-based integrity monitor-
ing, monitoring of mutable kernel objects in general,
and event-triggered monitoring. We also briefly discuss
works that adopt the concept of an independent auditor,
and VMM self-protection.

5.1 Hardware-based Kernel/VMM In-
tegrity Monitoring

Before VMM became a popular platform on which to
build kernel integrity monitors, several hardware-based
operating system kernel monitors were proposed. Zhang
et al. [43] was one of the first to propose the concept
of integrity monitoring with a coprocessor. Petroni et
al. [29] presented Copilot, an external hardware-based
kernel integrity monitor based on memory snapshot in-
spection for static kernel regions.

When virtualization technology emerged, many
VMM-based approaches to kernel integrity monitoring
were also introduced. A majority of works in ker-
nel integrity monitoring were implemented on VMMs
due to the ease of development. However, the expan-
sion of VMMs in both code size and complexity, as
well as the attention of researchers and attackers, pro-
pelled the discovery of vulnerabilities in VMMs them-
selves [5, 4, 2, 3]. As a consequence, works that strived
to secure the integrity of VMMs with the assistance
of hardware support were presented to address the is-
sue [10, 40]. An alternative approach was to implement
minimalistic VMMs, so that static analysis could be ap-
plied to the minimized attack surface to mitigate vulner-
ability [37, 23, 36].

HyperSafe [41] took a different approach. This work
proposed a self-protection scheme to ensure the integrity
of the static region and control flow of VMMs. Azab et
al. proposed HyperSentry [10], a VMM-integrity mon-
itor framework in which the root-of-trust is a hardware
component (Intel SMM). Recently, in line with Copi-
lot [29], Moon et al. presented Vigilare [26], which
introduces the concept of snoop-based monitoring for
static immutable regions of operating system kernels us-
ing SoC hardware.

5.2 Event-triggered Monitoring
Works that deploy event-triggered monitoring have been
presented, following the existing snapshot-based moni-
toring schemes. Payne et al. [28] presented Lares, which
provides a VMM-based platform to add hooks to the
monitored system for monitoring; however, their work
lacks monitoring schemes that use the proposed tech-
nique. KernelGuard [34] and OSck [19], mentioned

12

USENIX Association 22nd USENIX Security Symposium 523

in previous section, used the event-triggered monitor-
ing scheme in their works. KernelGuard, by hooking
the VMM hypercall, achieved an event-triggered method
to map and monitor dynamic regions of the kernel. In
addition, OSck adopted both snapshot-based and event-
triggered schemes, and used event-triggered schemes to
monitor static regions of the kernel.

Even though previous works have dealt with the mon-
itoring of kernel dynamic regions with event-triggered
monitoring, they are all designed on VMM-based plat-
forms. On the other hand, KI-Mon implements an
event-triggered monitoring scheme as well as having
a hardware-based platform on which the monitoring
scheme operates. VMM-based event-triggered tech-
niques such as hypercalls or page fault handler hooking
are limited to VMM-based platforms.

Vigilare was the first external hardware-based sys-
tem to introduce event-triggered monitoring with its bus
snooping [26]. However, its snooper module was only
capable of detecting the occurrence of write traffic on
a fixed immutable region. It could not extract a newly
updated value from a modification event, nor could it
trigger any further verification processing with the event.
Thus, Vigilare’s definition of an event is rather primitive
and was only sufficient for monitoring a fixed immutable
region in the kernel. In order to monitor mutable kernel
objects with invariants, KI-Mon refines event generation
from bus traffic monitoring by extracting an address and
value pair for each event; its hardware-assisted whitelist-
ing scheme eliminates unnecessary event generation for
repeated benign updates. Also, its callback-based seman-
tic verification scheme enables monitoring of mutable
kernel objects with semantic invariants.

5.3 Monitoring Dynamic Regions of Ker-
nel

Early works in integrity monitoring of operating system
kernels have focused on the integrity of static regions.
Since monitoring static regions is rather straightforward,
many kernel integrity monitors apply similar techniques
such as hash checking [29]. Unlike that for static re-
gions, monitoring of dynamic regions of kernels has in-
herent challenges. As studies have progressed in VMM-
based and hardware-based integrity monitoring, numer-
ous works on the monitoring of kernel dynamic regions
have been presented [6, 31, 34, 13, 30, 41, 15].

The contents of the dynamic regions of kernels can be
mainly put into two categories: control-flow related data
and non-control-flow related data. Monitoring the link-
ages of control-flow related data, which is also known as
Control-Flow Integrity (CFI), was introduced by Abadi
et al. [6]. Petroni and Hicks [31] defined State-Based
Control Flow Integrity (SBCFI) of Linux kernels. This

system is an approximation of CFI. They implemented
a monitor that checks the SBCFI of the Linux kernel
on a VMM-based platform. Rhee et al. proposed Ker-
nelGuard [34] to watch dynamic data of a Linux kernel
on a VMM-based platform. Carbone et al. proposed
KOP [15], which aimed to map dynamic kernel data
from a memory dump of the monitored system. More
recently, Hofmann et al. presented OSck [19], which
implemented existing monitoring schemes comprehen-
sively with the addition of self-created rootkit attacks and
detection mechanisms for monitoring kernel dynamic re-
gions on a VMM-based platform.

KI-Mon focuses on providing an event-triggered
mechanism as an architectural foundation for monitor-
ing mutable kernel objects with invariants. Although KI-
Mon’s main objective is not to monitor the dynamic re-
gions of a kernel as a whole, the architecture of KI-Mon
and its API leaves room for extensions that may cover
more mutable objects in the dynamic regions of the ker-
nel.

6 Limitations and Future Work

KI-Mon is a novel hardware-based platform of event-
triggered monitoring. Its concepts are shown through ex-
periments with a prototype. Nevertheless, development
of a new platform that incorporates both hardware and
software components is a rather formidable task. The
current prototype of KI-Mon is not at in its full maturity.
We describe the limitations of the current prototype in
this section.

The current prototype has a total of eight address reg-
isters for the snooper module. Depending on the required
monitoring coverage for KI-Mon, tens or even hundreds
of MonitoringRules might run concurrently, which in
turn may require a large number of address registers.
Design constraints such as hardware cost and chip area
would possibly limit the number of registers that can be
equipped. For this reason, we plan to explore the possi-
bility of improving the snooper module to utilize a dedi-
cated memory space in addition to the provided registers.
On the other hand, we can modify the host kernel’s mem-
ory allocation mechanism if the source code of the kernel
is provided. More specifically, the kernel can be modi-
fied to allocate the monitored data structure of the same
types in a contiguous physical memory space so that less
number of registers are required for efficient enforcement
of MonitoringRules.

We also consider a quantitative estimation of the re-
quirements for KI-Mon’s processing power as future
work. We used the same processor for the monitored
host and KI-Mon for the prototype. When the monitored
host operates at much faster clock speed compared to that
of our prototype, the processing power requirements for

13

524 22nd USENIX Security Symposium USENIX Association

KI-Mon needs to be investigated. While it is fairly un-
complicated to design a snooper module that operates at
the bus clock speed of the host, the processing power re-
quirements for KI-Mon depend on several other factors
such as the required number of MonitoringRules and the
computation complexity of each rule. The snooper mod-
ule is designed to drop incoming HAW-events when its
queue is full, hence the optimum combination of the size
of the queue and processor speed of KI-Mon needs to be
explored.

This paper focuses on illustrating the capability of the
KI-Mon platform to efficiently enforce kernel invariants
with a principle of event-triggered monitoring. Although
the generation of invariants on mutable kernel objects
was not discussed as it would exceed the scope of this
paper, automation of kernel invariant extraction is an-
other avenue in kernel integrity monitoring. Existing
works in the topic aim to infer and enforce invariants for
each data structure type used in the operating system ker-
nel [12, 30]. Developing or adapting such tools, as well
as creating an API extension that can automatically build
monitoring rules for KI-Mon based on extracted invari-
ants, will be essential improvements for KI-Mon in terms
of applicability.

We discharge a few classes of attacks that are beyond
the scope of this paper. Attacks only tampering with
processor registers or caches are not considered in this
work. Although it might be theoretically possible to de-
vise a rootkit that can reside only in registers and caches,
it would be practically impossible to leave no footprint
in the memory or in the system bus. Such hypothetical
rootkits are not within the scope of this paper. Bahram
et al. [11] explain that the existing virtual machine intro-
spection tools are vulnerable to DKSM attacks. Just like
these VMM-based introspection tools, KI-Mon is also
vulnerable to such types of attack that exploit the seman-
tic gap between the monitor and the monitored host sys-
tem. Difficulties with semantic gaps are an innate weak-
ness of external monitors. To overcome the issue, one
possible extension [11, 38] would be the planting of an
in-host agent that can interact with KI-Mon. However, it
is also notable that KI-Mon is resilient to TLB poisoning
attacks. This is because, unlike VMM-based monitors,
KI-Mon does not depend on the TLB cache. Instead,
KI-Mon walks the host page tables to perform virtual to
physical address translation. The KI-Mon processor is
independent of the monitored host system, so it cannot
use the host processor’s TLB cache.

In addition, we assume that the caches on the host fol-
low a write-through policy, and that the update traffic to
registers will always appear on the bus. Today’s proces-
sors have a more than 2 level memory hierarchy. The
level 2 or higher caches usually use a write-back policy to
replace their cache contents. Therefore, if memory traf-

fic is monitored from outside these caches, much of the
memory access history would be lost. However, many
modern processors have a write-through policy for their
level 1 caches [21, 8]. In our hardware design, we con-
nect VTMU right below the L1 write-through cache so
that KI-Mon can monitor the whole memory access his-
tory of the host processor in a timely manner. This design
is viable for some architectures such as ARM Cortex,
which do not integrate an L2 cache inside the processor
core, but rather only include the L1 cache while provid-
ing an interface to the L2 cache that can be assembled
later into an SoC along with other hardware components
like VTMU.

7 Conclusion

In this paper, we have presented KI-Mon, an external
hardware-based monitoring platform that operates on
an event-triggered mechanism based on a VTMU hard-
ware unit. Unlike the existing external hardware-based
approaches, KI-Mon is an event-triggered verification
mechanism, designed to monitor the integrity of dynamic
regions of kernels.

We built the KI-Mon prototype on an FPGA-based de-
velopment board and evaluated the possibility of mon-
itoring dynamic data structures using LKM attack and
VFS attack examples. KI-Mon is designed to operate
independently of the monitored host system; thus, its op-
eration remains unaffected even when the host is com-
promised by a rootkit. The hardware platform monitors
the host bus traffic and generates events, assisted by its
whitelisting capability of filtering benign updates, so that
the monitor will not be triggered by common benign up-
dates. This HAW-generated event triggers the software
platform to execute verification routines. Also, the KI-
Mon API has been developed to support the programma-
bility of the monitoring rules that takes advantage of this
event-triggered verification scheme.

Our experiments have showed that KI-Mon consumes
significantly fewer CPU cycles due to its event-triggered
mechanism because it eliminates the need of constant
snapshot-based polling of the monitored region. We have
also showed that even at the maximum frequency, the
snapshot-only monitor missed 30% of LKM hiding at-
tacks, while KI-Mon was able to detect 100% of the at-
tacks. Overall, KI-Mon lays an architectural foundation
for an event-triggered kernel monitoring mechanism on
an external hardware-based monitor.

8 Acknowledgments

We would like to thank our shepherd Niels Provos
and the anonymous reviewers for insightful com-

14

USENIX Association 22nd USENIX Security Symposium 525

ments and suggestions. This research was supported
by MOTIE(The Minister of Trade, Industry and En-
ergy), Korea, under the BrainScoutingProgram(HB609-
12-3002) by the NIPA(National IT Promotion Agency).

This research is also based on work supported by
the Engineering Research Center of Excellence Pro-
gram of Korea Ministry of Science, ICT & Future Plan-
ning(MSIP) (NRF-2008-0062609), and the Center for
Integrated Smart Sensors funded by the Ministry of
Education, Science and Technology as Global Frontier
Project (CISS-20126054193).

References
[1] http://packetstormsecurity.com/UNIX/penetration/

rootkits. Last accessed Sep 4, 2012.

[2] Vmware: Vulnerability statistics. http://www.cvedetails.

com/vendor/252/Vmware.html. Last accessed April 4, 2012.

[3] Vulnerability report: Vmware esx server 3.x. http://secunia.
com/advisories/product/10757. Last accessed April 4,
2012.

[4] Vulnerability report: Xen 3.x. http://secunia.com/

advisories/product/15863. Last accessed April 4, 2012.

[5] Xen: Security vulnerabilities. http://www.cvedetails.com/
vulnerability-list/vendor_id-6276/XEN.html. Last
accessed April 4, 2012.

[6] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity. In Proceedings of the 12th ACM confer-
ence on Computer and communications security (New York, NY,
USA, 2005), CCS ’05, ACM, pp. 340–353.

[7] AEROFLEX GAISLE. GRLIB IP Core User’s Manual, January
2012.

[8] ARM. Cortex-A Series Programmers Guide, January 2011.

[9] ARM LIMITED. AMBATM Specification, May 1999.

[10] AZAB, A. M., NING, P., WANG, Z., JIANG, X., ZHANG,
X., AND SKALSKY, N. C. Hypersentry: enabling stealthy in-
context measurement of hypervisor integrity. In Proceedings of
the 17th ACM conference on Computer and communications se-
curity (New York, NY, USA, 2010), CCS ’10, ACM, pp. 38–49.

[11] BAHRAM, S., JIANG, X., WANG, Z., GRACE, M., LI, J.,
SRINIVASAN, D., RHEE, J., AND XU, D. Dksm: Subverting
virtual machine introspection for fun and profit. In Reliable Dis-
tributed Systems, 2010 29th IEEE Symposium on (31 2010-nov. 3
2010), pp. 82 –91.

[12] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic in-
ference and enforcement of kernel data structure invariants. In
Proceedings of the 24th Annual Computer Security Applications
Conference (2008), ACSAC ’08.

[13] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Detecting
kernel-level rootkits using data structure invariants. Dependable
and Secure Computing, IEEE Transactions on 8, 5 (sept.-oct.
2011), 670 –684.

[14] BOVET, D. P., AND CESATI, M. Understanding the Linux Ker-
nel, 2 ed. OReilly and Associates, Dec. 2002.

[15] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND
JIANG, X. Mapping kernel objects to enable systematic integrity
checking. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (2009), CCS ’09, ACM.

[16] CYBERWINDS. knark-2.4.3.tgz. http://

packetstormsecurity.com/files/24853/knark-2.

4.3.tgz.html. Last accessed Sep 4, 2012.

[17] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security (New York, NY, USA, 2008), CCS ’08, ACM,
pp. 51–62.

[18] HELLSTRÖM, D. SnapGear Linux for LEON. Gaisler Research,
November 2008.

[19] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND
WITCHEL, E. Ensuring operating system kernel integrity with
osck. In Proceedings of the sixteenth international conference
on Architectural support for programming languages and oper-
ating systems (New York, NY, USA, 2011), ASPLOS ’11, ACM,
pp. 279–290.

[20] HOLLANDER, R. M. Ramspeed, a cache and memory bench-
marking tool. http://www.alasir.com/ramspeed/. Last ac-
cessed April 30, 2012.

[21] INTEL. Intel 64 and IA-32 Architectures Software Developers
Manual, Aug 2012.

[22] JUNGHWAN RHEE, D. X. Livedm: Temporal mapping of dy-
namic kernel memory for dynamic kernel malware analysis and
debugging. Tech. rep., 2 2010.

[23] KANEDA, K. Tiny virtual machine monitor. Http://www.yl.

is.s.u-tokyo.ac.jp/~kaneda/tvmm/.

[24] LOVE, R. Linux Kernel Development, 3 ed. Addison Wesley,
Nov. 2010.

[25] MCCALPIN, J. D. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newslet-
ter (Dec. 1995), 19–25.

[26] MOON, H., LEE, H., LEE, J., KIM, K., PAEK, Y., AND KANG,
B. B. Vigilare: toward snoop-based kernel integrity monitor.
In Proceedings of the 2012 ACM conference on Computer and
communications security (New York, NY, USA, 2012), CCS ’12,
ACM, pp. 28–37.

[27] OPTYX. Kis 0.9. http://packetstormsecurity.com/

files/25029/kis-0.9.tar.gz.html. Last accessed Sep 4,
2012.

[28] PAYNE, B. D., CARBONE, M., SHARIF, M., AND LEE, W.
Lares: An architecture for secure active monitoring using virtual-
ization. In Proceedings of the 2008 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2008), SP ’08, IEEE Com-
puter Society, pp. 233–247.

[29] PETRONI, JR., N. L., FRASER, T., MOLINA, J., AND AR-
BAUGH, W. A. Copilot - a coprocessor-based kernel runtime
integrity monitor. In Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13 (Berkeley, CA, USA,
2004), SSYM’04, USENIX Association, pp. 13–13.

[30] PETRONI, JR., N. L., FRASER, T., WALTERS, A., AND AR-
BAUGH, W. A. An architecture for specification-based detec-
tion of semantic integrity violations in kernel dynamic data. In
Proceedings of the 15th conference on USENIX Security Sympo-
sium - Volume 15 (Berkeley, CA, USA, 2006), USENIX-SS’06,
USENIX Association.

[31] PETRONI, JR., N. L., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of the
14th ACM conference on Computer and communications security
(New York, NY, USA, 2007), CCS ’07, ACM, pp. 103–115.

[32] RAFAL WOJTCZUK, JOANNA RUTKOWSKA, A. T. Xen
0wning trilogy. http://invisiblethingslab.com/itl/

Resources.html, 2008.

15

526 22nd USENIX Security Symposium USENIX Association

[33] RAISE. Enye lkm rookit modified for ubuntu 8.04.
http://packetstormsecurity.com/files/75184/

Enye-LKM-Rookit-Modified-For-Ubuntu-8.04.html.
Last accessed Sep 4, 2012.

[34] RHEE, J., RILEY, R., XU, D., AND JIANG, X. Defeat-
ing dynamic data kernel rootkit attacks via vmm-based guest-
transparent monitoring. In Availability, Reliability and Secu-
rity, 2009. ARES ’09. International Conference on (march 2009),
pp. 74 –81.

[35] RHEE, J., RILEY, R., XU, D., AND JIANG, X. Kernel malware
analysis with un-tampered and temporal views of dynamic ker-
nel memory. In Proceedings of the 13th international conference
on Recent advances in intrusion detection (Berlin, Heidelberg,
2010), RAID’10, Springer-Verlag, pp. 178–197.

[36] RUSSELL, R. Lguest: The simple x86 hypervisor. http://

lguest.ozlabs.org/. Last accessed April 31, 2012.

[37] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity oses. In Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles (New York, NY, USA,
2007), SOSP ’07, ACM, pp. 335–350.

[38] SHARIF, M. I., LEE, W., CUI, W., AND LANZI, A. Secure
in-vm monitoring using hardware virtualization. In Proceedings
of the 16th ACM conference on Computer and communications
security (New York, NY, USA, 2009), CCS ’09, ACM, pp. 477–
487.

[39] TESO, S. adore-ng-0.41.tgz. http://packetstormsecurity.
com/files/32843/adore-ng-0.41.tgz.html. Last ac-
cessed Sep 4, 2012.

[40] WANG, J., STAVROU, A., AND GHOSH, A. Hypercheck: A
hardware-assisted integrity monitor. In Recent Advances in In-
trusion Detection, S. Jha, R. Sommer, and C. Kreibich, Eds.,
vol. 6307 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2010, pp. 158–177. 10.1007/978-3-642-15512-3-9.

[41] WANG, Z., AND JIANG, X. Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In Proceed-
ings of the 31st IEEE Symposium on Security and Privacy (2010).

[42] WANG, Z., JIANG, X., CUI, W., AND WANG, X. Countering
persistent kernel rootkits through systematic hook discovery. In
Proceedings of the 11th international symposium on Recent Ad-
vances in Intrusion Detection (Berlin, Heidelberg, 2008), RAID
’08, Springer-Verlag, pp. 21–38.

[43] ZHANG, X., VAN DOORN, L., JAEGER, T., PEREZ, R., AND
SAILER, R. Secure coprocessor-based intrusion detection. In
Proceedings of the 10th workshop on ACM SIGOPS European
workshop (New York, NY, USA, 2002), EW 10, ACM, pp. 239–
242.

A Appendix

A.1 VTMU Replacement Algorithm for
Large Whitelists

In order to utilize KI-Mon’s memory space as an additional
storage for whitelist values. We preliminarily implemented an
approximation of the LRU replacement scheme, which swaps
between the values in the registers and those in memory. The
tag registers is set when the value written to the monitored re-
gion matches the value in a whitelist register, all tag registers
are cleared when all the tag registers are set. KI-Mon compares
the update value with the whitelist values in the registers as well

as those in the memory. When a match has occurred with the
one in the memory, KI-Mon swaps the matched whitelist value
with a value in a register whose tag value is 0.

Figure 10: Whitelist LRU test results: X-axis of graph indi-
cates parameter h, length of history locality, and the legend in-
dicates the parameter r, the rate of locality. Y-axis of the graph
shows the hit ratio.

We evaluated the replacement scheme with an experiment in
which synthesized bus traffic was used as the input. The char-
acteristic of the synthesized bus traffic is modeled with two pa-
rameters: length of locality h and rate of locality r. We imple-
mented a traffic generator that writes a value to the monitored
the region of VTMU, so that the traffic will trigger the opera-
tion of the replacement scheme. The traffic generator chooses
a value out of the 100 whitelist values, which consist of h local
values and 100− h non-local values. Among these values, we
choose a local number out of the h local number with a proba-
bility of r, and presumably a non-local number from the 100−h
non-local pool with a probability of 1− r. Note that higher r or
lower h would generate a more local model in this setting.

Figure 10 shows the results of the experiment. We see that
for traffic patterns with less locality, which were generated with
higher h or lower r, the hit ratio is lower. This means that our re-
place scheme is less effectively utilized for this particular traffic
pattern. For cases with high locality, however, the hit ratio is
higher than 50% and tops out at 90%. Note that the number of
whitelist registers is much smaller than the whitelist, which has
100 entries. This means that the approximate preliminary LRU
scheme helps KI-Mon deal with large whitelists in situations
in which where the pattern of benign updates on the monitored
regions are local. For every miss, KI-Veri needs to manually
check if the modification is legitimate using the whitelist val-
ues that are stored in KI-Mon’s main memory. This procedure
takes a minimal number of CPU cycles; nevertheless, it could
burden the CPU in cases of bursty traffic. While the snapshot-
only model consumes CPU cycles for comparing any modified
value with the whitelist values for every detection of modifi-
cations, KI-Mon only needs to perform a comparison with a
probability of 1−hitratio.

16

USENIX Association 22nd USENIX Security Symposium 527

WHYPER: Towards Automating Risk Assessment of Mobile Applications

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, Tao Xie
North Carolina State University, Raleigh, NC, USA

{rpandit, xxiao2, wei.yang}@ncsu.edu {enck, xie}@csc.ncsu.edu

Abstract
Application markets such as Apple’s App Store and

Google’s Play Store have played an important role in the
popularity of smartphones and mobile devices. However,
keeping malware out of application markets is an ongo-
ing challenge. While recent work has developed various
techniques to determine what applications do, no work
has provided a technical approach to answer, what do
users expect? In this paper, we present the first step in
addressing this challenge. Specifically, we focus on per-
missions for a given application and examine whether the
application description provides any indication for why
the application needs a permission. We present WHY-
PER, a framework using Natural Language Processing
(NLP) techniques to identify sentences that describe the
need for a given permission in an application description.
WHYPER achieves an average precision of 82.8%, and
an average recall of 81.5% for three permissions (address
book, calendar, and record audio) that protect frequently-
used security and privacy sensitive resources. These re-
sults demonstrate great promise in using NLP techniques
to bridge the semantic gap between user expectations and
application functionality, further aiding the risk assess-
ment of mobile applications.

1 Introduction

Application markets such as Apple’s App Store and
Google’s Play Store have become the de facto mech-
anism of delivering software to consumer smartphones
and mobile devices. Markets have enabled a vibrant soft-
ware ecosystem that benefits both consumers and devel-
opers. Markets provide a central location for users to
discover, purchase, download, and install software with
only a few clicks within on-device market interfaces. Si-
multaneously, they also provide a mechanism for devel-
opers to advertise, sell, and distribute their applications.
Unfortunately, these characteristics also provide an easy

distribution mechanism for developers with malicious in-
tent to distribute malware.

To address market-security issues, the two predom-
inant smartphone platforms (Apple and Google) use
starkly contrasting approaches. On one hand, Apple
forces all applications submitted to its App Store to un-
dergo some level of manual inspection and analysis be-
fore they are published. This manual intervention allows
an Apple employee to read an application’s description
and determine whether the different information and re-
sources used by the application are appropriate. On the
other hand, Google performs no such checking before
publishing an application. While Bouncer [1] provides
static and dynamic malware analysis of published appli-
cations, Google primarily relies on permissions for se-
curity. Application developers must request permissions
to access security and privacy sensitive information and
resources. This permission list is presented to the user at
the time of installation with the implicit assumption that
the user is able to determine whether the listed permis-
sions are appropriate.

However, it is non-trivial to classify an application as
malicious, privacy infringing, or benign. Previous work
has looked at permissions [2–5], code [6–10], and run-
time behavior [11–13]. However, underlying all of this
work is a caveat: what does the user expect? Clearly, an
application such as a GPS Tracker is expected to record
and send the phone’s geographic location to the network;
an application such as a Phone-Call Recorder is expected
to record audio during a phone call; and an application
such as One-Click Root is expected to exploit a privilege-
escalation vulnerability. Other cases are more subtle.
The Apple and Google approaches fundamentally differ
in who determines whether an application’s permission,
code, or runtime behavior is appropriate. For Apple, it is
an employee; for Google, it is the end user.

We are motivated by the vision of bridging the seman-
tic gap between what the user expects an application to
do and what it actually does. This work is a first step in

528 22nd USENIX Security Symposium USENIX Association

this direction. Specifically, we focus on permissions and
ask the question, does the application description pro-
vide any indication for the application’s use of a permis-
sion? Clearly, this hypothesis will work better for some
permissions than others. For example, permissions that
protect a user-understandable resource such as the ad-
dress book, calendar, or microphone should be discussed
in the application description. However, other low-level
system permissions such as accessing network state and
controlling vibration are not likely to be mentioned. We
note that while this work primarily focuses on permis-
sions in the Android platform and relieving the strain on
end users, it is equally applicable to other platforms (e.g.,
Apple) by aiding the employee performing manual in-
spection.

With this vision, in this paper, we present WHY-
PER, a framework that uses Natural Language Processing
(NLP) techniques to determine why an application uses
a permission. WHYPER takes as input an application’s
description from the market and a semantic model of a
permission, and determines which sentence (if any) in
the description indicates the use of the permission. Fur-
thermore, we show that for some permissions, the per-
mission semantic model can be automatically generated
from platform API documents. We evaluate WHYPER
against three popularly-used permissions (address book,
calendar, and record audio) and a dataset of 581 popular
applications. These three frequently-used permissions
protect security and privacy sensitive resources. Our re-
sults demonstrate that WHYPER effectively identifies the
sentences that describe needs of permissions with an av-
erage precision of 82.8% and an average recall of 81.5%.
We further investigate the sources of inaccuracies and
discuss techniques of improvement.

This paper makes the following main contributions:

• We propose the use of NLP techniques to help
bridge the semantic gap between what mobile ap-
plications do and what users expect them to do. To
the best of our knowledge, this work is the first at-
tempt to automate this inference.

• We evaluate our framework on 581 popular An-
droid application descriptions containing nearly
10,000 natural-language sentences. Our evaluation
demonstrates substantial improvement over a basic
keyword-based searching.

• We provide a publicly available prototype imple-
mentation of our approach on the project web-
site [14].

WHYPER is merely the first step in bridging the se-
mantic gap of user expectations. There are many ways
in which we see this work developing. Application de-
scriptions are only one form of input. We foresee pos-

sibility in also incorporating the application name, user
reviews, and potentially even screen-shots. Furthermore,
permissions could potentially be replaced with specific
API calls, or even the results of dynamic analysis. We
also see great potential in developing automatic or par-
tially manual techniques of creating and fine-tuning per-
mission semantic models.

Finally, this work dovetails nicely with recent dis-
course concerning the appropriateness of Android per-
missions to protect user security [15–18]. The over-
whelming evidence indicates that most users do not un-
derstand what permissions mean, even if they are in-
clined to look at the permission list [18]. On the other
hand, permission lists provide a necessary foundation for
security. Markets cannot simultaneously cater to the se-
curity and privacy requirements of all users [19], and per-
mission lists allow researchers and expert users to be-
come “whistle blowers” for security and privacy con-
cerns [11]. In fact, a recent comparison [20] of the
Android and iOS versions of applications showed that
iOS applications overwhelmingly more frequently use
privacy-sensitive APIs. Tools such as WHYPER can help
raise awareness of security and privacy problems and
lower the sophistication required for concerned users to
take control of their devices.

The remainder of this paper proceeds as follows. Sec-
tion 2 presents the overview of the WHYPER framework
along with background on NLP techniques used in this
work. Section 3 presents our framework and implemen-
tation. Section 4 presents evaluation of our framework.
Section 6 discusses related work. Finally, Section 7 con-
cludes.

2 WHYPER Overview

We next present a brief overview of the WHYPER frame-
work. The name WHYPER itself is a word-play on phrase
why permissions. We envision WHYPER to operate be-
tween the application market and end users, either as a
part of the application market or a standalone system as
shown in Figure 1.

The primary goal of the WHYPER framework is to
bridge the semantic gap of user expectations by deter-
mining why an application requires a permission. In
particular, we use application descriptions to get this in-
formation. Thus, the WHYPER framework operates be-
tween the application market and end users. Further-
more, our framework could also serve to help developers
with the feedback to improve their applications, as shown
by the dotted arrows between developers and WHYPER
in Figure 1.

A straightforward way of realizing the WHYPER
framework is to perform a keyword-based search on ap-
plication descriptions to annotate sentences describing

2

USENIX Association 22nd USENIX Security Symposium 529

Figure 1: Overview of WHYPER

sensitive operations pertinent to a permission. However,
we demonstrate in our evaluation that such an approach
is limited by producing many false positives. We pro-
pose Natural Language Processing (NLP) as a means
to alleviate the shortcomings of keyword-based search-
ing. In particular, we address the following limitations
of keyword-based searching:

1. Confounding Effects. Certain keywords such as
“contact” have a confounding meaning. For in-
stance, ‘... displays user contacts, ...’ vs ‘... contact
me at abc@xyz.com’. The first sentence fragment
refers to a sensitive operation while the second frag-
ment does not. However, both fragments include the
keyword “contact”.

To address this limitation, we propose NLP as a
means to infer semantics such as whether the word
refers to a resource or a generic action.

2. Semantic Inference. Sentences often describe a
sensitive operation such as reading contacts with-
out actually referring to keyword “contact”. For in-
stance, “share... with your friends via email, sms”.
The sentence fragment describes the need for read-
ing contacts; however the “contact” keyword is not
used.

To address this limitation, we propose to use API
documents as a source of semantic information for
identifying actions and resources related to a sensi-
tive operation.

To the best of our knowledge, ours is the first frame-
work in this direction. We next present the key NLP tech-
niques used in this work.

2.1 NLP Preliminaries
Although well suited for human communication, it is
very difficult to convert natural language into unambigu-

ous specifications that can be processed and understood
by computers. With recent research advances in the area
of NLP, existing NLP techniques have been shown to be
fairly accurate in highlighting grammatical structure of a
natural language sentence. We next briefly introduce the
key NLP techniques used in this work.

Parts Of Speech (POS) Tagging [21, 22]. Also
known as ‘word tagging’, ‘grammatical tagging’ and
‘word-sense disambiguation’, these techniques aim to
identify the part of speech (such as nouns and verbs)
a particular word in a sentence belongs to. Current
state-of-the-art approaches have been shown to achieve
97% [23] accuracy in classifying POS tags for well-
written news articles.

Phrase and Clause Parsing. Also known as chunk-
ing, this technique further enhances the syntax of a sen-
tence by dividing it into a constituent set of words (or
phrases) that logically belong together (such as a Noun
Phrase and Verb Phrase). Current state-of-the-art ap-
proaches can achieve around 90% [23] accuracy in clas-
sifying phrases and clauses over well-written news arti-
cles.

Typed Dependencies [24,25]. The Stanford-typed de-
pendencies representation provides a hierarchical seman-
tic structure for a sentence using dependencies with pre-
cise definitions of what each dependency means.

Named Entity Recognition [26]. Also known as
‘entity identification’ and ‘entity extraction’, these tech-
niques are a subtask of information extraction that aims
to classify words in a sentence into predefined categories
such as names, quantities, and expressions of time.

We next describe the threat model that we considered
while designing our WHYPER framework.

2.2 Use Cases and Threat Model

WHYPER is an enabling technology for a number of use
cases. In its simplest form, WHYPER could enable an
enhanced user experience for installing applications. For
example, the market interface could highlight the sen-
tences that correspond to a specific permission, or raise
warnings when it cannot find any sentence for a permis-
sion. WHYPER could also be used by market providers
to help force developers to disclose functionality to users.
In its primitive form, market providers could use WHY-
PER to ensure permission requests have justifications in
the description. More advanced versions of WHYPER
could also incorporate the results of static and dynamic
application analysis to ensure more semantically appro-
priate justifications. Such requirements could be placed
on all new applications, or iteratively applied to exist-
ing applications by automatically emailing developers
of applications with unjustified permissions. Alterna-
tively, market providers and security researchers could

3

530 22nd USENIX Security Symposium USENIX Association

use WHYPER to help triage markets [5] for dangerous
and privacy infringing applications. Finally, WHYPER
could be used in concert with existing crowd-sourcing
techniques [27] designed to assess user expectations of
application functionality. All of these use cases have
unique threat models.

For the purposes of this paper, we consider the generic
use scenario where a human is notified by WHYPER if
specific permissions requested by an application are not
justified by the application’s textual description. WHY-
PER is primarily designed to help identify privacy in-
fringements in relatively benign applications. How-
ever, WHYPER can also help highlight malware that at-
tempts to sneak past consumers by adding additional per-
missions (e.g., to send premium-rate SMS messages).
Clearly, a developer can lie when writing the applica-
tion’s description. WHYPER does not attempt to detect
such lies. Instead, we assume that statements describ-
ing unexpected functionality will appear out-of-place for
consumers reading an application description before in-
stalling it. We note that malware may still hide malicious
functionality (e.g., eavesdropping) within an application
designed to use the corresponding permission (e.g., an
application to take voice notes). However, false claims
in an application’s description can provide justification
for removal from the market or potentially even criminal
prosecution. WHYPER does, however, provide defense
against developers that simply include a list of keywords
in the application description (e.g., to aid search rank-
ings).

Fundamentally, WHYPER identifies if there a possible
implementation need for a permission based on the ap-
plication’s description. In a platform such as Android,
there are many ways to accomplish the same implemen-
tation goals. Some implementation options require per-
missions, while others do not. For example, an appli-
cation can make a call that starts Android’s address book
application to allow the user to select a contact (requiring
no permission), or it can access the address book directly
(requiring a permission). From WHYPER’s perspective,
it only matters that privileged functionality may work ex-
pectedly when using the application, and that functional-
ity is disclosed in the application’s description. Other
techniques (e.g., Stowaway [28]) can be used to deter-
mine if an application’s code actually requires a permis-
sion.

3 WHYPER Design
We next present our framework for annotating the sen-
tences that describe the needs for permissions in ap-
plication descriptions. Figure 2 gives an overview of
our framework. Our framework consists of five compo-
nents: a preprocessor, an NLP Parser, an intermediate-

Figure 2: Overview of WHYPER framework

representation generator, a semantic engine (SE), and an
analyzer.

The pre-processor accepts application descriptions
and preprocesses the sentences in the descriptions, such
as annotating sentence boundaries and reducing lexical
tokens. The intermediate-representation generator ac-
cepts the pre-processed sentences and parses them us-
ing an NLP parser. The parsed sentences are then trans-
formed into the first-order-logic (FOL) representation.
SE accepts the FOL representation of a sentence and an-
notates the sentence based on the semantic graphs of per-
missions. Our semantic graphs are derived by analyzing
Android API documents. We next describe each compo-
nent in detail.

3.1 Preprocessor

The preprocessor accepts natural-language application
descriptions and preprocesses the sentences, to be fur-
ther analyzed by the intermediate-representation gener-
ator. The preprocessor annotates sentence boundaries,
and reduces the number of lexical tokens using seman-
tic information. The reduction of lexical tokens greatly
increases the accuracy of the analysis in the subsequent
components of our framework. In particular, the prepro-
cessor performs following preprocessing tasks:

1. Period Handling. In simplistic English, the char-
acter period (‘.’) marks the end of a sentence. However,
there are other legal usages of the period such as: (1)
decimal (periods between numbers), (2) ellipsis (three
continuous periods ‘...’), (3) shorthand notations (“Mr.”,
“Dr.”, “e.g.”). While these are legal usages, they hinder
detection of sentence boundaries, thus forcing the sub-

4

USENIX Association 22nd USENIX Security Symposium 531

sequent components to return incorrect or imprecise re-
sults.

We pre-process the sentences by annotating these us-
ages for accurate detection of sentence boundaries. We
achieve so by looking up known shorthand words from
WordNet [29] and detecting decimals, which are also the
period character, by using regular expressions. From an
implementation perspective, we have maintained a static
lookup table of shorthand words observed in WordNet.

2. Sentence Boundaries. Furthermore, there are in-
stances where an enumeration list is used to describe
functionality, such as “The app provides the following
functionality: a) abc..., b) xyz... ”. While easy for a
human to understand the meaning, it is difficult from a
machine to find appropriate boundaries.

We leverage the structural (positional) information:
(1) placements of tabs, (2) bullet points (numbers, char-
acters, roman numerals, and symbols), and (3) delimiters
such as “:” to detect appropriate boundaries. We further
improve the boundary detection using the following pat-
terns we observe in application descriptions:

• We remove the leading and trailing ‘*’ and ‘-’ char-
acters in a sentence.

• We consider the following characters as sentence
separators: ‘–’, ‘- ’, ‘ø’, ‘§’, ‘†’, ‘�’, ‘♦’, ‘♣’, ‘♥’,
‘♠’ ... A comprehensive list can be found on the
project website [14].

• For an enumeration sentence that contains at least
one enumeration phrase (longer than 5 words), we
break down the sentence to short sentences for each
enumerated item.

3. Named Entity Handling. Sometimes a sequence
of words correspond to the name of entities that have
a specific meaning collectively. For instance, consider
the phrases “Pandora internet radio”, “Google maps”,
which are the names of applications. Further resolution
of these phrases using grammatical syntax is unnecessary
and would not bring forth any semantic value. Thus, we
identify such phrases and annotate them as single lexi-
cal units. We achieve so by maintaining a static lookup
table.

4. Abbreviation Handling. Natural-language sen-
tences often consist of abbreviations mixed with text.
This can result in subsequent components to incorrectly
parse a sentence. We find such instances and annotate
them as a single entity. For example, text followed by
abbreviations such as “Instant Message (IM)” is treated
as single lexical unit. Detecting such abbreviations is
achieved by using the common structure of abbreviations
and encoding such structures into regular expressions.
Typically, regular expressions provide a reasonable ap-
proximation for handling abbreviations.

Figure 3: Sentence annotated with Stanford dependen-
cies

3.2 NLP Parser
The NLP parser accepts the pre-processed documents
and annotates every sentence within each document us-
ing standard NLP techniques. From an implementation
perspective, we chose the Stanford Parser [30]. However,
this component can be implemented using any other ex-
isting NLP libraries or frameworks:

1. Named Entity Recognition: NLP parser identifies
the named entities in the document and annotates
them. Additionally, these entities are further added
to the lookup table, so that the preprocessor use the
entities for processing subsequent sentences.

2. Stanford-Typed Dependencies: [24, 25] NLP
parser further annotates the sentences with
Stanford-typed dependencies. Stanford-typed
dependencies is a simple description of the gram-
matical relationships in a sentence, and targeted
towards extraction of textual relationships. In
particular, we use standford-typed dependencies
as an input to our intermediate-representation
generator.

Next we use an example to illustrate the annotations
added by the NLP Parser. Consider the example sen-
tence “Also you can share the yoga exercise to your
friends via Email and SMS.”, that indirectly refers to the
READ CONTACTS permission. Figure 3 shows the sen-
tence annotated with Stanford-typed dependencies. The
words in red are the names of dependencies connecting
the actual words of the sentence (in black). Each word
is followed by the Part-Of-Speech (POS) tag of the word
(in green). For more details on Stanford-typed depen-
dencies and POS tags, please refer to [24, 25].

3.3 Intermediate-Representation Genera-
tor

The intermediate-representation generator accepts the
annotated documents and builds a relational represen-

5

532 22nd USENIX Security Symposium USENIX Association

Figure 4: First-order logic representation of annotated
sentence in Figure 3

tation of the document. We define our representa-
tion as a tree structure that is essentially a First-Order-
Logic (FOL) expression. Recent research has shown
the adequacy of using FOL for NLP related analysis
tasks [31–33]. In our representation, every node in the
tree except for the leaf nodes is a predicate node. The leaf
nodes represent the entities. The children of the predicate
nodes are the participating entities in the relationship rep-
resented by the predicate. The first or the only child of
a predicate node is the governing entity and the second
child is the dependent entity. Together the governing en-
tity, predicate and the dependent entity node form a tuple.

We implemented our intermediate-representation gen-
erator based on the principle shallow parsing [34] tech-
niques. A typical shallow parser attempts to parse a
sentence based on the function of POS tags. However,
we implemented our parser as a function of Stanford-
typed dependencies [22, 24, 25, 30]. We chose Stanford-
typed dependencies for parsing over POS tags because
Stanford-typed dependencies annotate the grammatical
relationships between words in a sentence, thus provide
more semantic information than POS tags that merely
highlight the syntax of a sentence.

In particular, our intermediate-representation genera-
tor is implemented as a series of cascading finite state
machines (FSM). Earlier research [31,33–36] has shown
the effectiveness and efficiency of using FSM in linguis-
tics analysis such as morphological lookup, POS tagging,
phrase parsing, and lexical lookup. We wrote semantic
templates for each of the typed dependencies provided
by the Stanford Parser.

Table 1 shows a few of these semantic templates. Col-
umn “Dependency” lists the name of the Stanford-typed
dependency, Column “Example” lists an example sen-
tence containing the dependency, and Column “Descrip-
tion” describes the formulation of tuple from the depen-
dency. All of these semantic templates are publicly avail-
able on our project website [14]. Figure 4 shows the
FOL representation of the sentence in Figure 3. For
ease of understanding, read the words in the order of

the numbers following them. For instance, “you” ←
“share” → “yoga exercise” forms one tuple. Notice
the additional predicate “owned” annotated 6 in the Fig-
ure 4, does not appear in actual sentence. The additional
predicate “owned” is inserted when our intermediate-
representation generator encounters the possession mod-
ifier relation (annotated “poss” in Figure 3).

The FOL representation helps us effectively deal with
the problem of confounding effects of keywords as de-
scribed in Section 2. In particular, the FOL assists in
distinguishing between a resource that would be a leaf
node and an action that would be a predicate node in the
intermediate representation of a sentence. The generated
FOL representation of the sentence is then provided as
an input to the semantic engine for further processing.

3.4 Semantic Engine (SE)

The Semantic Engine (SE) accepts the FOL representa-
tion of a sentence and based on the semantic graphs of
Android permissions annotates a sentence if it matches
the criteria. A semantic graph is basically a semantic
representation of the resources which are governed by a
permission. For instance, the READ CONTACTS per-
mission governs the resource “CONTACTS” in Android
system.

Figure 5 shows the semantic graph for the permission
READ CONTACTS. A semantic graph primarily con-
stitutes of subordinate resources of a permission (repre-
sented in rectangular boxes) and a set of available actions
on the resource itself (represented in curved boxes). Sec-
tion 3.5 elaborates on how we build such graphs system-
atically.

Our SE accepts the semantic graph pertaining to a
permission and annotates a sentence based on the algo-
rithm shown in Algorithm 1. The Algorithm accepts
the FOL representation of a sentence rep, the seman-
tic graph associated with the resource of a permission
g and a boolean value recursion that governs the recur-
sion. The algorithm outputs a boolean value isPStmt,
which is true if the statement describes the permission
associated with a semantic graph (g), otherwise false.

Our algorithm systematically explores the FOL rep-
resentation of the sentence to determine if a sentence
describes the need for a permission. First, our al-
gorithm attempts to locate the occurrence of associ-
ated resource name within the leaf node of the FOL
representation of the sentence (Line 3). The method
findLeafContaining(name) explores the FOL rep-
resentation to find a leaf node that contains term name.
Furthermore, we use WordNet and Lemmatisation [37]
to deal with synonyms of a word in question to find ap-
propriate matches. Once a leaf node is found, we system-
atically traverse the tree from the leaf node to the root,

6

USENIX Association 22nd USENIX Security Symposium 533

Table 1: Semantic Templates for Stanford Typed Dependencies
S. No. Dependency Example Description

1 conj “Send via SMS and email.” Governor (SMS) and dependent (email) are
conj and(email, SMS) connected by a relationship of conjunction type(and)

2 iobj “This App provides you with beautiful Governor (you) is treated as dependent entity of
wallpapers.” iobj(provides, you) relationship resolved by parsing the

dependent’s (provides) typed dependencies
3 nsubj “This is a scrollable widget.” Governor (This) is treated as governing entity of

nsubj(widget, This) relationship resolved by parsing the
dependent’s (widget) typed dependencies

matching all parent predicates as well as immediate child
predicates [Lines 5-16].

Our algorithm matches each of the traversed predicate
with the actions associated with the resource defined in
semantic graph. Similar to matching entities, we also
employ WordNet and Lemmatisation [37] to deal with
synonyms to find appropriate matches. If a match is
found, then the value isPStmt is set to true, indicat-
ing that the statement describes a permission.

In case no match is found, our algorithms recursively
search all the associated subordinate resources in the se-
mantic graph of current resource. A subordinate resource
may further have its own subordinate resources. Cur-
rently, our algorithm considers only immediate subordi-
nate resources of a resource to limit the false positives.

In the context of the FOL representation shown in Fig-
ure 4, we invoke Algorithm 1 with the semantic graph
shown in Figure 5. Our algorithm attempts to find a
leaf node containing term “CONTACT” or some of its
synonym. Since the FOL representation does not con-
tain such a leaf node, algorithm calls itself with se-
mantic graphs of subordinate resources (Line 17-25),
namely ‘NUMBER’, ‘EMAIL’, ‘LOCATION’, ‘BIRTH-
DAY’, ‘ANNIVERSARY’.

The subsequent invocation will find the leaf-node
“email” (annotated 9 in Figure 4). Our algorithm
then explores the preceding predicates and finds pred-
icate “share” (annotated 2 in Figure 4). The Algo-
rithm matches the word “share” with action “send”
(using Lemmatisation and WordNet similarity), one of
the actions available in the semantic graph of resource
‘EMAIL’ and returns true. Thus, the sentence is appro-
priately identified as describing the need for permission
READ CONTACT.

3.5 Semantic-Graph Generator

A key aspect of our proposed framework is the employ-
ment of a semantic graph of a permission to perform deep
semantic inference of sentences. In particular, we pro-
pose to initially infer such graphs from API documents.

Algorithm 1 Sentence Annotator
Input: K Graph g, FOL rep rep, Boolean recursion
Output: Boolean isPStmt

1: Boolean isPStmt = f alse
2: String r name = g.resource Name
3: FOL rep r′ = rep. f indLea fContaining(r name)
4: List actionList = g.actionList
5: while (r′.hasParent) do
6: if actionList.contains(r′.parent.predicate) then
7: isPStmt = true
8: break
9: else

10: if actionList.contains(r′.le f tSibling.predicate) then
11: isPStmt = true
12: break
13: end if
14: end if
15: r′ = r′.parent
16: end while
17: if ((NOT (isPStmt)) AND recursion) then
18: List resourceList = g.resourceList
19: for all (Resource res in resourceList) do
20: isPStmt = Sentence Annotator(getKGraph(res), rep, f alse)
21: if isPStmt then
22: break
23: end if
24: end for
25: end if

26: return isPStmt

For third-party applications in mobile devices, the rela-
tively limited resources (memory and computation power
compared to desktops and servers) encourage develop-
ment of thin clients. The key insight to leverage API
documents is that mobile applications are predominantly
thin clients, and actions and resources provided by API
documents can cover most of the functionality performed
by these thin clients.

Manually creating a semantic graph is prohibitively
time consuming and may be error prone. We thus came
up with a systematic methodology to infer such seman-
tic graphs from API documents that can potentially be
automated. First, we leverage Au et al.’s work [38]
to find the API document of the class/interface pertain-
ing to a particular permission. Second, we identify
the corresponding resource associated with the permis-
sion from the API class name. For instance, we iden-
tify ‘CONTACTS’ and ‘ADDRESS BOOK’ from the

7

534 22nd USENIX Security Symposium USENIX Association

Figure 5: Semantic Graph for the READ CONTACT
permission

ContactsContract.Contacts1 class that is associ-
ated with READ CONTACT permission. Third, we sys-
tematically inspect the member variables and member
methods to identify actions and subordinate resources.

From the name of member variables, we ex-
tract noun phrases and then investigate their types
for deciding whether these noun phrases describe
resources. For instance, one of member vari-
ables of ContactsContract.Contracts class leads
us to its member variable “email” (whose type
is ContactsContract.CommonDataKinds.Email).
From this variable, we extract noun phrase “EMAIL” and
classify the phrase as a resource.

From the name of an Android API public method
(describing a possible action on a resource), we ex-
tract both noun phrases and their related verb phrases.
The noun phrases are used as resources and the verb
phrases are used as the associated actions. For instance,
ContactsContract.Contacts defines operations In-
sert, Update, Delete, and so on. We consider those opera-
tions as individual actions associated with ‘CONTACTS’
resource.

The process is iteratively applied to the individual sub-
ordinate resources that are discovered for an API. For in-
stance, “EMAIL” is identified as a subordinate resource
in “CONTACT” resource. Figure 5 shows a sub-graph of
graph for READ CONTACT permission.

4 Evaluation

We now present the evaluation of WHYPER. Given an
application, the WHYPER framework bridges the seman-

1http://developer.android.com/reference/
android/provider/ContactsContract.Contacts.html

tic gap between user expectations and the permissions
it requests. It does this by identifying in the applica-
tion description the sentences that describe the need for a
given permission. We refer to these sentences as permis-
sion sentences. To evaluate the effectiveness of WHY-
PER, we compare the permission sentences identified by
WHYPER to a manual annotation of all sentences in the
application descriptions. This comparison provides a
quantitative assessment of the effectiveness of WHYPER.
Specifically, we seek to answer the following research
questions:

• RQ1: What are the precision, recall and F-Score of
WHYPER in identifying permission sentences (i.e.,
sentences that describe need for a permission)?

• RQ2: How effective WHYPER is in identifying
permission sentences, compared to keyword-based
searching ?

4.1 Subjects

We evaluated WHYPER using a snapshot of popular ap-
plication descriptions. This snapshot was downloaded in
January 2012 and contained the top 500 free applications
in each category of the Google Play Store (16,001 total
unique applications). We then identified the applications
that contained specific permissions of interest.

For our evaluation, we consider the
READ CONTACTS, READ CALENDAR, and
RECORD AUDIO permissions. We chose these
permissions because they protect tangible resources that
users understand and have significant enough security
and privacy implications that developers should provide
justification in the application’s description. We found
that 2327 applications had at least one of these three
permissions. Since our evaluation requires manual effort
to classify each sentence in the application description,
we further reduced this set of applications by randomly
choosing 200 applications for each permission. This
resulted in a total of 600 unique applications for these
permissions. The set was further reduced by only con-
sidering applications that had an English description).
Overall, we analysed 581 application descriptions, which
contained 9,953 sentences (as parsed by WHYPER).

4.2 Evaluation Setup

We first manually annotated the sentences in the appli-
cation descriptions. We had three authors independently
annotate sentences in our corpus, ensuring that each sen-
tence was annotated by at least two authors. The individ-
ual annotations were then discussed by all three authors
to reach to a consensus. In our evaluation, we annotated

8

USENIX Association 22nd USENIX Security Symposium 535

Table 2: Statistics of Subject permissions
Permission #N #S SP

READ CONTACTS 190 3379 235
READ CALENDAR 191 2752 283
RECORD AUDIO 200 3822 245
TOTAL 581 9953 763
#N: Number of applications that requests the permission; #S: Total
number of sentences in the application descriptions; SP: Number of
sentences manually identified as permission sentences.

a sentence as a permission sentence if at least two au-
thors agreed that the sentence described the need for a
permission. Otherwise we annotated the sentence as a
permission-irrelevant sentence.

We applied WHYPER on the application descrip-
tions and manually measured the number of true

positives (T P), false positives (FP), true

negatives (T N) and false negatives (FN) pro-
duced by WHYPER as follows:

1. T P: A sentence that WHYPER correctly identifies
as a permission sentence.

2. FP: A sentence that WHYPER incorrectly identifies
as a permission sentence.

3. T N: A sentence that WHYPER correctly identifies
as not a permission sentence.

4. FN: A sentence that WHYPER incorrectly identifies
as not a permission sentence.

Table 2 shows the statistics of the subjects used in the
evaluations of WHYPER. Column “Permission” lists the
names of the permissions. Column “#N” lists the number
of applications that requests the permissions used in our
evaluations. Column “#S” lists the total number of sen-
tences in application descriptions. Finally, Column “SP”
lists the number of sentences that are manually identi-
fied as permission sentences by authors. We used this
manual identification (Column “SP”) to quantify the ef-
fectiveness of WHYPER in identifying permission sen-
tences by answering RQ1. The results of Column “SP”
is also used to compare WHYPER with keyword-based
searching to answer RQ2 described next.

For RQ2, we applied keyword-based searching on the
same subjects. We consider a word as a keyword in
the context of a permission if it is a synonym of the
word in the permission. To minimize manual efforts, we
used words present in Manifest.permission class

from Android API. Table 4 shows the keywords used in
our evaluation. We then measured the number of true
positives (T P′), false positives (FP′), true

negatives (T N′), and false negatives (FN′) pro-
duced by the keyword-based searching as follows:

1. T P′:- A sentence that is a permission sentence and
contains the keywords.

2. FP′:- A sentence that is not a permission sentence
but contains the keywords.

3. T N′:- A sentence that is not a permission sentence
and does not contain the keywords.

4. FN′:- A sentence that is a permission sentence but
does not contain the keywords.

In statistical classification [39], Precision is defined as
the ratio of the number of true positives to the total num-
ber of items reported to be true, and Recall is defined
as the ratio of the number of true positives to the total
number of items that are true. F-score is defined as the
weighted harmonic mean of Precision and Recall. Accu-
racy is defined as the ratio of sum of true positives and
true negatives to the total number of items. Higher val-
ues of precision, recall, F-Score, and accuracy indicate
higher quality of the permission sentences inferred us-
ing WHYPER. Based on the total number of TPs, FPs,
TNs, and FNs, we computed the precision, recall, F-
score, and accuracy of WHYPER in identifying permis-
sion sentences as follows:

Precision = T P
T P + FP

Recall = T P
T P + FN

F-score = 2 X Precision X Recall
Precision + Recall

Accuracy = T P+T N
T P + FP+T N + FN

4.3 Results
We next describe our evaluation results to demonstrate
the effectiveness of WHYPER in identifying contract sen-
tences.

4.3.1 RQ1: Effectiveness in identifying permission
sentences

In this section, we quantify the effectiveness of WHY-
PER in identifying permission sentences by answer-
ing RQ1. Table 3 shows the effectiveness of WHY-
PER in identifying permission sentences. Column “Per-
mission” lists the names of the permissions. Col-
umn “SI” lists the number of sentences identified by
WHYPER as permission sentences. Columns “TP”,
“FP”, “TN”, and “FN” represent the number of true

positives, false positives, true negatives,
and false negatives, respectively. Columns “P(%)”,
“R(%)”, “FS(%)”, and “Acc(%)” list percentage values
of precision, recall, F-score, and accurary re-
spectively. Our results show that, out of 9,953 sen-
tences, WHYPER effectively identifies permission sen-
tences with the average precision, recall, F-score, and

9

536 22nd USENIX Security Symposium USENIX Association

Table 3: Evaluation results
Permission SI TP FP FN TN P (%) R (%) FS (%) Acc (%)
READ CONTACTS 204 186 18 49 2930 91.2 79.1 84.7 97.9
READ CALENDAR 288 241 47 42 2422 83.7 85.1 84.4 96.8
RECORD AUDIO 259 195 64 50 3470 75.9 79.7 77.4 97.0
TOTAL 751 622 129 141 9061 82.8∗ 81.5∗ 82.2∗ 97.3∗
∗ Column average; SI : Number of sentences identified by WHYPER as permission sentences; TP: Total number of True
Positives; FP: Total number of False Positives; FN: Total number of False Negatives; TN: Total number of True Negatives;
P: Precision; R: Recall; FS: F-Score; and Acc: Accuracy

accuracy of 82.8%, 81.5%, 82.2%, and 97.3%, respec-
tively.

We also observed that out of 581 applications whose
descriptions we used in our experiments, there were only
86 applications that contained at least one false negative
statement that were annotated by WHYPER. Similarly,
among 581 applications whose descriptions we used in
our experiments, there were only 109 applications that
contained at least one false positive statement that were
annotated by WHYPER.

We next present an example to illustrate how WHYPER
incorrectly identifies a sentence as a permission sentence
(producing false positives). False positives are particu-
larly undesirable in the context of our problem domain,
because they can mislead the users of WHYPER into be-
lieving that a description actually describes the need for
a permission. Furthermore, an overwhelming number of
false positives may result in user fatigue, and thus de-
value the usefulness of WHYPER.

Consider the sentence “You can now turn recordings
into ringtones.”. The sentence describes the application
functionality that allows users to create ringtones from
previously recorded sounds. However, the described
functionality does not require the permission to record
audio. WHYPER identifies this sentence as a permis-
sion sentence. WHYPER correctly identifies the word
recordings as a resource associated with the record au-
dio permission. Furthermore, our intermediate represen-
tation also correctly constructs that action turn is being
performed on the resource recordings. However, our se-
mantic engine incorrectly matches the action turn with
the action start. The later being a valid semantic action
that is permitted by the API on the resource recording.
In particular, the general purpose WordNet-based Simi-
larity Metric [37] shows 93.3% similarity. We observed
that a majority of false positives resulted from incorrect
matching of semantic actions against a resources. Such
instances can be addressed by using domain-specific dic-
tionaries for synonym analysis.

Another major source of FPs is the incorrect pars-
ing of sentences by the underlying NLP infrastructure.
For instance, consider the sentence “MyLink Advanced
provides full synchronization of all Microsoft Outlook

emails (inbox, sent, outbox and drafts), contacts, calen-
dar, tasks and notes with all Android phones via USB.”.
The sentence describes the users calendar will be syn-
chronized. However, the underlying Stanford parser [30]
is not able to accurately annotate the dependencies. Our
intermediate-representation generator uses shallow pars-
ing that is a function of these dependencies. An inaccu-
rate dependency annotation causes an incorrect construc-
tion of intermediate representation and eventually causes
an incorrect classification. Such instances will be ad-
dressed with the advancement in underlying NLP infras-
tructure. Overall, a significant number of false positives
will be reduced by as the current NLP research advances
the underlying NLP infrastructure.

We next present an example to illustrate how WHY-
PER fails to identify a valid permission sentence (false
negatives). Consider the sentence “Blow into the mic to
extinguish the flame like a real candle”. The sentence
describes a semantic action of blowing into the micro-
phone. The noise created by blowing will be captured by
the microphone, thus implying the need for record audio
permission. WHYPER correctly identifies the word mic
as a resource associated with the record audio permis-
sion. Furthermore, our intermediate representation also
correctly shows that the action blow into is performed on
the resource mic. However, from API documents, there
is no way for WHYPER framework to infer the knowl-
edge that blowing into microphone semantically implies
recording of the sound. Thus, WHYPER fails to identify
the sentence as a permission sentence. We can reduce
a significant number of false negatives by constructing
better semantic graphs.

Similar to reasons for false positives, a major source
of false negatives is the incorrect parsing of sentences
by the underlying NLP infrastructure. For instance, con-
sider the sentence “Pregnancy calendar is an application
that,not only allows, after entering date of last period
menstrual,to calculate the presumed (or estimated) date
of birth; but, offering prospects to show,week to week,all
appointments which must to undergo every mother,ad a
rule,for a correct and healthy pregnancy.” 2 The sen-

2Note that the incorrect grammar, punctuation, and spacing are a

10

USENIX Association 22nd USENIX Security Symposium 537

tence describes that the users calendar will be used to
display weekly appointments. However, the length and
complexity in terms of number of clauses causes the un-
derlying Stanford parser [30] to inaccurately annotate
the dependencies, which eventually results into incorrect
classification.

We also observed that in a few cases, the process fol-
lowed to identify sentence boundaries resulted in ex-
tremely long and possibly incorrect sentences. Consider
a sentence that our preprocessor did not identify as a per-
mission sentence for READ CALENDER permission:

Daily Brief “How does my day look like today” “Any meetings today” “My

reminders” “Add reminder” Essentials Email, Text, Voice dial, Maps, Directions,

Web Search “Email John Subject Hello Message Looking forward to meeting

with you tomorrow” “Text Lisa Message I will be home in an hour” “Map of

Chicago downtown” “Navigate to Millenium Park” “Web Search Green Bean

Casserole” “Open Calculator” “Opean Alarm Clock” “Launch Phone book” Per-

sonal Health Planner ... “How many days until Christmas” Travel Planner “Show

airline directory” “Find hotels” “Rent a car” “Check flight status” “Currency con-

verter” Cluzee Car Mode Access Daily Brief, Personal Radio, Search, Maps, Di-

rections etc..
A few fragments (sub-sentences) of this incorrectly

marked sentence describe the need for read calender per-
mission (“...My reminder ... Add reminder ...”). How-
ever, inaccurate identification of sentence boundaries
causes the underlying NLP infrastructure produces a in-
correct annotation. Such incorrect annotation is propa-
gated to subsequent phases of WHYPER, ultimately re-
sulting in inaccurate identification of a permission sen-
tence. Overall, as the current research in the filed of NLP
advances the underlying NLP infrastructure, a significant
number of false negatives will be reduced.

4.3.2 RQ2: Comparison to keyword-based search-
ing

In this section, we answer RQ2 by comparing WHY-
PER to a keyword-based searching approach in identify-
ing permission sentences. As described in Section 4.2,
we manually measured the number of permission sen-
tences in the application descriptions. Furthermore, we
also manually computed the precision (P), recall (R),
f-score (FS), and accuracy (Acc) of WHYPER as well
as precision (P′), recall (R′), f-score (F ′

S), and accuracy
(Acc′) of keyword-based searching in identifying per-
mission sentences. We then calculated the improvement
in using WHYPER against keyword-based searching as
∆P = P−P′, ∆R = R−R′, ∆FS = FS −F ′

S, and ∆Acc =
Acc − Acc′. Higher values of ∆P, ∆R, ∆FS, and ∆Acc
are indicative of better performance of WHYPER against
keyword-based search.

Table 5 shows the comparison of WHYPER in identi-
fying permission sentences to keyword-based searching

reproduction of the original description.

Table 4: Keywords for Permissions
S. No Permission Keywords

1 READ CONTACTS contact, data, number,
name, email

2 READ CALENDAR calendar, event, date,
month, day, year

3 RECORD AUDIO record, audio, voice,
capture, microphone

Table 5: Comparison with keyword-based search
Permission ∆P% ∆R% ∆FS% ∆Acc%

READ CONTACTS 50.4 1.3 31.2 7.3
READ CALENDAR 39.3 1.5 26.4 9.2
RECORD AUDIO 36.9 -6.6 24.3 6.8

Average 41.6 -1.2 27.2 7.7

approach. Columns “∆P”, “∆R”, “∆FS”, and “∆Acc” list
percentage values of increase in the precision, recall, f-
scores, and accuracy respectively. Our results show that,
in comparison to keyword-based searching, WHYPER ef-
fectively identifies permission sentences with the average
increase in precision, F-score, and accuracy of 41.6%,
27.2%, and 7.7% respectively. We indeed observed a de-
crease in average recall by 1.2%, primarily due to poor
performance of WHYPER for RECORD AUDIO permis-
sion.

However, it is interesting to note that there is a sub-
stantial increase in precision (average 46.0%) in com-
parison to keyword-based searching. This increase is
attributed to a large false positive rate of keyword-
based searching. In particular, for descriptions related
to READ CONTACTS permission, WHYPER resulted
in only 18 false positives compared to 265 false posi-
tives resulted by keyword-based search. Similarly, for
descriptions related to RECORD AUDIO, WHYPER re-
sulted in 64 false positives while keyword-based search-
ing produces 338 false positives.

We next present illustrative examples of how WHY-
PER performs better than keyword-based search in con-
text of false positives. One major source of false posi-
tives in keyword-based search is confounding effects of
certain keywords such as contact. Consider the sentence
“contact me if there is a bad translation or you’d like
your language added!”. The sentence describes that de-
veloper is open to feedback about his application. A
keyword-based searching incorrectly identifies this sen-
tence as a permission sentence for READ CONTACTS
permission. However, the word contact here refers to an
action rather than a resource. In contrast, WHYPER cor-
rectly identifies the word contact as an action applicable
to pronoun me. Our framework thus correctly classifies
the sentences as a permission-irrelevant sentence.

11

538 22nd USENIX Security Symposium USENIX Association

Consider another sentence “To learn more, please
visit our Checkmark Calendar web site: calen-
dar.greenbeansoft.com” as an instance of confounding
effect of keywords. The sentence is incorrectly identified
as a permission sentence for READ CALENDAR per-
mission because it contains keyword calendar. In con-
trast, WHYPER correctly identifies “Checkmark Calen-
dar” as a named entity rather than resource calendar. Our
framework thus correctly identifies the sentences as not
a permission sentence.

Another common source of false positives in keyword-
based searching is lack of semantic context around a
keyword. For instance, consider the sentence “That’s
what this app brings to you in addition to learning
numbers!”. A keyword-based search classifies this
sentence as an permission sentence because it con-
tains the keyword number, which is one of the key-
words for READ CONTACTS permission as listed in
Table 4. However, the sentence is actually describing
the generic numbers rather than phone numbers. Simi-
lar to keyword-based search, our framework also identi-
fies word number as a candidate match for subordinat-
ing resource number in READ CONTACTS permission
(Figure 5). However, the identified semantic action on
candidate resource number for this sentence is learning.
Since learning is not an applicable action to phone num-
ber resource in our semantic graphs, WHYPER correctly
classifies the sentences as not a permission sentence.

The final category, where WHYPER performed better
than keyword-based search, is due to the use of syn-
onyms. For instance, address book is a synonym for con-
tact resource. Similarly mic is synonym for microphone
resource. Our framework, leverages this synonym infor-
mation in identifying the resources in a sentence. Syn-
onyms could potentially be used to augment the list of
keywords in keyword-based search. However, given that
keyword-based search already suffers from a very high
false positive rate, we believe synonym augmentation to
keywords would further worsen the problem.

We next present discussions on why WHYPER caused
a decline in recall in comparison to keyword-based
search. We do observe a small increase in recall for
READ CONTACTS (1.3%) and READ CALENDAR
(1.5%) permission related sentences, indicating that
WHYPER performs slightly better than keyword-based
search. However, WHYPER performs particularly worse
in RECORD AUDIO permission related descriptions,
which results in overall decrease in the recall compared
to keyword-based search.

One of the reasons for such decline in the recall is an
outcome of the false negatives produced by our frame-
work. As described in Section 4.3.1 incorrect identifica-
tion of sentence boundaries and limitations of underlying
NLP infrastructure caused a significant number of false

negatives in WHYPER. Thus, improvement in these ar-
eas will significantly decrease the false negative rate of
WHYPER and in turn, make the existing gap negligible.

Another cause of false negatives in our approach is in-
ability to infer knowledge for some ‘resource’-‘semantic
action’ pairs, for instance, ‘microphone’-‘blow into’. We
further observed, that with a small manual effort in aug-
menting semantic graphs for a permission, we could
significantly bring down the false negatives of our ap-
proach. For instance, after a precursory observation of
false negative sentences for RECORD AUDIO permis-
sion manually, we augmented the semantic graphs with
just two resource-action pairs (1. microphone-blow into
and 2. call-record). We then applied WHYPER with the
augmented semantic graph on READ CONTACTS per-
mission sentences.

The outcome increased ∆R value from -6.6% to 0.6%
for RECORD AUDIO permission and an average in-
crease of 1.1% in ∆R across all three permissions, with-
out affecting values for ∆P. We refrained from including
such modifications for reporting the results in Table 5
to stay true to our proposed framework. In the future,
we plan to investigate techniques to construct better se-
mantic graphs for permissions, such as mining user com-
ments and forums.

4.4 Summary

In summary, we demonstrate that WHYPER effectively
identifies permission sentences with the average preci-
sion, recall, F-score, and accuracy of 80.1%, 78.6%,
79.3%, and 97.3% respectively. Furthermore, we also
show that WHYPER performs better than keyword-based
search with an average increase in precision of 40% with
a relatively small decrease in average recall (1.2%). We
also provide discussion that such gap in recall can be al-
leviated by improving the underlying NLP infrastructure
and a little manual effort. We next present discussions on
threats to validity.

4.5 Threats to Validity

Threats to external validity primarily include the degree
to which the subject permissions used in our evaluations
were representative permissions. To minimize the threat,
we used permissions that guard against the resources that
can be subjected to privacy and security sensitive opera-
tions. The threat can be further reduced by evaluating
WHYPER on more permissions. Another threat to ex-
ternal validity is the representativeness of the descrip-
tion sentences we used in our experiments. To minimize
the threat we randomly selected actual Android appli-
cation descriptions from a snapshot of the meta-data of

12

USENIX Association 22nd USENIX Security Symposium 539

16001 applications from Google Play store (dated Jan-
uary 2012).

Threats to internal validity include the correctness of
our implementation in inferring mapping between natu-
ral language description sentences and application per-
missions. To reduce the threat, we manually inspected
all the sentences annotated by our system. Furthermore,
we ensured that the results were individually verified and
agreed upon by at least two authors. The results of our
experiments are publicly available on the project web-
site [14].

5 Discussions and Future work

Our framework currently only takes into account appli-
cation descriptions and Android API documents to high-
light permission sentences. Thus, our framework can
semi-formally enumerate the uses of a permission. This
information can be leveraged in the future to enhance
searching for desired applications.

Furthermore, the outputs from our framework could be
used in conjunction with program analysis techniques to
facilitate effective code reuse. For instance, our frame-
work outputs the reasons of why a permission is needed
for an application. These reasons are usually the func-
tionalities provided by the application. In future work,
we plan to locate the code fragments that implement the
described functionalities. Such mapping can be used as
indexes to existing code searching approaches [40,41] to
facilitate effective reuse.

Modular Applications: In our evaluations, we en-
countered cases where a description referring to another
application where the permission sentences were de-
scribed. For instance, consider the following descrip-
tion sentence “Navigation2GO is an application to eas-
ily launch Google Maps Navigation.”.

The description states that the current application will
launch another application “Google Maps Navigation”,
and thus requires the permissions required by that ap-
plication. Currently, our framework does not deal with
such cases. We plan to implement deeper semantic anal-
ysis of description sentences to identify such permission
sentences.

Generalization to Other Permissions: WHYPER is
designed to identify the textual justification for permis-
sions that protect “user understandable” information and
resources. That is, the permission must protect an infor-
mation source or resource that is in the domain of knowl-
edge of general smartphone users, as opposed to a low-
level API only known to developers. The permissions
studied in this paper (i.e., address book, calendar, micro-
phone) fall within this domain. Based on our studies,
we expect similar permissions, such as those that protect
SMS interfaces and data stores, the ability to make and

receive phone calls, read call logs and browser history,
operate and administer Bluetooth and NFC, and access
and use phone accounts will have similar success with
WHYPER.

Due to current developer trends and practices, there
is class of permissions that we expect will raise alarms
for many applications when evaluated with WHYPER.
Recent work [7, 11] has shown that many applications
leak geographic location and phone identifiers without
the users knowledge. We recommend that deployments
of WHYPER first focus on other permissions to better
gauge and account for developer response. Once general
deployment experience with WHYPER has been gained,
these more contentious permissions should be tackled.
We believe that adding justification for access to geo-
graphic location and phone identifiers in the application’s
textual description will benefit users. For example, if an
application uses location for ads or analytics, the devel-
oper should state this in the application description.

Finally, there are some permissions that are implicitly
used by applications and therefore will have poor results
with WHYPER. In particular, we do not expect the Inter-
net permission to work well with WHYPER. Nearly all
smartphone applications access the Internet, and we ex-
pect attempts to build a semantic graph for the Internet
permission will be largely ineffective.

Results Presentation: A potential after-effect of us-
ing WHYPER on existing application descriptions might
be more verbose application descriptions. One can argue
that it would lead to additional burden on end users to
read a lengthy description. However, such additional de-
scription provides an opportunity for the users to make
informed decisions instead of making assumptions. In
future work, we plan to implement and evaluate inter-
faces to present users with information in a more efficient
way, countering user fatigue in case of lengthy descrip-
tions. For example, we may consider using icons in dif-
ferent colors to represent permissions with and without
explanation.

6 Related Work

Our proposed framework touches quiet a few research
areas such as mining Mobile Application Stores, NLP on
software engineering artifacts, program comprehension
and software verification. We next discuss relevant work
pertinent to our proposed framework in these areas.

Harman et al. [42], first used mining approaches on
the application description, pricing, and customer rat-
ings in Blackberry App Store. In particular, they use
light-weight text analytics to extract feature information,
which is then combined with pricing and customer rat-
ing to analyze applications’ business aspects. In con-
trast, WHYPER uses deep semantic analysis of sentences

13

540 22nd USENIX Security Symposium USENIX Association

in application descriptions, which can be used as a com-
plimentary approach to their feature extraction.

The use of NLP techniques is not new in the software
engineering domain. NLP has been used previously in
requirements engineering [31, 32, 43]. NLP has even
been used to assess the usability of API docs [44].

There are existing approaches [33, 45–47] that apply
either NLP or a mix of NLP and machine learning algo-
rithms to infer specifications from the natural-language
elements such as code comments, API descriptions, and
formal requirements documents. The semi-formal struc-
ture of natural-language documents used in these ap-
proaches facilitate the application of NLP techniques
required for these problem areas. Furthermore, these
approaches often rely on some meta-information from
source code as well. In contrast, our proposed framework
targets a relatively more unconstrained natural-language
text and is independent of the source code of the applica-
tion under analysis.

With respect to program comprehension there are
existing techniques that assist in building domain-
specific ontologies [48]. Furthermore, there are exist-
ing approaches [49, 50] that automatically infer natural-
language documentation from source code. These ap-
proaches would immensely help in comprehension of the
functionality of a mobile application. However, the in-
herent dependency on source code to generate such doc-
uments poses a problem in cases, where source code is
not available. In contrast, WHYPER relies on application
description and API documents that are readily available
artifact for mobile applications.

In the realm of mobile software verification, there is
existing work on permissions [2–5, 15], code [6–10],
and runtime behavior [11–13] to detect malicious ap-
plications. In particular, Zhou et al. [3] propose an ap-
proach that leverages the permission information in the
manifest of the applications as a criteria to filter mali-
cious applications. They further employed static analy-
sis to identify the malicious applications by forming be-
havioral patterns in terms of sequences of API calls of
known malicious applications. They also propose the use
of heuristics-based dynamic analysis to detect previously
unknown applications. Furthermore, Enck et al. [11] also
use dynamic analysis techniques (dynamic taint analysis)
to detect misuse of users private information.

These previously described techniques are primarily
targeted towards finding malicious applications in mo-
bile applications. However, these approaches do little for
bridging the semantic gap between what the user expects
an application to do and what it actually does. In con-
trast, WHYPER is the first step targeted towards bridging
this gap. Furthermore, WHYPER can be used in conjunc-
tion with these approaches for an improved experience
while interacting with mobile ecosystem.

In addition, Felt et al. [28] apply automated testing
techniques to find permission required to invoke each
method in the Android 2.2 API. They use this informa-
tion to detect over-privilege in Android Applications, by
generating a maximum set of permissions required by
an applications and comparing them to the permissions
requested by the application. Although it is important
from a developer perspective to minimize the set of per-
missions requested, the information does not empower
an end user to decide what the requested permissions are
being used for. In contrast, WHYPER leverages some of
the results provided by Felt et al. [28] to highlight the
sentences describing the need for a permission, in turn
enabling end users to make informed decision while in-
stalling and application

Finally, Lin et al. [27] introduce a new model for pri-
vacy, namely privacy as expectations for mobile appli-
cations. In particular, they use crowd-sourcing as means
to capture users expectations of sensitive resources used
by a mobile applications. We believe the sentences high-
lighted by WHYPER, can be used as supporting evidence
to formulate such user expectations at the first place.

7 Conclusion

In this paper, we have presented WHYPER, a frame-
work that uses Natural Language Processing (NLP) tech-
niques to determine why an application uses a permis-
sion. We evaluated our prototype implementation of
WHYPER on real-world application descriptions that in-
volve three permissions (address book, calendar, and
record audio). These are frequently-used permissions
that protect privacy and security sensitive resources. Our
evaluation results show that WHYPER achieves an aver-
age precision of 82.8%, and an average recall of 81.5%
for three permissions. In summary, our results demon-
strate great promise in using NLP techniques to bridge
the semantic gap of user expectations to aid the risk as-
sessment of mobile applications.

8 Acknowledgments

This work was supported in part by an NSA Science
of Security Lablet grant at North Carolina State Uni-
versity, NSF grants CCF-0845272, CCF-0915400, CNS-
0958235, CNS-1160603, CNS-1222680, and CNS-
1253346. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the funding agencies. We would also like to thank the
conference reviewers and shepherds for their feedback
in finalizing this paper.

14

USENIX Association 22nd USENIX Security Symposium 541

References

[1] H. Lockheimer, “Android and security,” Google
Mobile Blog, Feb. 2012, http://googlemobile.
blogspot.com/2012/02/android-and-security.html.

[2] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner, “A survey of mobile malware in the
wild,” in Proc. 1st ACM SPSM Workshop, 2011, pp.
3–14.

[3] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey,
you, get off of my market: Detecting malicious
Apps in official and alternative Android markets,”
in Proc. of 19th NDSS, 2012.

[4] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi,
R. Potharaju, C. Nita-Rotaru, and I. Molloy, “Using
probabilistic generative models for ranking risks of
Android Apps,” in Proc. of 19th ACM CCS, 2012,
pp. 241–252.

[5] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck,
“MAST: Triage for market-scale mobile malware
analysis,” in Proc. 6th of ACM WiSec, 2013, pp.
13–24.

[6] M. Egele, C. Kruegel, E. Kirda, and G. Vigna,
“PiOS: Detecting privacy leaks in iOS applica-
tions.”

[7] W. Enck, D. Octeau, P. McDaniel, and S. Chaud-
huri, “A study of Android application security,”
in Proc. 20th USENIX Security Symposium, 2011,
p. 21.

[8] Y. Zhou and X. Jiang, “Dissecting Android mal-
ware: Characterization and evolution,” in Proc. of
IEEE Symposium on Security and Privacy, 2012,
pp. 95–109.

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“RiskRanker: Scalable and accurate zero-day An-
droid malware detection,” in Proc. of 10th MobiSys,
2012, pp. 281–294.

[10] C. Gibler, J. Crussell, J. Erickson, and H. Chen,
“AndroidLeaks: Automatically detecting potential
privacy leaks in Android applications on a large
scale,” in Proc. of 5th TRUST, 2012, pp. 291–307.

[11] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth, “TaintDroid: an
information-flow tracking system for realtime pri-
vacy monitoring on smartphones,” in Proc. of 9th
USENIX OSDI, 2010, pp. 1–6.

[12] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall, “These aren’t the droids you’re look-
ing for: Retrofitting Android to protect data from
imperious applications,” in Proc. 18th ACM CCS,
2011, pp. 639–652.

[13] L. K. Yan and H. Yin, “DroidScope: Seamlessly
reconstructing the OS and Dalvik semantic views
for dynamic Android malware analysis,” in Proc.
of 21st USENIX Security Symposium, 2012, p. 29.

[14] “Whyper,” https://sites.google.com/site/whypermission/.

[15] W. Enck, M. Ongtang, and P. McDaniel, “On
lightweight mobile phone application certification,”
in Proc. of 16th ACM CCS, 2009, pp. 235–245.

[16] D. Barrera, H. G. Kayacik, P. C. van Oorshot, and
A. Somayaji, “A methodology for empirical analy-
sis of permission-based security models and its ap-
plication to Android,” in Proc. of 7th ACM CCD,
2010, pp. 73–84.

[17] A. P. Felt, K. Greenwood, and D. Wagner, “The ef-
fectiveness of application permissions,” in Proc. of
2nd USENIX WebApps, 2011, pp. 7–7.

[18] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,
and D. Wagner, “Android permissions: User atten-
tion, comprehension and behavior,” in Proc. of 8th
SOUPS, 2012, p. 3.

[19] P. McDaniel and W. Enck, “Not so great expecta-
tions: Why application markets haven’t failed se-
curity,” IEEE Security & Privacy Magazine, vol. 8,
no. 5, pp. 76–78, 2010.

[20] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng,
“Comparing mobile privacy protection through
cross-platform applications,” in Proc. of 20th
NDSS, 2013.

[21] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer, “Feature-rich part-of-speech tagging
with a cyclic dependency network.” in Proc. HLT-
NAACL, 2003, pp. 252–259.

[22] D. Klein and D. Manning, Christopher, “Fast ex-
act inference with a factored model for natural lan-
guage parsing,” in Proc. 15th NIPS, 2003, pp. 3 –
10.

[23] “The Stanford Natural Language Processing
Group,” 1999, http://nlp.stanford.edu/.

[24] M. C. de Marneffe, B. MacCartney, and C. D. Man-
ning, “Generating typed dependency parses from
phrase structure parses,” in Proc. 5th LREC, 2006,
pp. 449–454.

15

542 22nd USENIX Security Symposium USENIX Association

[25] M. C. de Marneffe and C. D. Manning, “The stan-
ford typed dependencies representation,” in Proc.
Workshop COLING, 2008, pp. 1–8.

[26] J. R. Finkel, T. Grenager, and C. Manning., “Incor-
porating non-local information into information ex-
traction systems by gibbs sampling,” in Proc. 43nd
ACL, 2005, pp. 363–370.

[27] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong,
and J. Zhang, “Expectation and purpose: under-
standing users’ mental models of mobile App pri-
vacy through crowdsourcing,” in Proc. 14th ACM
Ubicomp, 2012, pp. 501–510.

[28] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-
ner, “Android permissions demystified,” in Proc. of
18th ACM CCS, 2011, pp. 627–638.

[29] Fellbaum et al., WordNet: an electronic lexical
database. Cambridge, Mass: MIT Press, 1998.

[30] D. Klein and C. D. Manning, “Accurate unlexical-
ized parsing.” in Proc. 41st ACL, 2003, pp. 423–
430.

[31] A. Sinha, A. M. Paradkar, P. Kumanan, and
B. Boguraev, “A linguistic analysis engine for natu-
ral language use case description and its application
to dependability analysis in industrial use cases.” in
Proc. 39th DSN, 2009, pp. 327–336.

[32] A. Sinha, S. M. SuttonJr., and A. Paradkar,
“Text2Test: Automated inspection of natural lan-
guage use cases,” in Proc. 3rd ICST, 2010, pp. 155–
164.

[33] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar, “Inferring method specifications from
natural language API descriptions,” in Proc. 34th
ICSE, 2012, pp. 815–825.

[34] B. K. Boguraev, “Towards finite-state analysis of
lexical cohesion.” in Proc. 3rd FSMNLP, 2000.

[35] M. Stickel and M. Tyson, FASTUS: A Cascaded
Finite-state Transducer for Extracting Information
from Natural-language Text. MIT Press, 1997.

[36] G. Gregory, Light Parsing as Finite State Filtering.
Cambridge University Press, 1999.

[37] Q. Do, D. Roth, M. Sammons, Y. Tu, and V. Vydis-
waran, “Robust, light-weight approaches to com-
pute lexical similarity,” University of Illinois, Com-
puter Science Research and Technical Reports,
2009.

[38] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie,
“PScout: analyzing the Android permission speci-
fication,” in Proc. 19th CCS, 2012, pp. 217–228.

[39] D. Olson, Advanced Data Mining Techniques.
Springer Verlag, 2008.

[40] S. Thummalapenta and T. Xie, “PARSEWeb: A
programmer assistant for reusing open source code
on the web,” in Proc. 22nd ASE, 2007, pp. 204–213.

[41] S. P. Reiss, “Semantics-based code search,” in
Proc. 31st ICSE, 2009, pp. 243–253.

[42] M. Harman, Y. Jia, and Y. Zhang, “App store min-
ing and analysis: MSR for app stores,” in Proc. 9th
IEEE MSR, 2012, pp. 108–111.

[43] V. Gervasi and D. Zowghi, “Reasoning about in-
consistencies in natural language requirements,”
ACM Transactions Software Engineering Method-
ologies, vol. 14, pp. 277–330, 2005.

[44] U. Dekel and J. D. Herbsleb, “Improving API doc-
umentation usability with knowledge pushing,” in
Proc. 31st ICSE, 2009, pp. 320–330.

[45] L. Tan, D. Yuan, G. Krishna, and Y. Zhou,
“/*iComment: Bugs or bad comments?*/,” in Proc.
21st SOSP, 2007, pp. 145–158.

[46] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Infer-
ring resource specifications from natural language
API documentation,” in Proc. 24th ASE, November
2009, pp. 307–318.

[47] X. Xiao, A. Paradkar, S. Thummalapenta, and
T. Xie, “Automated extraction of security poli-
cies from natural-language software documents,” in
Proc. 20th FSE, 2012, pp. 12:1–12:11.

[48] H. Zhou, F. Chen, and H. Yang, “Developing ap-
plication specific ontology for program comprehen-
sion by combining domain ontology with code on-
tology,” in Proc. 8th QSIC, 2008, pp. 225 –234.

[49] G. Sridhara, L. Pollock, and K. Vijay-Shanker,
“Generating parameter comments and integrating
with method summaries,” in Proc. 19th ICPC,
2011, pp. 71–80.

[50] P. Robillard, “Schematic pseudocode for program
constructs and its computer automation by schema-
code,” Comm. of the ACM, vol. 29, no. 11, pp.
1072–1089, 1986.

16

USENIX Association 22nd USENIX Security Symposium 543

Effective Inter-Component Communication Mapping in Android with Epicc:
An Essential Step Towards Holistic Security Analysis

Damien Octeau1, Patrick McDaniel1, Somesh Jha2, Alexandre Bartel3, Eric Bodden4, Jacques
Klein3, and Yves Le Traon3

1Department of Computer Science and Engineering, Pennsylvania State University
2Computer Sciences Department, University of Wisconsin,

3Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
4EC SPRIDE, Technische Universität Darmstadt

{octeau,mcdaniel}@cse.psu.edu, jha@cs.wisc.edu, {alexandre.bartel,jacques.klein,yves.letraon}@uni.lu, eric.bodden@ec-spride.de

Abstract
Many threats present in smartphones are the result of in-
teractions between application components, not just ar-
tifacts of single components. However, current tech-
niques for identifying inter-application communication
are ad hoc and do not scale to large numbers of ap-
plications. In this paper, we reduce the discovery of
inter-component communication (ICC) in smartphones
to an instance of the Interprocedural Distributive Envi-
ronment (IDE) problem, and develop a sound static anal-
ysis technique targeted to the Android platform. We ap-
ply this analysis to 1,200 applications selected from the
Play store and characterize the locations and substance
of their ICC. Experiments show that full specifications
for ICC can be identified for over 93% of ICC locations
for the applications studied. Further the analysis scales
well; analysis of each application took on average 113
seconds to complete. Epicc, the resulting tool, finds ICC
vulnerabilities with far fewer false positives than the next
best tool. In this way, we develop a scalable vehicle to
extend current security analysis to entire collections of
applications as well as the interfaces they export.

1 Introduction

The rapid rise of smartphone has led to new applications
and modes of communication [1]. The scale of the new
software markets is breathtaking; Google’s Play Store
has served billions of application downloads [31] within
a few years. Such advances have also come with a dark
side. Users are subjected to privacy violations [11, 12]
and malicious behaviors [33] from the very applications
they have come to depend on. Unfortunately, for many
reasons, application markets cannot provide security as-
surances on the applications they serve [26], and previ-
ous attempts at doing so have had limited success [27].

Past analyses of Android applications [12, 14, 15, 17,
19, 36] have largely focused on analyzing application

components in isolation. Recent works have attempted
to expose and analyze the interfaces provided by com-
ponents to interact [6, 12], but have done so in ad hoc
and imprecise ways. Conversely, this paper attempts to
formally recast Inter-Component Communication (ICC)
analysis to infer the locations and substance of all inter-
and intra-application communication available for a tar-
get environment. This approach provides a high-fidelity
means to study how components interact, which is a nec-
essary step for a comprehensive security analysis. For
example, our analysis can also be used to perform in-
formation flow analysis between application components
and to identify new types of attacks, such as application
collusion [5, 8], where two applications work together
to compromise the privacy of the user. In general, most
vulnerability analysis techniques for Android need to an-
alyze ICC, and thus can benefit from our analysis.

Android application components interact through ICC
objects – mainly Intents. Components can also commu-
nicate across applications, allowing developers to reuse
functionality. The proposed approach identifies a spec-
ification for every ICC source and sink. This includes
the location of the ICC entry point or exit point, the ICC
Intent action, data type and category, as well as the ICC
Intent key/value types and the target component name.
Note that where ICC values are not fixed we infer all
possible ICC values, thereby building a complete speci-
fication of the possible ways ICC can be used. The spec-
ifications are recorded in a database in flows detected by
matching compatible specifications. The structure of the
specifications ensures that ICC matching is efficient.

We make the following contributions in this work:
• We show how to reduce the analysis of Intent ICC

to an Interprocedural Distributive Environment (IDE)
problem. Such a problem can be solved efficiently
using existing algorithms [32].

• We develop Epicc, a working analysis tool built
on top of an existing IDE framework [3] within
the Soot [34] suite, which we have made available

544 22nd USENIX Security Symposium USENIX Association

Intent
 - Action
 - Categories
 - Data

Component A Component B
Intent Filter

 - Actions
 - Categories
 - Data

Figure 1: Implicit Intent ICC

at http://siis.cse.psu.edu/epicc/.
• We perform a study of ICC vulnerabilities and com-

pare it to ComDroid [6], the current state-of-the-art.
Our ICC vulnerability detection shows significantly
increased precision, with ComDroid flagging 32%
more code locations. While we use our tool to per-
form a study of some ICC vulnerabilities, our anal-
ysis can be used to address a wider variety of ICC-
related vulnerabilities.

• We perform a study of ICC in 1,200 representative
applications from the free section of the Google Play
Store. We found that the majority of specifications
were relatively narrow, most ICC objects having a
single possible type. Also, key/value pairs are widely
used to communicate data over ICC. Lastly, our anal-
ysis scales well, with an average analysis time of 113
seconds per application.

1.1 Android ICC
Android applications are developed in Java and compiled
to a platform-specific Dalvik bytecode, and are com-
posed of four types of components:
• An Activity represents a user screen. The user inter-

face is defined through Activities.
• A Service allows developers to specify processing

that should take place in the background.
• A Content Provider allows sharing of structured data

within and across applications.
• A Broadcast Receiver is a component that receives

broadcast communication objects, called Intents.
Intents are the primary vehicle for ICC. For example, a
developer might want to start a component to display the
user’s current location on a map. She can create an Intent
containing the user’s location and send it to a component
that renders the map. Developers can specify an Intent’s
target component (or target components) in two ways, (a)
explicitly, by specifying the target’s application package
and class name, and (b) implicitly by setting the Intent’s
action, category or data fields.

In order for a component to be able to receive implicit
Intents, Intent Filters have to be specified for it in the
application’s manifest file. Illustrated in Figure 1, Intent
Filters describe the action, category or data fields of the
Intents that should be delivered by the operating system
to a given application component.

ICC can occur both within a single application and be-
tween different applications. In order for a component to

be accessible to other applications, its exported attribute
has to be set to true in the manifest file. If the exported
attribute of a component is not defined, the OS makes
the component available to other applications if an Intent
Filter has been declared for it.

Intents can carry extra data in the form of key-value
mappings. This data is contained in a Bundle object as-
sociated with the Intent. Intents can also carry data in the
form of URIs with context-specific references to external
resources or data.

Developers can restrict access to components using
permissions. Permissions are generally declared in the
manifest file. A component protected by a permission
can only be addressed by applications that have obtained
that permission. Permission requests by applications are
granted by users at install time and enforced by the OS
at runtime.

2 Android ICC Analysis

As highlighted above, the goal of the analysis presented
in this paper is to infer specifications for each ICC source
and sink in the targeted applications. These specifica-
tions detail the type, form, and data associated with the
communication. We consider communication with Con-
tent Providers to be out of scope. Our analysis has the
following goals:
Soundness - The analysis should generate all specifica-
tions for ICC that may appear at runtime. Informally, we
want to guarantee that no ICC will go undetected. Our
analysis was designed to be sound under the assumption
that the applications use no reflection or native calls, and
that the components’ life cycle is modeled completely.

Precision - The previous goal implies that some gen-
erated ICC specifications may not happen at runtime
(“false positives”). Precision means that we want to
limit the number of cases where two components are de-
tected as connected, even though they are not in practice.
Our analysis currently does not handle URIs1. Since the
data contained in Intents in the form of URIs is used to
match Intents to target components, not using URIs as
a matching criterion potentially implies more false posi-
tives. Other possible sources of imprecision include the
points-to and string analyses. We empirically demon-
strate analysis precision in Section 6.1.

Note that, since we do not handle URIs yet, this im-
plies that Content Providers are out of the scope of this
paper and will be handled in future work.

1Extending the analysis to include URIs is a straightforward exer-
cise using the same approaches defined in the following sections. We
have a working prototype and defer reporting on it to future work.

USENIX Association 22nd USENIX Security Symposium 545

1 private OnClickListener mMyListener =
2 new OnClickListener () {
3 public void onClick(View v) {
4 Intent intent = new Intent ();
5 intent.setAction("a.b.ACTION");
6 intent.addCategory("a.b.CATEGORY");
7 startActivity(intent); } };

Figure 2: Example of implicit Intent communication

2.1 Applications
Although Android applications are developed in Java,
existing Java analyses cannot handle the Android-
specific ICC mechanisms. The analysis presented in this
paper deals with ICC and can be used as the basis for
numerous important analyses, for example:
Finding ICC vulnerabilities - Android ICC APIs are
complex to use, which causes developers to commonly
leave their applications vulnerable [6, 12]. Examples of
ICC vulnerabilities include sending an Intent that may be
intercepted by a malicious component, or exposing com-
ponents to be launched by a malicious Intent. The first
application of our work is in finding these vulnerabilities.
We present a study of ICC vulnerabilities in Section 6.4.

Finding attacks on ICC vulnerabilities - Our analy-
sis can go beyond ICC vulnerability detection and can be
used for a holistic attack detection process. For each app.
we compute entry points and exit points and systemati-
cally match them with entry and exit points of previously
processed applications. Therefore, our analysis can de-
tect applications that may exploit a given vulnerability.

Inter-component information flow analysis - We com-
pute which data sent at an exit point can potentially be
used at a receiving entry point. An information flow anal-
ysis using our ICC analysis find flows between a source
in a component and a sink in a different component (pos-
sibly in a different application).

In the case where the source and sink components
belong to different applications, we can detect cases of
application collusion [5, 8]. The unique communica-
tion primitives in Android allow for a new attack model
for malicious or privacy-violating application develop-
ers. Two or more applications can work together to leak
private information and go undetected. For example, ap-
plication A can request access to GPS location informa-
tion, while application B requests access to the network.
Permissions requested by each application do not seem
suspicious, therefore a user might download both appli-
cations. However, in practice it is possible for A and B to
work together to leak GPS location data to the network.
It is almost impossible for users to anticipate this kind of
breach of privacy. However, statically detecting this at-
tack is a simple application of our ICC analysis, whereas
the current state-of-the-art requires dynamic analysis and
modification of the Android platform [5].

1 public void onClick(View v) {
2 Intent i = new Intent ();
3 i.putExtra("Balance", this.mBalance);
4 if (this.mCondition) {
5 i.setClassName("a.b",

"a.b.MyClass");
6 } else {
7 i.setAction("a.b.ACTION");
8 i.addCategory("a.b.CATEGORY");
9 i = modifyIntent(i);

10 }
11 startActivity(i); }
12
13 public Intent modifyIntent(Intent in) {
14 Intent intent = new Intent(in);
15 intent.setAction("a.b.NEW_ACTION");
16 intent.addCategory("a.b.NEW_CATEGORY");
17 return intent; }

Figure 3: Intent communication: running example

2.2 Examples

Figure 2 shows a representative example of ICC pro-
gramming. It defines a field that is a click listener.
When activated by a click on an element, it creates In-
tent intent and sets its action and category. Finally, the
startActivity() call takes intent as an argument. It causes
the OS to find an activity that accepts Intents with the
given action and category. When such an activity is
found, it is started by the OS. If several activities meeting
the action and category requirements are found, the user
is asked which activity should be started.

This first example is trivial. Let us now consider the
more complex example from Figure 3, which will be
used throughout this paper. Let us assume that this piece
of code is in a banking application. First, Intent intent
containing private data is created. Then, if condition
this.mCondition is true, intent is made explicit by tar-
geting a specific class. Otherwise, it is made implicit.
Next, an activity is started using startActivity(). Note
that we have made the implicit Intent branch contrived to
demonstrate how function calls are handled. In this ex-
ample, the safe branch is the one in which intent targets a
specific component. The other one may leak data, since it
might be intercepted by an malicious Activity. We want
to be able to detect that possible information leak. In
other words, we want to infer the two possible Intent val-
ues at startActivity(). In particular, knowing the implicit
value would allow us to find which applications can in-
tercept it and to detect possible eavesdropping.

3 Connecting Application Components:
Overview

Our analysis aims at connecting components, both within
single applications and between different applications.
For each input application A, it outputs the following:
1. A list of entry points for A that may be called by com-

546 22nd USENIX Security Symposium USENIX Association

ponents in A or in other applications.
2. A list of exit points for A where A may send an Intent

to another component. That component can be in A

or in a different application. The value of Intents at
each exit point is precisely determined, which allows
us to accurately determine possible targets.

3. A list of links between A’s own components and be-
tween A’s components and other applications’ com-
ponents. These links are computed using 1. and 2. as
well as all the previously analyzed applications.

Let us consider the example in Figure 3, which
is part of our example banking application. The
startActivity(i) instruction is an exit point for the
application. Our analysis outputs the value of i at this in-
struction as well as all the possible targets. These targets
can be components of our banking application itself or
components of previously analyzed applications.

Figure 4 shows an overview of our component match-
ing process. It can be divided into three main functions:
• Finding target components that can be started by

other components (i.e. “entry points”) and identify-
ing criteria for a target to be activated.

• Finding characteristics of exit points, i.e. what kind
of targets can be activated at these program points.

• Matching exit points with possible targets.
Given an application, we start by parsing its manifest

file to extract package information, permissions used and
a list of components2 and associated intent filters (1).
These components are the potential targets of ICC. We
match these possible entry points with the pool of already
computed exit points (2). We then add the newly com-
puted entry points to our database of entry points (3).
This database and the exit points database grow as we
analyze more applications. Then we proceed with the
string analysis, which identifies key API method argu-
ments such as action strings or component names (4).
Next, the main Interprocedural Distributive Environment
(IDE) analysis precisely computes the values of Intent
used at ICC API calls (5). It also compute the values
of Intent Filters that select Intents received by dynami-
cally registered Broadcast Receivers. These exit points
are matched with entry points from the existing pool of
entry points (6). The newly computed exit points are
stored in the exit point database to allow for later match-
ing (7). The values associated with dynamically reg-
istered Broadcast Receivers are used for matching with
exit points in the database (8). Finally, these values are
stored in the entry point database (9).

One of the inputs to our analysis is a set of class files.
These classes are in Java bytecode format, since our anal-
ysis is built on top of Soot [34], an existing Java analysis
framework. Android application code is distributed in

2Broadcast Receivers can be registered either statically in the man-
ifest file or dynamically using the registerReceiver() methods.

a platform-specific Dalvik bytecode format that is opti-
mized for resource-constrained devices, such as smart-
phones and tablets. Therefore, we use Dare [29], an ex-
isting tool that efficiently and accurately retarget Dalvik
bytecode to Java bytecode. While other tools such as
dex2jar3 and ded [28] are available, Dare is currently
the only formally defined one and other tools’ output is
sometimes not reliable.

The manifest parsing step is trivial and we use a sim-
ple string analysis (see Section 6). Also, the matching
process matches exit points with entry points. It can be
made efficient if properly organized in a database. Thus,
we focus our description on the main IDE analysis.

It is important to distinguish between what is com-
puted by the string analysis and by the IDE analysis. In
the example from Figure 2, the string analysis computes
the values of the arguments to the API calls setAction()
and addCategory(). The IDE analysis, on the other
hand, uses the results from the string analysis along with
a model of the Android ICC API to determine the value
of the Intent. In particular, in Figure 2, it determines
that, at the call to startActivity(), Intent intent has action
a.b.ACTION and category a.b.CATEGORY. In Figure 3,
the IDE analysis tells us that i has two possibles values
at the call to startActivity() and determines exactly what
the two possible values are.

Reducing the Intent ICC problem to an IDE prob-
lem [32] has important advantages. Our analysis is scal-
able (see Section 6). Further, it is a precise analysis, in
the sense that it generates few false positives (links be-
tween two components which may not communicate in
reality). Thus, security analyses using our ICC analysis
will not be plagued by ICC-related false positives. This
precision is due to the fact that the IDE framework is
flow-sensitive, inter-procedural and context-sensitive.

The flow-sensitivity means that we can distinguish In-
tent values between different program points. In the
example from Figure 3, if Intent i was used for ICC
right before the call to modi f yIntent(), we would accu-
rately capture that this value is different from the one at
startActivity(). The context-sensitivity means that the
analysis of the call to modi f yIntent() is sensitive to the
method’s calling context. If modi f yIntent() is called at
another location with a different argument i2, the analy-
sis will precisely distinguish between the values returned
by the two calls. Otherwise, in a context-insensitive anal-
ysis, the return value would summarize all possible val-
ues given all contexts in which modi f yIntent() is called
in the program. The value of i computed by a context-
insensitive analysis would be influenced by the value of
i2, which is not the case in reality. That would be signif-
icantly less precise, resulting in more false positives.

3Available at http://code.google.com/p/dex2jar/.

USENIX Association 22nd USENIX Security Symposium 547

Key string
values

Entry
points

Exit
points

Manifest

Class
files

Intent
values

Components, Intent
Filters & permissions(1) Parsing

(2) Matching

(4) String
analysis

(5) IDE
analysis

(6) Matching

(3) Populating
database

(7) Populating
database

ICC
linksICC

links

(9) Populating
database

Dynamic receivers (Intent
Filters & permissions)

(8) Matching ICC
links

Figure 4: Connecting Application Components

if
(this.mCondition)

i.setClassName("a.
b", "a.b.MyClass");

i.setAction("a.b.
ACTION");

i.addCategory("a.
b.CATEGORY");

i = modifyIntent(i);
(CALL)

intent = new Intent(in);

i = modifyIntent(i);
(RETURN)

intent.setAction("a.b.
NEW_ACTION");

intent.addCategory("a.
b.NEW_CATEGORY");

return intent;

startActivity(i);

START

END

Normal flow edge
Call edge
Return edge
Call-to-return edge

i.putExtra("Balance",
this.mBalance);

i = new Intent();

onClick(View v)

modifyIntent(Intent in)

(r)

(c)

(p)

Figure 5: Supergraph G∗ for the program from Figure 3

4 The IDE Framework: Background

The main part of our analysis is based on the IDE frame-
work [32]. In this section, we summarize the main ideas
and notations of the IDE framework. A complete de-
scription is available in [32]. The IDE framework solves
a class of interprocedural data flow analysis problems. In
these problems, an environment contains information at
each program point. For each program idiom, environ-
ment transformers are defined and modify the environ-
ment according to semantics. The solution to this class
of problems can be found efficiently.

4.1 Supergraphs
A program is represented using a supergraph G∗. G∗ is
composed of the control flow graphs of the procedures
in the program. Each procedure call site is represented
by two nodes, one call node representing control right
before the callee is entered and one return-site node to
which control flows right after exiting the callee. Fig-
ure 5 shows the supergraph of the program in Figure 3.

The nodes of a supergraph are program statements.
There are four kinds of edges between these nodes.
Given a call to procedure (p) with call node (c) and
return-site (r), three kinds of edges are used to model
the effects of the procedure call on the environment:
• A call edge between (c) and the first statement of (p).
• A return edge between the last statement of (p) and
(r).

• A call-to-return edge between (c) and (r).
All other edges in the supergraph are normal intrapro-
cedural flow edges. Informally, the call edge transfers
symbols and associated values from the calling method
to the callee when a symbol of interest is a procedure ar-
gument. The return edge transfers information from the
return value of the callee to the environment in the call-
ing procedure. Finally, the call-to-return edge propagates
data flow information that is not affected by the callee,
“in parallel” to the procedure call (e.g., local variables).

4.2 Environment transformers
Let D be a finite set of symbols (e.g., program variables).
D contains at least a symbol Λ that represents the absence
of a data flow fact. Let L = (V,�) be a join semilattice
with bottom element ⊥, where V is a set of values4. An
environment e is a function from D to L. The set of envi-
ronments from D to L is denoted by Env(D,L).

Operator � is defined over Env(D,L) as a natural ex-
tension of � in semilattice L: for e1,e2 ∈ Env(D,L), e1 �
e2 is such that, for all d ∈D, (e1�e2)(d) = e1(d)�e2(d).

An environment transformer is a function from
Env(D,L) to Env(D,L). The algorithms from [32]

4A join semilattice is a partially ordered set in which any two ele-
ments have a least upper bound.

548 22nd USENIX Security Symposium USENIX Association

Clearing extra data keys
d.clear()

Constructor
b = new Bundle()

Adding int key-value pair
b.putInt("MyInt", mInt)

Copy constructor
b = new Bundle(d)

b

b

b

b

b

b

b

d

d

d

d

d

d

d

⇤

⇤

⇤

⇤ ⇤

⇤

⇤

B.BB.B B.B

B.B B.B B.BB.B B.B

B.B

e.e[b 7! ?]

e.e[b 7! e(d)]

⇤ b d

B.? λB.βb
({MyInt},?,0,())(B)

λe.e
h

b 7! βb
({MyInt},?,0,())(e(b))

i

λe.e
h

d 7! βb
(?,?,1,())(e(d))

i

λB.βb
(?,?,1,())(B)

Figure 6: Pointwise environment transformers for com-
mon Bundle operations

require that the environment transformers be dis-
tributive. An environment transformer t is said to
be distributive if for all e1,e2, . . . ∈ Env(D,L), and
d ∈ D, (t(�iei))(d) = (�it(ei))(d). It is denoted by
t : Env(D,L)−→d Env(D,L). Environment transform-
ers have a pointwise representation. We show an exam-
ple on Figure 6. Given environment e∈Env(D,L), trans-
former λe.e is the identity, which preserves the value of
e. Given symbol b ∈ D and value B ∈ L, λe.e[b �→ B]
transforms e to an environment where all values are the
same as in e, except that symbol b is associated with
value B. The functions from L to L (represented next
to each arrow in Figure 6) are called micro-functions.

The environment transformer for the copy constructor
call b = new Bundle(d) is λe.e[b �→ e(d)]. It means
that the value associated with b after the instruction is the
same as d’s value before the instruction. In the pointwise
representation, this is symbolized by an arrow between d
and b with an identity function next to it.

We are trying to determine the value associated with
each symbol at program points of interest, which is done
by solving an Interprocedural Distributive Environment
(IDE) problem. An instance IDE problem is defined as a
tuple (G∗,D,L,M), where:
• G∗ = (N∗,E∗) is the supergraph of the application be-

ing studied.
• D is the set of symbols of interest.
• L is a join semilattice (V,�) with least element ⊥.
• M assigns distributive environment

transformers to the edges of G∗, i.e.
M : E∗ −→ (Env(D,L)−→d Env(D,L)).

1 public ComponentName
makeComponentName () {

2 ComponentName c;
3 if (this.mCondition) {
4 c = new ComponentName("c.d",

"a.b.MyClass");
5 } else {
6 c = new ComponentName("c.d",
7 "a.b.MySecondClass"); }
8 return c; }
9

10 public Bundle makeBundle(Bundle b) {
11 Bundle bundle = new Bundle ();
12 bundle.putString("FirstName",

this.mFirstName);
13 bundle.putAll(b);
14 bundle.remove("Surname");
15 return bundle; }
16
17 public void onClick(View v) {
18 Intent intent = new Intent ();
19 intent.setCompontent(makeComponentName ());
20 Bundle b = new Bundle ();
21 b.putString("Surname", this.mSurname);
22 intent.putExtras(makeBundle(b));
23 registerMyReceiver ();
24 startActivity(intent); }
25
26 public void registerMyReceiver () {
27 IntentFilter f = new IntentFilter ();
28 f.addAction("a.b.ACTION");
29 f.addCategory("a.b.CATEGORY");
30 registerReceiver(new MyReceiver (),
31 f, "a.b.PERMISSION", null); }

Figure 7: ICC objects example

Under certain conditions on the representation of
micro-functions, an IDE problem can be solved in time
O(ED3) [32]. For example, micro-functions should be
applied in constant time. In the model we present in Sec-
tion 5, we relax some of these constraints but find that
the problem can still be solved efficiently in the average
case. When the problem is solved, we know the value as-
sociated with each symbol at important program points.

5 Reducing Intent ICC to an IDE problem

To solve the Intent ICC problem, we need to model
four different kinds of objects. First, ComponentName
objects contain a package name and a class name.
They can be used by explicit Intents. For example, in
method makeComponentName() of Figure 7, a Com-
ponentName object can take two different values de-
pending on which branch is executed. In the first
branch, it refers to class a.b.MyClass from applica-
tion package c.d. In the second one, it refers to class
a.b.MySecondClass. We want to know the possible
return values of makeComponentName().

Second, Bundle objects store data as key-value map-
pings. Method makeBundle() of Figure 7 creates a Bun-
dle and modifies its value. We need to find the possible
return values of makeBundle().

Third, Intent objects are the main ICC communica-

USENIX Association 22nd USENIX Security Symposium 549

tion objects. They contain all the data that is used to
start other components. In method onClick() of Fig-
ure 7, the target class of intent is set using the re-
turn value of makeComponentName(). Its extra data
is set to the return value of makeBundle(). Finally,
a new Activity is started using the newly created In-
tent. We need to determine the value of intent at the
startActivity(intent) instruction.

Fourth, IntentFilter objects are used for dynamic
Broadcast Receivers. In registerMyReceiver() on Fig-
ure 7, an action and a category are added to IntentFil-
ter f . Then a Broadcast Receiver of type MyReceiver

(which we assume to be defined) is registered us-
ing method registerReceiver(). It receives Intents that
have action a.b.ACTION and category a.b.CATEGORY

and that originate from applications with permission
a.b.PERMISSION. We want to determine the arguments
to the registerReceiver() call. That is, we want to
know that f contains action a.b.ACTION and category
a.b.CATEGORY. We also want to know that the type of
the Broadcast Receiver is MyReceiver.

In this section, we use the notations from Sagiv et
al. [32] summarized in Section 4. We assume that string
method arguments are available. We describe the string
analysis used in our implementation in Section 6.

5.1 ComponentName Model
In this section, we introduce the model we use for Com-
ponentName objects. We introduce the notion of a
branch ComponentName value. It represents the value
that a ComponentName object can take on a single
branch, given a single possible string argument value for
each method setting the ComponentName’s package and
class names, and in the absence of aliasing.

Definition 1. A branch ComponentName value is a tuple
c = (p,k), where p is a package name and k is a class
name.

In method makeComponentName() of Figure 7, two
branch ComponentName values are constructed:

(c.d,a.b.MyClass) (1)
and

(c.d,a.b.MySecondClass) (2)
The next definition introduces ComponentName val-

ues, which represent the possibly multiple values that a
ComponentName can have at a program point. A Com-
ponentName can take several values in different cases:
• After traversing different branches, as in method

makeComponentName() of Figure 7.
• When a string argument can have several values at a

method call.
• When an object reference is a possible alias of an-

other local reference or an object field.

• When an object reference is a possible array element.
In the last two cases, in order to account for the possi-
bility of a false positive in the alias analysis, we keep
track of two branch ComponentName values. One con-
siders the influence of the call on the possible alias and
the other one does not.

Definition 2. A ComponentName value C is a set of
branch ComponentName values: C = {c1,c2, · · · ,cm}.
The set of ComponentName values is denoted as Vc. We
define ⊥ = ∅ and � as the ComponentName value that
is the set of all possible branch ComponentName val-
ues in the program. The operators ∪ and ⊆ are defined
as traditional set union and comparison operators: for
C1,C2 ∈ Vc, C1 ⊆ C2 iff C1 ∪C2 = C2. Lc = (Vc,∪) is a
join semilattice.

Note that given the definitions of ⊥ and � as specific
sets, ∪ and ⊆ naturally apply to them. For example, for
all C ∈Vc, �∪C =�.

In method makeComponentName() from Figure 7, the
value of c at the return statement is

{(c.d,a.b.MyClass) ,
(c.d,a.b.MySecondClass)} . (3)

It simply combines the values of c created in the two
branches, given by Equations (1) and (2).

We define transformers from Vc to Vc that represent
the influence of a statement or a sequence of statements
on a ComponentName value. A pointwise branch Com-
ponentName transformer represents the influence of a
single branch, whereas a pointwise ComponentName
transformer represents the influence of possibly multiple
branches.

Definition 3. A pointwise branch ComponentName
transformer is a function δ c

(π,χ) : Vc →Vc, where π is a
package name and χ is a class name. It is such that, for
each C ∈Vc,

δ c
(π,χ)(C) = {(π,χ)}

Note that δ c
(π,χ)(C) is independent of C, because API

methods for ComponentName objects systematically re-
place existing values for package and class names. In the
example from Figure 7, the pointwise branch Compo-
nentName transformer corresponding to the first branch
is

δ c
(c.d,a.b.MyClass), (4)

and the one for the second branch is
δ c
(c.d,a.b.MySecondClass). (5)

Definition 4. A pointwise ComponentName transformer
is a function δ c

{(π1,χ1),··· ,(πn,χn)} : Vc →Vc such that, for
each C ∈Vc,

δ c
{(π1,χ1),··· ,(πn,χn)}(C) = {(π1,χ1), · · · ,(πn,χn)}

A pointwise ComponentName transformer summa-

550 22nd USENIX Security Symposium USENIX Association

rizes the effect of multiple branches (or a single branch
with multiple possible string arguments, or with possi-
ble aliasing) on a ComponentName value. That is, given
the value C of a ComponentName right after statement
si and given transformer δ c

{(π1,χ1),··· ,(πn,χn)} that sum-
marizes the influence of statements si+1, · · · ,sk on C,
δ c
{(π1,χ1),··· ,(πn,χn)}(C) represents all the possible values

of C right after sk. In method makeComponentName()
of Figure 7, the pointwise ComponentName transformer
that models the two branches is

δ c
{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}. (6)

It combines the transformers given by Equations (4)
and (5). In order to understand how this transformer is
applied in practice, we should mention that the algorithm
to solve IDE problems initially sets values to ⊥ [32].
Therefore, in method makeComponentName(), the value
associated with c is initially ⊥=∅. Using Definition 4,
we can easily see that if we apply the transformer given
by Equation (6), we get the value given by Equation (3).
This confirms that the transformer models the influence
of the two branches:

δ c
{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}(⊥)

= {(c.d,a.b.MyClass) ,
(c.d,a.b.MySecondClass)}

5.2 Bundle Model

The model of Bundle objects is defined similarly to the
model of ComponentName objects. An additional diffi-
culty is introduced. The data in a Bundle can be modified
by adding the data in another Bundle to it, as shown in
method makeBundle() of Figure 7. In this example, the
data in Bundle b is added to the data in Bundle bundle.
Bundle bundle is later modified by removing the key-
value pair with key Surname. The issue is that when
the data flow problem is being tackled, the value of b
is not known. Therefore, the influence of the call to
remove("Surname") is not known: if a key-value pair
with key Surname is part of b, then the call removes it
from bundle. Otherwise, it has no influence.

Our approach to deal with this object composition
problem is to perform two successive analyses. In Anal-
ysis I, we use placeholders for Bundles such as b in in-
struction bundle.putAll(b). We also record all subse-
quent method calls affecting bundle. After the problem
is solved, b’s key-value pairs at the putAll(b) method
call are known, as well as the subsequent method calls.
We then perform Analysis II, in which b’s key-value
pairs are added to bundle’s. The influence of the sub-
sequent method call is precisely evaluated and finally the
value of bundle at the return statement can be known.

5.2.1 Analysis I

In the first analysis, we consider intermediate values that
contain “placeholders” for Bundle values that are not
known when the problem is being solved.

Definition 5. An intermediate branch Bundle value is a
tuple bi = (E,O), where:
• E is a set of keys describing extra data.
• O is a tuple of two types of elements. O contains ref-

erences to particular Bundle symbols at instructions
where putAll() calls occur. O also contains functions
from V i

b to V i
b, where V i

b is the set of intermediate Bun-
dle values defined below. These functions represent a
sequence of method calls affecting a Bundle.

The difference with previous definitions is the intro-
duction of O, which models calls to putAll() as well as
subsequent calls affecting the same Bundle. In method
makeBundle() of Figure 7, at the return statement, the in-
termediate branch Bundle value associated with bundle
is (E,O), where

E ={FirstName} (7)

O =((b,bundle.putAll(b)),β b
(∅,{Surname},0,())) (8)

In O, (b,bundle.putAll(b)) is a reference to variable
b at instruction bundle.putAll(b). β b

(∅,Surname,0,())
models the remove() method call. It is defined below.

We just defined intermediate branch Bundle values.
As we did before, we need to consider multiple branches
and related issues (e.g., several possible string values):

Definition 6. An intermediate Bundle value Bi is a set of
intermediate branch Bundle values: Bi = {bi1 , · · · ,bim}.
The set of intermediate Bundle values is V i

b. We define
⊥ = ∅ and � as the intermediate Bundle value that is
the set of all possible intermediate branch Bundle val-
ues in the program. We define ⊆ and ∪ as natural set
comparison and union operators. They are such that, for
Bi1 ,Bi2 ∈V i

b, Bi1 ⊆ Bi2 iff Bi1 ∪Bi2 = Bi2 . Li
b = (V i

b,∪) is
a join semilattice.

In method makeBundle() from Figure 7, since there is
only a single branch, the intermediate Bundle value as-
sociated with bundle at the return statement is {(E,O)},
where E and O are given by Equations (7) and (8).

Pointwise transformers are defined from V i
b to V i

b.
Similarly to the ComponentName model, we first in-
troduce pointwise branch Bundle transformers before
defining pointwise Bundle transformers. In the def-
initions below, we use the \ notation for set differ-
ence, and ∪ is naturally extended to tuples such that
(a1, · · · ,ak)∪ (ak+1, · · · ,al) = (a1, · · · ,ak,ak+1, · · · ,al).

Definition 7. A pointwise branch Bundle transformer is
a function β b

(η+,η−,cl,Θ) : V i
b →V i

b, where:

• η+ is a set of string keys describing extra data. It
models calls to putExtra() methods.

USENIX Association 22nd USENIX Security Symposium 551

• η− is a set of string keys describing removed ex-
tra data. It represents the influence of calls to the
removeExtra() method.

• cl takes value 1 if the Bundle data has been cleared
with the clear() method and 0 otherwise.

• Θ is a tuple of two types of elements. It contains ref-
erences to particular Bundle symbols at instructions
where putAll() calls occur. It also contains functions
from V i

b to V i
b. These functions represent a sequence

of method calls affecting a Bundle.
It is such that

β b
(η+,η−,cl,Θ)(⊥) =

{(

η+\η−,Θ
)}

and, for Bi = {(E1,O1), · · · ,(Em,Om)} (Bi �=⊥),
β b
(η+,η−,cl,Θ)(Bi) = {(E ′

1,O
′
1), · · · ,(E ′

m,O
′
m)}

where, for each j from 1 to m:

E ′
j =

η+\η− if cl = 1

(E j ∪η+)\η− if cl = 0 and O j =∅
E j otherwise

O′
j =

Θ if cl = 1 or O j =∅

O j ∪
(

β b
(η+,η−,0,Θ)

)

otherwise

The definition of E ′
j accounts for several possible

cases:
• If the Bundle data has been cleared (i.e., cl = 1), then

we discard any data contained in E j. This leads to
value η+\η− for E ′

j: we only keep the values η+

that were added to the Bundle data and remove the
values η− that were removed from it.

• If the Bundle has not been cleared, then there are two
possible cases: either no reference to another Bun-
dle has been previously recorded (i.e., O j = ∅), or
such a reference has been recorded to model a call to
putAll(). In the first case, we simply take the union
of the original set E j and the set η+ of added values,
and subtract the set η− of removed values. This ex-
plain the (E j ∪η+)\η− value. In the second case, a
call to putAll() has been detected, which means that
any further method call adding or removing data has
to be added to set O j instead of E j. Therefore in this
case E ′

j = E j.
The definition of O′

j considers several cases:
• If the Bundle data has been cleared, then the previous

value of O j is irrelevant and we set O′
j = Θ. Also, if

O j is empty, then we can also just set O′
j to Θ (which

may or may not be empty).
• Otherwise, the Bundle data has not been cleared

(cl = 0) and a call to putAll() has been detected
(O j �= ∅). Then it means that the current function
models method calls that happened after a call to
putAll(). Therefore we need to record β b

(η+,η−,0,Θ)

in O′
j, which explains the definition O′

j = O j ∪
(β b

(η+,η−,0,Θ)).

For example, the pointwise branch Bundle transformer
that models the influence of the method makeBundle()
from Figure 7 is β b

(η+,∅,0,Θ), where

η+ ={FirstName} (9)

Θ =
(

(b,bundle.putAll(b)),

β b
(∅,{Surname},0,())

) (10)

Pointwise branch Bundle transformers model the in-
fluence of a single branch. In order to account for mul-
tiple branches or issues such as possible aliasing false
positive, we define pointwise Bundle transformers.

Definition 8. A pointwise Bundle transformer is a func-
tion

β b
{(η+

1 +,η−
1 ,cl1,Θ1),··· ,(η+

n ,η−
n ,cln,Θn)}

: V i
b →V i

b

such that, for each Bi ∈V i
b,

β b
{(η+

1 ,η−
1 ,cl1,Θ1),··· ,(η+

n ,η−
n ,cln,Θn)}

(Bi) =

β b
(η+

1 ,η−
1 ,cl1,Θ1)

(Bi)∪·· ·∪β b
(η+

n ,η−
n ,cln,Θn)

(Bi)

For example, method makeBundle() from Figure 7
only has a single branch, thus the pointwise Bundle trans-
former that models it is simply β b

{(η+,∅,0,Θ)}, where η+

and Θ are given in Equations (9) and (10). As we did for
the ComponentName value example, we can confirm us-
ing Definitions 7 and 8 that β b

{(η+,∅,0,Θ)}(⊥) = {(E,O)},
where E and O are given by Equations (7) and (8).

5.2.2 Analysis II

After Analysis I has been performed, the values of the
Bundles used in placeholders in intermediate Bundle val-
ues are known. Ultimately, we want to obtain branch
Bundle values and finally Bundle values:

Definition 9. A branch Bundle value b is a set E of string
keys describing extra data.

Definition 10. A Bundle value B is a set of branch Bun-
dle values: B = {b1, · · · ,bm}.

Since the values of the referenced Bundles are known,
we can integrate them into the Bundle values referring to
them. Then the influence of the subsequent method calls
that have been recorded can precisely be known.

Let us consider the example of makeBundle() from
Figure 7. After Analysis I has been performed, we know
that the intermediate value of bundle at the return state-
ment is {(E,O)}, where

E ={FirstName}

O =
(

(b,bundle.putAll(b)),β b
(∅,{Surname},0,())

)

We consider all elements of O in order. As the
first element of O is (b,bundle.putAll(b)), we inte-
grate b’s value into bundle. From Analysis I, we know

552 22nd USENIX Security Symposium USENIX Association

that the value of b at instruction bundle.putAll(b)

is {{Surname} ,∅}. Thus, E becomes {FirstName,
Surname}. The next element of O is β b

(∅,{Surname},0,()).
This means that we have to remove key Surname from E.
The final value of E is therefore {FirstName}. Thus, the
Bundle value associated with bundle at the return state-
ment is {{FirstName}}.

Note that the referenced Bundle can also make refer-
ences to other Bundles. In that case, we perform the res-
olution for the referenced Bundles first. There can be an
arbitrary number of levels of indirection. Analysis II is
iterated until a fix-point is reached.

5.3 Intent and IntentFilter Models
The Intent model is defined similarly to the Bundle
model, which includes object composition. In method
onClick() of Figure 7, the target of Intent intent is set
using a ComponentName object and its extra data is set
with a Bundle. Because of this object composition, find-
ing the Intent value also involves two analyses similar to
the ones performed for Bundles. First, intermediate In-
tent values with placeholders for referenced Component-
Name and Bundle objects are found. Second, the refer-
enced objects’ values are integrated into intent’s value.

Similarly to the Bundle model, we define intermedi-
ate branch Intent values and intermediate Intent values.
The set of intermediate Intent values is V i

i and we de-
fine a lattice Li

i = (V i
i ,∪) as we did for Li

b. We also de-
fine pointwise branch Intent transformers and pointwise
Intent transformers. For example, in method onClick()
of Figure 7, the final intermediate value for intent sim-
ply has placeholders for a ComponentName and a Bun-
dle value. Other fields, such as action and categories,
are empty. The ComponentName and Bundle values are
computed using the models presented in Sections 5.1
and 5.2. Finally, we define branch Intent values and
Intent values, which are output by the second analysis.
The final value for intent after the second analysis pre-
cisely contains the two possible targets (a.b.MyClass
and a.b.MySecondClass in package c.d) and extra
data key FirstName. For conciseness, and given the
strong similarities with the Bundle model, we do not in-
clude a full description of the Intent model here.

In order to analyze dynamic Broadcast Receivers, we
model IntentFilter objects. Modeling IntentFilters is sim-
ilar to modeling Intents, except that IntentFilters do not
involve object composition. That is because IntentFilters
do not have methods taking other IntentFilters as argu-
ment, except for a copy constructor. Thus, their analysis
is simpler and involves a single step. Similarly to what
we did for other ICC models, we define branch Intent-
Filter values, IntentFilter values, pointwise branch In-
tentFilter transformers and pointwise IntentFilter trans-

formers. In particular, we define lattice L f = (Vf ,∪),
where Vf is the set of IntentFilter values. In method
onClick() from Figure 7, the final value of f contains ac-
tion a.b.ACTION and category a.b.CATEGORY. Given
the similarity of the IntentFilter model with previous
models, we do not include a complete description.

5.4 Casting as an IDE Problem

These definitions allow us to define environment trans-
formers for our problem. Given environment e ∈
Env(D,L), environment transformer λe.e is the identity,
which does not change the value of e. Given Intent i and
Intent value I, λe.e[i �→ I] transforms e to an environment
where all values are the same as in e, except that Intent i
is associated with value I.

We define an environment transformer for each API
method call. Each of these environment transformers
uses the pointwise environment transformers defined in
Sections 5.1, 5.2 and 5.3. It precisely describes the influ-
ence of a method call on the value associated with each
of the symbols in D.

Figure 6 shows some environment transformers and
their pointwise representation. The first one is a con-
structor invocation, which sets the value corresponding
to b to ⊥. The second one adds an integer to the key-
value pairs in Bundle b’s extra data, which is represented
by environment transformer

λe.e
[

b �→ β b
({MyInt},∅,0,()) (e(b))

]

.

It means that the environment stays the same, ex-
cept that the value associated with b becomes
β b
({MyInt},∅,0,()) (e(b)), with e(b) being the value previ-

ously associated with b in environment e. The pointwise
transformer for b is

β b
({MyInt},∅,0,()),

which we denote by
λB.β b

({MyInt},∅,0,())(B)
on Figure 6 for consistency with the other pointwise
transformers. It simply adds key MyInt to the set of
data keys. The next transformer is for a copy construc-
tor, where the value associated with d is assigned to the
value associated with b. The last transformer clears the
data keys associated with d.

Trivially, these environment transformers are distribu-
tive. Therefore, the following proposition holds.

Proposition 1. Let G∗ be the supergraph of an An-
droid application. Let Dc, Db Di and D f be the sets
of ComponentName, Bundle and Intent variables, re-
spectively, to which we add the special symbol Λ5.
Let Lc, Li

b, Li
i and L f be the lattices defined above.

5Recall from Section 4.2 that Λ symbolizes the absence of a data
flow fact.

USENIX Association 22nd USENIX Security Symposium 553

Let Mc, Mb, Mi and Mf be the corresponding assign-
ments of distributive environment transformers. Then
(G∗,Dc,Lc,Mc), (G∗,Db,Li

b,M
i
b), (G∗,Db,Li

i,M
i
i) and

(G∗,Di,L f ,Mf) are IDE problems.

It follows from this proposition that we can use the
algorithm from [32] to solve the Intent ICC problem.

The original IDE framework [32] requires that the
micro-function be represented efficiently in order to
achieve the time complexity of O(ED3). Our model does
not meet these requirements: in particular, applying,
composing, joining micro-function or testing for equality
of micro-functions cannot be done in constant time. In-
deed, the size of micro-functions grows with the number
of branches, aliases and possible string arguments (see
Equation 6 for an example with two branches). However,
in practice we can find solutions to our IDE problem in-
stances in reasonable time, as we show in Section 6.

6 Evaluation

This section describes an evaluation of the approach pre-
sented in the preceding sections, and briefly character-
izes the use of ICC in Android applications. We also
present a study of potential ICC vulnerabilities. Our
implementation is called Epicc (Efficient and Precise
ICC) and is available at http://siis.cse.psu.edu/
epicc/. It is built on Heros [3], an IDE framework
within Soot [34]. We also provide the version of Soot
that we modified to handle pathological cases encoun-
tered with retargeted code.

In order to compute string arguments, we use a simple
analysis traversing the interprocedural control flow graph
of the application. The traversal starts at the call site and
looks for constant assignments to the call arguments. If a
string argument cannot be determined, we conservatively
assume that the argument can be any string. As we show
in Section 6.1, in many cases we are able to find precise
string arguments. More complex analyses can be used if
more precision is desired [7].

For points-to analysis and call graph construction, we
use Spark [24], which is part of Soot. It performs a flow-
sensitive, context-insensitive analysis. We approximate
the call graph in components with multiple entry points.
In order to generate a call graph of an Android appli-
cation, we currently use a “wrapper” as an entry point.
This wrapper calls each class entry point once, which
may under-approximate what happens at runtime. This
impacts a specification only if an ICC field (e.g., Intent)
is modified in a way that depends on the runtime execu-
tion order of class entry points. Generally, if we assume
that our model of components’ life cycle is complete and
if the application does not use native calls or reflection,
then our results are sound.

The analysis presented in this section is performed on
two datasets. The first random sample dataset contains
350 applications, 348 of which were successfully ana-
lyzed after retargeting. They were extracted from the
Google Play store6 between September 2012 and Jan-
uary 2013. The applications were selected at random
from over 200,000 applications in our corpus. The sec-
ond popular application dataset contains the top 25 most
popular free applications from each of the 34 applica-
tion categories in the Play store. The 850 selected appli-
cations were downloaded from that application store on
January 30, 2013. Of those 850 applications, 838 could
be retargeted and processed and were used in the exper-
iments below. The 14 applications which were not ana-
lyzed were pathological cases where retargeting yielded
code which could not be analyzed (e.g., in some cases
the Dare tool generated offsets with integer overflow er-
rors due to excessive method sizes), or where applica-
tions could not be processed by Soot (e.g., character en-
coding problems).

6.1 Precision of ICC Specifications
The first set of tests evaluates the technique’s precision
with our datasets. We define the precision metric to be
the percentage of source and sink locations for which a
specification is identified without ambiguity. Ambiguity
occurs when an ICC API method argument cannot be de-
termined. These arguments are mainly strings of charac-
ters, which may be generated at runtime. In some cases,
runtime context determines string values, which implies
that our analysis cannot statically find them.

Recall the various forms of ICC. Explicit ICC iden-
tifies the communication sink by specifying the target’s
package and class name. Conversely, implicit ICC iden-
tifies the sink through action, category, and/or data fields.
Further, a mixed ICC occurs when a source or sink can
take on explicit or implicit ICC values depending on the
runtime context. Finally, the dynamic receiver ICC oc-
curs when a sink binds to an ICC type through runtime
context (e.g., Broadcast Receivers which identify the In-
tent Filter types when being registered). We seek to de-
termine precise ICC specifications, where all fields of In-
tents or Intent Filters are known without ambiguity.

As shown in Table 1, with respect to the random sam-
ple corpus, we were able to provide unambiguous speci-
fications for over 91% of the 7,835 ICC locations in the
348 applications. Explicit ICC was precisely analyzed
more frequently (≈98%) than implicit ICC (≈88%). The
remaining 7% of ICC containing mixed and dynamic re-
ceivers proved to be more difficult, where the precision
rates are much lower than others. This is likely due to
the fact that dynamic receivers involve finding more data

6Available at https://play.google.com/store/apps.

554 22nd USENIX Security Symposium USENIX Association

Random Sample
Precise % Imprecise % Total

Explicit 3,571 97.65% 86 2.35% 3,657
Implicit 3,225 88.45% 421 11.55% 3,646
Mixed 28 59.57% 19 40.43% 47
Dyn. Rec. 357 73.61% 128 26.39% 485
Total 7,181 91.65% 654 8.35% 7,835

Popular
Precise % Imprecise % Total

Explicit 27,753 94.43% 1,637 5.57% 29,390
Implicit 23,133 93.82% 1,525 6.18% 24,658
Mixed 509 85.12% 89 14.88% 598
Dyn. Rec. 4,161 95.81% 182 4.19% 4,343
Total 55,556 94.18% 3,433 5.82% 58,989

Table 1: Precision metrics

than Intents: Intent Filters limiting access to dynamic re-
ceivers can define several actions, and receivers can be
protected by a permission (which we attempt to recover).

In the popular applications, we obtain a precise spec-
ification in over 94% of the 58,989 ICC locations in the
838 apps. Explicit ICC was slightly more precisely an-
alyzed than implicit ICC. Mixed ICC is again hard to
recover. This is not surprising, as mixed ICC involves
different Intent values on two or more branches, which is
indicative of a method more complex than most others.

A facet of the analysis not shown in the table is the
number of applications for which we could identify un-
ambiguous specifications for all ICC – called 100% pre-
cision. In the random sample, 56% of the applications
could be analyzed with 100% precision, 80% of the ap-
plications with 90% precision, and 91% of the applica-
tions with 80% precision. In the popular applications,
23% could be analyzed with 100% precision, 82% could
be analyzed with 90% precision and 94% with 80% pre-
cision. Note that a less-than-100% precision does not
mean that the analysis failed. Rather, these are cases
where runtime context determines string arguments, and
thus any static analysis technique would fail.

6.2 Computation Costs
A second set of tests sought to ascertain the computa-
tional costs of performing the IDE analysis using Epicc.
For this task we collected measurements at each stage of
the analysis and computed simple statistics characteriz-
ing the costs of each task on the random sample and the
popular applications.

Experiment results show that ICC analysis in this
model is feasible for applications in the Google Play
store. We were able to perform analysis of all 348 ap-
plications in the random sample in about 3.69 hours of
compute time. On average, it took just over 38 seconds
to perform analysis for a single application, with a stan-
dard deviation of 99 seconds. There was high variance in
the analysis run times. A CDF (cumulative distribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
(C

om
pu

ta
tio

n
Ti

m
e)

Applications (logscale)
(a) Random sample

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
(C

om
pu

ta
tio

n
Ti

m
e)

Applications (logscale)
(b) Popular applications

Figure 8: CDF of computation time
function) of the analysis computation time for all 348 ap-
plications is presented in Figure 8(a). It is clear from the
figure that costs were dominated by a handful of appli-
cations; the top application consumed over 11% of the
time, the top 5 consumed over 25% of the total time, and
the top 29 consumed over 50% of the total time. These
applications are large with a high number of entry points.

Analyzing the 838 popular applications took 33.58
hours, that is, 144 seconds per application. The standard
deviation was 277 seconds. The average processing time
is significantly higher than for the random sample. How-
ever, this is expected, as the average application size is
almost 1,500 classes, which is significantly higher than
the random sample (less than 400 classes per applica-
tion). This is likely related to the popularity bias: one can
expect frequently downloaded applications to have fully
developed features as well as more complex/numerous
features, which implies a larger code base. A CDF of the
computation time for all 838 applications is presented in
Figure 8(b). Once again, analysis time is dominated by
a few applications. The top 5 consumed over 11% of the
analysis time and the top 83 (less than 10% of the sam-
ple) consumed over 50% of the analysis time.

Processing was dominated by the standard Soot pro-
cessing (e.g., translating classes to an intermediate repre-
sentation, performing type inference and points-to anal-
ysis, building a call graph). It consumed 75% of the pro-
cessing time in the random sample and 86% in the pop-
ular applications. It was itself dominated by the trans-
lation to Soot’s internal representation and by the call
graph construction. The second most time-consuming
task was the IDE analysis (which also includes the string
analysis in our implementation). It took 15% of the pro-

USENIX Association 22nd USENIX Security Symposium 555

cessing time with the random sample and 7% with the
popular one. Finally, I/O operations accounted for most
of the remainder of the processing time. Loading classes
took 7% of the time in the random sample and 3% in the
popular one. Database operations accounted for 2% of
processing for the random sample and 3% for the popu-
lar applications. Other operations (e.g., parsing manifest
files) took less than 1% of processing time.

6.3 Entry/Exit Point Analysis

This section briefly characterizes the exit (source) and
entry (sink) points of Android applications in our data
sets. Note that this analysis is preliminary and will be
extended in future work.

An exit point is a location that serves as a source for
ICC; i.e., the sending of an Intent. In the random sample,
our analysis found 7,350 exit points which can transmit
10,035 unique Intent values. About 92% of these exit
points had a single Intent specification, with the remain-
ing exit points being able to take on 2 or more values.
In two pathological cases, we noted an exit point that
could have 640 different Intent values (most likely the re-
sult of contrived control flow or multiple aliasing for an
Intent value). The popular applications had 48,756 exit
points, associated with 316,419 Intent values. Single In-
tent specifications were found in 90% of exit points. We
found 10 pathological cases where an exit point was as-
sociated with 512 Intent values or more. The use of key
value data was more prevalent than we initially expected,
in about 36% of exit points in the random sample. Key-
value data was present in Intents in 46% of exit points in
the popular applications.

Our study of entry points focused on the sinks of
ICC that were either dynamically registered broadcast re-
ceivers or component interfaces (exported or not) identi-
fied in the application manifest. In the random sample,
we were able to identify 3,863 such entry points associ-
ated with 1,222 unique intent filters. The popular appli-
cations comprised 25,291 entry points with 11,375 Intent
Filters. 1,174 components were exported (and thus avail-
able to other applications) in the random sample, 7,392
in the popular applications. Of those, only 6% (67) of
the exported components were protected by a permission
in the random sample and 5% (382) were protected in
the popular applications. This is concerning, since the
presence of unprotected components in privileged appli-
cations can lead to confused deputy [21] attacks [17].

Oddly, we also found 23 components that were ex-
ported without any Intent Filter in the random sample
and 220 in the popular sample. Conversely, we found 32
cases where a component had an Intent Filter but was not
exported in the random sample and 412 in the popular
one. The latter indicates that developers sometimes use

implicit Intents to address components within an appli-
cation, which is a potential security concern, since these
Intents may also be intercepted by other components.
Lastly, application entry points were relatively narrow
(with respect to intent types). Over 97% of the entry
points received one Intent type in the random sample.
Single Intent Filters were found in 94% of components
protected by Intent Filters in the popular applications.

6.4 ICC Vulnerability Study

In this section, we perform a study of ICC vulnerabilities
in our samples using Epicc and compare our results with
ComDroid [6]. We look for the same seven vulnerabil-
ities as in [6]. Activity and Service hijacking can occur
when an Intent is sent to start an Activity or a Service
without a specific target. Broadcast thefts can happen
when an Intent is Broadcast without being protected by a
signature or signatureOrSystem permission7. In all three
cases, the Intent may be received by a malicious compo-
nent, along with its potentially sensitive data.

Malicious Activity or Service launch and Broadcast
injection are Intent spoofing vulnerabilities. They in-
dicate that a public component is not protected with a
signature or signatureOrSystem permission. It may be
started by malicious components. These vulnerabilities
can lead to permission leakage [17, 19, 25].

Finally, some Intent Broadcasts can only be sent by
the operating system, as indicated by their action field.
Broadcast Receivers can register to receive them by spec-
ifying Intent Filters with the appropriate action. How-
ever, these public components can still be addressed di-
rectly by explicit Intents. That is why the target Re-
ceivers should check the action field of the received In-
tent to make sure that it was sent by the system.

Table 2 shows the results of the study for the ran-
dom and the popular samples. The first line shows the
number of vulnerabilities identically detected by both
analyses, the second line shows vulnerabilities detected
by ComDroid only and the third line shows vulner-
abilities detected by Epicc only. The last two lines
show the total number of vulnerabilities found by each
tool. For the three unauthorized Intent receipt vul-
nerabilities (first three columns), both ComDroid and
Epicc indicate whether the sent Intent has extra data
in the form of key-value pairs, and whether the In-
tent has the FLAG GRANT READ URI PERMISSION or the
FLAG GRANT WRITE URI PERMISSION. These flags are
used in Intents which refer to Content Provider data and
may allow the recipient to read or write the data [6].

7The signature permission protection level only allows access to a
component from an application signed by the same developer. The
signatureOrSystem protection level additionally allows the operating
system to start the component.

556 22nd USENIX Security Symposium USENIX Association

Activity Service Broadcast Activity Service Broadcast System Broadcast Total
Vulnerability Hijacking Hijacking Theft Launch Launch Injection w/o action check vulnerabilities

Sample R P R P R P R P R P R P R P R P
Identical 2,591 15,214 78 1,200 503 4,825 179 1,731 23 263 273 3,503 30 126 3,677 26,862

ComDroid only 916 7,717 78 535 218 2,854 12 169 2 18 104 1,684 3 20 1,333 12,997
Epicc only 181 2,079 3 151 23 297 4 20 0 1 4 43 77 580 292 3,171

Total ComDroid 3,507 22,931 156 1,735 721 7,679 191 1,900 25 281 377 5,187 33 146 5,010 39,859
Total Epicc 2,772 17,293 81 1,351 526 5,122 183 1,751 23 264 277 3,546 107 706 3,969 30,033

Table 2: ICC vulnerability study results for the random sample (R) and the popular applications (P)

For the presence of flags and the detection of extra
data, Epicc can precisely indicate when the value of an
Intent depends on the execution path. On the other hand,
a ComDroid specification does not make this distinction.
When Epicc and ComDroid differ for a code location, we
include flags in both the “ComDroid only” and “Epicc
only” rows of Table 2.

The Activity hijacking vulnerabilities found by both
ComDroid and Epicc are unsurprisingly common: they
represent all cases where implicit Intents are used to
start Activities. Service hijacking vulnerabilities are
much less prevalent, which is correlated with the fact
that Services are used less often than Activities. Broad-
cast theft vulnerabilities are quite common as well. As
previously described in Section 6.3, few exported com-
ponents are protected by permissions. Therefore, the
high number of malicious Activity or Service launch
as well as Broadcast injection vulnerabilities is not sur-
prising. Note the discrepancy between the number
of components without permissions and the total num-
ber of these vulnerabilities. A large portion of the
components not protected by permissions are Activities
with the android.intent.action.MAIN action and
the android.intent.category.LAUNCHER category,
which indicate that these components cannot be started
without direct user intervention. They are therefore not
counted as potential vulnerabilities.

If we consider the first three vulnerabilities (unautho-
rized Intent receipt), we can see that ComDroid flags a
high number of locations where Epicc differs. A manual
examination of a random subset of applications shows
that these differences are either false positives detected
by ComDroid or cases where Epicc gives a more precise
vulnerability specification. We observed that a number of
code locations are detected as vulnerable by ComDroid,
whereas Soot does not find them to be reachable. Epicc
takes advantage from the sound and precise Soot call
graph construction to output fewer false positives. Ad-
ditionally, the IDE model used by Epicc can accurately
keep track of differences between branches (e.g., explic-
it/implicit Intent or URI flags), whereas ComDroid can-
not. Note that when an Intent is implicit on one branch
and explicit on another, ComDroid detects it as explicit,
which is a false negative. On the other hand, the IDE
model correctly keeps track of the possibilities.

With a few exceptions, the ComDroid and Epicc anal-
yses detect the same possible malicious Activity and Ser-
vice launches. That is expected, since both are detected
by simply parsing the manifest file. The few differences
can be explained by minor implementation differences
or bugs in pathological cases. The Broadcast injection
vulnerability shows stronger differences, with ComDroid
detecting 377 cases for the random sample and 5,187
for the popular one, whereas Epicc only finds 277 and
3,546, respectively. Some of the Broadcast injections
detected by ComDroid involved dynamically registered
Broadcast Receivers found in unreachable code. Once
again, the call graph used by Epicc proves to be an ad-
vantage. Many other cases involve Receivers listening
to protected system Broadcasts (i.e., they are protected
by Intent Filters that only receive Intents sent by the sys-
tem). The list of protected Broadcasts used by ComDroid
is outdated, hence the false positives.

Finally, there is a significant difference in the de-
tection of the system Broadcasts without action check,
with Epicc detecting 107 vulnerabilities in the random
sample and 706 in the popular one, whereas ComDroid
only detects 33 and 146, respectively. The first rea-
son for that difference is that the ComDroid list of pro-
tected Broadcasts is outdated. Another reason is an
edge case, where the Soot type inference determines Re-
ceivers registered using a registerReceiver() method as
having type android.content.BroadcastReceiver

(i.e., the abstract superclass of all Receivers). It occurs
when several types of Receivers can reach the call to
registerReceiver(). Since no Receiver code can be in-
spected, even though there may be a vulnerability, our
analysis conservatively flags it as a vulnerability.

Overall, Epicc detects 34,002 potential vulnerabilities.
On the other hand, ComDroid detects 44,869 potential
security issues, that is, 32% more than Epicc. As de-
tailed above, the extra flags found by ComDroid that
we checked were all false positives. Further, the poten-
tial causes of unsoundness in Epicc (i.e., JNI, reflection
and entry point handling) are also handled unsoundly in
ComDroid. Thus, we do not expect the locations flagged
by ComDroid but not by Epicc to be false negatives. The
precision gain over ComDroid is significant and will help
further analyses. Note that it is possible that both tools
have false negatives in the presence of JNI, reflection,

USENIX Association 22nd USENIX Security Symposium 557

or when the life cycle is not properly approximated. In
particular, we found that 776 out of the 838 popular ap-
plications and 237 out of 348 applications in the random
sample make reflective calls. Future work will seek to
quantify how often these cause false negatives in prac-
tice. We will also attempt to determine if the locations
flagged by Epicc are true positives.

7 Related Work

ComDroid [6] is the work most closely related to ours.
Our work aims to formalize the notions it first captured.
It is different in many aspects. First, ComDroid di-
rectly analyses Dalvik bytecode, whereas we use retar-
geted Java bytecode. This allows us to leverage anal-
yses integrated with Soot (e.g., call graph). Also, un-
like ComDroid, our analysis is fully interprocedural and
context-sensitive. Second, our ICC model is sound and
more detailed, taking multiple branches and aliasing into
account. Thus, as shown in Section 6.4, our ICC vulnera-
bility study produces fewer false positives. Finally, Com-
Droid seeks to find potential vulnerabilities, whereas our
approach enables finding attacks for vulnerabilities in ex-
isting applications. This is done by keeping a database
of analysis results and matching newly analyzed applica-
tions with applications in our database. This will allow
us to identify problematic application combinations.

Several kinds of application analysis have been per-
formed for the Android platform [10]. Permission anal-
ysis infers applications properties based on the permis-
sions requested at install time. Kirin [13] uses permis-
sions to flag applications with potential dangerous func-
tionality. Other methods for permission analysis have
been proposed [2, 15, 16], including analyses to detect
over-privileged applications [15] or malware [36].

Dynamic analysis consists in analyzing applications
while they are running. TaintDroid [11] performs dy-
namic taint tracking on Android. It exposes widespread
leakage of personal data to third parties. An extension to
TaintDroid handles implicit flows [18] by monitoring and
recording control flow information. TaintDroid is also
used in the AppFence system [22], which actively pre-
vents sensitive data exfiltration from mobile devices. Al-
ternative approaches dynamically prevent some classes
of privilege escalation attack through ICC [4, 9]. Dy-
namic analyses such as TaintDroid are limited by the
way they interact with the User Interface (UI). Smart-
Droid [35] tackles this issue by combining static and dy-
namic analyses. It is able to simulate the UI to expose
hidden behavior for seven malwares. As we use static
analysis we do not interact with the UI: the call graph is
complete and does not depend on any runtime condition.

Static analysis consists in analyzing application code
to infer useful properties without running the applica-

tion. Several approaches for static analysis have already
been proposed for Android applications. Enck et al.
use decompilation [28] followed by source code analysis
to characterize security properties of applications [12].
Grace et al. perform a study of the dangers caused by
100 ad libraries found in a sample of 100,000 applica-
tions [20] through a reachability analysis on disassem-
bled bytecode. Several analyses have statically found
permission leaks [17, 19, 25], which happen when a priv-
ileged application leaks its capabilities to unprivileged
ones. These analyses focus on finding paths between ex-
posed entry points and sensitive API calls, whereas we
focus on connecting exit points to entry points. Thus,
these analyses could benefit from our ICC analysis.

ScanDal [23] attempts to soundly analyze information
flow. It convert Dalvik bytecode to a formally defined
intermediate language. Dangerous flows are detected us-
ing abstract interpretation. Its analysis is path-insensitive
and has limited context-sensitivity. It finds some actual
privacy leaks, but is limited by a high number of false
positives and flows that are impossible to confirm.

Saint [30] modifies the Android framework to control
application interaction. Every application comes with
a policy describing how it uses permissions it declares.
Policy compliance verification is a possible application
of our tool but is out of the scope of this paper.

8 Conclusion

In this paper we have introduced an efficient and sound
technique for inferring ICC specifications, and demon-
strated its feasibility on a large collection of market ap-
plications. Future work will study a range of applications
and analyses that exploit the database of ICC specifica-
tions. We will also explore a range of extensions that can
use this information at runtime to identify potentially ma-
licious communication between applications. Through
these activities, we aim to aid the community’s efforts to
gauge the security of market applications.

Acknowledgements

We thank Matthew Dering for providing our application
samples. We also thank Atul Prakash, Patrick Traynor
and our shepherd Ben Livshits for editorial comments
during the writing of this paper. This material is based
upon work supported by the National Science Founda-
tion Grants No. CNS-1228700, CNS-0905447, CNS-
1064944 and CNS-0643907. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the National Science Foundation. This re-
search is also supported by a Google Faculty Award.

558 22nd USENIX Security Symposium USENIX Association

References

[1] ARTHUR, C. Feature phones dwindle as android powers
ahead in third quarter. The Guardian, Nov. 2012. Available
at http://www.guardian.co.uk/technology/2012/nov/

15/smartphones-market-android-feature-phones.
[2] BARRERA, D., KAYACIK, H. G., VAN OORSHOT, P. C., AND

SOMAYAJI, A. A Methodology for Empirical Analysis of
Permission-Based Security Models and its Application to An-
droid. In Proceedings of the ACM Conference on Computer and
Communications Security (Oct. 2010).

[3] BODDEN, E. Inter-procedural data-flow analysis with ifds/ide
and soot. In Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis (2012).
Available from http://sable.github.com/heros/.

[4] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T., AND
SADEGHI, A.-R. XManDroid: A New Android Evolution to
Mitigate Privilege Escalation Attacks. Tech. Rep. TR-2011-04,
Technische Universitat Darmstadt, Germany, Apr. 2011.

[5] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T.,
SADEGHI, A.-R., AND SHASTRY, B. Towards taming privilege-
escalation attacks on Android. In Proceedings of the 19th Annual
Network & Distributed System Security Symposium (Feb. 2012).

[6] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing Inter-Application Communication in Android. In Pro-
ceedings of the 9th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys) (2011).

[7] CHRISTENSEN, A. S., MØLLER, A., AND SCHWARTZBACH,
M. I. Precise analysis of string expressions. In Proc. 10th
International Static Analysis Symposium (SAS) (June 2003),
vol. 2694 of LNCS, Springer-Verlag, pp. 1–18. Available from
http://www.brics.dk/JSA/.

[8] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., AND
WINANDY, M. Privilege Escalation Attacks on Android. In Proc.
of the 13th Information Security Conference (ISC) (Oct. 2010).

[9] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In 20th USENIX Security Symposium (2011).

[10] ENCK, W. Defending users against smartphone apps: Techniques
and future directions. In ICISS (2011), pp. 49–70.

[11] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In Proc. of the 9th USENIX Symp. on
Operating Systems Design and Implementation (OSDI) (2010).

[12] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A Study of Android Application Security. In Proceedings of
the 20th USENIX Security Symposium (August 2011).

[13] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On
Lightweight Mobile Phone Application Certification. In Proceed-
ings of the 16th ACM Conference on Computer and Communica-
tions Security (CCS) (Nov. 2009).

[14] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Understand-
ing Android Security. IEEE Security & Privacy Magazine 7, 1
(January/February 2009), 50–57.

[15] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android Permissions Demystified. In Proc. of the ACM Conf.
on Computer and Communications Security (CCS) (2011).

[16] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The Ef-
fectiveness of Application Permissions. In Proc. of the USENIX
Conference on Web Application Development (WebApps) (2011).

[17] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission Re-Delegation: Attacks and Defenses. In
Proc. of the 20th USENIX Security Symp. (August 2011).

[18] GILBERT, P., CHUN, B.-G., COX, L. P., AND JUNG, J. Vision:
Automated Security Validation of Mobile Apps at App Markets.
In Proceedings of the International Workshop on Mobile Cloud
Computing and Services (MCS) (2011).

[19] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In
NDSS ’12 (2012).

[20] GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-R.
Unsafe exposure analysis of mobile in-app advertisements. In
Proceedings of the fifth ACM conference on Security and Privacy
in Wireless and Mobile Networks (2012), WISEC ’12, ACM.

[21] HARDY, N. The confused deputy: (or why capabilities might
have been invented). SIGOPS Oper. Syst. Rev. 22, 4 (Oct. 1988).

[22] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These Aren’t the Droids You’re Looking For:
Retrofitting Android to Protect Data from Imperious Applica-
tions. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2011).

[23] KIM, J., YOON, Y., AND YI, K. Scandal: Static analyzer for
detecting privacy leaks in android applications. In MoST 2012:
Workshop on Mobile Security Technologies 2012 (2012).

[24] LHOTÁK, O., AND HENDREN, L. Scaling java points-to analysis
using spark. In Proceedings of the 12th international conference
on Compiler construction (2003), CC’03, Springer-Verlag.

[25] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: stat-
ically vetting android apps for component hijacking vulnerabil-
ities. In Proc. of the 2012 ACM conference on Computer and
communications security (2012), CCS ’12, ACM, pp. 229–240.

[26] MCDANIEL, P., AND ENCK, W. Not So Great Expectations:
Why Application Markets Haven’t Failed Security. IEEE Secu-
rity & Privacy Magazine 8, 5 (September/October 2010), 76–78.

[27] MLOT, S. Google’s bouncer malware tool hacked. PC Mag-
azine, June 2012. Available from http://www.pcmag.com/

article2/0,2817,2405358,00.asp.
[28] OCTEAU, D., ENCK, W., AND MCDANIEL, P. The ded Decom-

piler. Tech. Rep. NAS-TR-0140-2010, Network and Security Re-
search Center, Pennsylvania State University, USA, Sept. 2010.
Available from http://siis.cse.psu.edu/ded/.

[29] OCTEAU, D., JHA, S., AND MCDANIEL, P. Retarget-
ing android applications to java bytecode. In Proceed-
ings of the 20th International Symposium on the Foundations
of Software Engineering (November 2012). Available from
http://siis.cse.psu.edu/dare/.

[30] ONGTANG, M., MCLAUGHLIN, S., ENCK, W., AND MC-
DANIEL, P. Semantically Rich Application-Centric Security in
Android. In Proceedings of the 25th Annual Computer Security
Applications Conference (ACSAC) (Dec. 2009), pp. 340–349.

[31] ROSENBERG, J. Google play hits 25 billion down-
loads. Android - Official blog, Sept. 2012. Avail-
able at http://officialandroid.blogspot.com/2012/

09/google-play-hits-25-billion-downloads.html.
[32] SAGIV, M., REPS, T., AND HORWITZ, S. Precise interprocedu-

ral dataflow analysis with applications to constant propagation.
Theor. Comput. Sci. 167, 1-2 (Oct. 1996), 131–170.

[33] SECURITY, N. Malware controls 620,000 phones, sends
costly messages. Help Net Security, January 2013. Avail-
able from http://www.net-security.org/malware_news.

php?id=2391.
[34] VALLÉE-RAI, R., GAGNON, E., HENDREN, L. J., LAM, P.,

POMINVILLE, P., AND SUNDARESAN, V. Optimizing java byte-
code using the soot framework: Is it feasible? In Proc. of the 9th
International Conf. on Compiler Construction (2000), CC ’00.

[35] ZHENG, C., ZHU, S., DAI, S., GU, G., GONG, X., HAN, X.,
AND ZOU, W. Smartdroid: an automatic system for revealing ui-
based trigger conditions in android applications. In Proceedings
of the second ACM workshop on Security and privacy in smart-
phones and mobile devices (2012), ACM, pp. 93–104.

[36] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, You,
Get off of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of the Network and
Distributed System Security Symposium (Feb. 2012).

USENIX Association 22nd USENIX Security Symposium 559

Jekyll∗ on iOS: When Benign Apps Become Evil

Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee

School of Computer Science, College of Computing, Georgia Institute of Technology

{tielei.wang, kangjie.lu, long, pchung, wenke}@cc.gatech.edu

Abstract
Apple adopts the mandatory app review and code sign-
ing mechanisms to ensure that only approved apps can
run on iOS devices. In this paper, we present a novel
attack method that fundamentally defeats both mecha-
nisms. Our method allows attackers to reliably hide ma-
licious behavior that would otherwise get their app re-
jected by the Apple review process. Once the app passes
the review and is installed on an end user’s device, it can
be instructed to carry out the intended attacks.

The key idea is to make the apps remotely exploitable
and subsequently introduce malicious control flows by
rearranging signed code. Since the new control flows
do not exist during the app review process, such apps,
namely Jekyll apps, can stay undetected when reviewed
and easily obtain Apple’s approval.

We implemented a proof-of-concept Jekyll app and
successfully published it in App Store. We remotely
launched the attacks on a controlled group of devices
that installed the app. The result shows that, despite run-
ning inside the iOS sandbox, Jekyll app can successfully
perform many malicious tasks, such as stealthily posting
tweets, taking photos, stealing device identity informa-
tion, sending email and SMS, attacking other apps, and
even exploiting kernel vulnerabilities.

1 Introduction

Apple iOS is one of the most popular and advanced op-
erating systems for mobile devices. By the end of June
2012, Apple had sold 400 million iOS devices [30], such
as iPhone, iPad and iPod touch. Despite the tremendous
popularity, in the history of iOS, only a handful of ma-
licious apps have been discovered [24]. This is mainly
attributed to the advanced security architecture of iOS
and the strict regulations of the App Store.

∗Jekyll is a character with dual personalities from the novel The
Strange Case of Dr. Jekyll and Mr. Hyde.

In addition to the standard security features like Ad-
dress Space Layout Randomization (ASLR), Data Exe-
cution Prevention (DEP), and Sandboxing, iOS enforces
the mandatory App Review and code signing mecha-
nisms [31]. App Review inspects every app submitted
by third parties (in binary form) and only allows it to
enter the App Store if it does not violate App Store’s reg-
ulations [5]. To further prohibit apps distributed through
channels other than the App Store (i.e., unsigned apps),
the code signing mechanism disallows unsigned code
from running on iOS devices. As a result, all third-party
apps running on iOS devices (excluding jailbroken de-
vices [48]) have to be approved by Apple and cannot be
modified after they have obtained the approval.

According to the official App Review guidelines [5],
developers should expect their apps to go through a thor-
ough inspection for all possible term violations. Dur-
ing this process, many reasons can lead to app rejections,
such as stealing data from users and using private APIs
reserved for system apps. Although the technical de-
tails of the review process remain largely unknown, it is
widely believed that such a selective and centralized app
distribution model has significantly increased the diffi-
culty and cost for malicious or ill-intended apps to reach
end users.

In this paper, we present a new attack method against
the App Store reviewing process and the code signing
mechanism. Using this method, attackers can create ma-
licious or term-violating apps and still be able to publish
them on App Store, which in turn open up new attack sur-
faces on iOS devices. We stress that our attack does not
assume any specifics about how Apple reviews apps, but
targets theoretical difficulties faced by any known meth-
ods to analyze programs. By demonstrating the power
of this practical attack, we highlight the shortcomings of
the pre-release review approach and call for more run-
time monitoring mechanisms to protect iOS users in the
future.

The key idea behind our attack is that, instead of sub-

1

560 22nd USENIX Security Symposium USENIX Association

CFG exhibited in vetting process. Red
node represents the vulnerabilities.

Dynamic CFG in victim’s device after
exploiting vulnerabilities.

Figure 1: High Level Intuition

mitting an app that explicitly contains malicious func-
tionalities to Apple, the attacker plants remotely ex-
ploitable vulnerabilities (i.e., backdoor) in a normal app,
decomposes the malicious logic into small code gadgets
and hides them under the cover of the legitimate func-
tionalities. After the app passes the App Review and
lands on the end user device, the attacker can remotely
exploit the planted vulnerabilities and assemble the ma-
licious logic at runtime by chaining the code gadgets to-
gether.

Figure 1 shows the high level idea. On the left is the
app’s original control flow graph (CFG), which is what
can be observed during the app review process, with-
out the planted vulnerability being exploited. In com-
parison, on the right is the effective control flow graph
the same app will exhibit during runtime, which differs
from the left in the new program paths (represented by
the dotted paths) introduced at runtime by the remote at-
tackers (i.e., app developers). Since attackers can con-
struct malicious functionalities through dynamically in-
troducing new execution paths, even if the vetting pro-
cess could check all possible paths in the left CFG (i.e.,
100% path coverage), it cannot discover the malicious
logic that is only to be assembled at runtime as per at-
tacker’s commands. Apps so constructed bear benign
looks and yet are capable of carrying out malicious logic
when instructed; we call them Jekyll apps. By care-
fully designing the vulnerabilities and crafting the gad-
gets, Jekyll apps can reliably pass app review process
and open up a new attack surface on iOS devices when
installed. Specifically, an attacker can achieve the fol-
lowing general tasks via Jekyll apps:

First, Jekyll apps offer an approach to stealthily abuse
user privacy and device resources, for instance, via pri-
vate APIs1, which may provide unrestricted access to
certain sensitive resources and are intended for Apple’s
internal use only. Explicit use of private APIs almost al-

1Private APIs are undocumented and often security-critical APIs on
iOS, see Section 2.2 for details.

ways gets an app rejected by App Store [4]. However,
Jekyll apps can dynamically load, locate, and implicitly
invoke the private APIs and thus reliably bypass the re-
view checks. Comparing with simple obfuscation tech-
niques (e.g., [7, 23, 25]), our approach hides the usage
of private APIs in a way that is more resilient to non-
trivial code analysis — without correctly triggering the
planted vulnerabilities and arranging the code gadgets,
the invocation of private APIs never appears in the code
and execution of Jekyll apps.

Second, Jekyll apps open a window for attackers to ex-
ploit vulnerabilities in kernel space. Although the sand-
boxing policy in iOS limits the possibility and impact of
exploiting kernel vulnerabilities [22] by third-party apps,
certain attacks are still effective against vulnerable de-
vice drivers (i.e., IOKit drivers [49]).

Third, Jekyll apps also serve as a trampoline to attack
other apps. On iOS, by requesting a URL, an app can
launch another app that has registered to handle that URL
scheme. However, this simplified IPC (Inter-process
communication) mechanism may facilitate inter-app at-
tacks. For instance, once new vulnerabilities have been
found in Mobile Safari (the built-in web browser in iOS),
an attacker can set up a malicious webpage exploiting
such vulnerabilities, use the Jekyll app to direct the Mo-
bile Safari to visit the booby-trapped website, and even-
tually compromise the browser app. Given the high privi-
leges granted to Mobile Safari, the compromised browser
will in turn provide the stepping stone for more power-
ful attacks, such as untethered jailbreak, as shown by the
JailbreakMe attack [1] on old versions of iOS.

Attack Type Attack Description Affected Version

Abuse Device Resources

Sending SMS iOS 5.x
Sending Email iOS 5.x
Posting Tweet iOS 5.x & 6.x
Abusing Camera iOS 5.x & 6.x
Dialing iOS 5.x & 6.x
Manipulating Bluetooth iOS 5.x & 6.x
Stealing Device Info iOS 5.x & 6.x

Attack Kernel Rebooting system iOS 5.x
Attack Other Apps Crashing Mobile Safari iOS 5.x & i6.x

Table 1: Attack summary on iPhone

We have implemented a proof-of-concept Jekyll app
and submitted it to the App Store. The app success-
fully passed Apple’s review despite the hidden vulner-
abilities and code gadgets that can be assembled to carry
out malicious logic. Following the ethical hacking prac-
tice, we immediately removed the app from App Store
once a group of experiment devices of our control had
downloaded it. The download statistic provided by Ap-
ple later confirmed that the app had never been down-
loaded by any other users. By exploiting the vulnera-
bilities and chaining the planted gadgets in the app, we

2

USENIX Association 22nd USENIX Security Symposium 561

remotely launched many malicious operations on our ex-
periment devices, as summarized in Table 1. Even on
iOS 6.1.2, the latest version of iOS at the time of our ex-
periments, the Jekyll app can abuse the camera device to
recode videos, post tweets, steal device identity informa-
tion such as IMEI (the unique device identifier), manip-
ulate the bluetooth device, attack Mobile Safari, and dial
arbitrary number. We made a full disclosure of our attack
scheme to Apple in March 2013 and have since been in
correspondence with Apple.

In summary, the main contributions of our work are as
follows:

• We propose a novel method to generate iOS apps
that can pass App Review and synthesize new con-
trol flows as instructed remotely during runtime,
without violating code signing. We call such mali-
cious apps Jekyll apps. Given that arbitrary control
flows can be introduced to such apps at runtime, the
code signing mechanism on iOS is totally defense-
less against Jekyll apps.

• We are the first to propose a dynamic analysis tech-
nique to discover the private APIs used to post
tweets, send email, and send SMS without user’s
consent on iOS. We incorporate these attacks, along
with a set of previously known iOS attacks, into a
Jekyll app to show its versatility.

• We successfully publish a proof-of-concept Jekyll
app in Apple App Store and later launch remote at-
tacks to a controlled group.

• We demonstrate that the security strategy to solely
rely on pre-install review, as currently followed by
Apple App Store, is ineffective against Jekyll apps
and similar attacks. We discuss and advocate run-
time security measures as a necessary step in ad-
vancing iOS security.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the background. Section 3 presents a
motivating example and describes the design of our at-
tack scheme. Section 4 demonstrates some of the mali-
cious operations that can be carried out by Jekyll apps.
Section 5 gives the implementation details and Section 6
compares our research to related work. Section 7 dis-
cusses the potential countermeasures against our attack
and Section 8 concludes the paper.

2 Background

2.1 iOS Security

iOS provides a rich set of security features. We briefly in-
troduce the related exploit mitigation mechanisms here.

Interested readers are referred to [31, 38] for the overall
security architecture of iOS.

DEP and ASLR. Apple introduced the Data Exe-
cution Prevention (DEP) mechanism in iOS 2.0 and
later the Address Space Layout Randomization (ASLR)
mechanism in iOS 4.3 [21]. The DEP mechanism in
iOS is based on the NX (eXecute Never) bit supported
by the ARM architecture and the kernel prevents third
party apps from requesting memory pages that are write-
able and executable at the same time. Since data pages
such as the stack and heap are marked non-executable
and code pages are marked executable but non-writeable,
DEP prevents the traditional code injection attacks that
need to write payloads into memory and execute them.

ASLR randomizes a process’s memory layout. If a
third-party app is compiled as a position-independent ex-
ecutable (PIE), the locations of all memory regions in its
process’s address space, including the main executable,
dynamic libraries, stack, and heap, are unpredictable. As
an important complementary to DEP, ASLR makes it
very difficult for attackers to launch return-to-libc based
or return-oriented programming based attacks (see Sec-
tion 2.3). However, ASLR in iOS only enforces the mod-
ule level randomization, that is, executable modules are
loaded into unpredictable memory regions, but the in-
ternal layout of each module remains unchanged. Thus,
the ASLR implementation is vulnerable to information
leakage vulnerabilities [45]. If an attacker can obtain the
absolute address of a function in a module, she is able to
infer the memory layout of that entire module.

Privilege Separation and Sandboxing. iOS employs
traditional UNIX file permission mechanisms to manage
the file system and achieve the basic privilege separation.
While all third-party apps run as the non-privileged user
mobile, only a few most import system processes run
as the privileged user root. As a result, third-party apps
are not able to change system configurations.

To enforce isolation among apps that all run as the
same user mobile, iOS utilizes the sandboxing mech-
anism. iOS sandbox is implemented as a policy mod-
ule in the TrustedBSD mandatory access control frame-
work [8]. Each app contains a plist file in XML format,
which declares a set of entitlements for the special capa-
bilities or security permissions in iOS. When an app is
launched, iOS determines its sandbox policy according
to its entitlements.

Although the built-in apps in iOS, such as Mobile Sa-
fari, run as the non-privileged user mobile, they may
be granted with special privileges via reserved entitle-
ments. For instance, Mobile Safari has an entitlement
called dynamic-codesigning, which allows Mo-
bile Safari to allocate a writable and executable mem-
ory buffer and generate executable code on the fly—a se-
curity exception made for Mobile Safari’s Just-in-Time

3

562 22nd USENIX Security Symposium USENIX Association

(JIT) JavaScript engine to improve performance.
As for third-party apps, Apple applies a one-size-fits-

all sandbox policy called container. According to the
study in [51], in iOS 4.3, this permissive policy allows
third-party apps to read the user’s media library, interact
with a few IOKit User Clients, communicate with the lo-
cal Mach RPC servers over the bootstrap port, access the
network, etc. On top of the default access granted by the
container policy, third party apps can also request for
two extra entitlements: one for using the iCloud storage
and one for subscribing to the push notification service.
Finally, even though the container policy has under-
gone significant improvements and is becoming more re-
strictive over time, as we show in this paper, our Jekyll
app, even running in sandbox, still poses a significant
threat to the user’s privacy and system security.

Also, in contrast to other mobile platforms, such as
Android, which use the declarative permissions to regu-
late each app individually, iOS applies the default sand-
box configuration on most third-party apps, which con-
sequently share the same broad set of privileges. As of
iOS 6, only a few sensitive operations, such as access-
ing location information and contact book and sending
push notifications, have to be explicitly acknowledged
by users before they can proceed.

Code signing, App Store, and App Review. Along
with the release of iOS 2.0 in 2008, Apple opened the
App Store, an application distribution platform for iOS
devices. Third-party developers are required to submit
their apps to App Store for distribution. Since then, iOS
has enforced the mandatory code signing mechanism to
ensure only the executables that have been approved and
signed by Apple are allowed to run on iOS devices. The
study in [37] presents the implementation details of iOS
code signing mechanism. In comparison with DEP, code
signing mechanism is more strict. In a DEP-enabled sys-
tem, attackers can compromise a process using ROP at-
tacks and then download a new binary and run it. This
does not apply to iOS because iOS will refuse to run the
new binary if it is not signed by a trusted authority.

To release an app through App Store, a third-party de-
veloper has to participate in Apple’s iOS developer pro-
gram and submit the app to Apple for review. The app
is signed and published by Apple only after it passes
the review process. In addition to business benefits, the
mandatory review process helps Apple prevent malicious
apps from entering App Store.

2.2 Public and Private Frameworks

iOS provides the implementation of its system interfaces
in special packages called frameworks. A framework is
a directory that contains a dynamic shared library and
the related resources such as images, localization strings,

and header files. Native iOS apps are built on top of these
frameworks and written in the Objective-C programming
language, a superset of C language.

Besides the public frameworks, iOS also contains a
set of private frameworks that are not allowed to be used
in third-party apps. Even in public frameworks, there
are some undocumented APIs (i.e., private APIs) that
cannot be used by third-party apps. In fact, these pri-
vate frameworks and APIs are reserved for the built-
in apps and public frameworks. Apple ships all public
and private frameworks as part of the iOS Software De-
velopment Kit (SDK). Third-party developers can find
all these frameworks in their own development environ-
ment. It is worth noting that, since iOS 3.x, Apple has
combined all frameworks into a single cache file called
dyld_shared_cache in iOS devices to improve per-
formance [21].

Moreover, the creation of dynamic libraries by third-
party developers is not supported by the iOS SDK, which
makes the public frameworks the only shared libraries to
link in iOS apps. To prevent apps from dynamically load-
ing private frameworks or unofficial libraries, some stan-
dard UNIX APIs are also considered as private by Apple,
such as dlopen and dlsym that support runtime load-
ing of libraries. During the app review process, linking
to private frameworks or importing private APIs can di-
rectly result in app rejections from Apple App Store.

2.3 Code Reuse and ROP Attack

Reusing the code within the original program is an ef-
fective way to bypass DEP and code signing mechanism.
Solar Designer first suggested return-to-libc [16], which
reuses existing functions in a vulnerable program to im-
plement attacks. Shacham et al. proposed the Return-
Oriented Programming (ROP) exploitation technique in
2007 [44]. The core idea behind ROP attacks is to uti-
lize a large number of instruction sequences ending with
ret-like instructions (e.g., ret on x86 and pop{pc}
on ARM) in the original program or other libraries to
perform certain computation. Since attackers can con-
trol the data on the stack and ret-like instructions will
change the execution flow according to the data on the
stack, a crafted stack layout can chain these instruc-
tion sequences together. Figure 2 shows a simple ROP
example that performs addition and storage operations
on the ARM platform. Specifically, constant values
0xdeadbeaf and 0xffffffff are loaded to the reg-
isters r1 and r2 by the first two gadgets, respectively.
Next, an addition operation is performed by the third
gadget. At last, the addition result (0xdeadbeae) is
stored on the stack by the fourth gadget.

4

USENIX Association 22nd USENIX Security Symposium 563

0xdeadbeaf0xdeadbeaf

0xffffffff0xffffffff

......

1. pop {r1, pc}1. pop {r1, pc}

4. str r1, [sp, #8]
pop{r0}
bx r0

4. str r1, [sp, #8]
pop{r0}
bx r0

3. add r1, r2
pop {pc}

3. add r1, r2
pop {pc}

2. pop {r2, pc}2. pop {r2, pc}

Figure 2: A ROP example

3 Attack Design

Before introducing the design of our attack scheme, we
first discuss an example attack, which demonstrates the
feasibility of such attacks and helps illustrate the design
details in the rest of this section.

3.1 Motivating Example

Suppose the attacker’s goal is to steal the user’s con-
tacts. To this end, the attacker first creates a normal
app, a greeting card app for instance, which can down-
load greeting cards from a remote server and then send
them to the user’s friends. The pseudo code in Figure 3
presents the workflow of the app, which requires access
to user’s address book and the network for legitimate rea-
sons. However, direct abuses of these privileges to send
the whole address book over the network can be easily
detected. In fact, multiple systems (e.g., [17–19, 26])
have been proposed to detect malicious apps by identi-
fying code paths or execution traces where sensitive data
is first acquired and then transported out of the device,
and we assume the app review process will also be able
to detect and reject such apps.

//contains a stack buffer overflow flaw	

1. ConnectToServerAndDownloadGreetingCards();	

	

2. buf=ReadAddressBook();	

	

3. status=SendGreetingToContacts(buf);	

	

4. if(status==Failed){	

	

5. buf = StatusToString(status);	

	
	

6. SendFailureReportToServer(buf);	

 }	

 	

return address	

return address	

return address	

Static Work Flow	
 Runtime Stack Layout 	

After Stack Overflow	

①

②

③

Figure 3: Running Example

However, our example app (as shown in Figure 3) does
not contain any feasible code path to leak the address
book after reading it at line 2. As such, our example app
appears to be compliant with Apple’s privacy policy and
can be expected to pass the app review.

To achieve the goal of stealing the user’s contact while
avoiding the direct approach that will guarantee rejection
by App Store, the attacker instead hides vulnerabilities in
the ConnectToServerAndDownloadGreetingCards

function (line 1 in Figure 3). Subsequently, when the
app runs on a victim’s iOS device and tries to download
greeting cards from the server controlled by the attacker,
the server exploits the planted vulnerabilities to remotely
manipulate the app’s stack into the one shown on the
right side of Figure 3. The contaminated stack layout
will change the original control flows of the app. Instead
of sequentially executing the statements from line 2 to
line 6, the compromised app first reads the address book
into a buffer (line 2 in Figure 3), and then directly in-
vokes the SendFailureReportToServer function
at line 6 to send the content of the buffer (i.e., address
book) to the server. Finally, the app resumes the normal
execution by returning the control back to line 3. Note
that the attacker will avoid revealing the above behavior
to Apple and only exploit the vulnerabilities after the app
has passed the app review.

Malicious developers can freely design the vulnerabil-
ities to bootstrap the attacks. For instance, the app can
deliberately leak its memory layout information to the
remote server so that ASLR is completely ineffective.
Based on the memory layout information, attackers can
launch attacks by reusing the exiting code inside the app.
As a result, DEP and code signing cannot prevent the ex-
ploit. Furthermore, by using iOS private APIs, attackers
can accomplish more sophisticated attacks, even though
the app runs in the sandbox. In other words, once the app
gets installed, existing security mechanisms on iOS will
be of no defense against the attack.

3.2 Attack Scheme Overview

The high level idea of our attack scheme is very intuitive.
The attacker creates a normal app in which he plants vul-
nerabilities and hides code gadgets along side the normal
functionalities. After the app passes Apple’s app review
and gets installed on victims’ devices, the attacker ex-
ploits the vulnerabilities and assembles the gadgets in a
particular order to perform malicious operations.

For our attack to be successful, the planted vulnera-
bilities should allow us to defeat the ASLR, DEP, and
code signing mechanisms in iOS, and at the same time
be hardly detectable. To this end, we design an informa-
tion leakage vulnerability through which the app delib-
erately leaks its partial runtime memory layout informa-

5

564 22nd USENIX Security Symposium USENIX Association

tion to the remote attacker. Thus, the attacker can infer
the locations of the pre-deployed gadgets, making ASLR
useless. Next, we plant a buffer overflow vulnerability in
the app through which the attacker can smash the stack
layout and hijack the app’s control flow. The carefully
designed stack layout will chain together the gadgets to
accomplish malicious tasks.

To avoid the vulnerabilities from being detected in the
review process, the communication between the app and
the server is encrypted, and all the vulnerabilities have
special trigger conditions. Considering the fact that no
source code but only the executable is provided to the
review process, even if advanced vulnerability detection
technologies like fuzz testing and dynamic symbolic exe-
cution are employed, it is unlikely for app review process
to discover artificially planted and obscured vulnerabili-
ties.

Finally, the hidden gadgets should be discretely dis-
tributed in the app and mingled with the normal func-
tionalities, without explicit control flow or and data flow
connections. To do this, we create a number of infeasible
branches across the entire code space and hide gadgets
under these infeasible branches. In addition, we orga-
nize the common operations useful for both legitimate
and malicious functionalities into individual functional
gadgets.

3.3 Bypassing ASLR via Information Leakage

The ASLR mechanism loads the app executable and
other dynamic libraries at different random locations for
each run, and this causes some difficulties in the process
of chaining up our gadgets. However, since native apps
are written in Objective-C, it is very easy to plant infor-
mation leakage vulnerabilities to bypass ASLR and re-
cover the addresses of our gadgets. In the following, we
present two examples of how this can be achieved.

First, we can take advantage of an out-of-bounds
memory access vulnerability to read a function pointer,
and then send the value back to the remote server. Specif-
ically, we can use a C code snippet similar to Figure 4. In
this case, the app assigns the address of a public function
to the function pointer in a C structure, and pretends to
transmit the user name to the server. However, the server
can control the size parameter of the function memcpy
and is able to accurately trigger an out-of-bounds read.
As a result, the address of the public function is leaked.
Based on this address, we can infer the memory layout
of corresponding executable file.

Alternatively, we can take advantage of type con-
fusion vulnerabilities and features of Objective-C ob-
jects to leak address information. Most objects in
Objective-C programs inherit from a common class
called NSObject. The first field of these objects points

struct userInfo{
char username[16];
void* (*printName)(char*);

} user;
...
user.printName = publicFunction.
...
n = attacker_controllable_value; //20
memcpy(buf, user.username, n); //get function ptr
SendToServer(buf);

Figure 4: Information Disclosure Vulnerability I

to a Class structure that stores information about the
object’s type, inheritance hierarchy, member methods,
etc. These Class structures follow the same naming
convention (i.e., a common prefix _objc_class_$_)
and are stored at fixed offsets in the executable files. Us-
ing this information, we can also infer the address infor-
mation of the entire executable file. Figure 5 demon-
strates how this method works. First, we create an
Objective-C object with the myObject pointer point-
ing to the object. After that, we convert myObject into
an integer pointer by using explicit type-casting. Finally,
by dereferencing the integer pointer, we copy the address
value of the Class structure into the variable UID, and
send it to the remote server.

//create an object
SomeClass* myObject = [[SomeClass alloc] init];
...
int UID = *(int*)myObject; //type confusion
...
SendToServer(UID);

Figure 5: Information Disclosure Vulnerability II

Since many of the malicious operations in Table 1 rely
on private APIs, some discussion on how we invoke pri-
vate APIs in our attack is in order. To this end, we need
to be able to dynamically load private frameworks and
locate private APIs, and we employ two special APIs,
dlopen() and dlsym(). dlopen() is used to load
and link a dynamic library specified by filename and re-
turn an opaque handle for the library. dlsym() is used
to get the address of a symbol from a handle returned
from dlopen(). These two functions are implemented
in a library named libdyld.dylib. Since there is no
evidence to show that the exported APIs in this library
can be used by third-party apps, we should avoid directly
referencing to any APIs in this library.

Fortunately, we find that both APIs are commonly
used by public frameworks due to the need for dynam-
ically loading shared libraries and obtaining the absolute
addresses of symbols in the libraries. In particular, in
order to support PIE (Position Independent Executable),

6

USENIX Association 22nd USENIX Security Symposium 565

public frameworks invoke imported APIs through tram-
poline functions. The trampoline functions here con-
sist of a short sequence of instructions that first load the
absolute address of a specific function from an indirect
symbol table and then jump to that address. The indi-
rect symbol table is initially set up by the linker at run-
time. Therefore, if we can identify the trampolines for
dlopen and dlsym in a public framework, our app
can use the trampolines to indirectly invoke dlopen and
dlsym.

The task of identifying usable trampolines is simple.
With the help of a debugger, we set function breakpoints
at dlopen and dlsym and run a test app on a physi-
cal device. When the debug session hits a breakpoint,
we examine the call stack to find out the trampoline
function and its relative offset to the beginning of the
module. Thanks to the fact that ASLR on iOS work at
the granularity of modules, we can always infer the ad-
dresses of these trampolines from the address of a public
function in the same module leaked by our Jekyll app
using the vulnerabilities described before. Finally, we
note that trampolines for dlopen and dlsym can be
found in many essential frameworks, such as UIKit and
CoreGraphics.

3.4 Introducing New Execution Paths via Control-
Flow Hijacking

A key design of our attack scheme is to dynamically in-
troduce new execution paths that do not exist in the orig-
inal app to perform the malicious operations. In order
to achieve this, we plant a vulnerability in the Jekyll app,
through which we can corrupt data on the stack and over-
write a function return address (or a function pointer).
When the function returns, instead of returning to the
original call site, the execution will proceed to a program
point that is specified by the altered return address on the
stack. Although iOS employs the Stack-Smashing Pro-
tector method to detect stack-based overflows, we can
accurately overwrite the function return address without
breaking the stack canary.

void vulnerableFoo(int i, int j){
int buf[16];
...
if(fakeChecks(i)) ;

buf[i]= j; //overwrite return address
...
return;

}

Figure 6: Control Flow Hijacking Vulnerability

Specifically, we use an out-of-bounds write vulnera-
bility as shown in Figure 6 to hijack the control flow. In
this case, both i and j are controlled by the attacker.

Variable i is used to index a local integer array. Since
the offset from the starting address of this local array to
the memory slot for the function’s return address is fixed,
a carefully crafted i can overwrite the return address via
an array element assignment without breaking the stack
canary [10]. We can also add fake boundary checks on
i in the function to prevent the vulnerability from be-
ing easily detected. The new return address stored in j
points to a gadget that shifts the stack frame to a memory
region storing data supplied by the attacker. After that,
the new stack layout will chain the gadgets together. By
using the existing code in the app, we can defeat DEP and
code signing. Since our method for introducing new exe-
cution paths is essentially return-oriented-programming,
interested readers are referred to [15] and [33] for the
details of ROP on the ARM platform.

3.5 Hiding Gadgets

In traditional ROP attack scenarios, attackers have to
search for usable gadgets from existing binary or li-
braries using the Galileo algorithm [44]. However, in
our case, the attacker is also the app developer, who can
freely construct and hide all necessary gadgets, either at
the basic block or function level. This advantage makes
our attacks significantly less difficult and more practical
to launch than ROP attacks.

For the common functional units (such as converting a
char* to NSString and invoking a function pointer),
which are useful for both malicious and legit operations
of the app, we implement them in individual functions.
As a result, we can simply reuse such functions in our
attack based on the return-to-libc like exploitation tech-
nique. For the special gadgets that are not easily found
in existing code, we manually construct them by using
ARM inline assembly code [32] and hide them in infea-
sible branches. In our Jekyll app, we have planted and
hidden all gadgets that are required by traditional ROP
attacks [15], such as memory operations, data processing
(i.e., data moving among registers and arithmetic/logical
operations), and indirect function calls.

To create the infeasible branches, we use the opaque
constant technique [34]. For instance, in Figure 7 we
set a variable to a non-zero constant value derived from
a complicated calculation, and perform a fake check on
that variable. Since the compiler cannot statically deter-
mine that the variable holds a constant value, it will gen-
erate code for both branches. As a result, we can reliably
embed the gadgets using similar techniques.

Finally, we will conclude this section with a concrete
example of our ROP attack. Figure 8 shows the original
source code for dialing attack (see Section 4.2), which
loads a framework into process memory, locates a pri-
vate API called CTCallDial in the framework, and fi-

7

566 22nd USENIX Security Symposium USENIX Association

int i = Opaque_constant_calculation();
if(i == 0)
{ //hide a gadget in this branch

asm volatile(
"pop {r2}"
"bx r2"
);

}

Figure 7: Hide an indirect call gadget

nally invokes that function. Accomplishing the equiv-
alent functionality through the ROP technique is very
easy, because many function level gadgets are available
in our Jekyll app. Specifically, we can find trampolines
for dlopen and dlsym in public frameworks (see Sec-
tion 3.3), and can also reuse existing code in our Jekyll
app to implement the indirect call and the conversion
from char* to NSString (the argument type of the
function CTCallDial is NSString).

1. void* h = dlopen("CoreTelephony", 1);
2. void (*CTCallDial)(NSString*)=dlsym(h, "CTC-

allDial");
3. CTCallDial(@"111-222-3333");

Figure 8: Attack code for dialing

In addition to these function level gadgets, we also
utilize a few simple basic block level gadgets that are
used to prepare and pass function arguments, recover the
stack pointer, and transfer the control back to the nor-
mal execution. For example, the first four arguments of a
function on iOS are passed through the registers R0-R3.
Before jumping into the target function, we can use a
gadget like pop{r0,r1,pc} to set up the function’s
parameters. Such block level gadgets are ubiquitous in
the existing code.

4 Malicious Operations

In this section, we introduce the malicious operations
we can perform using Jekyll apps. We present how to
post tweets and send email and SMS without the user’s
knowledge in Section 4.1, describe more private APIs
based attacks in Section 4.2, and demonstrate Jekyll
app’s ability to exploit kernel vulnerabilities and attack
other apps in Section 4.3 and Section 4.4.

4.1 Under the Hood: Posting Tweets and Sending
Email and SMS

Since iOS 5.0, third-party apps are allowed to send Twit-
ter requests on behalf of the user, by using the public
APIs in a framework called Twitter. After setting the

initial text and other content of a tweet, the public API
called by the app will present a tweet view to the user,
and let the user decide whether to post it or not, as shown
in Figure 9. However, we find that the tweet view in Fig-
ure 9 can be bypassed by using private APIs, i.e., our
app can post tweets without the user’s knowledge. Next,
we describe how we discover the private APIs needed for
achieving this goal.

Figure 9: The default UI for a tweet view

Our intuition is that if we know the event handling
function that is responsible for the “Send” button click
event, our app can directly invoke that function to post
the tweet, without the need to present the tweet view to
the user.

To do this, we created a simple app that uses the
Twitter framework to post tweets, and run the app in
the debug model. We developed a dynamic analysis tool
based on LLDB, a scriptable debugger in the iOS SDK,
to log the function invocation sequence after the “Send”
button is clicked. In the following, we will present some
details about our tool.

In Objective-C, all object method invocations are dis-
patched through a generic message handling function
called objc_msgSend. A method invocation expres-
sion in Objective-C like [object methodFoo:arg0]
will be converted into a C function call expression like

objc_msgSend(object, "methodFoo:", arg0).

Moreover, iOS follows the ARM standard calling con-
vention. The first four arguments of a function are passed
through the registers R0-R3, and any additional argu-
ments are passed through the stack. For the C func-
tion expression above, the arguments will be passed as
follows: R0 stores object, R1 stores the starting ad-
dress of the method name (i.e.,“methodFoo:”), and R2
stores arg0.

Our dynamic analysis tool sets a conditional break-
point at the objc_msgSend function. When the break-
point is triggered after the user clicks the “Send” button,
the tool logs the call stack, gets the target method name
through the register R1, and retrieves the type informa-
tion of the target object and other arguments (stored in
the registers R0, R2 and R3) by inspecting their Class
structures (see Section 3.3).

8

USENIX Association 22nd USENIX Security Symposium 567

According to the information in the log, we can
easily identify the relevant Objective-C classes and
private APIs for posting tweets. For instance,
in iOS 6.x, we find that a tweet is composed
through the method “setStatus:” in a class called
SLTwitterStatus, and then is posted through the
method “sendStatus:completion:” in a class
called SLTwitterSession. Our Jekyll app will
dynamically load the Twitter framework, create in-
stances from these classes, and invoke private APIs to
post tweets without the user’s knowledge.

We also extended the idea to find critical private APIs
for sending email and SMS. As in the case of posting
Tweets, third-party apps are able to set the initial text
and other content of an email or SMS, and present
the email or SMS view to the user. In iOS 5.x, we
successfully implemented the code to send email and
SMS without the user’s knowledge. Specifically, we
find that an email is first composed by a method of the
class MessageWriter, and then is sent to a service
process via an inter-process communication (IPC)
interface CPDistributedMessagingCenter.
Eventually, the service process will send the email out.
In the case of sending SMS, we find that, the content
of an SMS is first converted into an XPC message, and
the XPC message is subsequently passed to an XPC
service (another kind of IPC interfaces in iOS) named
com.apple.chatkit.clientcomposeserver.xpc.
By using such private APIs, our Jekyll app is able to
compose email and SMS objects, pass them to the
corresponding service processes, and automatically send
them without the user’s knowledge. An independent
study simultaneously reported how to send SMS in
this manner; interested readers are referred to [20] for
details.

However, in iOS 6, Apple introduced a new concept
called remote view to enhance the security of email and
SMS services. Specifically, a third-party app only passes
the initial content of an email or SMS to the correspond-
ing system services. These system service processes will
then generate the message view, and let the user make
further changes and final decision. Since the message
view runs in a separate process, the third-party app is no
longer able to invoke the handler function for the “Send”
button click event.

4.2 Camera, Bluetooth, Device ID, and Dialing

The iOS developer community has accumulated exten-
sive knowledge of using private APIs and proposed many
attacks against jailbroken iOS devices. We integrated
some previously known attacks into our Jekyll app. Since
these attacks heavily use private APIs, any app that ex-
plicitly launches these attacks will most certainly be re-

jected by Apple. However, our Jekyll app can dynam-
ically load the private frameworks and hide the invoca-
tions to private APIs, and successfully passes the App
Review.

Next, we briefly introduce the private APIs that we
utilized to achieve the following tasks without alerting
the users: take photos, switch on/off bluetooth, steal the
device identity information, and dial arbitrary numbers.
The operations in this subsection work in both iOS 5.x
and iOS 6.x.

• Abuse cameras. Our Jekyll app is able to stealthily
turn on the camera in iOS devices to record videos
without the user’s knowledge; this can be achieved
by creating and assembling the object instances of a
set of classes such as AVCaptureDeviceInput
and AVCaptureVideoDataOutput in the
AVFoundation framework. Jekyll app can also
extract every frame of a video stream and transfer
the images back to the server.

• Switch Bluetooth. By using the APIs in a private
framework BluetoothManager, our Jekyll app
can directly manipulate the Bluetooth device, such
as turning it on or off.

• Steal Device Identity. To obtain the de-
vice identity information, we take ad-
vantage of a private function called
CTServerConnectionCopyMobileEquipmentInfo

in the CoreTelephony framework. This func-
tion can return the device’s the International Mobile
Station Equipment Identity (IMEI), the Interna-
tional Mobile Subscriber Identity (IMSI), and the
Integrated Circuit Card Identity (ICCID).

• Dial. By invoking the private API CTCallDial in
the CoreTelephony framework, our Jekyll app
can dial arbitrary numbers. Note that, this API sup-
ports to dial not only phone numbers, but also GSM
service codes [3] as well as carrier-specific num-
bers. For instance, by dialing *21*number#, Jekyll
app can forward all calls to the victim’s phone to an-
other phone specified by number.

4.3 Exploiting Kernel Vulnerabilities

Since they run directly on iOS, native apps are able to
directly interact with the iOS kernel and its extensions,
making the exploitation of kernel vulnerabilities possi-
ble. Even though the sandbox policy limits third-party
apps to only communicate with a restricted set of device
drivers, and thus significantly reduces the attack surface
for kernel exploitation, security researchers still man-
aged to find vulnerabilities in this small set of device
divers [49].

9

568 22nd USENIX Security Symposium USENIX Association

In our Jekyll app, we hide the gadgets that can enable
us to communicate with the accessible device drivers.
Specifically, Jekyll app can dynamically load a frame-
work called IOKit, in which Jekyll app further locates
the required APIs such as IOServiceMatching,
IOServiceOpen and IOConnectCallMethod to
create and manipulate connections to device drivers.
Therefore, our Jekyll app provides a way for attackers
to exploit kernel vulnerabilities. We demonstrate this by
exploiting a kernel NULL pointer dereference vulnera-
bility in iOS 5.x, disclosed in [49]. The exploitation of
this vulnerability causes the iOS devices to reboot.

4.4 Trampoline Attack

Due to the sandboxing mechanism, iOS apps are re-
stricted from accessing files stored by other apps. How-
ever, iOS provides a form of inter-process communica-
tion (IPC) among apps using URL scheme handlers. If
an app registers to handle a URL type, other apps can
launch and pass messages to this app by opening a URL
scheme of that type. The http, mailto, tel, and sms
URL schemes are supported by built-in apps in iOS. For
example, an app opening a http URL will cause the
built-in web browser Mobile Safari to launch and load
the webpage. Since attackers can fully control the con-
tent in a URL request, our Jekyll app has the ability to
attack other apps that have vulnerabilities when handling
malformed URL requests.

In our proof-of-concept Jekyll app, we demonstrated
an attack against Mobile Safari; in particular, we pre-
pared a web page containing malicious JavaScript code
that can trigger an unpatched vulnerability in Mobile Sa-
fari. Through our Jekyll app, we can force the victim’s
Mobile Safari to access this web page. Finally, Mobile
Safari will crash when loading the webpage due to a
memory error. JailbreakMe [1], a well-known jailbreak
tool, completes the untethered jailbreak through exploit-
ing a vulnerability in Mobile Safari and then exploiting a
kernel vulnerability. If new vulnerabilities in Mobile Sa-
fari are disclosed by other researchers in the future, we
can simply take advantage of these new vulnerabilities to
launch similar powerful attacks.

5 Jekyll App Implementation

We have implemented a proof-of-concept Jekyll app
based on an open source news client called News:yc [2].
The original News:yc app fetches news from a server,
and allows the user to share selected news items through
email. We modified News:yc in several places. First,
we configured it to connect to a server controlled by us.
Second, we planted vulnerabilities and code gadgets in
the app. These vulnerabilities are triggerable by special

news contents, and the code gadgets support all the mali-
cious operations listed in Table 1. Third, we modified the
app to use a secure protocol that provides authenticated
and encrypted communication, so that the app client only
accepts data from our server. In addition, the server was
configured to deliver exploits only to the clients from
specific IP addresses, which ensures that only our test-
ing devices can receive the exploits. Figure 10.a shows
the snapshot of the app.

a. The main UI of the app b. After an attack, device identity is
popped up for illustration purposes

Figure 10: Snapshots of the app

We submitted the app to Apple and got Apple’s ap-
proval after 7 days. Figure 11 shows the approval notifi-
cation from Apple. Once the app was on App Store, we
immediately downloaded it into our testing devices and
removed it from App Store. We have data to show that
only our testing devices installed the app. The server has
also been stopped after we finished the testing.

The testing results are summarized in Table 1. By ex-
ploiting the vulnerabilities and chaining the planted gad-
gets, we can send email and SMS and trigger a kernel
vulnerability on iOS 5.x, and post tweets, record videos,
steal the device identity, manipulate bluetooth, dial arbi-
trary number, and attack Mobile Safari on both iOS 5.x
and iOS 6.x. We show the attack of stealing device iden-
tity in Figure 10.b. We have made a full disclosure of our
attack to Apple.

6 Related Work

Jailbreak, which obtains the root privilege and perma-
nently disables the code signing mechanism, represents
the majority of efforts to attack iOS [38]. Since jail-
break usually relies on a combination of vulnerabilities
found in the iOS kernel, the boot loaders, and even the
firmware, Apple and hackers have long played a cat-and-
mouse game. However, due to Apple’s increasing efforts

10

USENIX Association 22nd USENIX Security Symposium 569

Figure 11: The approval notification from Apple

to secure iOS and keep fixing known bugs, it is becoming
extremely difficult to find exploitable vulnerabilities in
newer versions of iOS. Our attack does not try to achieve
a jailbreak on iOS devices, instead, it takes advantage
of the intrinsic incapability of the App Review process
and the design flaws of iOS to deliver various types of
malicious operations remotely, which cannot be trivially
addressed via software updates. Note that, it is possible
for Jekyll apps to take advantage of the vulnerabilities
used by jailbreak tools to compromise iOS devices.

C. Miller [37] recently discovered a vulnerability in
the iOS code signing mechanism, which allows attack-
ers to allocate a writeable and executable memory buffer.
He demonstrated that, by exploiting this vulnerability, a
malicious app can safely pass the app review process if
it generates malicious code only at runtime. However,
Apple had instantly fixed the issue, and therefore, effec-
tively blocked apps that use similar methods to load or
construct malicious code during runtime.

In contrast, Jekyll apps do not hinge on specific im-
plementation flaws in iOS. They present an incomplete
view of their logic (i.e., control flows) to app reviewers,
and obtain the signatures on the code gadgets that remote
attackers can freely assemble at runtime by exploiting
the planted vulnerabilities to carry out new (malicious)
logic. In addition, the lack of runtime security moni-
toring on iOS makes it very hard to detect and prevent
Jekyll apps. Considering that ROP attacks can achieve
Turing-completeness [9] and automatic ROP shellcode
generation is also possible [29, 43], the attack scheme in
this paper significantly generalizes the threat in [37].

Return-Oriented Programming (ROP) [44], without
introducing new instructions, carries out new logic that
is not embodied in the original code. ROP and its vari-
ants [11, 29, 33, 36] allow attackers to create new con-
trol flows of a program at runtime via code gadget rear-

rangements, obviating the need for code injections that
are prevented by DEP and code signing. Jekyll apps also
employ code gadget rearrangements to alter runtime con-
trol flows—an idea inspired by ROP. However, our attack
differs from ROP in both the assumption and the goal.
Traditional ROP attack targets at programs that are out
of the attacker’s control and its power is often limited by
the availability of useful code gadgets.

In comparison, Jekyll apps are created and later ex-
ploited by the same person, who has the ultimate control
of the gadget availability. On the other hand, traditional
ROP attackers have no concern about hiding potential
code gadgets and their inter-dependencies, whereas we
do so that Jekyll app can bypass existing and possible
detections. Currently, we need to manually construct
the ROP exploits that are responsible for chaining gad-
gets together. However, previous studies [29, 43] have
demonstrated the possibility of automatically generating
ROP shellcode on the x86 platform. We leave the auto-
matic ROP shellcode generation for Jekyll apps as future
work. In addition, M. Prati [40] proposed a way to hide
ROP gadgets in open source projects with a purpose to
evade the code audit of the projects. This implies that
even Apple could audit the source code of third-party
apps in the future, detecting the hidden gadgets is still
quite challenging.

Jekyll apps also share a common characteristic with
trojan and backdoor programs [13], that is, the malice or
vulnerabilities of attacker’s choice can be freely planted
into the program, which later cooperates with the at-
tacker when installed on a victim’s device. In fact, Jekyll
app can be deemed as an advanced backdoor app that
stays unsuspicious and policy-abiding when analyzed
during the app review process, but turns into malicious
at runtime only when new control flows are created per
attacker’s command.

Thus far Apple’s strict app publishing policies and re-
view process [5] have helped keep malicious apps out
of iOS devices [41]. Automated static analysis meth-
ods, such as [17, 26], were also proposed to assist the
review process in vetting iOS apps. However, as we have
demonstrated with our design and evaluation of Jekyll
apps, malicious apps can easily bypass human reviewers
and automatic tools if their malicious logic is constructed
only at runtime. This demonstrates the limitations of Ap-
ple’s current strategy that solely relies on app reviewing
to find malicious apps and disallows any form of security
monitoring mechanism on iOS devices.

7 Discussion

In this section, we discuss a number of possible counter-
measures against Jekyll apps and analyze the effective-
ness as well as the feasibility of these countermeasures.

11

570 22nd USENIX Security Symposium USENIX Association

7.1 Possible Detection at App Review Stage

Two possible directions that the app reviewers may pur-
sue to detect Jekyll apps are: (i) discover the vulnerabil-
ities we plant; (ii) identify the code gadgets we hide.

We emphasis that discovering software vulnerabilities
using static analysis alone is fundamentally an undecid-
able problem [35], even without considering the power-
ful adversary in our attack who can arbitrarily obscure
the presence of the vulnerabilities. Dynamic analysis
based vulnerability detection approaches can also be eas-
ily defeated by using complicated trigger conditions and
encrypted input data. We argue that the task of making
all apps in App Store vulnerability-free is not only theo-
retically and practically difficult, but also quite infeasible
to Apple from an economic perspective because such at-
tempts will significantly complicate the review tasks, and
therefore, prolong the app review and approval process
that is already deemed low in throughput by third-party
app developers.

To simplify the engineering efforts, our current imple-
mentation of Jekyll app directly includes some code gad-
gets in an isolated fashion (i.e., unreachable from pro-
gram entry points), essentially leaving them as dead code
that may be detectable and in turn removed during app
review process. However, given our freedom to craft the
app, it is totally possible to collect all gadgets from the
code that implements the legitimate functionalities of the
app, without the need to hide extra gadgets as dead code.

In summary, even though the hidden vulnerabilities
and gadgets might take unusual forms comparing with
regular code, accurately detecting Jekyll apps (e.g., based
on statistical analysis) is still an open challenge. Thus,
detecting Jekyll apps in App Review process via vulnera-
bility discovery or gadgets identification is not a feasible
solution.

7.2 Possible Mitigation through Improved or New
Runtime Security

Generally, improving the existing security mechanisms
or introducing more advanced runtime monitoring mech-
anisms can limit Jekyll apps’ capability to perform mali-
cious operations. However, completely defeating Jekyll
apps is not easy.

• A natural idea to limit Jekyll apps is to technically
prevent third-party apps from loading private frame-
works or directly invoking private APIs. However,
Jekyll apps do not have to dynamically load private
frameworks. As we discussed, since many pub-
lic frameworks rely on these private frameworks,
Jekyll apps can reasonably link to these public
frameworks so that certain private frameworks will

also be loaded into the process space by the sys-
tem linker. A more strict execution environment
like Native Client [50] can help prevent the apps
from directly invoking private APIs by loading pri-
vate frameworks into a separate space and hooking
all invocations. However, since iOS public and pri-
vate frameworks are tightly coupled, applying such
a mechanism to iOS is quite challenging.

• Fine-grained ASLR such as [27, 39, 46] can greatly
reduce the number of gadgets that we can locate
during runtime even with the help of the planted
information leakage vulnerabilities. Although ex-
panding the scale and refining the granularity of
the information leakage can help obtain a detailed
view of the memory layout, Jekyll apps may lose
the stealthiness due to the increased exposure of the
vulnerabilities and increased runtime overhead.

• A fine-grained permission model, sandbox profile,
or user-driven access control policy [28,42] can also
help limit the damages done by Jekyll apps. How-
ever, simply using Android-like permission system
will not be an unsurmountable obstacle to Jekyll
apps. As long as a Jekyll app can reasonably re-
quire all permissions, it can still carry out certain
attacks successfully. A user-driven access control
model [28, 42] also cannot stop Jekyll apps from
abusing the access already granted and attacking
other apps or the kernel. Take the greeting card app
in Section 3.1 as an example. After the user allows
the greeting card app to access the address book, it
is very hard to prevent the app from leaking the in-
formation.

• Since Jekyll apps heavily reply on control flow hi-
jacking vulnerabilities, advanced exploit prevention
techniques such as CFI [6] may effectively limit
Jekyll apps. CFI ensures that runtime control-
flow transfers conform with the rules that are de-
rived from the static analysis of the program and
the constraints inferred from the execution context.
MoCFI [14] and PSiOS [47] brought the same idea
to iOS with a caveat that they require jailbroken
devices. Despite its high performance overhead
and low adoption rate in practice, CFI is generally
deemed effective against conventional ROP attacks,
which partially inspired the design of Jekyll apps. In
principle, if properly implemented and deployed on
iOS, CFI can significantly increase the complexity
of designing Jekyll apps and force attackers to trade
code flexibility for success. Although skilled attack-
ers presumably can either employ very systematic
non-control data attacks [12] to perform malicious
operations or use function-level gadgets to bypass

12

USENIX Association 22nd USENIX Security Symposium 571

CFI, given their freedom to craft the gadgets in our
attack, they may have to sacrifice the stealthiness
of Jekyll apps to some extent due to the increased
distinguishability caused by such techniques.

• Type-safe programming languages like Java are im-
mune to low-level memory errors such as buffer
overflows. Thus, if we can enforce that third-party
apps be developed in type-safe programming lan-
guages, we can prevent the problems of planted con-
trol flow hijacking or information leakage vulnera-
bilities in the apps.

In summary, we advocate the official support for run-
time security monitoring mechanisms on iOS. Our de-
sign of Jekyll apps intends to motivate such mechanisms,
which can protect iOS against advanced attacks and en-
sure that the app review practice and regulations receive
their maximum efficacy.

8 Conclusion

In this paper, we presented a novel attack scheme that can
be used by malicious iOS developers to evade the manda-
tory app review process. The key idea is to dynamically
introduce new execution paths that do not exist in the app
code as reviewed by Apple. Specifically, attackers can
carefully plant a few artificial vulnerabilities in a benign
app, and then embed the malicious logic by decomposing
it into disconnected code gadgets and hiding the gadgets
throughout the app code space. Such a seemingly benign
app can pass the app review because it neither violates
any rules imposed by Apple nor contains functional mal-
ice. However, when a victim downloads and runs the
app, attackers can remotely exploit the planted vulnera-
bilities and in turn assemble the gadgets to accomplish
various malicious tasks.

We demonstrated the versatility of our attack via a
broad range of malicious operations. We also discussed
our newly discovered private APIs in iOS that can be
abused to send email and SMS and post tweets without
the user’s consent.

Our proof-of-concept malicious app was successfully
published on App Store and tested on a controlled group
of users. Even running inside the iOS sandbox, the app
can stealthily post tweets, take photos, gather device
identity information, send email and SMS, attack other
apps, and even exploit kernel vulnerabilities.

Acknowledgements

We thank our shepherd Benjamin Livshits and the anony-
mous reviewers for their valuable comments. This mate-
rial is based upon work supported in part by the National

Science Foundation under grants no. CNS-1017265 and
no. CNS-0831300, and the Office of Naval Research un-
der grant no. N000140911042. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or
the Office of Naval Research.

References

[1] JailbreakMe. http://www.jailbreakme.com/.

[2] News:yc, the open source news client for iOS. https://
github.com/Xuzz/newsyc.

[3] Unstructured supplementary service data. http:
//en.wikipedia.org/wiki/Unstructured_
Supplementary_Service_Data.

[4] Apple’s worldwide developers conference keynote address,
June 2010. http://www.apple.com/apple-events/
wwdc-2010/.

[5] Apple’s app store review guidelines, 2013. https:
//developer.apple.com/appstore/resources/
approval/guidelines.html.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity principles, implementations, and applications. In Pro-
ceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), Alexandria, VA, USA, 2005.

[7] A. Bednarz. Cut the drama: Private apis, the app store & you.
2009. http://goo.gl/4eVr4.

[8] D. Blazakis. The apple sandbox. In Blackhat DC, Jan 2011.

[9] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: generalizing return-oriented program-
ming to risc. In Proceedings of the 15th ACM conference on
Computer and communications security (CCS), Alexandria, VA,
USA, 2008.

[10] Bulba and Kil3r. Bypassing stackguard and stackshield. Phrack
Magazine, 56(5), 2000.

[11] S. Checkoway, L. Davi, A. Dmitrienko, A. R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference
on Computer and Communications Security (CCS), Chicago, IL,
USA, Oct 4-8, 2010.

[12] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Proceedings of the
14th conference on USENIX Security Symposium, pages 12–12,
2005.

[13] S. Dai, T. Wei, C. Zhang, T. Wang, Y. Ding, Z. Liang, and W. Zou.
A framework to eliminate backdoors from response-computable
authentication. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, 2012.

[14] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nrnberger, and A. reza Sadeghi. Mocfi: A framework to mit-
igate control-flow attacks on smartphones. In In Proceedings of
the Network and Distributed System Security Symposium (NDSS),
2012.

[15] L. Davi, A. Dmitrienkoy, A.-R. Sadeghi, and M. Winandy.
Return-oriented programming without returns on arm. Technical
Report HGI-TR-2010-002, System Security Lab, Ruhr Univer-
sity Bochum, Germany, 2010.

[16] S. designer. Bugtraq, Aug, 1997. return-to-libc attack.

13

572 22nd USENIX Security Symposium USENIX Association

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting
privacy leaks in ios applications. In 18th Annual Network and
Distributed System Security Symposium (NDSS), February 2011.

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In Proceedings
of the 9th USENIX conference on Operating systems design and
implementation, OSDI’10, 2010.

[19] J. Engler, S. Law, J. Dubik, and D. Vo. ios application security
assessment and automation: Introducing sira. In Black Hat USA,
LAS VEGAS, 2012.

[20] K. Ermakov. Your flashlight can send sms.
http://blog.ptsecurity.com/2012/10/your-flashlight-can-send-
sms-one-more.html, Oct 2012.

[21] S. Esser. Antid0te 2.0 -ASLR in iOS. In Hack In The Box(HITB).
Amsterdam, May 2011.

[22] S. Esser. ios kernel exploitation. In Black Hat USA, LAS VE-
GAS, 2011.

[23] D. ETHERINGTON. iphone app contains secret game boy ad-
vance emulator, get it before it’s gone. March 2013. http:
//goo.gl/OGyc0.

[24] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A
survey of mobile malware in the wild. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mo-
bile devices (SPSM), pages 3–14, 2011.

[25] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. H. Deng, D. Gao, Y. Li,
and J. Zhou. Launching generic attacks on ios with approved
third-party applications. In 11th International Conference on Ap-
plied Cryptography and Network Security (ACNS 2013). Banff,
Alberta, Canada, June 2013.

[26] J. Han, Q. Yan, D. Gao, J. Zhou, and R. H. Deng. Comparing
Mobile Privacy Protection through Cross-Platform Applications.
In Proceedings of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2013.

[27] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. David-
son. Ilr: Where’d my gadgets go? In Proceedings of the 33rd
IEEE Symposium on Security and Privacy, pages 571–585, San
Francisco, CA, USA, May 2012.

[28] J. Howell and S. Schechter. What you see is what they get: Pro-
tecting users from unwanted use of microphones, cameras, and
other sensors. In The Web 2.0 Security & Privacy Workshop
(W2SP), 2010.

[29] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootk-
its: Bypassing kernel code integrity protection mechanisms. In
Proceedings of the 18th USENIX Security Symposium, Montreal,
Canada, Aug, 2009.

[30] iOS Market Statistics, 2012. http://goo.gl/LSK7I/.

[31] iOS Security, May 2012. http://images.apple.com/
ipad/business/docs/iOS_Security_May12.pdf.

[32] H. Kipp. Arm gcc inline assembler cookbook. 2007.
http://www.ethernut.de/en/documents/
arm-inline-asm.html.

[33] T. Kornau. Return oriented programming for the arm architecture.
Master’s thesis, Ruhr-University Bochum, Germany, 2009.

[34] C. Kruegel, E. Kirda, and A. Moser. Limits of Static Analysis
for Malware Detection. In Proceedings of the 23rd Annual Com-
puter Security Applications Conference (ACSAC), Miami Beach,
Florida, USA, Dec, 2007.

[35] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In Proceedings of the 10th conference
on USENIX Security Symposium, Berkeley, CA, USA, 2001.

[36] K. Lu, D. Zou, W. Wen, and D. Gao. Packed, printable, and
polymorphic return-oriented programming. In Proceedings of
the 14th International Symposium on Recent Advances in Intru-
sion Detection (RAID), Menlo Park, California, USA, September
2011.

[37] C. Miller. Inside ios code signing. In Symposium on Security for
Asia Network (SyScan), Taipei, Nov 2011.

[38] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P.
Weinmann. iOS Hacker’s Handbook. Wiley, 1 edition edition,
May 2012.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place
code randomization. In Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy, pages 601–615, San Francisco,
CA, USA, May 2012.

[40] M. PRATI. ROP gadgets hiding techniques in Open Source
Projects. PhD thesis, University of Bologna, 2012.

[41] P. Roberts. Accountability, not code quality, makes ios safer than
android. April 2012. http://goo.gl/ZaXhj.

[42] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-driven access control: Rethinking permission
granting in modern operating systems. In Proceedings of the
2012 IEEE Symposium on Security and Privacy, Washington,
DC, USA, 2012.

[43] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hard-
ening made easy. In Proceedings of USENIX Security, San Fran-
cisco, CA, USA, 2011.

[44] H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In Proceedings of
the 14th ACM conference on Computer and Communications Se-
curity (CCS), Alexandria, VA, USA, Oct. 29-Nov. 2,2007.

[45] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM conference on Computer and
communications security, pages 298–307, Washington DC, USA,
2004.

[46] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
self-randomizing instruction addresses of legacy x86 binary code.
In Proceedings of the 2012 ACM conference on Computer and
communications security (CCS), Raleigh, NC, USA, Oct, 2012.

[47] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz.
Psios: Bring your own privacy & security to ios devices. In
8th ACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS 2013), May 2013.

[48] Wikipedia. iOS jailbreaking. 2013. http://en.
wikipedia.org/wiki/IOS_jailbreaking.

[49] H. Xu and X. Chen. Find your own ios kernel bug. In Power of
Community (POC), Seoul, Korea, 2012.

[50] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In Proceedings of the
2009 30th IEEE Symposium on Security and Privacy, 2009.

[51] D. A. D. Zovi. ios 4 security evaluation. In Blackhat USA, Las
Vegas, NV, Aug 2011.

14

USENIX Association 22nd USENIX Security Symposium 573

Measuring the practical impact of DNSSEC Deployment

Wilson Lian
UC San Diego

Eric Rescorla
RTFM, Inc.

Hovav Shacham
UC San Diego

Stefan Savage
UC San Diego

Abstract

DNSSEC extends DNS with a public-key infras-
tructure, providing compatible clients with crypto-
graphic assurance for DNS records they obtain, even
in the presence of an active network attacker. As
with many Internet protocol deployments, admin-
istrators deciding whether to deploy DNSSEC for
their DNS zones must perform cost/benefit analy-
sis. For some fraction of clients— those that perform
DNSSEC validation—the zone will be protected
from malicious hijacking. But another fraction of
clients— those whose DNS resolvers are buggy and
incompatible with DNSSEC—will no longer be able
to connect to the zone. Deploying DNSSEC requires
making a cost-benefit decision, balancing security for
some users with denial of service for others.
We have performed a large-scale measurement of

the effects of DNSSEC on client name resolution us-
ing an ad network to collect results from over 500,000
geographically-distributed clients. Our findings cor-
roborate those of previous researchers in showing
that a relatively small fraction of users are protected
by DNSSEC-validating resolvers. And we show, for
the first time, that enabling DNSSECmeasurably in-
creases end-to-end resolution failures. For every 10
clients that are protected from DNS tampering when
a domain deploys DNSSEC, approximately one or-
dinary client (primarily in Asia) becomes unable to
access the domain.

1 Introduction

The Domain Name System (DNS) [32], used to map
names to IP addresses, is notoriously insecure; any
active attacker can inject fake responses to DNS
queries, thus corrupting the name → address map-
ping. In order to prevent attacks on DNS integrity,
the Internet Engineering Task Force (IETF) has
developed DNSSEC [4], a set of DNS extensions
which allows DNS records to be digitally signed, thus
preventing—or at least detecting—tampering.
Over the past several years, public enthusiasm for

DNSSEC has increased significantly. In July 2010,
the DNSSEC root zone (containing all top level do-
mains) was signed; in March 2011, .com, the largest
top level domain, was signed; in January 2012, Com-
cast announced that they had switched all of their
DNS resolvers to do DNSSEC validation and that

they had DNSSEC-signed all customer domains they
were serving [30]. Moreover, protocol designs which
depend on DNSSEC have started to emerge. For
instance, DANE [20] is a DNS extension that uses
DNS to authenticate the name → public key binding
for SSL/TLS connections. Obviously, DANE is not
secure in the absence of DNSSEC, since an attacker
who can man-in-the-middle the SSL/TLS connec-
tion can also forge DNS responses.
Despite the effort being poured into DNSSEC,

actual deployment of signed records at the end-
system level has remained quite limited. As of
February 2013, VeriSign Labs’ Scoreboard1 mea-
sured 158,676 (.15%) of .com domains as secured
with DNSSEC. As with many Internet protocol de-
ployments, there is a classic collective action prob-
lem: because the vast majority of browser clients do
not verify DNSSEC records or use resolvers which
do, the value to a server administrator of deploying
a DNSSEC-signed zone is limited. Similarly, because
zones are unsigned, client applications and resolvers
have very little incentive to perform DNSSEC vali-
dation.
A zone administrator deciding whether to deploy

DNSSEC must weigh the costs and benefits of:

• The fraction of clients whose resolvers validate
DNSSEC records and therefore would be able
to detect tampering if it were occurring and
DNSSEC were deployed.

• The fraction of clients which fail with valid
DNSSEC records and therefore will be unable
to reach the server whether or not tampering is
occurring.

In this paper, we measure these values by means of a
large-scale study using Web browser clients recruited
via an advertising network. This technique allows us
to sample a cross-section of browsers behind a vari-
ety of network configurations without having to de-
ploy our own sensors. Overall, we surveyed 529,294
unique clients over a period of one week. Because of
the scale of our study and the relatively small error
rates we were attempting to quantify, we encoun-
tered several pitfalls that can arise in ad-recruited

1Online: http://scoreboard.verisignlabs.com/. Vis-
ited 20 February 2013.

1

574 22nd USENIX Security Symposium USENIX Association

browser measurement studies. Our experience may
be relevant to others who wish to use browsers for
measurements, and we describe some of these results
in Section 4.2.

Ethics. Our experiment runs automatically with-
out user interaction and is intended to measure the
behavior and properties of hosts along the paths
from users to our servers rather than the users them-
selves. We worked with the director of UC San
Diego’s Human Research Protections Program, who
certified our study as exempt from IRB review.

2 Overview of DNS and DNSSEC

A DNS name is a dot-separated concatenation of
labels; for example, the name cs.ucsd.edu is com-
prised of the labels cs, ucsd, and edu. The DNS
namespace is organized as a tree whose nodes are
the labels and whose root node is the empty string
label. The name corresponding to a given node in
the tree is the concatenation of the labels on the path
from the node to the root, separated by periods.

Associated with each node are zero or more re-
source records (RRs) specifying information of dif-
ferent types about that node. For example, IP ad-
dresses can be stored with type A or AAAA RRs,
and the name of the node’s authoritative name
servers can be stored in type NS RRs. The set of
all RRs of a certain type2 for a given name is re-
ferred to as a resource record set (RRset).

2.1 Delegation

DNS is a distributed system, eliminating the need
for a central entity to maintain an authoritative
database of all names. The DNS namespace tree
is broken up into zones, each of which is owned
by a particular entity. Authority over a subtree
in the domain namespace can be delegated by the
owner of that subtree’s parent. These delegations
form zone boundaries. For example, a name reg-
istrar might delegate ownership of example.com

to a customer, forming a zone boundary between
.com and example.com while making that customer
the authoritative source for RRsets associated with
example.com and its subdomains. The customer can
further delegate subdomains of example.com to an-
other entity. Figure 1 depicts an example DNS tree.

2.2 Address resolution

The most important DNS functionality is the reso-
lution of domain names to IP addresses (retrieving

2And class, but for our purposes class is always IN, for
“Internet.”

google.com

mail.google.com www.google.com

.
(Root)

com

dnsstudy.sysnet.ucsd.edu

orgedu

ucsd.edu

cs.ucsd.edu sysnet.ucsd.edu

Figure 1: Example DNS name tree. Shaded boxes
represent zone boundaries. Edges that cross zone
boundaries are delegations.

Desktop PC

LAN
Router

ISP's Recursive
DNS Resolver

Root DNS Server

edu DNS Server
a.edu-servers.net

x.x.x.x
ucsd.edu DNS Server

ns0.ucsd.edu
y.y.y.y

(1) cs.ucsd.edu IN A?

(10) cs.ucsd.edu IN A
1.2.3.4

(3) cs.ucsd.edu IN A?

(4) edu IN NS a.edu-servers.net
a.edu-servers.net IN A x.x.x.x

(5)
cs.ucsd.edu IN A?

(6) ucsd.edu IN NS ns0.ucsd.edu
ns0.ucsd.edu IN A y.y.y.y

(2) cs.ucsd.edu IN A?

(9) cs.ucsd.edu IN A
1.2.3.4

(7) cs.ucsd.edu IN A?

(8) cs.ucsd.edu IN A
1.2.3.4

Figure 2: Simplified DNS address resolution pro-
cedure for cs.example.tld. In this example, there
are at most one nameserver and one IP address per
name.

type A or AAAA RRsets). Domain name resolu-
tion is performed in a distributed, recursive fashion
starting from the root zone, as shown in Figure 2.
Typically, end hosts do not perform resolution them-
selves but instead create DNS queries and send them
to recursive resolvers, which carry out the resolution
to completion on their behalfs. When a nonrecursive
DNS server receives a query that it cannot answer, it
returns the name and IP address of an authoritative
name server as far down as possible along the path
to the target domain name. The recursive resolver
then proceeds to ask that server. In this fashion,
the query eventually reaches a server that can an-
swer the query, and the resolution is complete. This
recursive process is bootstrapped by hardcoding the
names and IP addresses of root nameservers into end
hosts and recursive resolvers.

2

USENIX Association 22nd USENIX Security Symposium 575

2.3 DNS (in)security

The original DNS design did not provide any mecha-
nisms to protect the integrity of DNS response mes-
sages. Thus, an active network attacker can launch
a woman-in-the-middle attack to inject her own re-
sponses which would be accepted as if they were le-
gitimate. This attack is known as DNS spoofing.
Moreover, because recursive resolvers typically cache
responses, a single spoofed response can be used to
perform a DNS cache poisoning attack, which re-
sults in future responses to requests for the same
RRset returning the bogus spoofed response. The
mechanisms by which DNS cache poisoning is car-
ried out are outside the scope of this work but have
been studied more formally in [38]. DNS spoofing
and cache poisoning may be used to compromise any
type of DNS RR.

2.4 DNSSEC to the rescue

The Domain Name System Security Extensions
(DNSSEC) [4], aim to protect against DNS spoof-
ing attacks by allowing authoritative nameservers to
use public key cryptography to digitally sign RRsets.
Security-aware recipients of a signed RRset are able
to verify that the RRset was signed by the holder of
a particular private key, and a chain of trust from
the root zone downwards ensures that a trusted key
is used to validate signatures.
While DNSSEC adds a number of new RR types,

the DNSKEY, RRSIG, DS only the records are rele-
vant for our purposes; we describe them briefly here.
DNSKEY: DNSKEY records are used to hold

public keys. Each zone authority generates at least
one public/private key pair, using the private keys
to sign RRsets and publishing the public keys in
Domain Name System Key (DNSKEY) resource
records.
RRSIG: When a zone is signed, a resource record

signature (RRSIG) resource record is generated for
each RRset-public key pair. In addition to contain-
ing a cryptographic signature and the name and type
of the RRset being signed, the RRSIG RR specifies
a validity window and the name of the signing key’s
owner.
DS: Lastly, the Delegation Signer (DS) RR type

links signed zones to establish the chain of trust.
Each DS RR contains the digest of one of the sub-
zone’s DNSKEY RRs.
DNSSEC’s security is built on the chain of trust

model. Starting from a “trust anchor,” a validator
attempts to trace a chain of endorsements from the
root all the way to the RRset being validated; I.e.,
that each DNSKEY or DS record along the path and
the final RRSet is correctly signed by the parent’s

public key. If a chain of trust can be constructed
all the way to the trust anchor, then the validating
resolver can have confidence that the information in
that RR is correct—or at least that it is crypto-
graphically authenticated.
Because DNSSEC is a retrofit onto the exist-

ing insecure DNS, it is explicitly designed for in-
cremental deployment, and insecure (i.e., unsigned)
domains can coexist with secure domains. Thus,
DNSSEC-capable resolvers should be able to re-
solve unsigned domains, and non-DNSSEC resolvers
should be able to resolve DNSSEC-signed domains,
though of course they will not gain any security
value. In order to make this work, DNSSEC records
are designed to be backwards-compatible with ex-
isting resolvers, and DNSSEC resolvers are able to
distinguish zones which simply are not signed from
those which are signed but from which an attacker
has stripped the signatures (the DS record is used
for this purpose).
Unfortunately, while DNSSEC is designed to be

backwards compatible, it is known [9] that there
are some network elements which do not process
DNSSEC records properly. The purpose of this work
is to determine the frequency of such elements and in
particular their relative frequency to elements which
actually validate DNSSEC signatures and thus ben-
efit from its deployment.

3 Methodology

In order to address this question, we conducted a
large-scale measurement study of web browsers in
the wild. In particular, we sought to measure two
quantities:

• What fraction of clients validate DNSSEC
records and therefore would be able to detect
tampering if it were occurring and DNSSEC
were deployed?

• What fraction of clients fail with valid DNSSEC
records and therefore will be unable to reach the
server whether or not tampering is occurring?

Answering these questions requires taking mea-
surements from a large number of clients. We gath-
ered our clients by purchasing ad space from an on-
line advertising network; the ad network enabled us
to host an ad at a fixed URL which would be loaded
in an iframe on various publishers’ web sites. Our
ad included JavaScript code to drive the experiment
and was executed without any user interaction upon
the loading of the ad iframe in clients’ browsers. In
order to minimize sampling bias, our ad campaign
did not target any particular keywords or countries.

3

576 22nd USENIX Security Symposium USENIX Association

However, because our measurements were sensitive
to the reliability of the participants’ Internet con-
nections, we configured our ad campaign to target
desktop operating systems, to the exclusion of mo-
bile users.
Our client-side “driver script” (discussed in detail

in § 3.1) induces participants’ browsers to load 1×1-
pixel images (“test resources”) from various domains.
This is a standard technique for inducing the browser
to load resources from different origins than the con-
taining document. These domains fall into the fol-
lowing three classes:

• nosec — without DNSSEC

• goodsec — with correctly-configured DNSSEC

• badsec —with DNSSEC against which we simu-
late misconfiguration or tampering by an active
network attacker

The goodsec and badsec zones were signed with
1024-bit keys3 using RSA-SHA1.

If we observe an HTTP request for a test resource,
we conclude that the participant’s browser was able
to resolve that type of domain. Otherwise, we con-
clude that it was not.
These three domain classes allow us to assess the

client/resolver’s DNSSEC behavior. The nosec do-
main class serves as a control, representing the state
of the majority of the sites on the web. Failed loads
from the goodsec domain class allow us to measure
the fraction of clients which would not be able to
reach a DNSSEC-enabled site, even in the absence
of an attack. Failed loads from the badsec domain
class tell us about the fraction of clients which detect
and react to DNSSEC tampering.
During each ad impression, the driver script at-

tempts to resolve and load a total of 27 test re-
sources. They are distributed as follows: one nosec
domain, one goodsec domain, and 25 different badsec
domains. Each badsec variant simulates an attack
against DNSSEC at a different point in the chain of
trust, and as we will see in Section 4, certain vali-
dating resolvers exhibit bugs that cause some badsec
domains to be treated as correctly-signed.

3.1 Client-side experiment setup

Figure 3 shows how our driver script is embedded in
an ad in a publisher’s web page. We provide the ad
network with an ad located at a static URL which is
wrapped in an iframe by the ad network. The pub-
lisher places an iframe in its web page whose source

3We attempted to use 2048-bit keys, but at the time of the
experiment, our domain registrar, GoDaddy, did not support
keys that large.

Publisher's web page
Ad-network iframe 1

Ad-network iframe 2
Static ad URL iframe
Measurement page

Dummy
image jQuery.jsDriver

script JSON lib

Test
resource

Test
resource

Test
resource...

Figure 3: Client-side experiment setup

points to the iframe wrapping the ad. Our ad page
residing at the static URL iframes the measure-
ment page, which contains the JavaScript driver
program. Each instance of the measurement page
and all requests generated by it are linked by a ver-
sion 4 UUID [29] placed in both the URL query
string and the domain name (with the exception
of the measurement page, which only has it in the
query string).
The measurement page loads a dummy ad image

and 3 pieces of JavaScript which are the following:

• A minified jQuery4 [26] library hosted by
jquery.com

• A JSON encoding and decoding library hosted
on our servers

• The experiment’s JavaScript “driver script”

The measurement page body’s onLoad handler
commences the experiment by invoking the driver
script. The driver script randomizes the order of a
list of nosec, goodsec, and badsec domains then it-
erates over that list, creating for each domain an
image tag whose source property points to an image
hosted on that domain. The creation of the image
tag causes the participant’s browser to attempt to
resolve the domain name and load an image from it.
Because we need to gather data for all domains in the
list before the participant navigates away from the
web page containing the ad, the driver script does
not wait for each image to complete its load attempt
before proceeding to the next domain. Instead, it
creates all of the image tags in rapid succession. The
driver script also registers onLoad and onError call-
backs on each image tag created to monitor whether
each load succeeds or fails. When a callback for
an image fires, the outcome of the load, along with

4We used jQuery to minimize browser compatibility issues.

4

USENIX Association 22nd USENIX Security Symposium 577

info about the browser, are sent via jQuery’s AJAX
POST mechanism to a PHP logging script on our
servers. Once the driver script detects that all im-
age tags have invoked either an onLoad or onError
callback, it creates a final image tag whose source
domain is a unique nosec domain (UUID.complete.
dnsstudy.ucsd.edu). A DNS query for such a do-
main serves as a “completion signal” and allows us
to identify UUIDs where the user did not navigate
away from the ad publisher’s page before completing
the trial. We discarded the data from any page load
which did not generate the completion signal.

3.2 Identifying successful DNS resolu-
tion

Our original intent was to use onLoad and onError

handlers attached to each test resource’s image tag
to measure the outcome of the HTTP requests for
test resources. If the onLoad handler was called, we
would record a successful HTTP request; if instead
the onError handler was called, we would record
a failed HTTP request. These results are reported
back to our servers via AJAX POST. However, we
found 9754 instances of the onError handler fir-
ing, the test resource subsequently being loaded, and
then the onLoad handler firing. For another 1058
test resource loads, the onLoad handler fired, despite
our receiving neither the corresponding DNS lookups
nor the HTTP requests for the test resources in ques-
tion. Consequently, we looked to different avenues
for identifying resolution success.

Because we are not able to ascertain the result of
a DNS lookup attempt via direct inspection of the
DNS caches of our participants and their recursive
resolvers, we must infer it from the presence of an
HTTP request whose Host header or request line
specifies a particular test resource’s domain name as
an indicator of DNS resolution success. Thus, if we
observed a completion signal for a particular UUID
but did not observe an HTTP request associated
with that UUID for a certain test resource type, we
infer that the DNS resolution for that UUID-test re-
source pair failed. Note however that we can record
a completion signal after observing just a DNS query
for it: what matters is whether the driver script at-
tempted to load the completion signal resource, not
whether it succeeded in doing so.

This strategy has the potential to over-estimate
the number of DNS resolution failures due to TCP
connections that are attempted and are dropped or
aborted before the HTTP request is received by our
servers. The only source of this type of error that we
are able to control is our HTTP servers’ ability to
accept the offered TCP-connection load at all times

throughout the experiment. We describe our serving
infrastructure in Section 3.4. We believe it is suffi-
ciently robust against introducing this type of error.

3.3 Cache control

Because requests fulfilled by cache hits do not gen-
erate HTTP and DNS logs that we can analyze, we
took measures, described in Table 1, to discourage
caching. Most importantly, the use of a fresh, ran-
dom UUID for each ad impression serves as a cache-
buster, preventing cache hits in both DNS resolvers
and browsers.
If, despite our efforts, our static ad page is cached,

causing the measurement page to be requested with
a cached UUID, we must detect it and give the cur-
rent participant a fresh UUID. To this end, we used
a memcached cache as a UUID dictionary to detect
when the measurement page was loaded with a stale
UUID. If this occured, the stale measurement page
was redirected to one with a fresh UUID.

3.4 Serving infrastructure

To run our study, which generates large bursts of
traffic, we rented 5 m1.large instances running
Ubuntu 10.04 on Amazon’s Elastic Compute Cloud
(EC2). All 5 instances hosted identical BIND 9
(DNS), nginx (HTTP), and beanstalkd (work queue)
servers. The nginx servers supported PHP 5 CGI
scripts via FastCGI. Tables 2 and 3 show the adjust-
ments made to the servers’ configuration parameters
to ensure a low rate of dropped connections.
One instance ran a MySQL server, another ran a

memcached server. To increase our EC2 instances’
ability to accept large quantities of short TCP con-
nections, we configured our machines to timeout con-
nections in the FIN-WAIT-2 state after only a frac-
tion of the default time and to quickly recycle con-
nections in the TIME-WAIT state. This was accom-
plished by setting the sysctl variables tcp fin timeout
and tcp tw recycle to 3 and 1, respectively.

3.4.1 DNS & BIND 9

All 5 EC2 instances ran identical BIND 9 DNS
servers providing authoritative DNS resolution for
all nosec, goodsec, and badsec domains. We used
Round Robin DNS to distribute load across all 5
DNS and web servers. In order to reduce the chance
of load failures due to large reply packets, our DNS
servers were configured (using BIND’s minimal-

responses option) to refrain from sending unso-
licited RRs that are not mandated by the DNS
specification. Specifically, we only send the extra
DNSSEC RRs in response to queries which include
the DNSSEC OK option (approximately two thirds
of all queries).

5

578 22nd USENIX Security Symposium USENIX Association

Type Value Used on

HTTP header Cache-Control: no-cache, must-revalidate static ad page, measurement page,
driver script

HTTP header Expires: Sat, 26 Jul 1997 00:00:00 GMT static ad page, measurement page,
driver script

HTML <meta> http-equiv="Pragma" content="no-cache" static ad page, measurement page
HTML <meta> http-equiv="Expires" content="−1" static ad page, measurement page

Table 1: Description of the HTTP and HTML anti-caching measures and their uses.

worker processes 8
worker rlimit nofile 65,535
worker connections 65,000

Table 2: Non-default nginx server config params.

PHP FCGI CHILDREN 50
PHP FCGI MAX REQUESTS 65,000

Table 3: Non-default PHP FastCGI config params.

Our 5 BIND servers are authoritative for all do-
main names used in our study except for the domain
of the static ad URL that iframes the measurement
page. Because we were not interested in measuring
resolution of those domains we hosted their author-
itative servers on Amazon Route 53 DNS service.

3.5 Data gathering

Our analysis of the behavior of participants’
browsers and resolvers is based on the following 3
data sources: nginx access logs, BIND request logs,
and MySQL tables containing the outcomes and
browser info reported by AJAX POST messages.
Nginx was configured to use its default “common

log format” [34], which includes a timestamp of each
request, the URL requested, the user agent string,
among other details about the request and its cor-
responding response. However, BIND’s log format
is hardcoded and compiled into the binary. Its de-
fault logging behavior only provides basic informa-
tion about queries (e.g., a timestamp, the domain
name, the source IP and port). It does not pro-
vide information about replies and excludes certain
important diagnostic fields. We modified and re-
compiled BIND to add enhanced logging of requests
and replies. Log lines for requests were modified to
include the request’s transaction ID and the value
of the sender’s UDP payload size from the EDNS0
OPT RR (if present) [39]. We added support for re-
ply logs that include the transport-layer protocol in
use, the size of the reply, and the transaction ID.

With these additional log details, we are able to
link requests to replies and determine if a lookup
fell back to TCP due to truncation of the UDP re-
ply. BIND logs are also used to identify the UUIDs
for which a completion signal was sent as well as
to determine which resolvers were associated with a
particular UUID.
The client-side driver script AJAX POSTs the out-

come of each test resource load along with additional
metadata regarding the experiment and the state of
the browser environment under which it is running.
These data are logged by our servers.

3.6 Experiment scheduling

In our preliminary test runs of the study, we found
that the successful load rates for test resources varied
depending on the time of day at which the experi-
ment was conducted. To account for this variability,
we conducted an extended study lasting for a full
week. Every two hours, we paid ad network enough
for 10,000 impressions to be shown.

4 Results

In this section we describe the results of our measure-
ments. We begin by providing an overview of our
data. Then, in Section 4.1 we describe our measure-
ments of the differential impact of DNSSEC on reso-
lution success. Finally, in Section 4.2, we describe a
number of confounding network artifacts that plague
any attempt to use advertisement surveys to mea-
sure small signals against the background of a noisy
Web environment.
Over the course of the 84 segments of our week-

long experiment, we collected data from 529,294
ad impressions, receiving DNS queries from 35,010
unique DNS resolvers. Figure 4 shows the distri-
bution of unique resolvers performing resolution for
each UUID. The distribution has a long tail, al-
though 98% of UUIDs used at most 25 resolvers. We
mapped each resolver’s IP address to its ASN and
found that 92.75% of the clients surveyed were ob-
served using recursive resolvers whose IP addresses
resided in the same ASN, and 99.12% used resolvers

6

USENIX Association 22nd USENIX Security Symposium 579

Distribution of unique resolvers per UUID

resolvers

Fr
ac

tio
n

of
 U

U
ID

s

2 3 4 5 6 7 8 9 10 280

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 4: Distribution of the number of unique
resolvers observed performing DNS resolution per
UUID. Tail not shown.

in two or fewer ASNs. This is consistent with our
expectation that most users use their default DNS
resolvers provided by their ISPs, while a small per-
centage of “power users” might configure their sys-
tems to take advantage of open resolvers such as
Google Public DNS.5

As shown in Figure 5 each ad buy results in a
delay of approximately 20 minutes from the time we
released funds to the ad network, at which point im-
pressions start to appear. Incoming traffic spikes for
15 minutes, peaking around 25 minutes into the run
and tapering off for the remainder of the first hour.
We also witnessed considerable drop-off at each

stage of executing experiment code in the partic-
pants’ browsers. Figure 6 illustrates the number of
UUIDs observed reaching each stage of the experi-
ment. 15.88% of the ad impressions that we paid for
did not even manage to load the driver script and
only 63.02% of the impressions we paid for actually
resulted in a completed experiment. This compares
favorably with past studies. For instance, prior work
by Huang et al. [22], which also used ad networks
to recruit participants to run experiment code, had
only a 10.97% total completion rate.

4.1 DNSSEC Resolution Rates

The first question we are interested in answering
is the impact on load failure rates of introducing
DNSSEC for a given domain. Table 4 shows the

5https://developers.google.com/speed/public-dns/

0 10 20 30 40 50 60 70

0
20

00
0

40
00

0
60

00
0

80
00

0

Minutes since run started

no
se

c
H

TT
P

re
qu

es
ts

 re
ce

ive
d

Figure 5: Plot showing total number of requests
received during each minute after the start of a run,
aggregated over all runs.

Class Failure rate CI 0.99

nosec 0.7846% 0.7539% - 0.8166%
goodsec 1.006% 0.9716% - 1.042%
badsec 2.661% 2.649% - 2.672%

Table 4: Failure rates for each class of test re-
source.

raw failure rates across each class of test resource,
where the failure rate is defined as one minus the
quotient of the number of successful test resource
loads and the number of attempted resource loads
across all UUIDs for which we received a comple-
tion signal. This table is sufficient to draw some
initial conclusions. First, as evidenced by the low
failure rate of badsec domains the vast majority of
end hosts and their recursive resolvers do not per-
form DNSSEC validation. If all end hosts or re-
cursive resolvers verified DNSSEC, we would expect
a badsec failure rate of 100%, instead of the ob-
served value of 2.661%. Thus, the increased security
value of DNSSEC-signing a domain is relatively low,
as most resolvers will not detect tampering against
DNSSEC-signed domains.

Second, DNSSEC-signed domains—even validly
signed domains—have a higher failure rate than non-
DNSSEC-signed domains: just DNSSEC-signing
a domain increases the failure rate from around

7

580 22nd USENIX Security Symposium USENIX Association

Experiment Loading Dropoff

Static ad Measurement
page

Driver
script

Completion

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

0
10

20
30

40
50

60
70

80
90

10
0

N
um

be
r o

f i
m

pr
es

si
on

s

%
 im

pr
es

si
on

s
Figure 6: Plot of UUIDs that reached each stage
of the experiment.

0.7846% to 1.006% (though this value is very sen-
sitive to geographic factors, as discussed in the fol-
lowing section). While this is not a huge difference,
it must be compared to the detection rate of bad do-
mains, which is also very small. Moreover, because
resolvers which cannot process DNSSEC at all ap-
pear to “detect” bogus DNSSEC records, the badsec
failure rate in Table 4 is actually an overestimate of
clients behind DNSSEC-validating resolvers, which
is probably closer to 1.655% (the difference between
the badsec and goodsec rates).

4.1.1 Geographic Effects

As mentioned above, the raw numbers are somewhat
misleading because the failure rates are very geo-
graphically dependent. In order to explore this de-
pendence we categorized each test case (UUID) by
geographic area based on the resolver IP observed
performing resolution for a domain containing the
UUID.6 We used the CAIDA prefix-to-AS mapping
dataset [11] to determine the Autonomous System
Number (ASN) for each for client’s resolver IP ad-
dress and then assigned each client to the Regional
Internet Registry (RIR) which is responsible for that
AS, as listed in Table 5.

6If there was more than one resolver associated with a
particular UUID, our analytics package chose one arbitrar-
ily during the process of merging the records. If we restrict
our analysis to clients which only use one resolver, the overall
error rate goes down, but our results are qualitatively simi-
lar, with the error rates being 0.0046, 0.0055, and 0.0119, for
nosec, goodsec, and badsec, respectively.

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5

Regional Internet Registry

Fa
ilu

re
 ra

te

AfriNIC ARIN APNIC LACNIC RIPE

nosec
goodsec
badsec

Figure 7: Failure rates broken down by resolver
IP RIR. Error bars indicate a 95 percent binomial
proportion confidence interval.

As shown in Figure 7, resolution failure rates vary
widely by region, as does the difference in resolution
rates between nosec, goodsec, and badsec. In partic-
ular, while all five regions show a significant differ-
ence (2-proportion z-test, p < 0.0001) between ag-
gregate badsec-domain outcomes and nosec & good-
sec outcomes, only APNIC (Asia Pacific) shows
a significant difference between nosec and goodsec
(McNemar’s test, p < 0.0001). While AfriNIC
(Africa) shows a qualitative difference, we do not
have enough data points to determine whether it is
statistically significant. Note that in general APNIC
seems to have an elevated resolution failure rate;
LACNIC (Latin America) does as well but still does
not show a significant difference between nosec and
goodsec. We drilled down into the resolvers responsi-
ble for anomalous failure rates and present our find-
ings in Sections 4.1.3, & 4.1.4.

4.1.2 The Impact of Packet Size and TCP
Fallback

One commonly-expressed concern with DNSSEC is
that it increases the size of DNS responses and, con-
sequently, failure rates. Ordinarily, DNS requests
and responses are carried over UDP, which limits
the maximum size of the responses. DNS has two
mechanisms to allow responses larger than the 512-
byte limit defined in RFC 1035 [33]:

• Resolution can fall back to TCP if the server
supports it.

8

USENIX Association 22nd USENIX Security Symposium 581

Name Abbreviation Frequency Percentage

African Network Information Centre AfriNIC 10,914 2.062%
American Registry for Internet Numbers ARIN 75,577 14.28%
Asia-Pacific Network Information Centre APNIC 200,366 37.86%
Latin America and Caribbean Network Information Centre LACNIC 62,925 11.89%
Réseaux IP Européens Network Coordination Centre RIPE NCC 179,492 33.91%
Unclassifiable 20 < 0.001%

Table 5: Table listing the 5 Regional Internet Registries (RIRs). The Frequency and Percentage columns
indicate the number and relative prevalence of UUIDs for which at least one DNS query originated from each
region.

nosec goodsec badsec

Failure rates vs. Transport Protocol

Fa
ilu

re
 ra

te

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

UDP
TCP

Figure 8: Failure rates broken down by DNS trans-
port protocol. Error bars indicate a 95 percent bi-
nomial proportion confidence interval.

• Clients can advertise a larger maximum UDP
datagram size via the EDNS0 OPT pseudo-
RR [39].

Unfortunately, both of these mechanisms can cause
problems for some intermediaries [7, 8, 10]. Because
the resolver behavior is observable on the server, we
can directly measure the impact of these strategies
on test resource load failures.

In order to look more closely at these effects, we
first filtered out the data for the 4,739,669 (33.25%)
lookup requests we received which did not have the
DNSSEC OK flag set. The DNSSEC OK flag an-
nounces the query source’s willingness to receive
DNSSEC RRs, and thus when it is not set, our
resolver simply sends the requested records with-

out the DNSSEC RRs.7 Non-DNSSEC OK lookups
for DNSSEC resources appear to have similar suc-
cess rates to nosec resources. Out of the remaining
9,516,394 (66.75%) transactions where DNSSEC OK
was indicated, 4.22% of goodsec and 4.064% of badsec
lookups fell back to TCP. These TCP lookups had
dramatically higher failure rates: 6.011% for good-
sec and 6.531% for badsec compared to 0.6742% for
goodsec and 3.249% for badsec when UDP was used.
For nosec, resolution never fell back to TCP, and the
failure rate of 0.6% 8. was similar to that for goodsec
with UDP. Figure 8 summarizes these findings.
The similar UDP failure rates for nosec and good-

sec suggest that it is the TCP fallback that results
from DNSSEC’s increased response sizes, and not
the bigger responses themselves, that is the major
contributor to the elevated goodsec failure rate.
TCP fallback in the DNS resolution for one com-

ponent of a web page can have a negative impact on
the load rate of other components on the page, even
if their DNS lookups do not themselves fall back to
TCP. If we partition the UUIDs into those that fall
back to TCP for at least one test resource and those
that never fall back to TCP, we find that the nosec
failure rates are 1.0791% for the former and 0.7617%
for the latter. We have not explored these effects in
detail, but it seems likely that the failed resolution
slows down the retrieval of the rest of the resources,
thus causing failures.
We also found that accurate path MTU prediction

is crucial for maintaining high resolution success.
For 13,623 test resources (0.0953% of the 14,291,174
total), we observed that recursive resolvers overesti-
mated the UDP path MTU, advertised an inflated

7If multiple queries were present we considered the
DNSSEC OK flag to be set if any of the queries had it. 2.771%
of test resources exhibited variation in this flag.

8This nosec failure rate is lower than the one found in
Table 4 because, to be consistent with the goodsec and badsec
failure rate calculations in this section, it excludes failed test
resource loads for which we did not observe a DNS lookup
attempt.

9

582 22nd USENIX Security Symposium USENIX Association

value via EDNS0, and subsequently had to retry the
lookup with a smaller advertised value. Test re-
sources whose lookups included this path MTU dis-
covery behavior failed to load 14.09% of the time
compared to 2.519% for those that did not.

4.1.3 Case Study: badsec-b8 validation
anomaly

We compared the failure rates of the badsec domains
and observed that the badsec-b8 variant exhibited
a significantly lower failure rate (1.480%) than all
other badsec types (McNemar’s test applied pair-
wise against each other badsec variant, p < 0.01). In
badsec-b8, we simulated an invalid DNSKEY RRSIG
RR by incrementing the labels field of the RR data
and signing it with a correctly-authenticated key.
The labels field in an RRSIG RR is used for match-
ing RRSIGs to the RRsets they authenticate when
wildcards are involved. For example, if a zone de-
clares the *.foo.com wildcard name, then RRSIGs
for the RRsets of names matching *.foo.com (e.g.,
www.foo.com) would have a labels field value of 2.
Section 5.3.1 of RFC 4035 [5] stipulates that an
RRSIG RR must have a labels field value less than
or equal to the number of labels in the owner name
of the RRset that it authenticates.

To identify resolvers responsible for this valida-
tion anomaly, we first partitioned the set of UUIDs
by the IP address of the resolver associated with
that UUID. Using the partitioned dataset, we iden-
tified 124 resolvers whose failure rate for badsec-b8
was significantly lower than that of each of the other
badsec variants (McNemar’s test, p < 0.01). More-
over, for 123 of these resolvers, the badsec-b8 and
goodsec failure rates did not significantly differ at
the .01 level (McNemar’s test).

With the cooperation of one of the ISPs whose
resolvers exhibited the validation anomaly, we were
granted access to query their closed resolvers and
were able to manually reproduce the errant valida-
tion. We also added -1, +2, and +100 to the RRSIG
labels field values and found that the resolvers in-
correctly accepted all of the increased values, but
not the decreased value, suggesting that the DNS
server implementation in use reversed the inequality
for testing the labels field.

We were unable to devise a cache-poisoning at-
tack that leverages this validation error under any
reasonable threat model.

4.1.4 Case Study: badsec-c12 validation
anomaly

The failure rate of the badsec-c12 variant (2.521%)
differed significantly from those of all other badsec

domains and was the second lowest, after badsec-b8
(McNemar’s test, p < 0.01). The badsec-c12 subdo-
main attacks the DNSSEC chain of trust by not pro-
viding the RRSIG RR for the test resource’s type A
RRset. A properly-validating server should not con-
sider the affected A RRset validated unless it were
able to retrieve and validate its RRSIG.

All 32 of the resolvers in our dataset that exhib-
ited this validation anomaly belonged to the same
/22 subnetwork controlled by one particular ISP,
as did 45 of the 49 resolvers for which McNemar’s
test showed significantly-different (p < 0.01) failure
rates between nosec and goodsec. Customers using
this ISP’s recursive resolvers suffer from the worst
of both worlds. They are not only more vulnera-
ble to a man-in-the-middle attack against DNSSEC,
but also less likely to be able to access a domain
with DNSSEC enabled than one without. We were
unable to obtain access to the ISP’s closed recursive
resolvers to try to manually reproduce the incorrect
validation behavior.

Due to the reduced size of responses omitting
RRSIG RRs for type A queries, no badsec-c12 DNS
resolutions fell back to TCP, and for the 32 resolvers
exhibiting the validation anomaly, badsec-c12 ’s fail-
ure rate (1.245%) was significantly less than that
of goodsec (13.81%) (McNemar’s test applied sepa-
rately for each resolver, p < 0.01).

4.1.5 Case Study: Comcast

In January 2012, Comcast announced that it had
finished deploying DNSSEC within its network and
that its residential customers would thenceforth be
protected by DNSSEC-validating DNS resolvers [30].
We identified dynamic Comcast IP end hosts in our
dataset using a list of IP prefixes published by Com-
cast [13]. One should expect that Comcast end hosts
in our dataset would fail on goodsec at a lower than
average rate and badsec at a higher than average
rate. Indeed, the 582 Comcast end hosts observed
exhibited a 0.1718% failure rate for goodsec and a
92.5636% failure rate for badsec. For comparison,
Comcast end hosts failed on nosec domains 0.1718%
of the time. This result is consistent with the ex-
pectation that a network that is properly configured
for DNSSEC will have identical behavior for nosec
and goodsec. Our measurements indicate that the
majority of the difference between Comcast’s badsec
failure rate and 100% is caused by users who are not
using Comcast for recursive resolution and therefore
do not benefit from Comcast’s DNSSEC verification;
if we exclude end-hosts that use resolvers outside of
Comcast’s AS the badsec failure rate improves to
98.6544%.

10

USENIX Association 22nd USENIX Security Symposium 583

0 5 10 15 20 25

0.
02

1
0.

02
2

0.
02

3
0.

02
4

0.
02

5
0.

02
6

0.
02

7

All test resources

Load position

Fa
ilu

re
 ra

te

Figure 9: Plot of failure rate across all test re-
source types versus load order.

Percentile Test duration (seconds)

50% 9
90% 31
95% 50
98% 100

Table 6: Percentiles from the distribution of test
durations, measured from the time of the measure-
ment page load to the time of the completion signal.

4.2 Measurement Difficulties

Because our primary measurement endpoint is the
browser’s failure to retrieve a resource, we are very
sensitive to any other sources of failure other than
the ones we are attempting to measure; by con-
trast, many previous studies such as [22] measured
between multiple different success outcomes, which
were distinguishable from failures. In order to
minimize these effects, we investigated other po-
tential sources of failure closely, as described be-
low.

4.2.1 Resource Load Sequence

Recall from Section 3.1, that test resource loads are
initiated one after another in a random order. Be-
cause the test takes some time (see Table 6) to com-
plete, there are a variety of conditions which can
cause the test to abort prematurely. This suggests
that the order in which resources are loaded may
impact the error rate.

0 5 10 15 20 25

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Windows

all test resource classes
Load position

Fa
ilu

re
 ra

te

Firefox
Chrome
Safari
IE

Figure 10: Failure rate versus load order across
all test resources for Windows clients.

Figure 9 shows the overall failure rate versus load
position (note that the first resource is at position 0).
While the overall trend seems consistent with fail-
ures getting progressively worse with later resources,
the sharp spike and then subsequent decline between
positions 5 and 9 seems anomalous. In order to ex-
plore this further, we broke down the the failure rate
by browser and operating system.
As Figures 10 and 11 make clear, Chrome and

Firefox on Mac and Windows both show the same
pattern of a failure spike around resources 5-8,
whereas the same browsers on Linux (Figure 12) as
well as both Safari and Internet Explorer show a
generally linear trend (though the break around re-
source 9 for Internet Explorer is also puzzling). We
leave the explanation of these anomalies for future
work.

4.2.2 Latent UUIDs

Our analysis uncovered 3616 UUIDs for which we
received completion signals without corresponding
measurement page loads during the one-week exper-
iment window. We refer to these UUIDs as latent
UUIDs because we observed DNS and HTTP re-
quests for FQDNS that included them in our logs
prior to the start of our experiment window. There
are two plausible explanations for the existence of
latent UUIDs:

1. Browser caching. Modern web browsers
cache users’ recent and open tabs to allow for
restoration of the browsing session in case of

11

584 22nd USENIX Security Symposium USENIX Association

0 5 10 15 20 25

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Mac

all test resource classes
Load position

Fa
ilu

re
 ra

te

Firefox
Chrome
Safari

Figure 11: Failure rate versus load order across
all test resources for Mac clients.

a crash, browser termination, or accidental tab
closure. Half of the 18 latent UUIDs that had
HTTP requests during the experiment window
appeared within the first 33 hours of the exper-
iment window, and 11 of them loaded the mea-
surement page within the 24 hours leading up
to the start of the experiment window. Thus, it
is plausible that browser caching explains some
of the latent UUIDs.

2. DNS caching with eager renewal. To im-
prove DNS cache hit rates and, consequently,
reduce client latency, Cohen and Kaplan [12]
proposed a caching scheme wherein DNS caches
issue unsolicited queries to authoritative name-
servers for cached RRs whose TTLs have ex-
pired, even if no client queried for the RR at
the time of the renewal. This mechanism is
a documented feature in the Cisco IOS Dis-
tributed Director [1] and has been implemented
by others [45]. Our log data strongly supports
this explanation, as all latent UUIDs (by defini-
tion) appeared in the DNS logs, but only 18 had
HTTP requests during the experiment window.

Latent UUIDs are not included in our analysis,
as we cannot guarantee that our log data extends
far enough into the past to cover them. Further-
more, our analysis only includes UUIDs for which
we observed both the measurement page load and
completion signal within the experiment window.

0 5 10 15 20 25

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Linux

all test resource classes
Load position

Fa
ilu

re
 ra

te

Firefox
Chrome

Figure 12: Failure rate versus load order across
all test resources for Linux clients.

5 Discussion

The benefit from DNSSEC-signing a domain is
upper-bounded by the number of clients which actu-
ally validate DNSSEC-signed records. As our mea-
surements show, the fraction of clients which do so
is less than 3%.9 Moreover, this benefit is only ob-
tained if DNSSEC either deters attacks or allows
detection of attacks. By contrast, for a site with
worldwide users, our results indicate that deploying
DNSSEC in the current environment amounts to a
self-inflicted partial attack on one’s own site on the
order of 0.2214% (the difference between the goodsec
and nosec failure rates). For a site without signifi-
cant Asian usage, the tradeoff looks more attractive,
and for a site with largely Asian usage it looks less
attractive.
The major source of increased failure rates from

DNSSEC deployment appears to be that increased
packet sizes force clients into DNS over TCP rather
than DNS over UDP. The failure rate for DNS over
TCP is approximately 10 times larger than DNS
over UDP. This phenomenon is strongly localized to
Asia/Pacific browsers.
Some potential future developments could change

this calculation. First, a significant number of ISPs
could deploy validating resolvers. As shown by the

9Here we interpret the badsec failure rate as an upper
bound on the fraction of end users protected by DNSSEC
validation because some fraction of the failures may be due
to the fact that DNSSEC was enabled rather than validation
failure

12

USENIX Association 22nd USENIX Security Symposium 585

Comcast data in Section 4.1.5, unilateral deploy-
ment of DNSSEC by ISPs can have a very large im-
pact on the behavior of their customers. If a few of
the large ISPs were to deploy validating resolvers,
our measured badsec failure rate would no doubt
have been much higher and their customers would
have obtained some level of defense against attackers
outside the ISP’s network. (Validation at the ISP re-
solver level does not provide defense against attack-
ers located between the resolver and the customer.)

Second, there could be widespread deployment
of a technology such as DANE that depends on
DNSSEC. As mentioned above, DNSSEC for A
records does not provide security against on-path
attackers, who can intercept the traffic between
the client and the server. Defending against such
attackers requires some sort of cryptographic
protocol such as SSL/TLS. By contrast, if DANE
is used to attest to end-user certificates, then
DNSSEC combined with DANE-based certificates
can provide security against on-path attackers and
thus a significantly greater benefit. Even with
DANE, however, the collective action problem of
simultaneous client and server deployment persists.
In fact, it is worse since DANE’s security requires
that the client do DNSSEC validation— ISP-level
validation is not sufficient.

Our results also serve as a caution for future re-
searchers: Advertisement network based studies—
especially those which attempt to measure success
or failure—are very sensitive to variation in client
and network behavior. In particular, there is sig-
nificant variation both between browsers and oper-
ating systems and by request order within the same
browser/operating system pair. These variations are
of the same order of magnitude as the signal we are
trying to measure and thus present a significant chal-
lenge. Additionally, they may indicate actual prob-
lems with the browsers—or at least opportunities
for improvement. We are currently working with
browser vendors to attempt to determine the reason
for these anomalies.

6 Related Work

Several research groups have performed measure-
ments related to DNSSEC.

The SecSpider project [35, 36, 43] has surveyed
DNSSEC-secured zones since the DNSSEC rollout,
quantifying the rollout using metrics of availability,
verifiability, and validity. Deccio et al. [14, 15] sur-
veyed representative DNSSEC domains for miscon-
figuration. Both of these projects focus on properties
of the authoritative DNS server zone data, rather
than the behavior of resolvers or caches.

Several research groups have attempted to charac-
terize the overhead (to clients, servers, and the net-
work) from deploying DNSSEC. Ager, Dreger, and
Feldmann [2] used a trace of DNS traffic as the basis
for a testbed experiment. They noted the possibility
of overhead arising from packet fragmentation. Wi-
jngaards and Overeinder [42] described the design of
a DNSSEC resolver and validator and compared its
performance to an ordinary DNS resolver. Migault,
Girard, and Laurent [31] measured the overhead of
DNSSEC resolution in a lab setting, including the
NSEC3 option.

Gudmundsson and Crocker [18] measured the de-
ployment of DNSSEC-capable resolvers using traces
of DNS queries made to the .org servers. Glynn [17]
surveyed DNSSEC deployment in Ireland, highlight-
ing the possibilty that large responses would suffer
fragmentation, and noting the geographic variation
in client path MTU.

Dietrich [16] reports on a study of one component
in DNSSEC resolution: users’ home DSL routers.
With the cooperating of network operators, the
study’s authors tested the behavior of 36 routers in
a testbed environment. The DNS proxies in more
than half of these routers were incompatible with
DNSSEC; several of the tested routers could not be
used with DNSSEC even if their internal DNS proxy
were bypassed.

Herzberg and Shulman [19] describe several chal-
lenges to wide-scale DNSSEC deployment. They ob-
serve that large-response fragmentation not only re-
duces performance but can be the basis of down-
grade and forgery attacks on permissive resolvers.

Pappas and Keromytis [37] performed a dis-
tributed measurement of resolution failures in the
aftermath of the May 5, 2010 signing of the DNS
root. They made resolution attempts from hundreds
of geographically dispersed nodes (e.g., Tor exit
nodes), which allowed them to observe the behavior
of many DNS resolvers. Whereas their conclusions
focused on the effects of rolling out DNSSEC on the
DNS root-level servers, our measurements target the
DNS in its steady state behavior nearly two years
later.

Krishnan and Monrose [28] performed a large-
scale measurement of browser DNS prefetching and
characterized its security and privacy implications.
Using a trace-based cache simulator, they showed
that the additional overheads induced by prefetching
would increase the overhead of deploying DNSSEC.

The Netalyzr platform [27] allows interested users
to measure and report on properties of their Inter-
net connection. Netalyzr has uncovered widespread
DNS manipulation by ISPs [40,41].

13

586 22nd USENIX Security Symposium USENIX Association

Zhang et al. [44] included client-side DNS mea-
surement code in a software package used by mil-
lions. They identified several ISPs that manipulate
DNS results, allowing them to proxy and modify
Web searches.

Ager et al. [3] asked friends to run DNS measure-
ment code on their systems. Their data anlysis fo-
cused on DNS performance.

Honda et al. [21] asked IETF colleagues to run
a measurement tool, TCPExposure; this tool gener-
ated TCP segments with various properties, allowing
Honda et al. to observe how middleboxes between
clients and their servers handle different TCP exten-
sions. Of all the related work, Honda et al.’s is the
closest in spirit to ours. They sought to measure the
compatibility of hypothetical future protocols with
deployed middleboxes; we measure the interaction
between DNSSEC and today’s network infrastruc-
ture.

Rather than deploy custom software to users, we
wrote JavaScript code that triggers DNS resolution,
and served this code in an ad we placed with a dis-
play ad network. This strategy for enlisting users
was pioneered by Barth, Jackson, and their coau-
thors [6, 25], who used it to measure the Web plat-
form. This strategy was also recently used by Hus-
ton and Michaelson [23, 24] to measure the deploy-
ment of DNSSEC-capable resolvers and to describe
their geographic distribution. Unlike our study, Hus-
ton did not also measure the prevalence of DNSSEC-
intolerant resolvers.

7 Summary

While DNS name resolution is a key part of the In-
ternet infrastructure, it has long been known that it
is seriously insecure. DNSSEC is designed to repair
that insecurity. We report on a large ad network
based study designed to measure both the current
state of deployment and the extent to which deploy-
ing DNSSEC-signed domains creates collateral dam-
age in the form of failed resolutions of valid domains.

Our measurements confirm previous reports that
DNSSEC deployment is proceeding quite slowly.
Less than 3% of clients failed to retrieve resources
hosted on DNSSEC-signed domains with broken sig-
natures. This indicates that either these clients—or
their resolvers—are not doing DNSSEC validation
or they are not hard-failing on broken validations,
which is effectively the same as not validating at all.
Moreover, about 1.006% of clients fail to retrieve
validly DNSSEC-signed resources (as compared to
0.7846% of unsigned resources. In other words, for
every ten clients a site protects by using DNSSEC, it
self-DoSes about one client. This effect is principally

due to TCP fallback to accomodate larger DNSSEC
packet sizes and is strongly localized to Asian users.
Finally, we report on a number of new measure-

ment artifacts that can affect the results of advertis-
ing network based studies, including some browser-
specific anomalies which may reveal opportunities
for improvement in those browsers. In future work,
we hope to explore further the specific causes of these
anomalies.

Acknowledgements

The authors thank the anonymous reviewers and our
shepherd, Tara Whalen. We also thank Duane Wes-
sels, Casey Deccio, Cynthia Taylor, and Stephen
Checkoway for their feedback on the paper, Philip
Stark for suggestions about the analysis, and Collin
Jackson for his help in acquiring an advertising net-
work advertiser account. This material is based
upon work supported by the MURI program under
AFOSR Grant No. FA9550-08-1-0352.

References

[1] Distributed director cache auto refresh. https:
//www.cisco.com/en/US/docs/ios/12_2t/12_2t8/feature/
guide/ftrefrsh.pdf.

[2] B. Ager, H. Dreger, and A. Feldmann. Predicting the
DNSSEC overhead using DNS traces. In R. Calderbank
and H. Kobayashi, editors, Proceedings of CISS 2006, pages
1484–89. IEEE Information Theory Society, Mar. 2006.

[3] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig.
Comparing DNS resolvers in the wild. In M. Allman, ed-
itor, Proceedings of IMC 2010, pages 15–21. ACM Press,
Nov. 2010.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirements. RFC 4033
(Proposed Standard), Mar. 2005. Updated by RFC 6014.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
Protocol Modifications for the DNS Security Extensions.
RFC 4035 (Proposed Standard), Mar. 2005. Updated by
RFCs 4470, 6014.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In P. Syverson and S. Jha,
editors, Proceedings of CCS 2008, pages 75–88. ACM Press,
Oct. 2008.

[7] R. Bellis. DNS Proxy Implementation Guidelines. RFC 5625
(Best Current Practice), Aug. 2009.

[8] R. Bellis. DNS Transport over TCP - Implementation Re-
quirements. RFC 5966 (Proposed Standard), Aug. 2010.

[9] R. Bellis and L. Phifer. Test report: DNSSEC im-
pact on broadband routers and firewalls. Online:
https://www.dnssec-deployment.org/wp-content/uploads/
2010/03/DNSSEC-CPE-Report.pdf, Sept. 2008.

[10] R. Braden. Requirements for Internet Hosts - Application
and Support. RFC 1123 (Standard), Oct. 1989. Updated by
RFCs 1349, 2181, 5321, 5966.

[11] Caida routeviews prefix to as mappings dataset (pfx2as).
http://www.caida.org/data/routing/routeviews-prefix2as.
xml.

14

USENIX Association 22nd USENIX Security Symposium 587

[12] E. Cohen and H. Kaplan. Proactive caching of DNS records:
Addressing a performance bottleneck. Computer Networks,
41(6):707–26, 2003.

[13] What are comcast’s dynamic ip ranges? http://postmaster.
comcast.net/dynamic-IP-ranges.html.

[14] C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra. A
case for comprehensive DNSSEC monitoring and analysis
tools. In R. Clayton, editor, Proceedings of SATIN 2011,
Apr. 2011. Online: http://conferences.npl.co.uk/satin/
agenda2011.html.

[15] C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra. Quan-
tifying and improving DNSSEC availability. In G. Rouskas
and X. Zhou, editors, Proceedings of ICCCN 2011. IEEE
Communications Society, July 2011.

[16] T. Dietrich. DNSSEC support by home routers in Ger-
many. Presented at RIPE 60, May 2010. Online slides:
http://ripe60.ripe.net/presentations/Dietrich-DNSSEC_
Support_by_Home_Routers_in_Germany.pdf.

[17] W. J. Glynn. Measuring DNS vulnerabilities and DNSSEC
challenges from an irish perspective. In R. Clayton, editor,
Proceedings of SATIN 2011, Apr. 2011. Online: http://
conferences.npl.co.uk/satin/agenda2011.html.

[18] Ó. Gudmundsson and S. D. Crocker. Observing DNSSEC
validation in the wild. In R. Clayton, editor, Proceedings of
SATIN 2011, Apr. 2011. Online: http://conferences.npl.
co.uk/satin/agenda2011.html.

[19] A. Herzberg and H. Shulman. Towards adoption of dnssec:
Availability and security challenges. Cryptology ePrint
Archive, Report 2013/254, 2013. http://eprint.iacr.org/.

[20] P. Hoffman and J. Schlyter. The DNS-Based Authentica-
tion of Named Entities (DANE) Transport Layer Security
(TLS) Protocol: TLSA. RFC 6698 (Proposed Standard),
Aug. 2012.

[21] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Han-
dley, and H. Tokuda. Is it still possible to extend TCP? In
P. Thiran and W. Willinger, editors, Proceedings of IMC
2011, pages 181–94. ACM Press, Nov. 2011.

[22] L.-S. Huang, E. Y. Chen, A. Barth, E. Rescorla, and C. Jack-
son. Talking to yourself for fun and profit. In H. J. Wang,
editor, Proceedings of W2SP 2011. IEEE Computer Society,
May 2011.

[23] G. Huston. Counting DNSSEC. Online: https://labs.ripe.
net/Members/gih/counting-dnssec, Sept. 2012.

[24] G. Huston and G. Michaelson. Measuring DNSSEC per-
formance. Online: http://www.potaroo.net/ispcol/2013-05/
dnssec-performance.html, May 2013.

[25] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh.
Protecting browsers from DNS rebinding attacks. ACM
Trans. Web, 3(1), Jan. 2009.

[26] jquery: The write less, do more, javascript library. http:
//jquery.com.

[27] C. Kreibich, B. Nechaev, N. Weaver, and V. Paxson. Net-
alyzr: Illuminating the edge network. In M. Allman, editor,
Proceedings of IMC 2010, pages 246–59. ACM Press, Nov.
2010.

[28] S. Krishnan and F. Monrose. An empirical study of the
performance, security and privacy implications of domain
name prefetching. In S. Bagchi, editor, Proceedings of DSN
2011, pages 61–72. IEEE Computer Society and IFIP, June
2011.

[29] P. Leach, M. Mealling, and R. Salz. A Universally Unique
IDentifier (UUID) URN Namespace. RFC 4122 (Proposed
Standard), July 2005.

[30] J. Livingood. Comcast completes dnssec de-
ployment. http://blog.comcast.com/2012/01/
comcast-completes-dnssec-deployment.html.

[31] D. Migault, C. Girard, and M. Laurent. A performance view
on dnssec migration. In H. Lutfiyya and Y. Diao, editors,
Proceedings of CNSM 2010, pages 469–74. IEEE Commu-
nications Society, Oct. 2010.

[32] P. Mockapetris. Domain names - concepts and facilities.
RFC 1034 (Standard), Nov. 1987. Updated by RFCs 1101,
1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034,
4035, 4343, 4035, 4592, 5936.

[33] P. Mockapetris. Domain names - implementation and spec-
ification. RFC 1035 (Standard), Nov. 1987. Updated by
RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136,
2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,
4343, 5936, 5966, 6604.

[34] nginx httplogmodule. http://wiki.nginx.org/HttpLogModule.

[35] E. Osterweil, D. Massey, and L. Zhang. Deploying and mon-
itoring DNS security (DNSSEC). In C. Payne and M. Franz,
editors, Proceedings of ACSAC 2009, pages 429–38. ACM
Press, Dec. 2009.

[36] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quanti-
fying the operational status of the DNSSEC deployment. In
K. Papagiannaki and Z.-L. Zhang, editors, Proceedings of
IMC 2008, pages 231–42. ACM Press, Oct. 2008.

[37] V. Pappas and A. D. Keromytis. Measuring the deploy-
ment hiccups of DNSSEC. In J. L. Mauri, T. Strufe, and
G. Martinez, editors, Proceedings of ACC 2011, volume 192
of CCIS, pages 44–53. Springer-Verlag, July 2011.

[38] S. Son and V. Shmatikov. The hitchhiker’s guide to DNS
cache poisoning. In S. Jajodia and J. Zhou, editors, Proceed-
ings of SecureComm 2010, volume 50 of LNICST, pages
466–83. Springer-Verlag, Sept. 2010.

[39] P. Vixie. Extension Mechanisms for DNS (EDNS0). RFC
2671 (Proposed Standard), Aug. 1999.

[40] N. Weaver, C. Kreibich, B. Nechaev, and V. Paxson. Impli-
cations of Netalyzr’s DNS measurements. In R. Clayton,
editor, Proceedings of SATIN 2011, Apr. 2011. Online:
http://conferences.npl.co.uk/satin/agenda2011.html.

[41] N. Weaver, C. Kreibich, and V. Paxson. Redirecting DNS
for ads and profit. In N. Feamster and W. Lee, editors,
Proceedings of FOCI 2011. USENIX, Aug. 2011.

[42] W. C. Wijngaards and B. J. Overeinder. Securing DNS:
Extending DNS servers with a DNSSEC validator. Security
& Privacy, 7(5):36–43, Sept.–Oct. 2009.

[43] H. Yang, E. Osterweil, D. Massey, S. Lu, and L. Zhang.
Deploying cryptography in Internet-scale systems: A case
study on DNSSEC. IEEE Trans. Dependable and Secure
Computing, 8(5):656–69, Sept.–Oct. 2011.

[44] C. Zhang, C. Huang, K. W. Ross, D. A. Maltz, and J. Li.
Inflight modifications of content: Who are the culprits? In
C. Kruegel, editor, Proceedings of LEET 2011. USENIX,
Mar. 2011.

[45] Z. Zhang, L. Zhang, D.-E. Xie, H. Xu, and H. Hu. A novel
dns accelerator design and implementation. In C. S. Hong,
T. Tonouchi, Y. Ma, and C.-S. Chao, editors, Proceedings
of APNOMS 2009, volume 5787 of LNCS, pages 458–61.
Springer-Verlag, Sept. 2009.

15

USENIX Association 22nd USENIX Security Symposium 589

ExecScent: Mining for New C&C Domains in Live Networks
with Adaptive Control Protocol Templates

Terry Nelms1,2, Roberto Perdisci3,2, and Mustaque Ahamad2,4

1Damballa, Inc.
2Georgia Institute of Technology – College of Computing

3University of Georgia – Dept. of Computer Science
4New York University Abu Dhabi

Abstract

In this paper, we present ExecScent, a novel system that
aims to mine new, previously unknown C&C domain
names from live enterprise network traffic. ExecScent
automatically learns control protocol templates (CPTs)
from examples of known C&C communications. These
CPTs are then adapted to the “background traffic” of the
network where the templates are to be deployed. The
goal is to generate hybrid templates that can self-tune to
each specific deployment scenario, thus yielding a bet-
ter trade-off between true and false positives for a given
network environment. To the best of our knowledge, Ex-
ecScent is the first system to use this type of adaptive
C&C traffic models.

We implemented a prototype version of ExecScent,
and deployed it in three different large networks for a
period of two weeks. During the deployment, we discov-
ered many new, previously unknown C&C domains and
hundreds of new infected machines, compared to using a
large up-to-date commercial C&C domain blacklist. Fur-
thermore, we deployed the new C&C domains mined by
ExecScent to six large ISP networks, discovering more
than 25,000 new infected machines.

1 Introduction

Code reuse is common practice in malware [18, 20]. Of-
ten, new (polymorphic) malware releases are created by
simply re-packaging previous samples, or by augmenting
previous versions with a few new functionalities. More-
over, it is not uncommon for the source code of success-
ful malware to be sold or leaked on underground forums,
and to be reused by other malware operators [14].

Most modern malware, especially botnets, consist of
(at least) two fundamental components: a client agent,
which runs on victim machines, and a control server ap-
plication, which is administered by the malware owner.

Because code reuse applies to both components1, this
naturally results in many different malware samples shar-
ing a common command-and-control (C&C) protocol,
even when control server instances owned by different
malware operators use different C&C domains and IPs.

In this paper, we present ExecScent, a novel system
that aims to mine new, previously unknown C&C domain
names from live enterprise network traffic (see Figure 1).
Starting from a seed list of known C&C communications
and related domain names found in malware-generated
network traces, ExecScent aims to discover new C&C
domains by taking advantage of the commonalities in
the C&C protocol shared by different malware samples.
More precisely, we refer to the C&C protocol as the set of
specifications implemented to enable the malware con-
trol application logic, which is defined at a higher level
of abstraction compared to the underlying transport (e.g.,
TCP or UDP) or application (e.g., HTTP) protocols that
facilitate the C&C communications. ExecScent aims to
automatically learn the unique traits of a given C&C pro-
tocol from the seed of known C&C communications to
derive a control protocol template (CPT), which can in
turn be deployed at the edge of a network to detect traffic
destined to new C&C domains.

ExecScent builds adaptive templates that also learn
from the traffic profile of the network where the tem-
plates are to be deployed. The goal is to generate hybrid
templates that can self-tune to each specific deployment
scenario, thus yielding a better trade-off between true
and false positives for a given network environment. The
intuition is that different networks have different traffic
profiles (e.g., the network of a financial institution may
generate very different traffic compared to a technology
company). It may therefore happen that a CPT could
(by chance) raise a non-negligible number of false posi-

1For example, web-based malware control panels can be acquired
in the Internet underground markets and re-deployed essentially as is,
while the client agents can be obtained using do-it-yourself malware
creation kits [10].

590 22nd USENIX Security Symposium USENIX Association

tives in a given network, say NetA, while generating true
C&C domain detections and no false positives in other
networks. We take a pragmatic approach, aiming to au-
tomatically identify these cases and lowering the “con-
fidence” on that CPT only when it is deployed to NetA.
This allows us to lower the overall risk of false positives,
while maintaining a high probability of detection in other
networks. We further motivate the use of adaptive tem-
plates in Section 3.

ExecScent focuses on HTTP-based C&C protocols,
because studies have shown that HTTP-based C&C com-
munications are used by a large majority of malware
families [26] and almost all known mobile bots [31].
Moreover, many enterprise networks employ strict egress
filtering firewall rules that block all non-web traffic. This
forces malware that target enterprise networks to use
HTTP (or HTTPS) as the communication protocol of
choice. It is also important to notice that many modern
enterprise networks deploy web proxies that enforce SSL
man-in-the-middle2 (SSL-MITM). Therefore, enterprise
networks can apply ExecScent’s templates at the web
proxy level to discover new C&C domains even in cases
of HTTPS-based C&C traffic.

Our system is different from previously proposed
URL-based C&C signature generation systems [23, 30].
Unlike previous work, we build templates that can adapt
to the deployment network and that model the entire con-
tent of HTTP requests, rather than being limited to the
URL string. We show in Section 5 that this allows us to
obtain a much better trade-off between true and false pos-
itives, compared to “statically” modeling only the URL
of C&C requests.

Anomaly-based botnet detection systems such as [15,
16] typically require that more than one host in the mon-
itored network be compromised with the same malware
type, do not scale well to large networks, and are not
able to directly attribute the suspected C&C communica-
tions to a specific malware family. Unlike these systems,
ExecScent can detect C&C communications initiated by
a single malware-infected machine with low false pos-
itives, and can attribute the newly discovered C&C do-
mains to a known malware family name or malware op-
erator (i.e., the name of the cyber-criminal group behind
the malware operation). In turn, the labeled C&C do-
main names discovered by ExecScent may also be de-
ployed in existing lightweight malware detection sys-
tems based on DNS traffic inspection, thus contributing
to the detection and attribution of malware infections in
very large networks (e.g., ISP networks) where monitor-
ing all traffic may not be practically feasible.

Currently, we identify the seed of known C&C traffic
required by ExecScent to learn the control protocol tem-

2See http://crypto.stanford.edu/ssl-mitm/, for example.

HTTP(S) traffic

Proxy

ExecScent
Template Learning

and Matching

C&C ServerEnterprise Network

Infected
Hosts
Report

New C&C
Domains

Malware
C&C Traces

Figure 1: ExecScent deployment overview. Adap-
tive control protocol templates are learned from both
malware-generated network traces and the live network
traffic observation. The obtained adaptive templates are
matched against new network traffic to discover new
C&C domains.

plates by leveraging blacklists of known C&C domain
names. C&C discovery systems based on dynamic anal-
ysis such as Jackstraws [17] may also be used for this
purpose. However, unlike ExecScent, while Jackstraws
may be useful to find “seed” C&C traffic, its system-call-
based detection models [17] cannot be deployed to detect
new C&C domains in live network traffic.

In summary, we make the following contributions:

• We present ExecScent, a novel system for mining
new malware C&C domains from live networks.
ExecScent automatically learns C&C traffic models
that can adapt to the deployment network’s traffic.
This adaptive approach allows us to greatly reduce
the false positives while maintaining a high number
of true positives. To the best of our knowledge, Ex-
ecScent is the first system to use this type of adap-
tive C&C traffic models.

• We implemented a prototype version of ExecScent,
and deployed it in three different large networks for
a period of two weeks. During the deployment, we
discovered many new, previously unknown C&C
domains and hundreds of new infected machines,
compared to using a large up-to-date commercial
C&C domain blacklist.

• We deployed the new C&C domains mined by Ex-
ecScent to six large ISP networks, discovering more
than 25,000 new infected machines.

2 System Overview

The primary goal of ExecScent is to generate control pro-
tocol templates (CPTs) from a seed of known malware-
generated HTTP-based C&C communications. We then
use these CPTs to identify new, previously unknown
C&C domains.

USENIX Association 22nd USENIX Security Symposium 591

Request
Clustering

Malware
C&C

Traces

Request
Generalization

Generate
Control
Protocol

Templates

Labeled
Control
Protocol

Templates

Labeled
C&C

Domains

Background
Network
Traffic

Figure 2: ExecScent system overview.

ExecScent automatically finds common traits among
the C&C protocol used by different malware samples,
and encodes these common traits into a set of CPTs.
Each template is labeled with the name of the malware
family or (if known) criminal operator associated with
the C&C traffic from which the CPT is derived. Once
a CPT is deployed at the edge of a network (see Fig-
ure 1), any new HTTP(S) traffic that matches the tem-
plate is classified as C&C traffic. The domain names
associated with the matched traffic are then flagged as
C&C domains, and attributed to the malware family or
operator with which the CPT was labeled.

Figure 2 presents an overview of the process used by
ExecScent to generate and label the CPTs. We briefly
describe the role of the different system components in
this section, deferring the details to Section 4.

Given a large repository of malware-generated net-
work traces, we first reconstruct all HTTP requests per-
formed by each malware sample. Then, we apply a re-
quest generalization process, in which (wherever pos-
sible) we replace some of the request parameters (e.g.,
URL parameter values) with their data type and length,
as shown in the example in Figure 3. Notice that Exec-
Scent considers the entire content of the HTTP requests,
not only the URLs (see Section 3.2), and the generaliza-
tion process is applied to different parts of the request
header. The main motivation for applying the general-
ization step is to improve the accuracy of the request
clustering process, in which we aim to group together
malware-generated requests that follow a similar C&C
protocol.

Once the malware requests have been clustered, we
apply a template learning process in which we derive the
CPTs. Essentially, a CPT summarizes the (generalized)
HTTP requests grouped in a cluster, and records a num-
ber of key properties such as the structure of the URLs,
the set of request headers, the IP addresses contacted by
the malware, etc. Furthermore, the templates associate a
malware-family label to each template (see Section 4.4
for details).

Before the templates are deployed in a network, we
adapt the CPTs to the “background traffic” observed in

that network. In particular, for each template component
(e.g., the generalized URL path, the user-agent string, the
request header set, etc.), we compute how frequently the
component appeared in the deployment network. CPT
components that are “popular” in the background traffic
will be assigned a lower “match confidence” for that net-
work. On the other hand, components that appear very
infrequently (or not at all) in the traffic are assigned a
higher confidence. We refer to these “rare” components
as having high specificity, with respect to the deployment
network’s traffic. The intuitions and motivations for this
approach are discussed in more detail in the next section.

After deployment, an HTTP request is labeled as C&C
if it matches a CPT with high similarity and specificity.
That is, if the request closely matches a CPT and the
matching CPT components have high specificity (i.e.,
rarely appeared) in that particular deployment network.

3 Approach Motivations and Intuitions

In this section, we discuss the intuitions that motivated
us to build adaptive control protocol templates. Further-
more, we discuss the advantages of considering the en-
tire content of C&C HTTP requests, rather than limit-
ing ourselves to the URL strings, as done in previous
work [23, 30].

3.1 Why Adaptive Templates?
As most other traffic models, ExecScent’s CPTs, which
are derived from and therefore can match C&C traffic,
may be imperfect and could generate some false posi-
tives. To minimize this risk, ExecScent builds adaptive
control protocol templates that, besides learning from
known malware-generated C&C traffic, also learn from
the traffic observed in the network where the templates
are being deployed. Our key observation is that different
enterprise networks have different traffic profiles. The
traffic generated by the computer network of a financial
institute (e.g., a large bank) may look quite different from
traffic at a manufacturing company (e.g., a car producer)
or a technology company (e.g., a software-development
company). It may therefore happen that a CPT could (by
chance) raise a non-negligible number of false positives
in a given network, say NetX , and several true detections
with no or very few false positives in other networks. In-
tuitively, our objective is to automatically identify these
cases, and lower the “confidence” on that template when
it matches traffic from NetX , while keeping its confidence
high when it is deployed elsewhere.

For example, assume NetB is a US bank whose hosts
have rarely or never contacted IPs located, say, in China.
If an HTTP request towards an IP address in China is
found, this is by itself an anomalous event. Intuitively, if

592 22nd USENIX Security Symposium USENIX Association

the request also matches a CPT, our confidence on a cor-
rect match (true C&C communication) can be fairly high.
On the other hand, assume NetA is a car manufacturer
with partners in China, with which NetA’s hosts commu-
nicate frequently. If an HTTP request in NetA matches a
CPT but is directed towards an address within one of the
IP ranges of the manufacturer’s partners, our confidence
on a correct match should be lowered.

More specifically, consider the following hypothetical
scenario. Assume we have a template τ that matches
an HTTP request in both NetA and NetB with a similar-
ity score s. For simplicity, let us assume the score s is
the same for both NetA’s traffic and NetB’s traffic. Sup-
pose also that the server’s IP (or it’s /24 prefix) asso-
ciated with the matching traffic is ipa for NetA and ipb
for NetB. Also, suppose that ipa is “popular” in network
NetA, whereas ipb has very low popularity in NetB be-
cause it has never been contacted by hosts in that net-
work. Because ipa is very popular in NetA, meaning
that a large fraction (e.g., more than 50%) of the hosts
in NetA has contacted the domain in the past, it is likely
that the template τ is fortuitously matching benign traf-
fic, thus potentially causing a large number of false pos-
itives in NetA. On the other hand, because ipb has very
low popularity in NetB, it is more likely that the match is
a true detection, or that in any case τ will generate very
few (potentially only one) false positives in NetB. Con-
sequently, based on a model of recent traffic observed
in NetA and NetB, we should lower our confidence in
τ for the matches observed in NetA, but not for NetB.
In other words, τ should automatically adapt to NetA to
“tune down” the false positives. At the same time, keep-
ing the confidence in τ high for NetB means that we will
still be able to detect C&C communications that match τ ,
while keeping the risk of false positives low. We general-
ize this approach to all other components of ExecScent’s
templates (e.g, the structure of the URLs, the user-agent
strings, the other request headers, etc.), in addition to the
destination IPs.

Overall, our confidence on a match of template τ in a
given network NetX will depend on two factors:

• Similarity: a measure of how closely an HTTP re-
quest matches τ .

• Specificity: a measure of how specific (or rare) are
the components of τ with respect to NetX ’s traffic.

An HTTP request is labeled as C&C if it matches a CPT
with both high similarity and high specificity. We show
in Section 5 that this approach outperforms C&C models
that do not take such specificity into account.

3.2 Why Consider All Request Content?
Malware C&C requests typically need to carry enough
information for a malware agent running on a victim to
(loosely) authenticate itself with the C&C server. In-
tuitively, the C&C server wants to make sure that it is
talking to one of its bots, thus avoiding exposure of its
true nature or functionalities to crawlers or security re-
searchers who may be probing the server as part of an
investigation. This is often achieved by using a specific
set of parameter names and values that must be embed-
ded in the URL for the C&C requests to be successful.
Previous work on automatic URL signature generation
has shown promising results in such cases [23,30]. How-
ever, some malware (e.g., TDL4 [1]) exchanges informa-
tion with the C&C by first encrypting it, encoding it (e.g.,
using base-64 encoding), and embedding it in the URL
path. Alternatively, identifier strings can also be embed-
ded in fields such as user-agent (e.g., some malware
samples use their MD5 hash as user-agent name), en-
coded in other request headers (e.g., in the referrer), or
in the body of POST requests. Therefore, only consider-
ing URLs may not be enough to accurately model C&C
requests and detect new C&C domains, as supported by
our experimental results (Section 5).

4 System Details

We now detail the internals of ExecScent. Please refer
to Section 2 for a higher-level overview of the entire sys-
tem.

4.1 Input Network Traffic
As we mentioned in Section 1, ExecScent focuses on
HTTP-based malware, namely malware that leverage
HTTP (or HTTPS) as a base network protocol on top of
which the malware control protocol is “transported”. To
this end, ExecScent takes in as input a feed of malware-
generated HTTP traffic traces (in our evaluation, we use
a large set of malware traces provided to us by a well-
known company that specializes in malware defense).

It is worth remembering that while some malware may
use HTTPS traffic as a way to evade detection, this does
not represent an insurmountable obstacle in our deploy-
ment scenarios (see Figure 1). In fact, many enterprise
networks, which represent our target deployment envi-
ronment, already deploy web proxy servers that can per-
form SSL-MITM and can therefore forward the clear-
text HTTP requests to ExecScent’s template matching
module, e.g., using the ICAP protocol (RFC 3507). Also,
malware samples that appear to be using HTTPS traffic
may be re-analyzed in a controlled environment that in-
cludes an SSL-MITM proxy interposed between the (vir-

USENIX Association 22nd USENIX Security Symposium 593

tual) machine running the sample and the egress router.
After all, HTTPS-based malware that do not support or
choose not to run when an SSL-MITM proxy is present
will also fail to run in enterprise networks that have a
similar setting, and are therefore of less interest.

4.2 Request Generalization

As we discuss in the following sections, to obtain quality
control protocol templates we first need to group sim-
ilar C&C requests. To this end, an appropriate simi-
larity metric needs to be defined before clustering al-
gorithms can be applied. Previous works that propose
URL-centric clustering systems [23,30] are mainly based
on string similarity measures. Essentially, two URLs are
considered similar if they have a small edit distance, or
share a number of substrings (or tokens). However, these
systems do not take into account the fact that URLs of-
ten contain variables whose similarity is better measured
according to their data type rather than considering spe-
cific sequences of characters. Consider the two hypo-
thetical C&C requests in Figure 3. Taken as they are
(Figure 3a), their distance is relatively large, due to the
presence of several different characters in the strings. To
avoid this, ExecScent uses a set of heuristics to detect
strings that represent data of a certain type, and replaces
them accordingly using a placeholder tag containing the
data type and string length (Figure 3b).

For example, we would identify “fa45e” as lowercase
hexadecimal because it contains numeric characters and
the alphabetic characters are all valid lowercase hexadec-
imal digits. The data types we currently identify are inte-
ger, hexadecimal (upper, lower and mixed case), base64
(standard and “URL safe”) and string (upper, lower and
mixed case). In addition, for integer, hexadecimal and
string we can identify the data type plus additional punc-
tuation such as “:” or “.” (e.g., 192.168.1.1 would be
identified as a data type of integer+period of length 11).
Furthermore, our heuristics can easily be extended to
support data types such as IP address, MAC address,
MD5 hash and version number.

This generalization process allows us to define a bet-
ter similarity metric (Section 4.7), which is instrumental
to obtaining higher quality C&C request clusters. No-
tice also that while previous works such as [23,30] focus
only on URL strings, ExecScent takes the entire request
into account. For example, in Figure 3 the user-agent

strings are MD5s, and can be generalized by replacing
the specific MD5 strings with the appropriate data type
and length information.

Request 1:
GET /Ym90bmV0DQo=/cnc.php?v=121&cc=IT
Host: www.bot.net
User-Agent: 680e4a9a7eb391bc48118baba2dc8e16
...

Request 2:
GET /bWFsd2FyZQ0KDQo=/cnc.php?v=425&cc=US
Host: www.malwa.re
User-Agent: dae4a66124940351a65639019b50bf5a
...

Request 1:
GET /<Base64;12>/cnc.php?v=<Int;3>&cc=<Str;2>
Host: www.bot.net
User-Agent: <Hex;32>
...

Request 2:
GET /<Base64;16>/cnc.php?v=<Int;3>&cc=<Str;2>
Host: www.malwa.re
User-Agent: <Hex;32>
...

(a)

(b)

Figure 3: Example C&C requests: (a) original; (b) gen-
eralized.

4.3 Request Clustering
Before extracting the templates, we group together sim-
ilar C&C requests. This clustering step simply aims to
assist the automatic CPT generation algorithm, improv-
ing efficiency and yielding templates that are at the same
time generic enough to match similar (but not identical)
C&C communications in new traffic, and precise enough
to generate very few or no false positives.

We perform C&C request clustering in two phases.
During the first phase, we coarsely group C&C requests
based on their destination IPs. Specifically, given two
C&C requests, we group them together if their destina-
tion IPs reside in /24 (or class C) networks that share a
DNS-based relationship. Namely, we consider two /24

networks as related if there exists at least one domain
name that within the last 30 days resolved to different
IP addresses residing in the two different networks. To
find such relationships, we rely on a large passive DNS
database [12].

In the second phase, we consider one coarse-grained
cluster at a time, and we further group a cluster’s C&C
requests according to a content similarity function. We
use an agglomerative hierarchical clustering algorithm
to group together C&C requests within a coarse-grained
cluster that carry similar generalized URLs, similar
user-agent strings, similar numbers of HTTP header
fields and respective values, etc. When measuring the
similarity between two requests, we take into account
both the similarity and specificity of the requests’ con-
tent, where the specificity (or low “popularity”) can be
measured with respect to a dataset of traffic recently
collected from different networks (dashed arrow in Fig-
ure 2). For a more detailed definition of the similarity

594 22nd USENIX Security Symposium USENIX Association

1) Median URL path: /<Base64;14>/cnc.php
2) URL query component: {v=<Int,3>, cc=<String;2>}
3) User Agent: {<Hex;32>}
4) Other headers: {(Host;13), (Accept-Encoding;8)}
5) Dst nets: {172.16.8.0/24, 10.10.4.0/24, 192.168.1.0/24}

URL regex: GET /.*\?(cc|v)=
Background traffic profile:
specificity scores used to adapt the CPT
to the deployment environment

Malware family: {Trojan-A, BotFamily-1}

Figure 4: Example CPT.

function used in the clustering step, we refer the reader
to Section 4.7.

4.4 Generating CPTs

Once C&C requests have been clustered, a control pro-
tocol template (CPT) is generated from each cluster. At
this stage, we consider only clusters that contain at least
one HTTP request to a known C&C domain. Each tem-
plate represents a summary of all C&C requests in a
cluster, and contains the following components, as also
shown in Figure 4:

τ1) Median URL path: median path string that mini-
mizes the sum of edit distances from all URL paths
in the requests (see [11] for a definition of median
string). Intuition: although the URL path may vary
significantly from one malware installation to an-
other, we observed many cases in which there exist
“stable” path components that are unique to a spe-
cific malware family or operation.

τ2) URL query component: stores the set of parame-
ter names, value types and lengths observed in the
query component [5] of each of the URLs. Intu-
ition: URL parameters are often used by malware
to convey information about the infected host, such
as its OS version, a unique identifier for the infected
machine, etc.

τ3) User-agent: the set of all different (generalized)
user-agent strings found in the requests. Intuition:
the user-agent is one of the most abused HTTP
headers by malware, and is sometimes used as a
loose form of authentication.

τ4) Other headers: the set of other HTTP headers ob-
served in the requests. For each header, we also
store the length of its value string. Intuition: the set
of header names, their order and values are some-
times unique to a malware family.

τ5) Dst. networks: the set of all destination /24 net-
works associated with the C&C requests in the clus-
ter. Intuition: in some cases, the C&C server may
be relocated to a new IP address within the same
(possibly “bullet-proof”) network.

• Malware family: the (set of) malware family
name(s) associated to the known C&C requests in
the cluster.

In addition, each CPT includes the following
deployment-related information:

• URL regex: to increase the efficiency of the tem-
plate matching phase (Section 4.6), each template
includes a regular expression automatically gener-
ated from the set of URL strings in the requests. The
URL regex is intentionally built to be very generic
and is used during deployment for the sole purpose
of filtering out traffic that is extremely unlikely to
closely match the entire template, thus reducing the
cost of computing the similarity between HTTP re-
quests in live traffic and the template.

• Background traffic profile: information derived
from the traffic observed in the deployment environ-
ment within the past W days (where W is a system
parameter). This is used for computing the speci-
ficity of the CPT components, thus allowing us to
adapt the CPT to the the deployment network, as
explained in detail in Section 4.5.

Notice that a CPT acts as the centroid for the cluster
from which it was derived. To determine if a new request
is similar enough to a given cluster, we only need to com-
pare it with the CPT, rather than all of the clustered C&C
requests. Therefore, CPTs provide an efficient means of
measuring the similarity of a new request to the C&C
protocol used by the clustered malware samples.

4.5 Adapting to a Deployment Network

As explained in Section 3.1, once the CPTs are deployed,
an HTTP request is labeled as C&C if it matches a CPT τ
with both high similarity and specificity. To this end, we
first need to compute a specificity score for each element
of the k-th component τk of τ , which indicates how “un-
popular” that element is with respect to the traffic profile
in the deployment network (notice that k = 1, . . . ,5, as
shown in Figure 4 and Section 4.4).

For example, to compute the specificity scores for τ3,
we first compute a host-based popularity score hpuai for
each user-agent string uai in the set τ3. We consider
the number of hosts hnuai in the deployment network that
generated an HTTP request containing uai during the last

USENIX Association 22nd USENIX Security Symposium 595

W days, where W is a configurable time-window pa-
rameter. We define hpuai =

hnuai
max j{hnua j }

, where the max

is taken over all user-agent strings ua j observed in
the deployment network’s traffic. Similarly, we com-
pute a domain-based popularity score d puai , based on the
number of distinct destination domain names dnuai with
one or more HTTP requests that contain uai. We define
d puai =

dnuai
max j{dnua j }

. The intuition is that a user-agent

string can only be considered truly popular if it spans
many hosts and domains. On the other hand, we do
not want to consider a uai as very popular if it has high
host-based popularity (e.g., “Windows-Update-Agent”)
but low domain-based popularity (e.g., because the only
domain on which it is used is microsoft.com). Fi-
nally, we define the specificity score for uai as σ3,uai =
1−min(hpuai ,d puai). In a similar way, we compute a
specificity score σ4,hdl for each header element hdl in τ4.

To compute the specificity scores for τ5, we simply
compute the host-based popularity hpneti for each /24

network prefix neti ∈ τ5, and we define a separate score
σ5,neti = (1−hpneti) for each prefix.

4.5.1 URL Specificity

Computing the specificity of the components of a URL is
more complex, due to the large variety of unique URLs
observed every day on a given network. To address this
problem, we rely on a supervised classification approach.
First, given a dataset of traffic collected from a large net-
work, we extract all URLs, and learn a map of URL word
frequencies, where the “words” are extracted by tokeniz-
ing the URLs (e.g., extracting elements of the URL path,
filename, query string, etc.). Then, given a new URL, we
translate it into a feature vector in which the statistical
features measure things such as the average frequency of
single “words” in the tokenized URL, the average fre-
quency of word bigrams in the query parameters, the fre-
quency of the file name, etc. (to extract the frequency
values for each word found in the URL we lookup the
previously learned map of word frequencies).

After we translate a large set of “background traffic
URLs” into feature vectors, we train an SVM classi-
fier [8] that can label new URLs as either popular or
unpopular. To prepare the training dataset we proceed as
follows. We first rank the “background URLs” according
to their domain-based popularity (i.e., URLs that appear
on requests to multiple sites on different domain names
are considered as more popular). Then, we take a sam-
ple of URLs from the top and from the bottom of this
ranking, which we label as popular and unpopular, re-
spectively. We use this labeled dataset to train the SVM
classifier, and we rely on the max-margin approach used
by the SVM [9] to produce a model that can generalize

to URLs not seen during training.
During the operational phase (once the SVM classifier

is trained and deployed), given a URL ui, we can first
translate ui into its corresponding feature vector vi, as
described above, and feed vi to the SVM classifier. The
classifier can then label ui as either popular or unpop-
ular. In practice, though, rather than considering these
class labels, we only take into account the classification
score (or confidence) associated with the popular class3.
Therefore, the SVM’s output can be interpreted as fol-
lows: the higher the score, the more ui “looks like” a
popular URL, when compared to the large set of URLs
observed in the background traffic. Finally, the speci-
ficity score for the URL is computed as σui = 1− pui ,
where pui is the SVM output for URL ui.

Now, let us go back to consider the template τ and its
URL-related components τ1 and τ2 (see Figure 4). We
first build a “median URL” um by concatenating the me-
dian URL path (τ1) to the (sorted) set of generalized pa-
rameter names and values (τ2). We then set the similarity
scores σ1 = σ2 = σum , where σum is the specificity of um.

4.6 Template Matching

Template matching happens in two phases. As men-
tioned above, each template contains an URL regular ex-
pression automatically derived from the C&C requests in
a cluster. Given a new HTTP request r, to test whether
this request matches a template τ , we first match r’s URL
to τ’s URL regex. It is worth noting that, as mentioned
in Section 4.4, the URL regex is intentionally built to be
very generic, and is merely used to efficiently filter out
traffic that is extremely unlikely to match the entire tem-
plate. Furthermore, we check if the destination IP of r
resides within any of the /24 prefixes in τ (specifically
in component τ5). If neither the URL regex nor the des-
tination IP have a match, we assume r does not match τ .
Otherwise, we proceed by considering the entire content
of request r, transforming r according to the request gen-
eralization process (see Section 4.2), and measuring the
overall matching score S(r,τ) between the (generalized)
request r and the template τ .

In summary, the score S is obtained by measuring the
similarity between all the components of the request r
and the respective components of the template τ . These
similarity measures are then weighted according to their
specificity, and the matching score S(r,τ) is computed as
the average of all weighted component similarities. A
detailed definition of the similarity functions and how
specificity plays an explicit role in computing S(r,τ) is
given in Section 4.7.

3We calibrate the classification scores output by the SVM classifier
using the method proposed by Platt [24].

596 22nd USENIX Security Symposium USENIX Association

If S(r,τ) exceeds a tunable detection threshold θ , then
the request r will be deemed a C&C request and the do-
main name associated with r (assuming r is not using a
hardcoded IP address) is classified as C&C domain and
labeled with the malware family associated to τ . Fur-
thermore, the host from which the request r originated is
labeled as compromised with τ’s malware family.

4.7 Similarity Functions
4.7.1 CPT matching score

To determine if a new HTTP request r matches a CPT τ ,
we compute a matching score S(r,τ) as follows:

S(r,τ) = ∑k wk(sk,σk) · sk(rk,τk)

∑k wk(sk,σk)
·σd (1)

where sk is a similarity function that compares each ele-
ment τk of τ (Section 4.4) with its respective counterpart
rk of r, and where wk is a dynamic weight (whose defini-
tion is given below) that is a function of both the similar-
ity sk and the specificity σk of the k-th component of τ .
The denominator scales S(r,τ) between zero and one.

The factor σd is the specificity of the destination do-
main d of request r, which is computed as σd = 1 −

md
maxi{mdi}

, where md is the number of hosts in the de-
ployment network’s traffic that queried domain d, and
maxi{mdi} is the number of hosts that queried the most
“popular” domain in the traffic. Accordingly, we use σd
to decrease the matching score S(r,τ) for low-specificity
domains (i.e., domains queried by a large number of
hosts). The intuition is that infections of a specific mal-
ware family often affect a relatively limited fraction of all
hosts in an enterprise network, as most modern malware
propagate relatively “slowly” via drive-by downloads or
social engineering attacks. In turn, it is unlikely that a
new C&C domain will be queried by a very large frac-
tion (e.g., > 50%) of all hosts in the monitored network,
within a limited amount of time (e.g., one day).

In the following, we describe the details of the sim-
ilarity functions sk(·) used in Equation 1. In addition,
we further detail how the specificity value of each com-
ponent is selected, once the value of sk(·) has been com-
puted (for the definition of specificity, we refer the reader
to Section 4.5).

s1 - Given the path of the URL associated with r, we
measure the normalized edit distance between the
path and the CPT’s median URL path τ1. The URL
path specificity σ1 is computed as outlined in Sec-
tion 4.5.

s2a - We measure the Jaccard similarity 4 between the set
of parameter names in the URL query-string of r

4J = |A∩B|
|A∪B|

and the set of names in τ2. The specificity of the pa-
rameter names σ2a is equal to σ2 (see Section 4.5).

s2b - We compare the data types and lengths of the val-
ues in the generalized URL query-string parameters
(see Section 4.2). For each element of the query
string, we assign a score of one if its data type in r
matches the data type recorded in τ2. Furthermore,
we compute the ratio between the value length in
r and in τ2. Finally, s2b is computed by averaging
all these scores, whereby the more data types and
lengths that match, the higher the similarity score.
As in s2a, we set σ2b = σ2.

s3 - We compute the normalized edit distance between
the (generalized) user-agent string in r, and each
of the strings in the set τ3. Let dm be the smallest
of such distances, where m is the closest of the tem-
plate’s user-agent strings. We define s3 = 1−dm,
and set the specificity σ3 = σ3,m.

s4 - Given the remaining request header fields in r, we
measure the similarity from different perspectives.
First, we compute the Jaccard similarity j between
the set of headers in r and the set τ4. Furthermore,
we consider the order of the headers as they appear
in r and in the requests from which τ was derived.
If the order matches, we set a variable o = 1, oth-
erwise we set o = 0. Finally, for each header, we
compare the ratio between the length of its value as
it appears in r and in τ5, respectively. The similarity
s4 is defined as the average of all these partial simi-
larity scores (i.e., of j, o, and the length ratios). We
set the specificity score σ5 = minl{σ5,hdl}, where
the hdl are the request headers.

s5 - Let ρ be the destination IP of request r. If ρ resides
within any of the /24 network prefixes in τ5, we set
s5 = 1, otherwise we assign s5 = 0. Assume ρ is
within prefix n ∈ τ5 (in which case s5 = 1). In this
case, we set the specificity σ5 = σ5,n.

The dynamic weights wk(·) are computed as follows:

wk(sk,σk) = ŵk ·
(

1+
1

(2− sk ·σk)n

)

(2)

where ŵk is a static weight (i.e., it takes a fixed value),
and n is a configuration parameter. Notice that wk ∈
[ŵk(1+ 1

2n),2ŵk], and that these weights are effectively
normalized by the denominator of Equation 1, thus re-
sulting in S(r,τ) ∈ [0,1] (since sk ∈ [0,1],∀k, and σd ∈
[0,1], by definition).

The intuition for the dynamic weights wk(·) is that we
want to give higher weight to components of a request r
that match their respective counterpart in a CPT τ with

USENIX Association 22nd USENIX Security Symposium 597

both high similarity and high specificity. In fact, the
weight will be maximum when both the similarity and
specificity are equal to one, and will tend to the mini-
mum when either the similarity or specificity (or both)
tend to zero.

In summary, similarity measures the likeness of two
values, whereas specificity measures their uniqueness in
the underlying network traffic. The dynamic weights al-
low us to highlight the rare structural elements that are
common between a CPT and a request, so that we can
leverage them as the dominant features for detection. Be-
cause rare structural elements differ in their importance
across malware families, by emphasizing these “unique
features” we are able to detect and distinguish between
different malware families.

4.7.2 Similarity function for clustering phase

In Section 4.3, we have described the C&C request clus-
tering process. In this section we define the function
used to compute the similarity between pairs of HTTP
requests, which is needed to perform the clustering.

Given two HTTP requests r1 and r2, we compute their
similarity using Equation 1. At this point, the reader may
notice that Equation 1 is defined to compare an HTTP
request to a CPT, rather than two requests. The reason
why we can use Equation 1, is that we can think of a
request as a CPT derived from only one HTTP request.
Furthermore, if we want to include the specificity scores,
which are used to make the weights wk dynamic, we can
use a dataset of traffic previously collected from one or
more networks (see dashed arrow in Figure 2).

5 Evaluation

In this section, we describe the data used to evalu-
ate ExecScent (Section 5.1), how the system was setup
to conduct the experiments (Section 5.2), and present
the experimental results in different live networks (Sec-
tion 5.3). Furthermore, we quantify the advantage of
modeling entire HTTP requests, rather than only con-
sidering URLs, and of using adaptive templates over
“static” C&C models (Section 5.4). In addition, we show
the benefits obtained by deploying new C&C domains
discovered by ExecScent into large ISP networks (Sec-
tion 5.5).

5.1 Evaluation Data

5.1.1 Malware Network Traces

We obtained access to a commercial feed of malware in-
telligence data (provided to us by a well known security

company), which we used to generate the control proto-
col templates (CPTs). Through this feed, we collected
about 8,000 malware-generated network traces per day
that contained HTTP traffic. Each network trace was
marked with a hash of the malware executable that gen-
erated the network activity, and (if known) by the related
malware family name.

5.1.2 Live Network Traffic

To evaluate ExecScent, we had access to the live traf-
fic of three large production networks, which we refer
to as UNETA, UNETB, and FNET. Networks UNETA
and UNETB are two different academic networks based
in the US, while FNET is the computer network of a
large North-American financial institution. Table 1 re-
ports statistics with respect to the network traffic ob-
served in these three networks. For example, in UNetA
we observed an average of 7,893 distinct active source IP
addresses per day. In average, these network hosts gener-
ated more than 34.8M HTTP requests per day, destined
to 149,481 different domain names (in average, per day).

Table 1: Live Network Traffic Statistics (Avg. per day)
UNETA UNETB FNET

Distinct Src IPs 7,893 27,340 7,091
HTTP Requests 34,871,003 66,298,395 58,019,718
Distinct Domains 149,481 238,014 113,778

5.1.3 Ground Truth

To estimate true and false positives, we rely on the fol-
lowing data:

• CCBL: we obtained a large black-list containing
hundreds of thousands of C&C domains provided
by a well known security company, which we refer
to as CCBL. It is worth noting that CCBL is dif-
ferent from most publicly available domain black-
lists for two reasons: 1) the C&C domains are care-
fully vetted by professional threat analysts; 2) the
domains are labeled with their respective malware
families and, when available, a malware operator
name (i.e., an identifier for the cyber-criminal group
that operates the C&C).

• ATWL: we derived a large white-list of benign do-
main names from Alexa’s top 1 million global do-
mains list (alexa.com). From these 1M domains,
we filtered out domains that can be considered as
effective top level domains5 (TLDs), such as do-
mains related to dynamic DNS services (e.g., dyn-
dns.org, no-ip.com, etc.). Next, we discarded do-
mains that have not been in the top 1M list for at

5http://publicsuffix.org

598 22nd USENIX Security Symposium USENIX Association

least 90% of the time during the entire past year.
To this end, we collected an updated top domains
list every day for the past year, and only considered
as benign those domains that have consistently ap-
peared in the top 1M domains list. The purpose of
this filtering process is to remove possible noise due
to malicious domains that may became popular for
a limited amount of time. After this pruning op-
erations, we were left with about 450,000 popular
domain names6.

• PKIP: we also maintain a list of parking IPs, PKIP.
Namely, IP addresses related to domain parking ser-
vices (e.g., IPs pointed to by expired or unused do-
mains which have been temporarily taken over by
a registrar). We use this list to prune ExecScent’s
templates. In fact, CPTs are automatically derived
from HTTP requests in malware-generated network
traces that are labeled as C&C communications due
to their associated domain name being in the CCBL
list (Section 4). However, some of the domains
in CCBL may be expired, and could be currently
pointing to a parking site. This may cause some of
the HTTP requests in the malware traces to be erro-
neously labeled as C&C requests, thus introducing
noise in ExecScent’s CPTs. We use the PKIP to
filter out this noise.

• Threat Analysis: clearly, it is not feasible to obtain
complete ground truth about all traffic crossing the
perimeter of the live networks where we evaluated
ExecScent. To compensate for this and obtain a bet-
ter estimate of the false and true positives (com-
pared to only using CCBL and ATWL), we per-
formed an extensive manual analysis of our exper-
imental results with the help of professional threat
analysts.

5.2 System Setup
To conduct our evaluation, we have implemented and de-
ployed a Python-based proof-of-concept version of Ex-
ecScent. In this section we discuss how we prepared the
system for live network deployment.

5.2.1 Clustering Parameters

As discussed in Section 4.3, to generate the CPTs, we
first apply a request clustering step. The main purpose
of this step is to improve the efficiency of the CPT learn-
ing process. The clustering phase relies on a hierarchical
clustering algorithm that takes in as input the height at
which the dendrogram (i.e., the “distance tree” generated

6More precisely, second level domains (2LDs).

Figure 5: Effect of the dendrogram cut height (FPs).

by the clustering algorithm) needs to be cut to partition
the HTTP requests into request clusters.

To select the dendrogram cut height, we proceeded as
follows. We considered one day of malware traces col-
lected from our malware intelligence feed (about 8,000
different malware traces). We then applied the clustering
process to these traces, and produced different clustering
results by cutting the dendrogram at different hights. For
each of these different clustering results, we extracted the
related set of CPTs, and we tested these CPTs over the
next day of malware traces from our feed with varying
matching thresholds. The obtained number of false posi-
tives, i.e., misclassified benign domains (measured using
ATWL), and true positives, i.e., new correctly classified
C&C domains (measured using CCBL), are summarized
in Figure 5 and Figure 6, respectively. Notice that al-
though in this phase we tested the CPTs over malware-
generated network traces, we can still have false posi-
tives due to the fact that some malware query numerous
benign domain names, along with C&C domains.

As Figures 5 and 6 show, per each fixed CPT match-
ing threshold, varying the dendrogram cut height does
not significantly change the false positives and true pos-
itives. In other words, the CPT matching results are not
very sensitive to the specific value of the clustering pa-
rameter. We decided to finally set the value of the cut
hight to 0.38, which we use during all remaining ex-
periments, because this provided good efficiency during
the CPT generation process, while maintaining high CPT
quality.

5.2.2 CPT Generation

To generate the CPTs used for the evaluation of Exec-
Scent on live network traffic (Section 5.3), we initially
used two weeks of malware traces collected from our
malware intelligence feed. To label the seed of C&C
HTTP requests in the malware traces, we used the CCBL
black-list. We also use the list of parking IPs PKIP to

USENIX Association 22nd USENIX Security Symposium 599

Figure 6: Effect of the dendrogram cut height (TPs).

prune CPTs related to parked C&C domains, as men-
tioned in Section 5.1.3. Once this initial set of CPTs was
deployed, we continued to collect new malware traces
from the feed, and updated the CPT set daily by adding
new CPTs derived from the additional malware traces.
More precisely, let D1 be the day when the initial set of
CPTs was first deployed in a live network, and let C1 be
this initial CPT set. C1 is generated from the malware
traces collected during a two-week period immediately
before day D1. The CPTs set C1 was then used to detect
new C&C domains during the entire day D1. At the same
time, during D1 we generated additional CPTs from the
malware traces collected on that day, and added them to
set C1. Therefore, at the end of day D1 we had an ex-
panded set C2 of CPTs, which we deployed on day D2,
and so on. At the end of the deployment period we had
just over 4,000 distinct CPTs.

To adapt the CPTs to the traffic of each deployment
network (see Section 4.5), we proceeded in a similar way.
We built a background traffic profile based on all HTTP
traffic observed at each deployment network during the
two days immediately before day D1, and used this pro-
file to adapt the initial set of CPTs C1. Then, every day
we updated the traffic profile statistics based on the new
live traffic observed on that day, and used this informa-
tion to further adapt all the CPTs. Notice that the set of
CPTs deployed to different networks are different, in that
they adapt differently to each deployment network (using
that network’s background traffic profile).

5.3 Live Network Deployment Results

To evaluate ExecScent, we deployed it in three differ-
ent large networks, UNETA, UNETB, and FNET, for a
period of two weeks. We generated the set of adaptive
CPTs as explained above (Section 5.2.2), using a total
of four weeks of malware-generated network traces (two
weeks before deployment, plus daily updates during the

Figure 7: CPT detection results for varying detection
thresholds.

two-week deployment period). The CPT matching en-
gine was deployed at the edge of each network.

The detection phase proceeded as follows. For each
network, we logged all HTTP requests that matched any
of the adapted CPTs with a matching score S≥ 0.5, along
with information such as the destination IP address of the
request, the related domain name, the source IP address
of the host that generated the request, and the actual value
of the score S. This allowed us to compute the trade-off
between the number of true and false positives for vary-
ing values of the detection threshold θ . Specifically, let
h be a request whose matching score Sh is above the de-
tection threshold θ , and let d be the domain name related
to h. Consequently, we label h as a C&C request, and
classify d as a C&C domain. We then rely on the CCBL
and ATWL lists and on manual analysis (with the help of
professional threat analysis) to confirm whether the de-
tection of d represents a true positive, i.e., if d is in fact a
C&C domain, or a false positive, in which case d is not a
C&C domain.

Figure 7 summarizes the overall number of true pos-
itives and false positives obtained during the two-week
deployment period over the three different live networks,
while Table 2 shows a breakdown of the results on the
different networks for a set of representative detection
thresholds. For example, in Table 2, consider UNETA
with a detection threshold of 0.65. During the two-week
deployment period, we detected a total of 66 C&C do-
mains, of which 34 are new, previously unknown C&C
domains that were not present in our commercial black-
list, CCBL. The 66 C&C domains were related to 17
distinct malware families. Overall, we detected 105 in-
fected hosts, 90 of which were new infections related to
the 34 previously unknown C&C domains. This means
that 90 (� 86%) of the infected hosts could not be de-
tected by simply relying on the CCBL black-list.

The CPTs generated 118 false positives, namely do-
main names that we misclassified as C&C domains. We

600 22nd USENIX Security Symposium USENIX Association

Table 2: Live network results over a two-week deployment period
UNETA UNETB FNET

Detection Threshold .62 .65 .73 .84 .62 .65 .73 .84 .62 .65 .73 .84
All C&C Domains 68 66 46 25 36 32 24 10 2 2 2 1
New C&C Domains 35 34 26 13 21 18 15 4 2 2 2 1
Distinct Malware Families 17 17 14 8 14 12 10 4 1 1 1 1
Number of Infected Hosts 114 105 98 37 185 150 147 21 7 7 7 7
Number of New Infected Hosts 91 90 86 25 145 135 133 11 7 7 7 7
FP Domains 133 118 114 0 152 117 105 0 109 63 49 0
FP Domains (reduced CPT set) 25 13 10 0 40 26 22 0 30 23 16 0

noticed that most of these false positives were generated
by only two CPTs (the same two CPTs generated most
false positives in all networks). By subtracting the false
positives due to these two “noisy” CPTs, we were left
with only 13 false positives, as shown in the last row of
Table 2. The false positives marked with “reduced CPT
set” in Figure 7 are also related to results without these
two CPTs. Overall, within the entire two-week test pe-
riod ExecScent generated a quite manageable number of
false positives, in that a professional threat analyst could
analyze and filter out the false C&C domains in a matter
of hours.

Notice that the low number (only two) of new C&C
domains found in the FNET network was expected. In
fact, FNET is a very sensitive financial institution, where
many layers of network security mechanisms are already
in use to prevent malware infections. However, our find-
ings confirm that even well guarded networks remain
vulnerable.

5.3.1 Pushdo Downloader

It is worth clarifying that all results reported in Figure 7
and Table 2 have been obtained after discounting the do-
mains detected through a single CPT that was causing
hundreds of misclassifications. Through a manual inves-
tigation, we easily found that ExecScent had correctly
learned this CPT, which actually models the HTTP-based
C&C communications of a PUSHDO downloader vari-
ant [28]. This particular variant purposely replicates its
C&C requests, and sends them to a large number of de-
coy benign domain names. The malware does this to try
to hide the true C&C domain in plain sight, among a
large set of benign domains. However, while this makes
it somewhat harder to find the true C&C among hundreds
or even thousands of benign domains (which requires
some manual analysis effort), it makes it very easy to
identify the fact that the source hosts of these requests,
which matched our PUSHDO CPT, are infected with that
specific malware variant.

We further discuss the implications of similar types of
noisy or misleading malware behaviors in Section 6.

5.3.2 UNETB Deployment Results

The results we obtained for the UNETB deployment
have been obtained in a slightly different way, compared
to UNETA and FNET. Because of the higher volume of
traffic in UNETB our proof-of-concept implementation
of the CPT match engine could not easily keep pace with
the traffic. This was due especially to the fact that our
match engine software was sharing hardware resources
with other production software that have to be given a
much higher priority. A few weeks after conducting
the experiments reported here, we implemented an op-
timized version (written in C, rather than Python) that
is almost 8x faster; thus, it can easily keep up with the
traffic on UNETB.

To compensate for the performance problems of our
prototype implementation, during the two-week deploy-
ment period we only considered the traffic for every other
day. That is, we only matched the CPTs over about seven
days of traffic in UNETB, effectively cutting in half the
traffic volume processed by ExecScent.

5.4 “Static” and URL-Only Models

In this section we compare the results of ExecScent’s
adaptive templates, to “static” (i.e., non-adaptive) tem-
plates, which only learn from malware-generated traces
and do not take into account the traffic profile of the de-
ployment network, and to URL-based C&C request mod-
els, which only use information extracted from URLs.

To obtain the “static” models, we simply took ExecS-
cent’s CPTs and “turned off” the specificity parameters.
In other words, we set the specificity scores in Equa-
tion 1 to zero (with the exception of σd , which is set to
one), essentially turning the dynamic waits wk into their
static counterparts ŵk (see Section 4.7). In the follow-
ing, we refer to these static (non-adaptive) templates as
“Specificitiy-Off” models.

To obtain the URL-based models, again we “turn-off”
the specificity information, and also ignore all compo-
nents of ExecScent’s CPT apart from URL-related com-
ponents. Effectively, in Equation 1 we only use the sim-
ilarity functions s1, s2a, and s2b defined in Section 4.7.
We refer to these templates as “URL-Only” models.

USENIX Association 22nd USENIX Security Symposium 601

Figure 8: Comparing C&C Models - True Positives

Figure 9: Comparing C&C Models - False Positives

To perform a comparison, we deployed the ExecS-
cent CPTs and their related “Specificity-Off” and “URL-
Only” models to UNETA, UNETB, and FNET for a pe-
riod of 4 days. Figure 8 and 9 summarize the overall
true and false positives, respectively, obtained by vary-
ing the detection threshold θ ∈ [0.6,1]. As can be seen
from the figures, ExecScent’s adaptive templates outper-
form the two alternative models, for detection thresholds
θ < 0.85. Unless we are willing to sacrifice a large frac-
tion of all true positives, compared to the numbers ob-
tained at θ = 0.6, the “Specificity-Off” and “URL-Only”
models will generate a very large, likely unsustainable,
number of false positives (notice the log scale on the y
axes of Figure 9).

5.5 Deployment in ISP Networks

We were also able to evaluate the results of ExecScent
over six large ISP networks serving several million hosts.
We proceeded as follows: given 65 new C&C domains
discovered by ExecScent during the live network deploy-
ment described in Section 5.3, we deployed the domains
to the six ISPs for an entire week, during which we mon-
itored all DNS traffic. Each day, we counted the number

of distinct source IP addresses that queried any of the 65
C&C domains. We found a maximum of 25,584 of dis-
tinct source IPs that in any given day queried these C&C
domains. In other words, the new C&C domains dis-
covered by ExecScent allowed us to identify 25,584 new
potential malware infections across the six ISP networks.

6 Limitations

An attacker who gains knowledge of how ExecScent
works may try to avoid detection by mutating her bot-
net’s C&C protocol every time the C&C server is relo-
cated to a new domain. One possible approach would be
to implement a new protocol that can be deployed on all
the clients (i.e., malware agents) and servers (i.e., mal-
ware controllers) before switching to the new domain.
However, this would substantially increase the complex-
ity of managing the botnet and hurt its agility. Further-
more, for moderate to large botnets the updates would
take time to deploy and a mistake in the update proce-
dure could result in losing parts of or the entire botnet.

Another evasion approach may consist in injecting
noise into the C&C protocol to make it appear “differ-
ent”. For example, an attacker may randomly generate
the C&C URL path or name-value pairs in the query-
string, when making a request. However, if a malware
agent needs to convey enough information to (loosely)
authenticate itself to the C&C server, then at least one
request component must have some form of “structured”
data. Since ExecScent measures similarity by protocol
structure and gives more weight to the shared unique
components, it is non-trivial for an attacker to avoid de-
tection on all deployment networks. In fact, several mal-
ware families we detect during our evaluation of ExecS-
cent use such types of techniques to try to avoid detection
via regular expressions.

An attacker may also try to “mislead” the detector by
injecting noise into the domain name matches. For in-
stance, an attacker may send requests to many decoy be-
nign domains using the same malware C&C requests sent
to the true C&C server. This is the approach used by
the PUSHDO malware variant we discovered during our
evaluation. This type of noisy malware is actually easy
to identify, because of the number of unique destination
domains contacted by a single host that match one partic-
ular CPT within a short period of time. Thus, detecting
the infected hosts is easy. However, this makes it some-
what more difficult to determine the true C&C domains
among all other domains. In this case, a threat analyst
must review the domains, before they can be added to a
blacklist; but at the same time, a security administrator
can be immediately alerted regarding the infected hosts,
thus enabling a prompt remediation.

602 22nd USENIX Security Symposium USENIX Association

Blending into the background traffic is another tech-
nique that may be used to avoid detection. For example,
an attacker may choose “common” data types and values
for their C&C protocol components. For some compo-
nents such as the URL path it may be easy to select a
popular value (e.g., “index.html”). However for many
of the components, the “commonality” is relative to the
deployment network’s traffic profile. Therefore, an at-
tacker would need to customize the protocol based on
the infected machine’s network. This may be difficult
to do, because most network hosts have limited or no
visibility into the traffic produced by other hosts in the
same network. Therefore, although a C&C protocol may
carry some “common” components, ExecScent’s adap-
tive CPTs may still be able to use those components that
are specific (i.e., non-popular) in the deployment network
to detect the C&C requests.

Finally, ExecScent’s CPTs depends on the malware
traces and labeled C&C requests from which they are
derived. Thus, ExecScent requires at least one or a few
malware samples from a malware family, before its C&C
protocol can be modeled and detected. In this case,
though, malware code reuse plays to our advantage. A
few samples of a malware family whose code has been
reused elsewhere (because it was sold or leaked) will
in fact facilitate the detection of future malware strains.
Note that ExecScent in principle requires only a single
sample to generate a CPT, thanks in particular to the re-
quest generalization process (Section 4.2). That being
said, the quality of a CPT can be significantly improved
when more than one sample sharing the same C&C pro-
tocol are available.

7 Related Work

Malware Clustering and Signature Generation: Group-
ing malware based on features extracted from HTTP re-
quests has beed studied for example in [7, 22, 23, 25].
Specifically, Perdisci et al. [22, 23] proposed a system
for clustering malware samples that request similar sets
of URLs. In addition, token-subsequences are extracted
from the URLs, and used to detect infected hosts on live
networks. In [7], information about HTTP request meth-
ods and URL parameters are used to cluster similar mal-
ware samples. The authors describe their clustering tech-
nique as a manual process and mention replacing it with
an automated system in the future.

A recently proposed system FRIMA [25] clusters mal-
ware samples into families based on protocol features
(e.g., same URL path) and for each family creates a
set of network signatures. The network signatures are
token-sets created from byte strings that are common to
a large percentage of the network traffic within a clus-

ter. To reduce false positives, network signatures are
pruned by removing the ones that match any commu-
nication in the authors’ benign traffic pool. Automated
network signature generation has also been studied for
detecting worms [19, 21, 27]. The generated signatures
typically consist of fixed strings or token subsequences
that can be deployed in an intrusion detection system.
AutoRE [30] extends the automated signature generation
process to produce regular expressions that can be used
to match URLs in emails for the purpose of detecting
spam emails and group them into spam campaigns.

Our work focuses on automatic template generation
for detecting C&C communications and attributing them
to a known malware family. In particular, our main fo-
cus is not on clustering malware samples per se. Rather,
we apply clustering techniques mainly as an optimization
step to generate high quality control protocol templates.
Furthermore, we do not limit ourselves to only consider-
ing URLs or to extracting sets of common tokens. More
importantly, our C&C templates are adaptive, in that they
learn from the traffic of the network where they are to be
deployed, thus self-tuning and automatically yielding a
better trade-off between true and false positives.

Botnet Detection and C&C Identification: A number
of studies have addressed the problem of detecting bot-
net traffic, for example [15, 16, 29]. BotSniffer [16] and
BotMiner [15] are anomaly-based botnet detection sys-
tems that look for similar network behavior across hosts.
The idea is that hosts infected with the same bot malware
have common C&C communication patterns. Further-
more, BotMiner [15] leverages the fact that bots respond
to commands in a coordinated way, producing similar
malicious network activities. This type of systems re-
quire multiple infected hosts on the same monitored net-
work for detection. In addition, being anomaly-based,
they are not capable of attributing the infections to a spe-
cific malware family, and tend to suffer from relatively
high false positive rates.

Our work is different, because ExecScent can detect
botnets’ C&C even when only one bot is present in the
monitored network. Furthermore, unlike previous work,
ExecScent uses a hybrid detection approach, learning
from both known C&C communications and the deploy-
ment network’s traffic to generated adaptive templates
that can detect new C&C domains with high true posi-
tives and low false positives.

Wurzinger et al. [29] propose to isolate C&C traffic
from mixed malicious and legitimated traffic generated
by executing malware samples in a controlled environ-
ment. They propose to first identify malicious network
activities (e.g., scanning, spamming, etc.), and then an-
alyze the network traffic going back in time until a net-
work flow is found that is likely to represent the com-
mand sent to the malware that caused the previously

USENIX Association 22nd USENIX Security Symposium 603

identified malicious activities to be initiated. However,
finding commands in malware network traces is not al-
ways possible. In fact, most datasets of malware net-
work traces are obtained by running thousands of mal-
ware samples, with only a few minutes of execution time
allocated to each sample. Therefore, the chances of wit-
nessing a valid command being sent to a sample within
such a small amount of time is intuitively small. On the
other hand, malware samples typically attempt to con-
tact the C&C server as soon as they run, even though no
command to perform malicious activities may be issued
at first contact. For this reason, ExecScent does not focus
on identifying malicious network activities performed by
the malware, and the related commands. Rather, ExecS-
cent leverages any type of (HTTP-based) communication
with a C&C server to learn control protocol templates
that can be later used to identify new C&C communi-
cations and related C&C domains, even when malicious
activities are not directly observable.

Jackstraws [17], executes malware in an instrumented
sandbox [13] to generate behavior graphs of the system
calls related to network communications. These system-
level behavior graphs are then compared to C&C graph
templates to find new C&C communications. ExecScent
is different because it relies only on network information,
and does not require malware to be executed in an instru-
mented sandbox (e.g., it can use traces collected from
“bare metal” execution or live networks) to learn the tem-
plates. Furthermore, unlike Jackstraws [17], ExecScent
learns adaptive templates, which allow us to identify new
C&C domains in live networks.

Malicious Domains: Recently, a number of ap-
proaches for identifying malicious domains by monitor-
ing DNS traffic have been proposed [2–4, 6]. These sys-
tems classify domains as malicious or benign, but do not
attribute them to a specific malware family. Also, [2, 6]
are mainly domain reputation system, and may assign a
low reputation score to generic malicious domains, not
only C&C domains, without providing any explicit dis-
tinction. On the other hand, [4] focuses only on malware
that use pseudo-random domain generation algorithms.
Kopis [3] is the only system that focuses explicitly on
generic malware domains, but it requires the ability to
monitor DNS traffic at the upper DNS hierarchy, which
is difficult to obtain.

Unlike the DNS-based systems mentioned above, Ex-
ecScent focuses on detecting new C&C domains in live
enterprise networks by inspecting HTTP(S) traffic, and
using adaptive C&C protocol templates.

8 Conclusion

We presented ExecScent, a novel system that can dis-
cover new C&C domain names in live enterprise network
traffic. ExecScent learns adaptive control protocol tem-
plates (CPTs) from both examples of known C&C com-
munications and the “background traffic” of the network
where the templates are to be deployed, yielding a bet-
ter trade-off between true and false positives for a given
network environment.

We deployed a prototype version of ExecScent in three
large networks for a period of two weeks, discovering
many new C&C domains and hundreds of new infected
machines, compared to using a large up-to-date commer-
cial C&C domain blacklist. We also compared ExecS-
cent’s adaptive templates to “static” (non-adaptive) C&C
traffic models. Our results show that ExecScent outper-
forms models that do not take the deployment network’s
traffic into account. Furthermore, we deployed the new
C&C domains we discovered using ExecScent to six
large ISP networks, finding over 25,000 new malware-
infected machines.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. This material is based in part upon work sup-
ported by the National Science Foundation under Grant
No. CNS-1149051. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References
[1] ANTONAKAKIS, M., DEMAR, J., STEVENS, K., AND

DAGON, D. Unveiling the network criminal infrastructure
of tdss/tdl4. https://www.damballa.com/downloads/r_

pubs/Damballa_tdss_tdl4_case_study_public.pdf.

[2] ANTONAKAKIS, M., PERDISCI, R., DAGON, D., LEE, W., AND
FEAMSTER, N. Building a dynamic reputation system for dns. In
Proceedings of the 19th USENIX conference on Security (Berke-
ley, CA, USA, 2010), USENIX Security’10, USENIX Associa-
tion, pp. 18–18.

[3] ANTONAKAKIS, M., PERDISCI, R., LEE, W., VASILOGLOU,
II, N., AND DAGON, D. Detecting malware domains at the up-
per dns hierarchy. In Proceedings of the 20th USENIX conference
on Security (Berkeley, CA, USA, 2011), SEC’11, USENIX As-
sociation, pp. 27–27.

[4] ANTONAKAKIS, M., PERDISCI, R., NADJI, Y., VASILOGLOU,
N., ABU-NIMEH, S., LEE, W., AND DAGON, D. From throw-
away traffic to bots: detecting the rise of dga-based malware. In
Proceedings of the 21st USENIX conference on Security sympo-
sium (Berkeley, CA, USA, 2012), Security’12, USENIX Associ-
ation, pp. 24–24.

[5] BERNERS-LEE, T., FIELDING, R., AND MASINTER, L.
RFC3986 - Uniform Resource Identifier (URI): Generic Syntax,
2005.

604 22nd USENIX Security Symposium USENIX Association

[6] BILGE, L., KIRDA, E., KRUEGEL, C., AND BALDUZZI, M.
Exposure: Finding malicious domains using passive dns analysis.
In NDSS (2011), The Internet Society.

[7] CABALLERO, J., GRIER, C., KREIBICH, C., AND PAXSON, V.
Measuring pay-per-install: the commoditization of malware dis-
tribution. In Proceedings of the 20th USENIX conference on Se-
curity (Berkeley, CA, USA, 2011), SEC’11, USENIX Associa-
tion, pp. 13–13.

[8] CHANG, C.-C., AND LIN, C.-J. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology 2 (2011), 27:1–27:27. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

[9] CRISTIANINI, N., AND SHAWE-TAYLOR, J. An introduction to
support Vector Machines: and other kernel-based learning meth-
ods. Cambridge University Press, New York, NY, USA, 2000.

[10] DANCHEV, D. Leaked DIY malware generating tool spotted in
the wild, 2013. http://blog.webroot.com/2013/01/18/

leaked-diy-malware-generating-tool-spotted-in-the-wild/.

[11] DE LA HIGUERA, C., AND CASACUBERTA, F. Topology of
strings: Median string is np-complete. Theoretical computer sci-
ence 230, 1 (2000), 39–48.

[12] EDMONDS, R. ISC Passive DNS Architecture, 2012.
https://kb.isc.org/getAttach/30/AA-00654/

passive-dns-architecture.pdf.

[13] EGELE, M., SCHOLTE, T., KIRDA, E., AND KRUEGEL, C. A
survey on automated dynamic malware-analysis techniques and
tools. ACM Comput. Surv. 44, 2 (Mar. 2008), 6:1–6:42.

[14] FISHER, D. Zeus source code leaked. http://threatpost.

com/en_us/blogs/zeus-source-code-leaked-051011.

[15] GU, G., PERDISCI, R., ZHANG, J., AND LEE, W. Botminer:
clustering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proceedings of the 17th confer-
ence on Security symposium (Berkeley, CA, USA, 2008), SS’08,
USENIX Association, pp. 139–154.

[16] GU, G., ZHANG, J., AND LEE, W. BotSniffer: Detecting botnet
command and control channels in network traffic. In Proceed-
ings of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08) (February 2008).

[17] JACOB, G., HUND, R., KRUEGEL, C., AND HOLZ, T. Jack-
straws: picking command and control connections from bot traf-
fic. In Proceedings of the 20th USENIX conference on Secu-
rity (Berkeley, CA, USA, 2011), SEC’11, USENIX Association,
pp. 29–29.

[18] JANG, J., BRUMLEY, D., AND VENKATARAMAN, S. Bitshred:
feature hashing malware for scalable triage and semantic analy-
sis. In Proceedings of the 18th ACM conference on Computer and
communications security (New York, NY, USA, 2011), CCS ’11,
ACM, pp. 309–320.

[19] KIM, H.-A., AND KARP, B. Autograph: toward automated, dis-
tributed worm signature detection. In Proceedings of the 13th
conference on USENIX Security Symposium - Volume 13 (Berke-
ley, CA, USA, 2004), SSYM’04, USENIX Association, pp. 19–
19.

[20] KOLTER, J. Z., AND MALOOF, M. A. Learning to detect and
classify malicious executables in the wild. J. Mach. Learn. Res.
7 (Dec. 2006), 2721–2744.

[21] NEWSOME, J., KARP, B., AND SONG, D. Polygraph: Auto-
matically generating signatures for polymorphic worms. In Pro-
ceedings of the 2005 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2005), SP ’05, IEEE Computer Society,
pp. 226–241.

[22] PERDISCI, R., ARIU, D., AND GIACINTO, G. Scalable fine-
grained behavioral clustering of http-based malware. Computer
Networks 57, 2 (2013), 487 – 500. Botnet Activity: Analysis,
Detection and Shutdown.

[23] PERDISCI, R., LEE, W., AND FEAMSTER, N. Behavioral clus-
tering of http-based malware and signature generation using mali-
cious network traces. In Proceedings of the 7th USENIX confer-
ence on Networked systems design and implementation (Berke-
ley, CA, USA, 2010), NSDI’10, USENIX Association, pp. 26–
26.

[24] PLATT, J. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Advances
in large margin classifiers 10, 3 (1999), 61–74.

[25] RAFIQUE, M. Z., AND CABALLERO, J. Firma: Malware clus-
tering and network signature generation with mixed network be-
haviors. In Proceedings of the 16th international conference on
Research in Attacks, Intrusions, and Defenses (2013), RAID’13,
Springer-Verlag. To be published. Research conducted concur-
rently and independently of ExecScent.

[26] SANTORELLI, S. Developing botnets - an analysis of recent ac-
tivity, 2010. http://www.team-cymru.com/ReadingRoom/

Whitepapers/2010/developing-botnets.pdf.

[27] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE, S. Auto-
mated worm fingerprinting. In Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX Asso-
ciation, pp. 4–4.

[28] STONE-GROSS, B. Pushdo downloader variant generating
fake HTTP requests, 2012. http://www.secureworks.

com/cyber-threat-intelligence/threats/Pushdo_

Downloader_Variant_Generating_Fake_HTTP_

Requests/.

[29] WURZINGER, P., BILGE, L., HOLZ, T., GOEBEL, J.,
KRUEGEL, C., AND KIRDA, E. Automatically generating mod-
els for botnet detection. In Proceedings of the 14th European
conference on Research in computer security (Berlin, Heidelberg,
2009), ESORICS’09, Springer-Verlag, pp. 232–249.

[30] XIE, Y., YU, F., ACHAN, K., PANIGRAHY, R., HULTEN, G.,
AND OSIPKOV, I. Spamming botnets: signatures and character-
istics. In Proceedings of the ACM SIGCOMM 2008 conference on
Data communication (New York, NY, USA, 2008), SIGCOMM
’08, ACM, pp. 171–182.

[31] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In Security and Privacy (SP), 2012
IEEE Symposium on (2012), IEEE, pp. 95–109.

USENIX Association 22nd USENIX Security Symposium 605

ZMap: Fast Internet-Wide Scanning and its Security Applications

Zakir Durumeric
University of Michigan

zakir@umich.edu

Eric Wustrow
University of Michigan

ewust@umich.edu

J. Alex Halderman
University of Michigan

jhalderm@umich.edu

Abstract
Internet-wide network scanning has numerous security
applications, including exposing new vulnerabilities and
tracking the adoption of defensive mechanisms, but prob-
ing the entire public address space with existing tools is
both difficult and slow. We introduce ZMap, a modular,
open-source network scanner specifically architected to
perform Internet-wide scans and capable of surveying
the entire IPv4 address space in under 45 minutes from
user space on a single machine, approaching the theo-
retical maximum speed of gigabit Ethernet. We present
the scanner architecture, experimentally characterize its
performance and accuracy, and explore the security impli-
cations of high speed Internet-scale network surveys, both
offensive and defensive. We also discuss best practices for
good Internet citizenship when performing Internet-wide
surveys, informed by our own experiences conducting a
long-term research survey over the past year.

1 Introduction and Roadmap

Internet-scale network surveys collect data by probing
large subsets of the public IP address space. While such
scanning behavior is often associated with botnets and
worms, it also has proved to be a valuable methodol-
ogy for security research. Recent studies have demon-
strated that Internet-wide scanning can help reveal new
kinds of vulnerabilities, monitor deployment of mitiga-
tions, and shed light on previously opaque distributed
ecosystems [10, 12, 14, 15, 25, 27]. Unfortunately, this
methodology has been more accessible to attackers than to
legitimate researchers, who cannot employ stolen network
access or spread self-replicating code. Comprehensively
scanning the public address space with off-the-shelf tools
like Nmap [23] requires weeks of time or many machines.

In this paper, we introduce ZMap, a modular and open-
source network scanner specifically designed for perform-
ing comprehensive Internet-wide research scans. A single

mid-range machine running ZMap is capable of scanning
for a given open port across the entire public IPv4 address
space in under 45 minutes—over 97% of the theoreti-
cal maximum speed of gigabit Ethernet—without requir-
ing specialized hardware [11] or kernel modules [8, 28].
ZMap’s modular architecture can support many types of
single-packet probes, including TCP SYN scans, ICMP
echo request scans, and application-specific UDP scans,
and it can interface easily with user-provided code to
perform follow-up actions on discovered hosts, such as
completing a protocol handshake.

Compared to Nmap—an excellent general-purpose net-
work mapping tool, which was utilized in recent Internet-
wide survey research [10, 14]—ZMap achieves much
higher performance for Internet-scale scans. Experimen-
tally, we find that ZMap is capable of scanning the IPv4
public address space over 1300 times faster than the most
aggressive Nmap default settings, with equivalent accu-
racy. These performance gains are due to architectural
choices that are specifically optimized for this application:

Optimized probing While Nmap adapts its transmis-
sion rate to avoid saturating the source or target networks,
we assume that the source network is well provisioned
(unable to be saturated by the source host), and that the
targets are randomly ordered and widely dispersed (so
no distant network or path is likely to be saturated by
the scan). Consequently, we attempt to send probes as
quickly as the source’s NIC can support, skipping the
TCP/IP stack and generating Ethernet frames directly. We
show that ZMap can send probes at gigabit line speed
from commodity hardware and entirely in user space.

No per-connection state While Nmap maintains
state for each connection to track which hosts have
been scanned and to handle timeouts and retransmis-
sions, ZMap forgoes any per-connection state. Since
it is intended to target random samples of the address
space, ZMap can avoid storing the addresses it has already
scanned or needs to scan and instead selects addresses
according to a random permutation generated by a cyclic

606 22nd USENIX Security Symposium USENIX Association

multiplicative group. Rather than tracking connection
timeouts, ZMap accepts response packets with the cor-
rect state fields for the duration of the scan, allowing it
to extract as much data as possible from the responses it
receives. To distinguish valid probe responses from back-
ground traffic, ZMap overloads unused values in each
sent packet, in a manner similar to SYN cookies [4].

No retransmission While Nmap detects connection
timeouts and adaptively retransmits probes that are lost
due to packet loss, ZMap (to avoid keeping state) always
sends a fixed number of probes per target and defaults
to sending only one. In our experimental setup, we esti-
mate that ZMap achieves 98% network coverage using
only a single probe per host, even at its maximum scan-
ning speed. We believe this small amount of loss will be
insignificant for typical research applications.

We further describe ZMap’s architecture and implemen-
tation in Section 2, and we experimentally characterize
its performance in Section 3. In Section 4, we investigate
the implications of the widespread availability of fast,
low-cost Internet-wide scanning for both defenders and
attackers, and we demonstrate ZMap’s performance and
flexibility in a variety of security settings, including:
Measuring protocol adoption, such as the transition

from HTTP to HTTPS. We explore HTTPS adoption
based on frequent Internet-wide scans over a year.

Visibility into distributed systems, such as the certificate
authority (CA) ecosystem. We collect and analyze
TLS certificates and identify misissued CA certs.

High-speed vulnerability scanning, which could allow at-
tackers to widely exploit vulnerabilities within hours
of their discovery. We build a UPnP scanner us-
ing ZMap through which we find 3.4 million UPnP
devices with known vulnerabilities [25].

Uncovering unadvertised services, such as hidden Tor
bridges. We show that ZMap can locate 86% of
hidden Tor bridges via comprehensive enumeration.

High-speed scanning can be a powerful tool in the
hands of security researchers, but users must be careful
not to cause harm by inadvertently overloading networks
or causing unnecessary work for network administrators.
In Section 5, we discuss our experiences performing nu-
merous large-scale scans over the past year, we report on
the complaints and other reactions we have received, and
we suggest several guidelines and best practices for good
Internet citizenship while scanning.

Internet-wide scanning has already shown great poten-
tial as a research methodology [10, 12, 14, 25], and we
hope ZMap will facilitate a variety of new applications by
drastically reducing the costs of comprehensive network
surveys and allowing scans to be performed with very fine
time granularity. To facilitate this, we are releasing ZMap
as an open source project that is documented and pack-
aged for real world use. It is available at https://zmap.io/.

2 ZMap: The Scanner

ZMap uses a modular design to support many types of
probes and integration with a variety of research applica-
tions, as illustrated in Figure 1. The scanner core handles
command line and configuration file parsing, address gen-
eration and exclusion, progress and performance monitor-
ing, and reading and writing network packets. Extensible
probe modules can be customized for different kinds of
probes, and are responsible for generating probe packets
and interpreting whether incoming packets are valid re-
sponses. Modular output handlers allow scan results to
be piped to another process, added directly to a database,
or passed on to user code for further action, such as com-
pleting a protocol handshake.

We introduced the philosophy behind ZMap’s design in
Section 1. At a high level, one of ZMap’s most important
architectural features is that sending and receiving packets
take place in separate threads that act independently and
continuously throughout the scan. A number of design
choices were made to ensure that these processes share as
little state as possible.

We implemented ZMap in approximately 8,900 SLOC
of C. It was written and tested on GNU/Linux.

2.1 Addressing Probes

If ZMap simply probed every IPv4 address in numerical
order, it would risk overloading destination networks with
scan traffic and produce inconsistent results in the case of
a distant transient network failure. To avoid this, ZMap
scans addresses according to a random permutation of
the address space. To select smaller random samples of
the address space, we simply scan a subset of the full
permutation.

ZMap uses a simple and inexpensive method to traverse
the address space, which lets it scan in a random permuta-
tion while maintaining only negligible state. We iterate
over a multiplicative group of integers modulo p, choos-
ing p to be a prime slightly larger than 232. By choosing
p to be a prime, we guarantee that the group is cyclic and
will reach all addresses in the IPv4 address space except
0.0.0.0 (conveniently an IANA reserved address) once per
cycle. We choose to iterate over (Z/4,294,967,311Z)×,
the multiplicative group modulo p for the smallest prime
larger than 232: 232 +15.

To select a fresh random permutation for each scan,
we generate a new primitive root of the multiplicative
group and choose a random starting address. Because
the order of elements in a group is preserved by an iso-
morphism, we efficiently find random primitive roots of
the multiplicative group by utilizing the isomorphism
(Zp−1,+) ∼= (Z∗

p,×) and mapping roots of (Zp−1,+)
into the multiplicative group via the function f (x) = nx

where n is a known primitive root of (Z/pZ)×. In our

USENIX Association 22nd USENIX Security Symposium 607

Packet
Generation

Validation Generation

Result ProcessingOutput Handler

Address Generation

Probe Scheduler

Response
Interpretation

Framework Monitoring

CLI
 State

&
Config

ZMap Internet Scanner

Packet
Transmission

Receipt &
Validation

Figure 1: ZMap Architecture — ZMap is an open-source network scanner optimized for efficiently performing
Internet-scale network surveys. Modular packet generation and response interpretation components (blue) support
multiple kinds of probes, including TCP SYN scans and ICMP echo scans. Modular output handlers (red) allow users
to output or act on scan results in application-specific ways. The architecture allows sending and receiving components
to run asynchronously and enables a single source machine to comprehensively scan every host in the public IPv4
address space for a particular open TCP port in under 45 mins using a 1 Gbps Ethernet link.

specific case, we know that 3 is a primitive root of
(Z/4,294,967,311Z)×.

Because we know that the generators of (Zp−1,+) are
{s|(s, p−1) = 1}, we can efficiently find the generators
of the additive group by precalculating and storing the
factorization of p−1 and checking addresses against the
factorization at random until we find one that is coprime
with p−1 and then map it into (Z∗

p,×). Given that there
exist approximately 109 generators, we expect to make
four tries before finding a primitive root. While this pro-
cess introduces complexity at the beginning of a scan, it
adds only a small amount of one-time overhead.

Once a primitive root has been generated, we can easily
iterate through the address space by applying the group
operation to the current address (in other words, multi-
plying the current address by the primitive root modulo
232 +15). We detect that a scan has completed when we
reach the initially scanned IP address. This technique
allows the sending thread to store the selected permuta-
tion and progress through it with only three integers: the
primitive root used to generate the multiplicative group,
the first scanned address, and the current address.

Excluding Addresses Since ZMap is optimized for
Internet-wide scans, we represent the set of targets as
the full IPv4 address space minus a set of smaller ex-
cluded address ranges. Certain address ranges need to be
excluded for performance reasons (e.g., skipping IANA
reserved allocations [16]) and others to honor requests
from their owners to discontinue scanning. We efficiently
support address exclusion through the use of radix trees, a
trie specifically designed to handle ranges and frequently

used by routing tables [32, 34]. Excluded ranges can be
specified through a configuration file.

2.2 Packet Transmission and Receipt

ZMap is optimized to send probes as quickly as the
source’s CPU and NIC can support. The packet genera-
tion component operates asynchronously across multiple
threads, each of which maintains a tight loop that sends
Ethernet-layer packets via a raw socket.

We send packets at the Ethernet layer in order to cache
packet values and reduce unnecessary kernel overhead.
For example, the Ethernet header, minus the packet check-
sum, will never change during a scan. By generating and
caching the Ethernet layer packet, we prevent the Linux
kernel from performing a routing lookup, an arpcache
lookup, and netfilter checks for every packet. An addi-
tional benefit of utilizing a raw socket for TCP SYN scans
is that, because no TCP session is established in the ker-
nel, upon receipt of a TCP SYN-ACK packet, the kernel
will automatically respond with a TCP RST packet, clos-
ing the connection. ZMap can optionally use multiple
source addresses and distribute outgoing probes among
them in a round-robin fashion.

We implement the receiving component of ZMap us-
ing libpcap [17], a library for capturing network traffic
and filtering the received packets. Although libpcap is
a potential performance bottleneck, incoming response
traffic is a small fraction of outgoing probe traffic, since
the overwhelming majority of hosts are unresponsive to
typical probes, and we find that libpcap is easily capable
of handling response traffic in our tests (see Section 3).

608 22nd USENIX Security Symposium USENIX Association

Upon receipt of a packet, we check the source and des-
tination port, discard packets clearly not initiated by the
scan, and pass the remaining packets to the active probe
module for interpretation.

While the sending and receiving components of ZMap
operate independently, we ensure that the receiver is ini-
tialized prior to sending probes and that the receiver con-
tinues to run for a period of time (by default, 8 seconds)
after the sender has completed in order to process any
delayed responses.

2.3 Probe Modules

ZMap probe modules are responsible for filling in the
body of probe packets and for validating whether incom-
ing packets are responsive to the probes. Making these
tasks modular allows ZMap to support a variety of prob-
ing methods and protocols and simplifies extensibility.
Out of the box, ZMap provides probe modules to support
TCP port scanning and ICMP echo scanning.

At initialization, the scanner core provides an empty
buffer for the packet and the probe module fills in any
static content that will be the same for all targets. Then,
for each host to be scanned, the probe module updates this
buffer with host-specific values. The probe module also
receives incoming packets, after high-level validation by
the scanner core, and determines whether they are positive
or negative responses to scan probes. Users can add new
scan types by implementing a small number of callback
functions within the probe module framework.

For example, to facilitate TCP port scanning, ZMap im-
plements a probing technique known as SYN scanning or
half-open scanning. We chose to implement this specific
technique instead of performing a full TCP handshake
based on the reduced number of exchanged packets. In
the dominant case where a host is unreachable or does
not respond, only a single packet is used (a SYN from
the scanner); in the case of a closed port, two packets
are exchanged (a SYN answered with a RST); and in the
uncommon case where the port is open, three packets are
exchanged (a SYN, a SYN-ACK reply, and a RST from
the scanner).

Checking Response Integrity ZMap’s receiving com-
ponents need to determine whether received packets are
valid responses to probes originating from the scanner
or are part of other background traffic. Probe mod-
ules perform this validation by encoding host- and scan-
invocation–specific data into mutable fields of each probe
packet, utilizing fields that will have recognizable effects
on fields of the corresponding response packets in a man-
ner similar to SYN cookies [4].

For each scanned host, ZMap computes a MAC of the
destination address keyed by a scan-specific secret. This
MAC value is then spread across any available fields by

the active probe module. We chose to use the UMAC
function for these operations, based on its performance
guarantees [5]. In our TCP port scan module, we utilize
the source port and initial sequence number; for ICMP,
we use the ICMP identifier and sequence number. These
fields are checked on packet receipt by the probe module,
and ZMap discards any packets for which validation fails.

These inexpensive checks prevents the incorrect report-
ing of spurious response packets due to background traffic
as well as responses triggered by previous scans. This
design ultimately allows the receiver to validate responses
while sharing only the scan secret and the initial configu-
ration with the sending components.

2.4 Output Modules

ZMap provides a modular output interface that allows
users to output scan results or act on them in application-
specific ways. Output module callbacks are triggered
by specific events: scan initialization, probe packet sent,
response received, regular progress updates, and scan ter-
mination. ZMap’s built-in output modules cover basic use,
including simple text output (a file stream containing a list
of unique IP addresses that have the specified port open),
extended text output (a file stream containing a list of all
packet responses and timing data), and an interface for
queuing scan results in a Redis in-memory database [29].

Output modules can also be implemented to trigger
network events in response to positive scan results, such
as completing an application-level handshake. For TCP
SYN scans, the simplest way to accomplish this is to cre-
ate a fresh TCP connection with the responding address;
this can be performed asynchronously with the scan and
requires no special kernel support.

forge_socket Some ZMap users may wish to complete
the TCP handshake begun during a TCP SYN scan and
exchange data with the remote host without the extra over-
head of establishing a new connection. While the initial
SYN/SYN-ACK exchange has established a connection
from the destination’s perspective, ZMap bypasses the
local system’s TCP stack and as such the kernel does not
recognize the connection.

In order to allow the scanning host to communicate
over ZMap-initiated TCP sessions, we implemented
forge_socket, a kernel module that allows user processes
to pass in session parameters (e.g. initial sequence num-
ber) using setsockopt. This allows application-level hand-
shakes to be performed using the initial ZMap handshake
and does not require the unnecessary transmission of a
RST, SYN, or SYN-ACK packet that would be required
to close the existing connection and initiate a new kernel-
recognized session. We are releasing forge_socket along
with ZMap.

USENIX Association 22nd USENIX Security Symposium 609

3 Validation and Measurement

We performed a series of experiments to characterize the
performance of ZMap. Under our test setup, we find
that a complete scan of the public IPv4 address space
takes approximately 44 minutes on an entry-level server
with a gigabit Ethernet connection. We estimate that
a single-packet scan can detect approximately 98% of
instantaneously listening hosts, and we measure a 1300 x
performance improvement over Nmap for Internet-wide
scanning, with equivalent coverage.

We performed the following measurements on an HP
ProLiant DL120 G7 with a Xeon E3-1230 3.2 GHz pro-
cessor and 4 GB of memory running a stock install of
Ubuntu 12.04.1 LTS and the 3.2.0-32-generic Linux ker-
nel. Experiments were conducted using the onboard NIC,
which is based on the Intel 82574L chipset and uses the
stock e1000e network driver, or a quad-port Intel Ethernet
adapter based on the newer Intel 82580 chipset and using
the stock igb network driver. For experiments involving
complete TCP handshakes, we disabled kernel modules
used by iptables and conntrack. Experiments comparing
ZMap with Nmap were conducted with Nmap 5.21.

These measurements were conducted using the normal
building network at the University of Michigan Computer
Science & Engineering division. We used a gigabit Eth-
ernet uplink (a standard office network connection in our
facility); we did not arrange for any special network con-
figuration beyond static IP addresses. The access layer
of the building runs at 10 gbps, and the building uplink
to the rest of the campus is an aggregated 2×10 gigabit
port channel. We note that ZMap’s performance on other
source networks may be worse than reported here due to
local congestion.

3.1 Scan Rate: How Fast is Too Fast?

In order to determine whether our scanner and our up-
stream network can handle scanning at gigabit line speed,
we examine whether the scan rate, the rate at which ZMap
sends probe packets, has any effect on the hit rate, the
fraction of probed hosts that respond positively (in this
case, with a SYN-ACK). If libpcap, the Linux kernel, our
institutional network, or our upstream provider are unable
to adequately handle the traffic generated by the scanner
at full speed, we would expect packets to be dropped and
the hit rate to be lower than at slower scan rates.

We experimented by sending TCP SYN packets to
random 1% samples of the IPv4 address space on port
443 at varying scan rates. We conducted 10 trials at each
of 16 scan rates ranging from 1,000 to 1.4 M packets per
second. The results are shown in Figure 2.

We find no statistically significant correlation between
scan rate and hit rate. This shows that our ZMap setup
is capable of handling scanning at 1.4 M packets per

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

1000
2500

5000
10000

25000
50000

100000

250000

500000

750000

1000000

1100000

1200000

1300000

1400000

1500000

H
it

R
at

e
(p

er
ce

nt
)

Scan Rate (packets per second)

Hitrate

Figure 2: Hit rate vs. Scan rate — We find no correla-
tion between hit rate (positive responses/hosts probed)
and scan rate (probes sent/second). Shown are means and
standard deviations over ten trials. This indicates that
slower scanning does not reveal additional hosts.

 85000

 85500

 86000

 86500

 87000

 87500

 88000

 88500

 89000

 0 5 10 15 20 25 30

U
ni

qu
e

H
os

ts
 F

ou
nd

Unique SYN Packets Sent

Hosts Found

Figure 3: Coverage for Multiple Probes — Discovered
hosts plateau after ZMap sends about 8 SYNs to each. If
this plateau represents the true number of listening hosts,
sending just 1 SYN will achieve about 98% coverage.

 0.92

 0.94

 0.96

 0.98

 1

 1.02

22:00
00:00

2:00
4:00

6:00
8:00

10:00
12:00

14:00
16:00

18:00
20:00

22:00

H
itr

at
e

Time of Day

Figure 4: Diurnal Effect on Hosts Found — We ob-
served a ±3.1% variation in ZMap’s hit rate depending
on the time of day the scan was performed. (Times EST.)

610 22nd USENIX Security Symposium USENIX Association

second and that scanning at lower rates provides no ben-
efit in terms of identifying additional hosts. From an
architectural perspective, this validates that our receiving
infrastructure based on libpcap is capable of processing
responses generated by the scanner at full speed and that
kernel modules such as PF_RING [8] are not necessary
for gigabit-speed network scanning.

3.2 Coverage: Is One SYN Enough?

While scanning at higher rates does not appear to result
in a lower hit rate, this does not tell us what coverage we
achieve with a single scan—what fraction of target hosts
does ZMap actually find using its default single-packet
probing strategy?

Given the absence of ground truth for the number of
hosts on the Internet with a specific port open, we cannot
measure coverage directly. This is further complicated
by the ever changing state of the Internet; it is inherently
difficult to detect whether a host was not included in a
scan because it was not available at the time or because
packets were dropped between it and the scanner. Yet, this
question is essential to understanding whether performing
fast, single-packet scans is an accurate methodology for
Internet-wide surveys.

To characterize ZMap’s coverage, we estimate the num-
ber of hosts that are actually listening by sending multiple,
distinct SYN packets to a large address sample and ana-
lyzing the distribution of the number of positive responses
received compared to the number of SYNs we send. We
expect to eventually see a plateau in the number of hosts
that respond regardless of the number of additional SYNs
we send. If this plateau exists, we can treat it as an esti-
mate of the real number of listening hosts, and we can
use it as a baseline against which to compare scans with
fewer SYN packets.

We performed this experiment by sending 1, 2, 5, 8, 10,
15, 20, and 25 SYN packets to random 1% samples of the
IPv4 address space on port 443 and recording the number
of distinct hosts that sent SYN-ACK responses in each
scan. The results indicate a clear plateau in the number of
responsive hosts after sending 8 SYN packets, as shown
in Figure 3.

Based on the level of this plateau, we estimate that our
setup reaches approximately 97.9% of live hosts using
a single packet, 98.8% of hosts using two packets, and
99.4% of hosts using three packets. The single packet
round-trip loss rate of about 2% is in agreement with pre-
vious studies on random packet drop on the Internet [12].

These results suggest that single-probe scans are suffi-
ciently comprehensive for typical research applications.
Investigators who require higher coverage can configure
ZMap to send multiple probes per host, at the cost of
proportionally longer running scans.

3.3 Variation by Time of Day

In previous work, Internet-wide scans took days to months
to execute, so there was little concern over finding the
optimal time of day to perform a scan. However, since
ZMap scans can take less than an hour to complete, the
question as to the “right time” to perform a scan arises.
Are there certain hours of the day or days of the week that
are more effective for scanning than others?

In order to measure any diurnal effects on scanning, we
performed continuous scans of TCP port 443 targeting a
random 1% sample of the Internet over a 24-hour period.
Figure 4 shows the number of hosts found in each scan.

We observed a ±3.1% variation in hit rate dependent
on the time of day scans took place. The highest response
rates were at approximately 7:00 AM EST and the lowest
response rates were at around 7:45 PM EST.

These effects may be due to variation in overall net-
work congestion and packet drop rates or due to a diurnal
pattern in the aggregate availability of end hosts that are
only intermittently connected to the network. In less for-
mal testing, we did not notice any obvious variation by
day of the week or day of the month.

3.4 Comparison with Nmap

We performed several experiments to compare ZMap to
Nmap in Internet-wide scanning applications, focusing on
coverage and elapsed time to complete a scan. Nmap and
ZMap are optimized for very different purposes. Nmap is
a highly flexible, multipurpose tool that is frequently used
for probing a large number of open ports on a smaller
number of hosts, whereas ZMap is optimized to probe a
single port across very large numbers of targets. We chose
to compare the two because recent security studies used
Nmap for Internet-wide surveys [10, 14], and because,
like ZMap, Nmap operates from within user space on
Linux [23].

We tested a variety of Nmap settings to find reasonable
configurations to compare. All performed a TCP SYN
scan on port 443 (-Ss -p 443). Nmap provides several
defaults known as timing templates, but even with the
most aggressive of these (labeled “insane”), an Internet-
wide scan would take over a year to complete. To make
Nmap scan faster in our test configurations, we started
with the “insane” template (-T5), disabled host discovery
and DNS resolutions (-Pn -n), and set a high minimum
packet rate (--min-rate 10000). The “insane” template
retries each probe once after a timeout; we additionally
tested a second Nmap configuration with retries disabled
(--max-retries 0).

We used ZMap to select a random sample of 1 million
IP addresses and scanned them for hosts listening on
port 443 with Nmap in the two configurations described
above and with ZMap in its default configuration and in a

USENIX Association 22nd USENIX Security Symposium 611

Coverage Duration Est. Time for
Scan Type (normalized) (mm:ss) Internet-wide Scan

Nmap, max 2 probes (default) 0.978 45:03 116.3 days
Nmap, 1 probe 0.814 24:12 62.5 days
ZMap, 2 probes 1.000 00:11 2:12:35
ZMap, 1 probe (default) 0.987 00:10 1:09:45

Table 1: ZMap vs. Nmap Comparison — We scanned 1 million hosts on TCP port 443 using ZMap and Nmap and
averaged over 10 trials. Despite running hundreds of times faster, ZMap finds more listening hosts than Nmap, due to
Nmap’s low host timeout. Times for ZMap include a fixed 8 second delay to wait for responses after the final probe.

second configuration that sends two SYN probes to each
host (-P 2). We repeated this process for 10 trials over a
12 hour period and report the averages in Table 1.

The results show that ZMap scanned much faster than
Nmap and found more listening hosts than either Nmap
configuration. The reported durations for ZMap include
time sent sending probes as well as a fixed 8-second delay
after the sending process completes, during which ZMap
waits for late responses. Extrapolating to the time re-
quired for an Internet-wide scan, the fastest tested ZMap
configuration would complete approximately 1300 times
faster than the fastest Nmap configuration.1

Coverage and Timeouts To investigate why ZMap
achieved higher coverage than Nmap, we probed a ran-
dom sample of 4.3 million addresses on TCP port 80 and
measured the latency between sending a SYN and receiv-
ing a SYN-ACK from responsive hosts. Figure 5 shows
the CDF of the results. The maximum round-trip time
was 450 seconds, and a small number of hosts took more
than 63 seconds to respond, the time it takes for a TCP

1The extrapolated 1-packet Internet-wide scan time for ZMap is
longer than the 44 minutes we report elsewhere for complete scans,
because this test used a slower NIC based on the Intel 82574L chipset.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

C
D

F
of

 re
sp

on
di

ng
 h

os
ts

response time (seconds)

Figure 5: SYN to SYN-ACK time — In an experiment
that probed 4.3 million hosts, 99% of SYN-ACKs arrived
within about 1 second and 99.9% within 8.16 seconds.

connection attempt to timeout on Linux. 99% of hosts
that responded within 500 seconds did so within about
1 second, and 99.9% responded within 8.16 seconds.

As ZMap’s receiving code is stateless with respect to
the sending code, a valid SYN-ACK that comes back
any time before the scan completes will be recorded as
a listening host. To assure a high level of coverage, the
default ZMap settings incorporate an empirically derived
8-second delay after the last probe is sent before the re-
ceiving process terminates.

In contrast, Nmap maintains timeouts for each probe.
In the Nmap “insane” timing template we tested, the
timeout is initially 250 ms, by which time fewer than 85%
of responsive hosts in our test had responded. Over the
course of a scan, Nmap’s timeout can increase to 300 ms,
by which time 93.2% had responded. Thus, we would
expect a single-probe Nmap scan with these timing values
to see 85–93% of the hosts that ZMap finds, which is
roughly in line with the observed value of 82.5%.

With Nmap’s “insane” defaults, it will attempt to send a
second probe after a timeout. A response to either the first
or second SYN will be considered valid until the second
times out, so this effectively raises the overall timeout to
500–600 ms, by which time we received 98.2–98.5% of
responses. Additional responses will likely be generated
by the second SYN. We observed that the 2-probe Nmap
scan found 99.1% of the number of hosts that a 1-probe
ZMap scan found.

3.5 Comparison with Previous Studies

Several groups have previously performed Internet-wide
surveys using various methodologies. Here we compare
ZMap to two recent studies that focused on HTTPS cer-
tificates. Most recently, Heninger et al. performed a dis-
tributed scan of port 443 in 2011 as part of a global
analysis on cryptographic key generation [14]. Their
scan used Nmap on 25 Amazon EC2 instances and re-
quired 25 hours to complete, with a reported average of
40,566 hosts scanned per second. A 2010 scan by the EFF
SSL Observatory project used Nmap on 3 hosts and took
3 months to complete [10].

612 22nd USENIX Security Symposium USENIX Association

Scan Date Port 443 Open TLS Servers All Certs Trusted Certs

EFF SSL Observatory [10] 2010/12 16.2 M 7.7 M 4.0 M 1.46 M
Mining Ps and Qs [14] 2011/10 28.9 M 12.8 M 5.8 M 1.96 M
ZMap + certificate fetcher 2012/06 31.8 M 19.0 M 7.8 M 2.95 M
ZMap + certificate fetcher 2013/05 34.5 M 22.8 M 8.6 M 3.27 M

Table 2: Comparison with Prior Internet-wide HTTPS Surveys — Due to growth in HTTPS deployment, ZMap
finds almost three times as many TLS servers as the SSL Observatory did in late 2010, yet this process takes only
10 hours to complete from a single machine using a ZMap-based workflow, versus three months on three machines.

To compare ZMap’s performance for this task, we used
it to conduct comprehensive scans of port 443 and used
a custom certificate fetcher based on libevent [24] and
OpenSSL [37] to retrieve TLS certificates from each re-
sponsive host. With this methodology, we were able to
discover hosts, perform TLS handshakes, and collect and
parse the resulting certificates in under 10 hours from a
single machine.

As shown in Table 2, we find significantly more TLS
servers than previous work—78% more than Heninger
et al. and 196% more than the SSL Observatory—likely
due to increased HTTPS deployment since those studies
were conducted. Linear regression shows an average
growth in HTTPS deployment of about 540,000 hosts
per month over the 29 month period between the SSL
Observatory scan and our most recent dataset. Despite
this growth, ZMap is able to collect comprehensive TLS
certificate data in a fraction of the time and cost needed
in earlier work. The SSL Observatory took roughly 650
times as much machine time to acquire the same kind of
data, and Heninger et al. took about 65 times as much.

4 Applications and Security Implications

The ability to scan the IPv4 address space in under an hour
opens an array of new research possibilities, including the
ability to gain visibility into previously opaque distributed
systems, understand protocol adoption at a new resolution,
and uncover security phenomenon only accessible with a
global perspective [14]. However, high-speed scanning
also has potentially malicious applications, such as find-
ing and attacking vulnerable hosts en masse. Furthermore,
many developers have the preconceived notion that the
Internet is far too large to be fully enumerated, so the re-
ality of high speed scanning may disrupt existing security
models, such as by leading to the discovery of services
previously thought to be well hidden. In this section, we
use ZMap to explore several of these applications.

4.1 Visibility into Distributed Systems

High-speed network scanning provides researchers with
the possibility for a new real-time perspective into pre-

Organization Certificates

GoDaddy.com, Inc. 913,416 (31.0%)
GeoTrust Inc. 586,376 (19.9%)
Comodo CA Limited 374,769 (12.7%)
VeriSign, Inc. 317,934 (10.8%)
Thawte, Inc. 228,779 (7.8%)
DigiCert Inc 145,232 (4.9%)
GlobalSign 117,685 (4.0%)
Starfield Technologies 94,794 (3.2%)
StartCom Ltd. 88,729 (3.0%)
Entrust, Inc. 76,929 (2.6%)

Table 3: Top 10 Certificate Authorities — We used
ZMap to perform regular comprehensive scans of HTTPS
hosts in order gain visibility into the CA ecosystem. Ten
organizations control 86% of browser trusted certificates.

viously opaque distributed systems on the Internet. For
instance, e-commerce and secure web transactions inher-
ently depend on browser trusted TLS certificates. How-
ever, there is currently little oversight over browser trusted
certificate authorities (CAs) or issued certificates. Most
CAs do not publish lists of the certificates they have
signed, and, due to delegation of authority to interme-
diate CAs, it is unknown what set of entities have the
technical ability to sign browser-trusted certificates at any
given time.

To explore this potential, we used ZMap and our cus-
tom certificate fetcher to conduct regular scans over the
past year and perform analysis on new high-profile certifi-
cates and CA certificates. Between April 2012 and June
2013, we performed 1.81 billion TLS handshakes, ulti-
mately collecting 33.6 million unique X.509 certificates
of which 6.2 million were browser trusted. We found and
processed an average of 220,000 new certificates, 15,300
new browser trusted certificates, and 1.2 new CA certifi-
cates per scan. In our most recent scan, we identified
1,832 browser trusted signing certificates from 683 orga-
nizations and 57 countries. We observed 3,744 distinct
browser-trusted signing certificates in total. Table 3 shows
the most prolific CAs by leaf certificates issued.

USENIX Association 22nd USENIX Security Symposium 613

Wide-scale visibility into CA behavior can help to
identify security problems [10, 18]. We found two
cases of misissued CA certificates. In the first case,
we found a CA certificate that was accidentally issued
to a Turkish transit provider. This certificate, C=TR,
ST=ANKARA, L=ANKARA, O=EGO, OU=EGO BILGI
ISLEM, CN=*.EGO.GOV.TR, was later found by Google
after being used to sign a Google wildcard certificate and
has since been revoked and blacklisted in common web
browsers [20].

In the second case, we found approximately 1,300
CA certificates that were misissued by the Korean Gov-
ernment to government sponsored organizations such as
schools and libraries. While these certificates had been
issued with rights to sign additional certificates, a length
constraint on the grandparent CA certificate prevented
these organizations from signing new certificates. We
do not include these Korean certificates in the CA to-
tals above because they are unable to sign valid browser-
trusted certificates.

4.2 Tracking Protocol Adoption

Researchers have previously attempted to understand the
adoption of new protocols, address depletion, common
misconfigurations, and vulnerabilities through active scan-
ning [2, 10, 12, 14, 15, 27]. In many of these cases, these
analyses have been performed on random samples of the
IPv4 address space due to the difficulty of performing
comprehensive scans [15, 27]. In cases where full scans
were performed, they were completed over an extended
period of time or through massive parallelization on cloud
providers [10, 14]. ZMap lowers the barriers to entry and
allows researchers to perform studies like these in a com-
prehensive and timely manner, ultimately enabling much
higher resolution measurements than previously possible.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

06/12
07/12

08/12
09/12

10/12
11/12

12/12
01/13

02/13
03/13

04/13
05/13

Tr
us

te
d

C
er

tif
ic

at
es

Scan Date

HTTPS Hosts
Unique Certificates
Trusted Certificates

Alexa Top 1 Mil. Domains
E.V. Certificates

Netcraft HTTP Hosts

Figure 6: HTTPS Adoption — Data we collected using
ZMap show trends in HTTPS deployment over one year.
We observed 19.6% growth in hosts serving HTTPS.

Port Service Hit Rate (%)

80 HTTP 1.77
7547 CWMP 1.12

443 HTTPS 0.93
21 FTP 0.77
23 Telnet 0.71
22 SSH 0.57
25 SMTP 0.43

3479 2-Wire RPC 0.42
8080 HTTP-alt/proxy 0.38

53 DNS 0.38

Table 4: Top 10 TCP ports — We scanned 2.15 million
hosts on TCP ports 0–9175 and observed what fraction
were listening on each port. We saw a surprising number
of open ports associated with embedded devices, such as
ports 7547 (CWMP) and 3479 (2-Wire RPC).

To illustrate this application, we tracked the adoption of
HTTPS using 158 Internet-wide scans over the past year.
Notably, we find a 23% increase in HTTPS use among
Alexa Top 1 Million websites and a 10.9% increase in
the number of browser-trusted certificates. During this
period, the Netcraft Web Survey [26] finds only a 2.2%
increase in the number of HTTP sites, but we observe an
8.5% increase in sites using HTTPS. We plot these trends
in Figure 6.

We can also gain instantaneous visibility into the de-
ployment of multiple protocols by performing many
ZMaps scans of different ports. We scanned 0.05% sam-
ples of the IPv4 address space on each TCP port below
9175 to determine the percentage of hosts that were lis-
tening on each port. This experiment requires the same
number of packets as over 5 Internet-wide scans of a sin-
gle port, yet we completed it in under a day using ZMap.
Table 4 shows the top 10 open ports we observed.

4.3 Enumerating Vulnerable Hosts

With the ability to perform rapid Internet-wide scans
comes the potential to quickly enumerate hosts that suf-
fer from specific vulnerabilities [2]. While this can be a
powerful defensive tool for researchers—for instance, to
measure the severity of a problem or to track the appli-
cation of a patch—it also creates the possibility for an
attacker with control of only a small number of machines
to scan for and infect all public hosts suffering from a new
vulnerability within minutes.

UPnP Vulnerabilities To explore these applications,
we investigated several recently disclosed vulnerabilities
in common UPnP frameworks. On January 29, 2013,
HD Moore publicly disclosed several vulnerabilities in
common UPnP libraries [25]. These vulnerabilities ulti-

614 22nd USENIX Security Symposium USENIX Association

mately impacted 1,500 vendors and 6,900 products, all of
which can be exploited to perform arbitrary code execu-
tion with a single UDP packet. Moore followed responsi-
ble disclosure guidelines and worked with manufacturers
to patch vulnerable libraries, and many of the libraries
had already been patched at the time of disclosure. De-
spite these precautions, we found that at least 3.4 million
devices were still vulnerable to the problem in February
2013.

To measure this, we created a custom ZMap probe mod-
ule that performs a UPnP discovery handshake. We were
able to develop this 150-SLOC module from scratch in
approximately four hours and performed a comprehen-
sive scan of the IPv4 address space for publicly available
UPnP hosts on February 11, 2013, which completed in
under two hours. This scan found 15.7 million publicly
accessible UPnP devices, of which 2.56 million (16.5%)
were running vulnerable versions of the Intel SDK for
UPnP Devices, and 817,000 (5.2%) used vulnerable ver-
sions of MiniUPnPd.2

Given that these vulnerable devices can be infected
with a single UDP packet [25], we note that these 3.4 mil-
lion devices could have been infected in approximately
the same length of time—much faster than network oper-
ators can reasonably respond or for patches to be applied
to vulnerable hosts. Leveraging methodology similar to
ZMap, it would only have taken a matter of hours from
the time of disclosure to infect every publicly available
vulnerable host.

Weak Public Keys As part of our regular scans of
the HTTPS ecosystem, we tracked the mitigation of the
2008 Debian weak key vulnerability [3] and the weak and
shared keys described by Heninger et al. in 2012 [14].
Figure 7 shows several trends over the past year.

In our most recent scan, we found that 44,600 unique
certificates utilized factorable RSA keys and are served
on 51,000 hosts, a 20% decrease from 2011 [14]. Four
of these certificates were browser trusted; the last was
signed in August 2012. Similarly, we found 2,743 unique
certificates that contained Debian weak keys, of which
96 were browser trusted, a 34% decrease from 2011 [14].
The last browser trusted certificate containing a Debian
weak key was signed in January 2012. We also observed
a 67% decrease in the number of browser-trusted certifi-
cates that contained default public keys used for Citrix
remote access products [14].

We created an automated process that alerts us to the
discovery of new browser-trusted certificates containing
factorable RSA keys, Debian weak keys, or default Citrix
keys as soon as they are found, so that we can attempt to
notify the certificate owners about the vulnerability.

2Moore reported many more UPnP hosts [25] but acknowledges that
his scans occurred over a 5 month period and did not account for hosts
being counted multiple times due to changing IP addresses.

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

Percentage of Certificates using Factorable RSA Keys

 0.03

 0.04

 0.05

 0.06

Percentage of Certificates using Debian Weak Keys

 90

 100

 110

 120

 130

 140
Browser Trusted Certificates with Debian Weak Keys

 5

 10

 15

Browser Trusted Certificates with Shared Citrix Key

 2

 3

 4

 5

07/12
09/12

11/12
01/13

03/13
05/13

Scan Date

Browser Trusted Certificates with Factorable RSA Key

Figure 7: Trends in HTTPS Weak Key Usage — To
explore how ZMap can be used to track the mitigation
of known vulnerabilities, we monitored the use of weak
HTTPS public keys from May 2012 through June 2013.

4.4 Discovering Unadvertised Services

The ability to perform comprehensive Internet scans im-
plies the potential to uncover unadvertised services that
were previously only accessible with explicit knowledge
of the host name or address. For example, Tor bridges
are intentionally not published in order to prevent ISPs
and government censors from blocking connections to
the Tor network [35]. Instead, the Tor Project provides
users with the IP addresses of a small number of bridges
based on their source address. While Tor developers have
acknowledged that bridges can in principle be found by
Internet-wide scanning [9], the set of active bridges is con-
stantly changing, and the data would be stale by the time
a long running scan was complete. However, high-speed
scanning might be used to mount an effective attack.

USENIX Association 22nd USENIX Security Symposium 615

To confirm this, we performed Internet wide-scans on
ports 443 and 9001, which are common ports for Tor
bridges and relays, and applied a set of heuristics to iden-
tify likely Tor nodes. For hosts with one of these ports
open, we performed a TLS handshake using a specific
set of cipher suites supported by Tor’s “v1 handshake.”
When a Tor relay receives this set of cipher suites, it will
respond with a two-certificate chain. The signing (“Certi-
fiate Authority”) certificate is self-signed with the relay’s
identity public key and uses a subject name of the form
“CN=www.X .com”, where X is a randomized alphanu-
meric string. This pattern matched 67,342 hosts on port
443, and 2,952 hosts on port 9001.

We calculated each host’s identity fingerprint and
checked whether the SHA1 hash appeared in the pub-
lic Tor metrics list for bridge pool assignments. Hosts we
found matched 1,170 unique bridge fingerprints on port
443 and 419 unique fingerprints on port 9001, with a com-
bined total of 1,534 unique fingerprints (some were found
on both ports). From the bridge pool assignment data, we
see there have been 1,767–1,936 unique fingerprints allo-
cated at any given time in the recent past, which suggests
that we were able to identify 79–86% of allocated bridges
at the time of the scan. The unmatched fingerprints in
the Tor metrics list may correspond to bridges we missed,
offline bridges, or bridges configured to use a port other
than 9001 or 443.

In response to other discovery attacks against Tor
bridges [38], the Tor project has started to deploy obfs-
proxy [36], a wrapper that disguises client–bridge con-
nections as random data in order to make discovery by
censors more difficult. Obfsproxy nodes listen on random-
ized ports, which serves as a defense against discovery by
comprehensive scanning.

4.5 Monitoring Service Availability

Active scanning can help identify Internet outages and
disruptions to service availability without an administra-
tive perspective. Previous studies have shown that active
surveying (ICMP echo request scans) can help track In-
ternet outages, but they have either scanned small subsets
of the address space based on preconceived notions of
where outages would occur or have performed random
sampling [9, 13, 31]. High speed scanning allows scans to
be performed at a high temporal resolution through sam-
pling or comprehensively. Similarly, scanning can help
service providers identify networks and physical regions
that have lost access to their service.

In order to explore ZMap’s potential for tracking ser-
vice availability, we performed continuous scans of the
IPv4 address space during Hurricane Sandy to track its
impact on the East Coast of the United States. We show a
snapshot of outages caused by the hurricane in Figure 8.

4.6 Privacy and Anonymous Communication

The advent of comprehensive high-speed scanning raises
potential new privacy threats, such as the possibility of
tracking user devices between IP addresses. For instance,
a company could track home Internet users between dy-
namically assigned IP addresses based on the HTTPS cer-
tificate or SSH host key presented by many home routers
and cable modems. This would allow tracking companies
to extend existing IP-based tracking beyond the length of
DHCP leases.

In another scenario, it may be possible to track travelers.
In 2006 Scholz et al. presented methods for fingerprinting
SIP devices [30] and other protocols inadvertently expose
unique identifiers such as cryptographic keys. Such fea-
tures could be used to follow a specific mobile host across
network locations. These unique fingerprints, paired with
publicly available network data and commercial geoloca-
tion databases, could allow an attacker to infer relation-
ships and travel patterns of a specific individual.

The ability to rapidly send a single packet to all IPv4 ad-
dresses could provide the basis for a system of anonymous
communication. Rather than using the scanner to send
probes, it could be used to broadcast a short encrypted
message to every public IP address. In this scenario, it
would be impossible to determine the desired destination
host. If the sender is on a network that does not use
ingress filtering, it could also spoof source addresses to
obscure the sender’s identity. This style of communica-
tion could be of particular interest to botnet operators,
because it would allow infected hosts to remain dormant
indefinitely while waiting for instructions, instead of pe-
riodically checking in with command and control infras-
tructure and potentially revealing their existence.

Figure 8: Outages in the Wake of Hurricane Sandy —
We performed scans of port 443 across the entire IPv4
address space every 2 hours from October 29–31, 2013
to track the impact of Hurricane Sandy on the East Coast
of the United States. Here, we show locations with more
than a 30% decrease in the number of listening hosts.

616 22nd USENIX Security Symposium USENIX Association

5 Scanning and Good Internet Citizenship

We worked with senior colleagues and our local network
administrators to consider the ethical implications of high-
speed Internet-wide scanning and to develop a series of
guidelines to identify and reduce any risks. Such scan-
ning involves interacting with an enormous number of
hosts and networks worldwide. It would be impossible
to request permission in advance from the owners of all
these systems, and there is no IP-level equivalent of the
HTTP robots exclusion standard [19] to allow systems
to signal that they desire not to be scanned. If we are to
perform such scanning at all, the most we can do is try to
minimize any potential for harm and give traffic recipients
the ability to opt out of further probes.

High-speed scanning uses a large amount of bandwidth,
so we need to ensure that our activities do not cause ser-
vice degradation to the source or target networks. We
confirmed with our local network administrators that our
campus network and upstream provider had sufficient
capacity for us to scan at gigabit speeds. To avoid over-
whelming destination networks, we designed ZMap to
scan addresses according to a random permutation. This
spreads out traffic to any given destination network across
the length of the scan. In a single probe TCP scan, an
individual destination address receives one 40 byte SYN
packet. If we scan at full gigabit speed, each /24 network
block will receive a packet about every 10.6 seconds (3.8
bytes/s), each /16 network every 40 ms (1000 bytes/s),
and each /8 network every 161 µs (250,000 bytes/s) for
the 44 minute duration of the scan. These traffic volumes
should be negligible for networks of these sizes.

Despite these precautions, there is a small but nonzero
chance that any interaction with remote systems might
cause operational problems. Moreover, users or network
administrators who observe our scan traffic might be
alarmed, in the mistaken belief that they are under at-
tack. Many may be unable to recognize that their systems
are not being uniquely targeted and that these scans are
not malicious in nature, and might waste resources re-
sponding. Some owners of target systems may simply
be annoyed and want our scans to cease. To minimize
the risks from these scenarios, we took several steps to
make it easy for traffic recipients to learn why they were
receiving probes and to have their addresses excluded
from scanning if so desired.

First, we configured our source addresses to present a
simple website on port 80 that describes the nature and
purpose of the scans The site explains that we are not
targeting individual networks or attempting to obtain ac-
cess to private systems, and it provides a contact email
address to request exclusion from future scans. Second,
we set reverse DNS records for our source addresses to
“researchscanx.eecs.umich.edu” in order to signal that traf-

1. Coordinate closely with local network admins to
reduce risks and handle inquiries.

2. Verify that scans will not overwhelm the local net-
work or upstream provider.

3. Signal the benign nature of the scans in web pages
and DNS entries of the source addresses.

4. Clearly explain the purpose and scope of the scans
in all communications.

5. Provide a simple means of opting out, and honor
requests promptly.

6. Conduct scans no larger or more frequent than is
necessary for research objectives.

7. Spread scan traffic over time or source addresses
when feasible.

Table 5: Recommended Practices — We offer these sug-
gestions for other researchers conducting fast Internet-
wide scans as guidelines for good Internet citizenship.

fic from these hosts was part of an academic research
study. Third, we coordinated with IT teams at our institu-
tion who might receive inquiries about our scan traffic.

For our ongoing Internet-wide HTTPS surveys (our
largest-volume scanning effort), we took additional steps
to further reduce the rate of false alarms from intrusion
detection systems. Rather than scanning at full speed,
we conducted each of these scans over a 12 hour period.
We also configured ZMap to use a range of 64 source
addresses and spread out probe traffic among them. We
recognize that there is a difficult balance to strike here:
we do not want to conceal our activities from system
administrators who would want to know about them, but
we also do not want to divert IT support resources that
would otherwise be spent dealing with genuine attacks.

We provide a summary of the precautions we took in Ta-
ble 5 as a starting point for future researchers performing
Internet-wide scans. It should go without saying that scan
practitioners should refrain from exploiting vulnerabili-
ties or accessing protected resources, and should comply
with any special legal requirements in their jurisdictions.

5.1 User Responses

We performed approximately 200 Internet-wide scans
over the course of a year, following the practices described
above. We received e-mail responses from 145 scan traf-
fic recipients, which we classify in Table 6. In most cases,
these responses were informative in nature, notifying us
that we may have had infected machines, or were civil
requests to be excluded from future scans. The vast ma-
jority of these requests were received at our institution’s
WHOIS abuse address or at the e-mail address published
on the scan source IP addresses, but we also received

USENIX Association 22nd USENIX Security Symposium 617

Small/Medium Business 41
Home User 38
Other Corporation 17
Academic Institution 22
Government/Military 15
Internet Service Provider 2
Unknown 10

Total Entities 145

Table 6: Responses by Entity Type — We classify the
responses and complaints we received about our ongoing
scans based on the type of entity that responded.

responses sent to our institution’s help desk, our chief
security officer, and our departmental administrator.

We responded to each inquiry with information about
the purpose of our scans, and we immediately excluded
the sender’s network from future scans upon request. In
all, we excluded networks belonging to 91 organizations
or individuals, totaling 3,753,899 addresses (0.11% of the
public IPv4 address space). About 49% of the blacklisted
addresses resulted from requests from two Internet service
providers. We received 15 actively hostile responses that
threatened to retaliate against our institution legally or
to conduct a denial-of-service (DOS) attack against our
network. In two cases, we received retaliatory DOS traffic,
which was blacklisted by our upstream provider.

6 Related Work

Many network scanning tools have been developed, the
vast majority of which have been optimized to scan small
network segments. The most popular and well respected
is Nmap (“Network Mapper”) [23], a versatile, multipur-
pose tool that supports a wide variety of probing tech-
niques. Unlike Nmap, ZMap is specifically designed for
Internet-wide scanning, and it achieves much higher per-
formance in this application.

Leonard and Loguinov introduced IRLscanner, an
Internet–scale scanner with the demonstrated ability to
probe the advertised IPv4 address space in approximately
24 hours, ultimately scanning at 24,421 packets per sec-
ond [22]. IRLscanner is able to perform scanning at
this rate by utilizing a custom Windows network driver,
IRLstack [33]. However, IRLscanner does not process
responses, requires a custom network driver and a com-
plete routing table for each scan, and was never released
to the research community. In comparison, we developed
ZMap as a self-contained network scanner that requires
no custom drivers, and we are releasing it to the commu-
nity under an open source license. We find that ZMap can
scan at 1.37 million packets per second, 56 times faster
than IRLScanner was shown to operate.

Previous work has developed methods for sending and
receiving packets at fast network line speeds, including
PF_RING [8], PacketShader [11], and netmap [28], all
of which replace parts of the Linux kernel network stack.
However, as discussed in Section 3.1, we find that the
Linux kernel is capable of sending probe packets at giga-
bit Ethernet line speed without modification. In addition,
libpcap is capable of processing responses without drop-
ping packets as only a small number of hosts respond to
probes. The bottlenecks in current tools are in the scan
methodology rather than the network stack.

Many projects have performed Internet-scale network
surveys (e.g., [10, 12, 14, 15, 25, 27]), but this has typi-
cally required heroic effort on the part of the researchers.
In 2008, Heidemann et al. presented an Internet census
in which they attempted to determine IPv4 address uti-
lization by sending ICMP packets to allocated IP ad-
dresses; their scan of the IPv4 address space took ap-
proximately three months to complete and claimed to be
the first Internet-wide survey since 1982 [12]. Two other
recent works were motivated by studying the security
of HTTPS. In 2010, the Electronic Frontier Foundation
(EFF) performed a scan of the public IPv4 address space
using Nmap [23] to find hosts with port 443 (HTTPS)
open as part of their SSL Observatory Project [10]; their
scans were performed on three Linux servers and took
approximately three months to complete. Heninger et al.
performed a scan of the IPv4 address space on port 443
(HTTPS) in 2011 and on port 22 (SSH) in 2012 as part of
a study on weak cryptographic keys [14]. The researchers
were able to perform a complete scan in 25 hours by
concurrently performing scans from 25 Amazon EC2 in-
stances at a cost of around $300. We show that ZMap
could be used to collect the same data much faster and at
far lower cost.

Most recently, an anonymous group performed an il-
legal “Internet Census” in 2012, using the self-named
Carna Botnet. This botnet used default passwords to log
into thousands of telnet devices. After logging in, the
botnet scanned for additional vulnerable telnet devices
and performed several scans over the IPv4 space, com-
prising over 600 TCP ports and 100 UDP ports over a
3-month period [1]. With this distributed architecture, the
authors claim to have been able to perform a single-port
scan survey over the IPv4 space in about an hour. ZMap
can achieve similar performance without making use of
stolen resources.

7 Future Work

While we have demonstrated that efficiently scanning
the IPv4 address space at gigabit line speeds is possible,
there remain several open questions related to performing
network surveys over other protocols and at higher speeds.

618 22nd USENIX Security Symposium USENIX Association

Scanning IPv6 While ZMap is capable of rapidly scan-
ning the IPv4 address space, brute-force scanning meth-
ods will not suffice in the IPv6 address space, which
is far too large to be fully enumerated [7]. This places
current researchers in a window of opportunity to take
advantage of fast Internet-wide scanning methodologies
before IPv6-only services become common place. New
methodologies will need to be developed specifically for
performing surveys of the IPv6 address space.

10gigE Surveys ZMap is currently limited by the speed
of widely available gigabit networks, and we have not
tested how well its architecture will scale as 10gigE and
faster networks become available. There is motivation to
perform the fastest scans possible as they will provide the
truest sense of a snapshot of the Internet at a given point
in time. However, these faster rates also open questions
of overloading destination networks and hosts. The dy-
namics of performing scans at 10gigE have not yet been
explored.

Server Name Indication Server Name Indication
(SNI) is a TLS protocol extension that allows a server
to present multiple certificates on the same IP address [6].
SNI has not yet been widely deployed, primarily because
Internet Explorer does not support it on Windows XP
hosts [21]. However, its inevitable growth will make
scanning HTTPS sites more complicated, since simply
enumerating the address space will miss certificates that
are only presented with the correct SNI hostname.

Scanning Exclusion Standards If Internet-wide scan-
ning becomes more widespread, it will become increas-
ingly burdensome for system operators who do not want
to receive such probe traffic to manually opt out from
all benign sources. Further work is needed to standard-
ize an exclusion signaling mechanism, akin to HTTP’s
robots.txt [19]. For example, a host could use a combi-
nation of protocol flags to send a “do-not-scan” signal,
perhaps by responding to unwanted SYNs with the SYN
and RST flags, or a specific TCP option set.

8 Conclusion

We are living in a unique period in the history of the
Internet: typical office networks are becoming fast enough
to exhaustively scan the IPv4 address space, yet IPv6
(with its much larger address space) has not yet been
widely deployed. To help researchers make the most
of this window of opportunity, we developed ZMap, a
network scanner specifically architected for performing
fast, comprehensive Internet-wide surveys.

We experimentally showed that ZMap is capable of
scanning the public IPv4 address space on a single port
in under 45 minutes, at 97% of the theoretical maximum

speed for gigabit Ethernet and with an estimated 98%
coverage of publicly available hosts. We explored the
security applications of high speed scanning, including
the ability to track protocol adoption at Internet scale and
to gain timely insight into opaque distributed systems
such as the certificate authority ecosystem. We further
showed that high-speed scanning also provides new attack
vectors that we must consider when defending systems,
including the ability to uncover hidden services, the po-
tential to track users between IP addresses, and the risk
of infection of vulnerable hosts en masse within minutes
of a vulnerability’s discovery.

We hope ZMap will elevate Internet-wide scanning
from an expensive and time-consuming endeavor to a
routine methodology for future security research. As
Internet-wide scanning is conducted more routinely, prac-
titioners must ensure that they act as good Internet citizens
by minimizing risks to networks and hosts and being re-
sponsive to inquiries from traffic recipients. We offer the
recommendations we developed while performing our
own scans as a starting point for further conversations
about good scanning practice.

Acknowledgments

The authors thank the exceptional sysadmins at the Uni-
versity of Michigan for their help and support throughout
this project. This research would not have been possible
without Kevin Cheek, Laura Fink, Paul Howell, Don Win-
sor, and others from ITS, CAEN, and DCO. We thank
Michael Bailey for advice on many aspects of the work
and Oguz Durumeric for his discussion of generating per-
mutations of the IPv4 address space. We also thank Brad
Campbell, Peter Eckersley, James Kasten, Pat Pannuto,
Amir Rahmati, Michael Rushanan, and Seth Schoen. This
work was supported in part by NSF grant CNS-1255153
and by an NSF Graduate Research Fellowship.

References

[1] Anonymous. Internet census 2012. http://census2012.
sourceforge.net/paper.html, March 2013.

[2] G. Bartlett, J. Heidemann, and C. Papadopoulos. Under-
standing passive and active service discovery. In 7th ACM
SIGCOMM conference on Internet measurement (IMC),
pages 57–70, 2007.

[3] L. Bello. DSA-1571-1 OpenSSL—Predictable random
number generator, 2008. Debian Security Advisory. http://
www.debian.org/security/2008/dsa-1571.

[4] D. J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.
html, 1996.

[5] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rog-
away. UMAC: Fast and secure message authentication. In
Advances in Cryptology—CRYPTO ’99, 1999.

USENIX Association 22nd USENIX Security Symposium 619

[6] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen,
and T. Wright. Transport Layer Security (TLS) Extensions.
RFC 3546 (Proposed Standard), June 2003.

[7] T. Chown. IPv6 Implications for Network Scanning. RFC
5157 (Informational), March 2008.

[8] L. Deri. Improving passive packet capture: Beyond device
polling. In 4th International System Administration and
Network Engineering Conference (SANE), 2004.

[9] R. Dingledine. Research problems: Ten ways to dis-
cover Tor bridges. http://blog.torproject.org/blog/research-
problems-ten-ways-discover-tor-bridges, October 2011.

[10] P. Eckersley and J. Burns. An observatory for the SSLiv-
erse. Talk at Defcon 18 (2010). https://www.eff.org/files/
DefconSSLiverse.pdf.

[11] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
A GPU-accelerated software router. In ACM SIGCOMM,
September 2010.

[12] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos,
G. Bartlett, and J. Bannister. Census and survey of the
visible Internet. In 8th ACM SIGCOMM conference on
Internet measurement (IMC), 2008.

[13] J. Heidemann, L. Quan, and Y. Pradkin. A preliminary
analysis of network outages during hurricane sandy. Tech-
nical Report ISI-TR-2008-685b, USC/Information Sci-
ences Institute, November 2012.

[14] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halder-
man. Mining your Ps and Qs: Detection of widespread
weak keys in network devices. In 21st USENIX Security
Symposium, August 2012.

[15] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The
SSL landscape: A thorough analysis of the X.509 PKI
using active and passive measurements. In 11th ACM
SIGCOMM conference on Internet measurement (IMC),
pages 427–444, 2011.

[16] IANA. IPv4 address space registry. http://
www.iana.org/assignments/ipv4-address-space/
ipv4-address-space.xml.

[17] V. Jacobson, C. Leres, and S. McCanne. libpcap. Lawrence
Berkeley National Laboratory, Berkeley, CA. Initial re-
lease June 1994.

[18] J. Kasten, E. Wustrow, and J. A. Halderman. Cage: Taming
certificate authorities by inferring restricted scopes. In 17th
International Conference on Financial Cryptography and
Data Security (FC), 2013.

[19] M Koster. A standard for robot exclusion. http://www.
robotstxt.org/orig.html, 1994.

[20] A. Langley. Enhancing digital certificate security. Google
Online Security Blog, http://googleonlinesecurity.blogspot.
com/2013/01/enhancing-digital-certificate-security.html,
January 2013.

[21] E. Law. Understanding certificate name mismatches.
http://blogs.msdn.com/b/ieinternals/archive/2009/12/07/
certificate-name-mismatch-warnings-and-server-name-
indication.aspx, December 2009.

[22] D. Leonard and D. Loguinov. Demystifying service discov-
ery: Implementing an Internet-wide scanner. In 10th ACM
SIGCOMM conference on Internet measurement (IMC),
pages 109–122, 2010.

[23] Gordon Fyodor Lyon. Nmap Network Scanning: The
Official Nmap Project Guide to Network Discovery and
Security Scanning. Insecure, USA, 2009.

[24] N. Mathewson and N. Provos. libevent—An event notifi-
cation library. http://libevent.org.

[25] HD Moore. Security flaws in universal plug
and play. Unplug. Don’t Play, January 2013.
http://community.rapid7.com/servlet/JiveServlet/
download/2150-1-16596/SecurityFlawsUPnP.pdf.

[26] Netcraft, Ltd. Web server survey. http://news.netcraft.com/
archives/2013/05/03/may-2013-web-server-survey.html,
May 2013.

[27] N. Provos and P. Honeyman. ScanSSH: Scanning the
Internet for SSH servers. In 16th USENIX Systems Admin-
istration Conference (LISA), 2001.

[28] Luigi Rizzo. netmap: A novel framework for fast packet
I/O. In 2012 USENIX Annual Technical Conference, 2012.

[29] S. Sanfilippo and P. Noordhuis. Redis. http://redis.io.

[30] H. Scholz. SIP stack fingerprinting and stack difference
attacks. Talk at Blackhat 2006. http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Scholz.pdf.

[31] A. Schulman and N. Spring. Pingin’ in the rain. In 11th
ACM SIGCOMM conference on Internet measurement
(IMC), pages 19–28, 2011.

[32] K. Sklower. A tree-based packet routing table for Berkeley
Unix. In Winter USENIX Conference, 1991.

[33] M. Smith and D. Loguinov. Enabling high-performance
Internet-wide measurements on Windows. In 11th Inter-
national Conference on Passive and Active Measurement
(PAM), pages 121–130. Springer, 2010.

[34] W. R. Stevens and G. R. Wright. TCP/IP Illustrated: The
Implementation, volume 2. Addison-Wesley, 1995.

[35] Tor Project. Tor Bridges. https://www.torproject.org/docs/
bridges, 2008.

[36] Tor Project. obfsproxy. https://www.torproject.org/
projects/obfsproxy.html.en, 2012.

[37] J. Viega, M. Messier, and P. Chandra. Network Security
with OpenSSL: Cryptography for Secure Communications.
O’Reilly, 2002.

[38] T. Wilde. Great Firewall Tor probing. https://gist.github.
com/twilde/da3c7a9af01d74cd7de7, 2012.

USENIX Association 22nd USENIX Security Symposium 621

Eradicating DNS Rebinding with the Extended Same-Origin Policy

Martin Johns
SAP Research

martin.johns@sap.com

Sebastian Lekies
SAP Research

sebastian.lekies@sap.com

Ben Stock
FAU Erlangen-Nuremberg

ben.stock@cs.fau.de

Abstract
The Web’s principal security policy is the Same-Origin
Policy (SOP), which enforces origin-based isolation of
mutually distrusting Web applications. Since the early
days, the SOP was repeatedly undermined with variants
of the DNS Rebinding attack, allowing untrusted script
code to gain illegitimate access to protected network re-
sources. To counter these attacks, the browser vendors
introduced countermeasures, such as DNS Pinning, to
mitigate the attack. In this paper, we present a novel DNS
Rebinding attack method leveraging the HTML5 Appli-
cation Cache. Our attack allows reliable DNS Rebinding
attacks, circumventing all currently deployed browser-
based defense measures. Furthermore, we analyze the
fundamental problem which allows DNS Rebinding to
work in the first place: The SOP’s main purpose is to en-
sure security boundaries of Web servers. However, the
Web servers themselves are only indirectly involved in
the corresponding security decision. Instead, the SOP
relies on information obtained from the domain name
system, which is not necessarily controlled by the Web
server’s owners. This mismatch is exploited by DNS Re-
binding. Based on this insight, we propose a light-weight
extension to the SOP which takes Web server provided
information into account. We successfully implemented
our extended SOP for the Chromium Web browser and
report on our implementation’s interoperability and se-
curity properties.

1 Introduction
The Web has won. No other platform for distributed ap-
plications can rival the Web’s ubiquity and flexibility.
The functionality demands of the ever-expanding Web
application paradigm caused the browser to evolve from
a simple program to display hypertext documents into a
full-fledged runtime environment for sophisticated, net-
worked applications. This evolution is still in full effect,
with HTML5 and related JavaScript APIs being the latest

addition to the browser model. In the context of Web ap-
plications, fundamental security properties are governed
by the Same-Origin Policy (SOP): The SOP is the Web’s
principal security policy. It provides origin-based isola-
tion of Web applications.

In the recent past, low-level vulnerabilities have be-
come considerably harder to find and exploit. Hence, the
ever growing capabilities of the Web browser make it an
increasingly interesting offensive tool for attackers [8]:
The Web browser runs behind the firewall within the
boundaries of the internal network and executes code that
was retrieved from the Internet. Thus, the SOP consti-
tutes the only barrier between attacker provided code and
the crown jewels in the internal network. Unfortunately,
the SOP is far from bulletproof: Soon after the introduc-
tion of the policy in 1996, clever students at Princeton
university found a way to utilize attacker controlled DNS
settings to subvert the policy [25]. The underlying attack
is today known as “DNS Rebinding” [14]. Since then,
DNS Rebinding remained a constant problem of the SOP
that was (re)discovered multiple times and, subsequently,
attempted to be fixed.

In this paper, we demonstrate how the HTML5 Offline
Application Cache can be misused to conduct reliable
DNS Rebinding attacks. Our attack works with all major
browsers, circumvents all current browser-based coun-
termeasures, and affects most browser-based scripting
runtime environments (JavaScript, Flash, Silverlight).
Furthermore, we revisit the underlying problem of the
SOP and propose a light-weight but powerful extension
to the policy, which tackles the root cause of the problem.

Contribution and paper organization: After cover-
ing the required technical background (see Sec. 2) and
the history of DNS Rebinding (see Sec. 3), we make the
following contributions:

• DNS Rebinding and the AppCache (Section 4): We
present a novel attack technique, capable of circum-
venting any existing browser-based countermeasure

622 22nd USENIX Security Symposium USENIX Association

against DNS Rebinding. In our attack, we utilize
the HTML5 Offline AppCache to persist a malicious
script until any domain-to-IP information is lost. In
theory, caching-based attack scenarios are already
known. However, the unpredictable and short-lived
nature of the browser’s caching behavior rendered
them fragile to a level of unfeasibility. In this pa-
per, we show how the unique characteristics of the
AppCache can be leveraged by the attacker to create
highly reliable DNS Rebinding attacks.

• Vulnerability demonstration (Section 5): To validate
our attack method and to demonstrate its severity, we
present two practical attacks on real-world applica-
tions utilizing Web interfaces. For our experiments,
we chose the light-weight proxy server Polipo, and
the Unix-based printing system CUPS. The effects of
our demonstration exploits range from simple infor-
mation leakage to remote code execution.

• Extended Same-Origin Policy (Section 6): We ana-
lyze the fundamental problem that causes DNS Re-
binding to work. Thereby we identify a mismatch
between the semantics and the implementation of the
Same-Origin Policy: The SOP’s main purpose is to
ensure security boundaries of Web servers. How-
ever, the Web servers themselves are only indirectly
involved in the corresponding security decision. In
order to overcome this mismatch, we propose a light-
weight extension to the Same-Origin Policy that con-
siders server-provided origin information. Our ex-
tended SOP reliably defeats DNS Rebinding attacks
while increasing interoperability with mechanisms
that rely on flexible DNS setups, such as DNS-based
load-balancing or Content Distribution Networks.

• Implementation for the Chromium browser (Sec-
tion 7): To demonstrate the practical applicability of
our approach, we implemented it for the open-source
browser Chromium. The implementation required in
total 34 lines of code and does not cause a perceivable
performance overhead.

We end the paper with a review of related work (Sec. 8)
and a conclusion (Sec. 9).

2 Technical Background
In this section, we briefly cover selected topics that are
necessary to discuss the paper’s technical content.

2.1 The Same-Origin Policy
The Same-Origin Policy (SOP) was designed to enforce
origin-based isolation of mutually distrusting Web appli-
cations. Several variants of the policy exist [38]. In this
section, we focus the SOP for JavaScript [31].

In general, the Same-Origin Policy [14] is the main
security policy for all active content that is executed in a

Web browser within the context of a Web page. This pol-
icy restricts all client-side interactions to objects which
share the same origin. In this context, an object’s origin
is defined by the domain, port, and protocol, which were
utilized to obtain the object. Hence, a JavaScript snip-
pet is only allowed to access a resource if its own origin
exactly matches the origin of the resource. The SOP for
plug-in based script content, such as Flash or Silverlight,
enforces similar rules.

Developers can adjust a JavaScript snippet’s origin
slightly by modifying the document.domain DOM
property: The value of this property can be set to omit
the values of subdomains up to the second level domain
value (e.g., relaxing www.example.org to example.org).
This process is known under the term “domain relax-
ation”.

2.2 The HTML5 AppCache
Modern Web applications have one crucial disadvantage
compared to desktop applications: Such applications can
only be used when a network connection is available. In
order to eradicate this disadvantage the HTML5 Offline
Application Cache (AppCache) was introduced [10]. The
AppCache is a mechanism that can be utilized to store re-
sources (such as HTML documents, images, etc) within
the browser for offline usage. In order to employ the Ap-
plication Cache, a Web site may provide a manifest file
containing a list of resources. The manifest file’s loca-
tion can be specified within the manifest attribute of a
document’s HTML tag as shown in Listing 1.

Listing 1: HTML5 Manifest attribute

1 <html manifest="manifest.mf">
2 [...]

When a browser discovers this attribute, it fetches the
file and caches the listed resources within the AppCache.
Listing 2 shows an exemplary manifest file that advises
the browser to cache index.php as well as a flash
applet named flash.swf. As soon as a cached re-
source is requested again, the Application Cache returns
the cached HTTP response even if an Internet connec-
tion is available. After each access to the AppCache,
the browser downloads the manifest file again to check
whether it has changed. The resources within the App-
Cache are only updated if the manifest has changed - oth-
erwise the resources reside within the cache even if their
server-side counterparts have changed.

Listing 2: Exemplary manifest file (excerpt)

1 CACHE MANIFEST
2

3 http://example.org/index.php
4 http://example.org/flash.swf

USENIX Association 22nd USENIX Security Symposium 623

3 DNS Rebinding
DNS Rebinding is a term introduced by [14], which de-
scribes a class of Web browser-based attacks that under-
mine the SOP through sophisticated mapping of DNS
entries to restricted network resources. In Section 3.1
we give a full account on the historical development of
these attack methods. In the remainder of this section,
we briefly revisit the basic attack pattern.

The decision if a given JavaScript is granted access
to a certain resource (e.g., browser window, or network
location) is governed by the SOP. As explained earlier,
the SOP relies on the domain property of the respective
entity’s origins. However, the HTTP protocol does not
require any information about the requested domain. The
actual HTTP connections are made using the server’s IP.

An attacker can exploit this fact an attacker issues a
very short-lived DNS entry for an attacker controlled
web page. Whenever a victim visits this particular Web
site, the victim’s browser fetches the DNS entry, con-
nects to the provided IP address and downloads attacker
controlled JavaScript or plug-in code. This code is only
capable of creating network connection to same-domain
hosts due to the SOP. In the meantime, the DNS entry
expired and therefore, as soon as another request is con-
ducted towards the same domain, a new DNS entry has
to be fetched. The attacker is able to exploit this behav-
ior by altering the domain-to-IP-mapping. By providing
an IP of the victim’s intranet, the browser connects to the
intranet IP as soon as the JavaScript conducts a same-
domain request (see Fig. 1). As the IP is not a part of
the Same-Origin check, the policy is still fulfilled and,
therefore, the attacker controlled script is granted access
to the response of the intranet host. Thereby, potential
offensive scenarios are not limited to information leak-
age attacks on internal servers. DNS Rebinding can, for
instance, also be used to conduct click fraud, defeating
IP-based authentication, or hijacking of IP addresses (re-
fer to [14] for a comprehensive overview). Nonetheless,
for readability reasons, from now on we will use the in-
formation leakage attack as the motivational example.

3.1 The History of DNS Rebinding
As we will show in this section, the history of DNS Re-
binding reaches back in time to the early days in which
the SOP just started to emerge. Over the years, the attack
was discussed under several different names, including
“anti-DNS pinning” [7] and “Quick-swap DNS” [21].
In this time, several variants of the rebinding attack
have been developed, either with focus on different
browser-based technologies [18, 25, 29], with new tech-
niques to circumvent the implemented mitigation mea-
sures [3, 15, 28, 34], or with focus on novel attack tar-
gets [9, 14]. Nonetheless, the general technique re-

6.6.6.6

10.10.10.20 10.10.10.10

Internet

Figure 1: Intranet attack scenario

mained stable: Mapping an attacker-controlled DNS en-
try to a restricted network resource and subsequently us-
ing active browser content to access the resource.

In this section, we give a brief overview on the devel-
opments of the past years. In general, the history of DNS
Rebinding can be divided into three distinct time spans,
each starting with the (re)discovery of the basic issue
for a separate browser-based technology: 1996 (Java ap-
plets), 2002 (JavaScript), 2006 (Flash, JavaScript, Java).

3.1.1 1996 - Java Applets

Princeton’s Secure Internet Programming group first
mentioned the attack method in 1996 [25]. Back then,
JavaScript networking capabilities were rather limited,
while Java Applets already allowed comparatively so-
phisticated networking functionality [4, 25].

To be precise, the Princeton attack did not rely on
DNS Rebinding per se. Instead, the attack utilized DNS
records, which returned two IP addresses for the ad-
versary’s domain: The IP of the attacker’s server, from
which the applet was loaded and another IP pointing to
the target of the attack. As the adversary controls the or-
der of the values in the DNS response, the applet could be
tricked to connect to the target system. To mitigate the is-
sue, Java’s vendor SUN introduced strict IP based access
control [24]: After the initial loading of an applet, the
only IP the applet is allowed to access is the IP address it
was originally obtained from, regardless of information
provided by DNS. This restriction is maintained for the
entire lifespan of the applet.

3.1.2 2002 - JavaScript

The Princeton attack was extended by Adam Megacz to
JavaScript in 2002 [21]. Megacz presented two variants

624 22nd USENIX Security Symposium USENIX Association

of the attack. For one, he utilized domain relaxation. In
this case, the malicious JavaScript was hosted on a sub-
domain of the adversary’s server, e.g., sub.attacker.org.
The DNS entry for the father domain attacker.org pointed
to the internal host. After being loaded in the victim’s
browser, the script relaxed its document.domain
value to the father domain and, thus, was subsequently
granted access to the internal server. The second attack
variant, named “Quick-swap DNS” was roughly equiva-
lent to the general attack scheme presented in Section 3.

In response to Megacz’s security advisory, Netscape
implemented explicit “pinning” of the domain-to-IP
mapping for the lifetime of the Web page. In addition,
to mitigate the domain relaxation based attack, a patch
was created that required both parties in a domain relax-
ation scenario to assign the document.domain prop-
erty to the same value. Versions of Internet Explorer that
followed Megacz disclosure, exposed behavior similar to
Netscape’s browser. However, in 2007 Microsoft’s Dave
Ross gave to record that the observed DNS pinning was
incidental and not introduced as a security measure [30].

3.1.3 2006 - The full browser experience

In 2006, Martin Johns discovered a technique to reliably
cause Firefox and Internet Explorer to drop any domain-
to-IP mapping, which in turn re-enabled the rebinding
attack for JavaScript [15]. In the following months, sev-
eral additional DNS Rebinding attack methods were dis-
closed: Kanatoko showed that Flash applets were also
susceptible to the attack [18]. Also, Johns and Kanatoko
documented a method to use the LiveConnect JavaScript-
to-Java bridge to utilize Java methods in rebinding at-
tacks [16]. Moreover, two further methods were discov-
ered which allowed DNS Rebinding attacks on Java Ap-
plets: Rios and McFeters [28] tricked Java’s applet cache
by using multiple instances of the Java VM and David
Byrne leveraged a mismatch in communication channels,
in case the Java VM was configured to access the net-
work with a Web proxy [3]. Finally, Dafydd Stuttard ex-
amined the effects of Web proxies on DNS pinning [34].

The susceptibility of the plug-in technologies Flash
and Java enabled the usage of low-level socket commu-
nication in rebinding. This expanded the resulting at-
tack surface towards non-HTTP network services. Fur-
thermore, socket connections could be utilized to cir-
cumvent HTTP-based countermeasures, such as host-
header checking [7].

Additionally, multiple public demonstrations on the
capabilities of the attack vector have been given. No-
table in this context are the experiments by Jackson et
al. [14]: Using a specifically crafted Flash advertisement
delivered by a major advertising network, the group was
able to take over 27,480 unique IPs for a total amount

of less then 30 US dollars. In response to the disclosed
attacks, the vendors of Flash and Java introduced further
restrictions on their socket-level network capabilities.

3.2 Capabilities and limitations of avail-
able countermeasures

Over the years, several practical and experimental coun-
termeasures to protect against DNS Rebinding attacks
have been introduced.

3.2.1 DNS Pinning

As previously discussed, most browser and plug-in ven-
dors primarily reacted to DNS Rebinding by introduc-
ing DNS Pinning. When DNS Pinning is used, a Web
resource’s IP-to-DNS mapping is maintained for a pro-
longed timespan, ideally exceeding the lifetime of the
resource.While being able to provide basic protection
properties, DNS Pinning has security and functionality
drawbacks: For one, DNS pinning is inherently incom-
patible with all technical measures that rely on dynamic
and potentially changing DNS answers, such as load bal-
ancing, active failover, disaster recovery [1], or Content
Distribution Networks. Also, DNS Pinning is unable to
protect if Web proxies are part of the communication
path to the server [21, 34] or in content caching scenarios
(more on this in Section 4).

3.2.2 Limiting internal IP ranges

Due to the specific nature of DNS Rebinding, internal
servers are the prime target of the attack. Hence, sev-
eral techniques have been presented that protect internal
network resources against external scripts. In general,
these approaches primarily protect resources hosted on
the “private” netblocks of the IPv4 space, as defined by
RFC 1918 [26]. For one, such protection can be imple-
mented on the DNS level: DNSWall [2] is a daemon
that is designed to be used in conjunction with an ex-
isting recursive DNS resolver. It filters out RFC 1918
addresses in DNS responses. Also, the OpenDNS ser-
vice offers a similar option [36]. Furthermore, similar
protection can be achieved within the browser: Opera re-
fuses script code which was obtained from an external
source to access internal RFC 1918 IP ranges. The Fire-
fox extensions NoScript [20] and LocalRodeo [17] can
be configured to do the same.

The attempt to provide protection by restricting ac-
cess to private IP ranges is necessarily incomplete. For
one, network based access control is not limited to
RFC 1918 ranges. In addition, bigger organizations, such
as large companies or universities, do not always use

USENIX Association 22nd USENIX Security Symposium 625

RFC 1918 addresses for their internal networks. Fur-
thermore, with the growing support for IPv6 many use
cases for RFC 1918 addresses cease to exist, as there is
no shortage of IPv6 addresses. Finally, Craig Heffner
has demonstrated [9], that even in cases where access to
the private IP ranges is protected against DNS Rebind-
ing attacks, under certain conditions the adversary can
use rebinding to gain privileged access to local network
resources, if these resource listens both on a private and
a public IP address.

3.2.3 Application-layer protection of servers

Servers can implement active protection against the at-
tack. A straight forward choice is requiring authenti-
cation before an internal server can be accessed. As
the rebinding attack utilizes the adversary’s domain, pre-
existing authentication credentials, such as session cook-
ies, cannot be abused by the attacker and, hence, the re-
stricted data should be safe. Additionally, servers can
implement host-header checking: The attacker’s HTTP
requests carry the domain name of the attacker’s server
in their host-header. Hence, the attack can be spot-
ted and the access can be stopped, which usually is done
by throwing a 400/500 server error or responding with a
standard error message. However, this measure does not
resolve the issue completely. The browser still allows
the script to omit the request and receive the response.
So even though, the server’s data cannot be obtained, the
attack vector may still leak valuable information to the
attacker, such as validation that the server exists and ma-
terial to do server-type and software fingerprinting. Also,
while sounding straight-forward, host-header checking
can be error-prone, as our experiments with CUPS has
shown (see Sec. 5.2): Even though CUPS implements
the check, the implementation is incomplete and grants
an attacker access to a subset of the tool’s data. Both
techniques have in common, that they have to be intro-
duced manually for each server on the application layer.

4 DNS rebinding using HTML5 AppCache

In the previous section we explained the basic mech-
anisms of DNS Rebinding. In order to counter these
attacks browser vendors introduced a technique called
DNS Pinning. In this section we show how this technique
can be circumvented to reliably conduct DNS Rebinding
attacks using the HTML5 Offline Application Cache.

4.1 Rebinding HTML/JavaScript content
pinning is to avoid the interaction of content that is
served via the same origin, but received from different
hosts. As soon as a DNS query is conducted, the browser

pins the received domain-to-IP mapping. Subsequent re-
quests conducted towards this origin are then exclusively
sent to the host utilizing the “pinned” IP. Thus, while
DNS pinning is active, content fetched from one ori-
gin always corresponds to the same host. Ideally, the
pinning information should be stored as long as a re-
source resides within the browser. However, as men-
tioned already, DNS Pinning interferes with techniques
such as load-balancing, active failover and disaster re-
covery [5]. The longer the pinning times, the bigger is
the negative effect on these techniques. In the worst case,
if the domain-to-IP mapping information are stored by
the browser for an unlimited amount of time, these tech-
niques would be more or less useless. Therefore, pinning
durations differ substantially from browser to browser.
However, all major browsers have one thing in common:
As soon as the user closes the browser, the pinning infor-
mation is automatically deleted. This also affects Web
content which ended up in the browser’s cache. Hence,
a hunch about potential DNS Rebinding issues through
cached content existed for some time [32].

The basic attack via cached content is similar to the
general DNS Rebinding attack as described in Section 3.
This time, however, we assume that DNS Pinning is in
place and therefore the basic attack does not work as de-
scribed. When caching comes into play, an attacker can
re-enable the attack. This advanced attack, thereby, con-
sists of two separate steps. In the first step the attacker
lures the victim onto a prepared Web site and forces
the browser to cache the attacker controlled contents.
As DNS pinning is active this content is not yet able
to launch a DNS Rebinding attack. However, browsers
do not persist the domain-to-IP mapping and dispose it
eventually. In the second step, at some later point in time,
the attacker again lures the victim onto the Web page.
This time the content is fetched from cache and therefore
no DNS Queries or TCP connections are created. Only
the origin information (protocol, domain, port) and the
resources are retrieved from cache. When the cached re-
sources attempt to create network connections to its own
origin, no domain-to-IP mapping is available and there-
fore a fresh DNS Query is conducted opening up a vector
for DNS rebinding.

Until today, it was difficult to launch such an attack
as a browser’s caching behavior is rather unpredictable
and the adversary has only limited means to influence
which content actually gets cached. The browser cache
has a fixed size and in general handles cached content
in a first-in-first-out fashion. Given the size of current
Web sites, even a moderately used browser’s cache fills
up quickly and even recently cached content often gets
discarded quickly [11]. Hence, depending on the given
circumstances, the chances of keeping the attack script
in the cache long enough for a successful attack tend

626 22nd USENIX Security Symposium USENIX Association

to be small. This changes with the introduction of the
HTML5 Offline Application Cache. Compared to a tra-
ditional cache the AppCache provides an attacker with
two novel capabilities that make attacks feasible:

• Controllable caching behavior: Using the AppCache
manifest, the attacker can advise the browser to cache
certain resources in a reliable way. As soon as the
resources are stored within the AppCache, they reside
in the browser for a potentially unlimited amount of
time (until the attacker’s application or the user decide
to empty the cache manually).

• JavaScript API: The AppCache provides an API that
allows JavaScript to identify whether it was loaded
from cache or via the network.

Using these two ingredients, an attacker can conduct
reliable DNS Rebinding attacks: In the first step the
attacker lures the victim onto his Web site. The Web
site uses a manifest file to cache an adversary con-
trolled Web page within the Application Cache. After
the browser deleted the DNS Pinning information, the
adversary waits until the user visits the same site again.
This time the Web page is loaded from the AppCache and
no domain-to-IP mapping is available. Using the App-
Cache’s JavaScript API, scripts contained in the page
can verify that they indeed have been retrieved without
network interaction. Hence, the cached script can now
conduct same-origin requests towards the IP returned
in the second DNS query (which the attacker controls
completely). After the attacker’s payload was loaded
from cache, the AppCache revalidates the manifest file
by downloading it from the attacker’s domain. As this
domain now points to the victim’s IP address, the mani-
fest will not be found and the cache will automatically be
deleted (including the evidence for the attack). However,
the attack has already taken place. In Section 4.2 we
demonstrate, how an attacker is able to avoid the dele-
tion of its content, in case he wants to conduct multiple
attacks upon the same victim.

The attack demonstrated in this section only targets
one specific victim. Nevertheless, the attack scheme can
be extended to conduct large-scale attacks. Instead of
conducting a rebinding attack directly on the main do-
main, the attacker could simply forward each user onto
a distinct subdomain that can be rebound separately. As
soon as one DNS query arrived at the attacker’s DNS
server for a specific subdomain, the DNS server could
rebind the IP immediately. In the first step the user’s
browser pins the IP and therefore only sends one initial
DNS request. Thus, if a second request arrives, the user’s
browser must have deleted the pinning information and
is in need to refresh the information (opening the DNS
Rebinding vector). The only challenge the attacker has

to solve in step 2 is to forward the user to the same sub-
domain as utilized for this specific user in step 1. To
identify whether the user has already conducted step 1
the attacker could simply utilize cookies that store the
subdomain information on the victims computer until the
next visit.

4.2 Utilizing multiple domains for reliable
DNS Rebinding attacks

The previously described attack has one major weak-
ness: As explained in Section 2.2, the AppCache revali-
dates the cache manifest after each access. If the mani-
fest changed, files in the cache will be updated/deleted
accordingly. Hence, in the last step of the attack, af-
ter the malicious script was fetched from the Applica-
tion Cache, the browser revalidates the manifest file from
the attacker’s domain. Since the domain is, at this point
in time, bound to the intranet host’s IP, the browser re-
quests the manifest file from the intranet host. As the
file will typically not be available on the rebound server,
the browser deletes the cached content. Nevertheless, the
attacker is able to execute the malicious script at least
once, as the cache validation takes place after the access
to the cache. However, if the attack fails, e.g. because the
user closed the browser before the script was executed
completely, the attacker has to start the whole process of
rebinding from scratch. For large-scale, automated at-
tacks this is not a feasible solution. In order to overcome
this issue, a more sophisticated attack scenario can be
used. In this scenario, we are able to prevent the dele-
tion of cached content after the rebinding step has taken
place by utilizing two distinct domain names. Thereby,
we are able to reliably repeat an attack multiple times
without the need for rebinding a domain name over and
over again. The attack thereby works as follows:

1. An attacker is in control of two domains (at-
tacker1.org and attacker2.org) and the corresponding
DNS server. In order to set up a DNS Rebinding at-
tack, the attacker deploys an HTML document and an
offline manifest to attacker1.org. The HTML docu-
ment embeds (via frame, object or embed tags) ac-
tive content (JavaScript, SVGs, Flash or Silverlight
applets, etc) served by attacker2.org.

2. The attacker lures a user onto attacker1.org. Con-
sequently, the user’s browser renders the malicious
HTML document and interprets the corresponding
manifest file. Due to the instructions contained within
the manifest, the browser caches the HTML document
as well as the active elements.

3. By closing the browser, the user deletes the DNS pin-
ning information. In the mean time, the attacker re-
binds attacker2.org to the IP of an intranet host.

USENIX Association 22nd USENIX Security Symposium 627

4. The attacker again lures the user onto attacker1.org.
The Web page and the active elements are loaded
directly from cache. As the page utilizes embed,
frame or object tags for embedding the active ele-
ments, these elements are executed within the origin
of attacker2.org. Due to the fact that attacker2.org is
bound to the intranet IP, the active content is now able
to communicate with intranet applications.

Analysis: In this scenario, as opposed to the first at-
tack, the manifest file resides on a domain that is not
subject to rebinding. Hence, when the cache validation
takes place, the manifest is still available. Consequently,
the browser does not delete the cached content. This is
an important fact as it simplifies the attack a lot. If we
take, e.g., a corporate wiki containing a multitude of in-
formation, the extraction and transfer of the data to the
attacker would consume a large amount of time. How-
ever, the attacker can only extract the data while the user
still visits the malicious Web site. If the user leaves the
Web site before all parts of the data were extracted, the
attacker is able to again lure the user onto the vulnerable
page to continue the extraction process instead of need-
ing to re-iterate the first rebinding step.

4.3 Caching of plug-in content
As mentioned before, the AppCache can be used to store
cross-domain resources for offline usage, which is a key
enabler for the attack described in the previous section.
However, the browser implementations differ in the way
they utilize the cache when it comes to cross-domain
caching and in the way they defend against rebinding at-
tacks. In this section we shed light on these differences
and explain how an attacker can make use of them.

HTML/SVG documents Caching of HTML and SVG
documents works across all browsers in the same-domain
scenario. However, when it comes to cross-domain
caching the behaviors of browsers differ substantially.
For the second attack, a distinct document embeds an
HTML or SVG file from a second domain via frame
or object tags. The manifest file resides on the first
domain, hence referencing the HTML/SVG file across
domain boundaries. While WebKit-based browsers (e.g
Safari, Chrome) and Internet Explorer do not fetch such
embedded cross-domain resources from cache, Firefox
and Opera expose a different behavior: Opera fetches
both, content embedded via frame and via object
tags, from the AppCache. Firefox, however, only fetches
HTML/SVG documents from cache when they are em-
bedded via object tags. Therefore, the advanced attack
does not work within Safari or Chrome when utilized in
combination with JavaScript. To overcome this issue an
attacker can utilize plug-ins such as Flash or Silverlight.

Silverlight All popular desktop browsers except Inter-
net Explorer 10 support the cross-domain caching of Sil-
verlight applets within the offline application cache. This
behavior can be abused to conduct DNS Rebinding at-
tacks within these browsers. A Silverlight applet is, sim-
ilar to JavaScript, able to conduct requests and read the
corresponding responses. Hence, the abilities are similar
to the HTML/SVG case, but the desktop browser sup-
port for the complex attack is better. Mobile browsers,
however, are not able to execute Silverlight applets.

In earlier versions of Silverlight, it was possible to
also create arbitrary socket connections to same-domain
hosts. Fortunately, those capabilities are nowadays
severely limited by the underlying security model which
only allows opening of a socket connection when the
receiving host explicitly grants this connection by set-
ting up a whitelisting policy on port 943. If port 943 is
closed, the Silverlight plug-in attempts to download the
policy file from the Web server’s root directory. Using
the HTML5 Offline Cache, an attacker is able to cache
such a cross-domain policy at the Web server level. This
allows an attacker to open arbitrary socket connections
to the rebound IP. As this behavior was already mis-
used in earlier rebinding attacks, Microsoft limited the
connection capabilities of Silverlight to a very restricted
port range (4502-4534), effectively reducing the impact
of such attacks.

Flash Similar to Silverlight, browsers also cache Flash
applets within the AppCache. Hence, Flash can be used
as an alternative to Silverlight when conducting a DNS
Rebinding attack with multiple domains. Thereby, Flash
also has the ability to create HTTP requests towards
same-origin resources without restrictions. However,
Flash has two major advantages over Silverlight:

1. Widespread adoption: Although its market share de-
creases, Flash is still present in about 95% of all
browsers [27] (including some mobile browsers).

2. Less restrictive SOP for HTTP requests: Flash only
includes the protocol and the domain into its cross-
domain decision making process [35]. Hence, a Flash
applet is able to send requests to any same-domain
port and receive the corresponding responses. This
behavior can be used to conduct DNS Rebinding at-
tacks on non-HTTP-based intranet services.

Java Java applets do not utilize the browser’s App-
Cache. Instead, Java uses its own caching mechanism
that defends against DNS Rebinding by storing the IP
address of the host that served the applet. When con-
ducting a HTTP or Socket connection the applet is only
allowed to connect back to the same IP adress.

628 22nd USENIX Security Symposium USENIX Association

Browser SD TD SVG TD F TD SL
IE 10

√
- - -

Firefox 14.0.1
√ √ √ √

Chrome 21
√

-
√ √

Safari 5.1
√

-
√ √

Opera 12
√∗ √∗ √∗ √∗

*: Opera prevents access to RFC 1918 addresses.

Table 1: Desktop browser & Attack Overview

Other plug-ins Beside Flash, Silverlight and Java
there is a multitude of other plug-ins which can poten-
tially be abused to conduct the presented attacks. If a
plug-in applet can be cached within the browser’s Of-
fline Application Cache, it is very likely that it can also
be used for the outlined rebinding attacks.

4.4 Summary

As seen in this section, there are a lot of technologies that
can be abused by an attacker to gain novel capabilities in
the context of a rebinding attack. In order to summarize
our findings, Tables 1 and 2 outline which desktop and
mobile browsers are vulnerable to the presented attacks.

As seen within the tables, the attack including a sin-
gle domain (denoted as SD) works within every browser.
The attacks comprising two distinct domain names (de-
noted as TD) affect mainly desktop browsers. The reason
for this is the missing plug-in and SVG support within
mobile browsers. Furthermore, the mobile versions seem
to be more error-prone: The mobile version of Chrome
was not able to render our SVG test case (it showed
a 404 page, although the server logs indicated that the
resource was properly requested), Android’s standard
browser even crashed every time it loaded a Flash file
from cache.

5 Practical Attacks

To demonstrate the impact of the outlined vulnerabilities,
we deployed a real-world setup including three distinct
hosts (depicted in Figure 1). In this setup we investigated
the susceptibility of two applications (Polipo and CUPS)
by conducting the attack described in Sec. 4.2

5.1 Polipo

Our first attack targets a light-weight proxy server called
Polipo, which can be used to connect to the TOR
anonymizing network. To simplify the handling, Polipo
offers a Web interface for configuration purposes. By de-
fault, this interface listens to port 8123 and does not de-
fend against DNS Rebinding attacks. Via the Web inter-

Browser SD TD SVG TD F
Mobile Safari

√
- n.a.

Android Browser
√

n.a. Crash
Mobile Chrome

√
Error n.a.

Mobile Firefox
√

-
√

Table 2: Mobile browser & Attack Overview

face, a user is able to configure the proxy settings, which
are, obviously, security critical.

To evaluate Polipo’s resilience against our DNS Re-
binding attack we successfully conducted an attack as
described in Section 4.2. Due to the fact that Polipo does
not implement any countermeasures against DNS Re-
binding, our malicious requests were processed as if the
Web application itself created it. Via this attack, we were
able to remotely change the settings of the proxy server.
Beside the standard proxy functionality, Polipo also of-
fers Web server functionality that can be abused by an at-
tacker to download arbitrary files from the attacked host.
The Web server is by default only serving the configura-
tion interface. However, the Web server’s configuration
can also be changed via the configuration interface. In or-
der to steal arbitrary files, an adversary could simply set
the Web server’s root directory to the server’s root direc-
tory (”/” on Unix-based systems), effectively exposing
all the files on the host to the outside world. For exam-
ple, by requesting http://attacker2.org:8123/etc/passwd
(were attacker2.org is already bound to the internal host)
our malicious script was able to extract the information
on all the registered user accounts.

5.2 CUPS
CUPS is a printing system for Unix-based operating sys-
tems. It offers a web-based administration interface run-
ning on port 631 (accessible via localhost only). Via this
interface a user can administer the installed printer, mon-
itor print jobs and configure the print server. Interest-
ingly, the main administration panel of CUPS protects
against DNS Rebinding attacks by checking the HTTP
host header. Some features also require proper authoriza-
tion, consequently, mitigating the risk of unauthorized
access via DNS Rebinding. Nevertheless, it is still pos-
sible to extract valuable information out of the adminis-
tration interface via a DNS Rebinding attack. The reason
for this is an insufficient protection of log files that are
accessible via the Web interface. While the main admin-
istrative functions are protected, the page and error log
files can be accessed with arbitrary host headers. This
allows an attacker to extract the log files containing sen-
sitive information via DNS Rebinding attacks:

Error log: The error log contains information on
failed print jobs, which can be used for reconnaissance
of a corporate intranet. When a print job fails, technical

USENIX Association 22nd USENIX Security Symposium 629

details are written into the logs, including the username
of the creator, exact information on the printer addresses
and the administrator of the printer. Furthermore, it con-
tains information on the root directory of CUPS as well
as the value of the current PATH variable of the machine
CUPS is running on.

Page log: The page log gives an overview over the
past print jobs sent to a printer. By extracting the page
log, the adversary receives the names and dates of the
documents that were printed via CUPS. On our test sys-
tem, running Mac OS, we were able to extract the com-
plete printing history of over one year. Thereby, the name
of a document reveals a lot of information such as ab-
sence dates of the employee, data on intellectual prop-
erty, etc.

6 Extending the Same-Origin Policy

As shown in Section 3.1, DNS Rebinding is a constant
problem of the Web application paradigm (as witnessed
in 1996, 2002, and 2006). Taking the attack method
presented in this paper into account, this is the fourth
time that wide-scale DNS Rebinding issues are discov-
ered, even though the basic problem is known since 1996
and has received considerable attention. Hence, it is
safe to conclude that DNS rebinding is a fundamental,
protocol-layer flaw of the Same-Origin Policy, which is
not solvable with the existing means. As discussed in
Section 3.2, all currently available remedies are either in-
complete (e.g., protecting specific IP ranges) and/or have
to be implemented explicitly on the server-side’s applica-
tion layer (e.g., host header checking).

In this section, we show how the Web interaction
paradigm can be extended in a non-disruptive manner
to enable a robust protection. For this purpose, we first
state our design goals (Sec. 6.1) and conduct a root-
cause analysis of DNS rebinding (Sec. 6.2). Then, we
introduce the “Extended Same-Origin Policy (eSOP)“,
starting with simple scenarios (Sec. 6.3) and then itera-
tively explaining how the policy handles non-trivial cases
(Sec. 6.3.1 and Sec. 6.3.2). Finally, after stating the
eSOP’s decision logic (Sec. 6.3.3), we show how the pol-
icy protects against DNS Rebinding attacks (Sec. 6.3.5).

6.1 Design goals

Before going into detail concerning our solution, we
briefly discuss the goals which steered its design process.
As stated above, we are not aiming to create band-aid so-
lutions or incomplete protection measures. Instead, the
goal is to introduce a fundamental solution that is capa-
ble of completely solving DNS Rebinding. In this con-
text, our design goals were as follows:

(DG1) Client-side enforcement: The Same-Origin
Policy is a client-side security policy. Hence, all aspects
of the policy decision and enforcement process should be
conducted in the Web browser.

(DG2) Protocol layer: It should be avoided that Web
applications have to explicitly implement protection or
decision logic on the server-side’s application layer. In-
stead, the designed solution should be capable of provid-
ing transparent protection by default purely on the proto-
col layer.

(DG3) Dedicated security functionality: The history
and present of the Web is full of cases in which non-
security features were (mis)used to realize security func-
tionality. In many cases, the resulting security properties
were fragile, often incomplete and not necessarily future
proof. Therefore, we do not want to rely on non-security
features (i.e., the host header). Instead, dedicated func-
tionality shall be introduced where necessary.

(DG4) Non-disruptive: The solution should be back-
wards compatible. This means, if a given application sce-
nario involves an entity (i.e., Web server or browser) that
does not yet implement the solution, the Web applica-
tion should not break and the security properties should
transparently revert to the currently established state.

6.2 The three principals of Web interaction

As explained in Section 2.1, the Same-Origin Policy’s
duty is to isolate unrelated Web servers. To do so, the
SOP enforces access control in the browser, based on the
“origins” of the corresponding resources. In this context,
such origins are derived from the URLs that are associ-
ated with the interacting resources - usually the URLs of
the enclosing document objects. Hence, the semantics of
the SOP are built around two principals: The browser for
enforcing the policy and the server(s) for providing the
resources which are the subjects of the policy decision.

However, the entities involved in the implementation
of the SOP differ: While the browser remains in charge
of enforcement, the underlying informations are not pro-
vided by the involved Web server(s). Instead, the net-
work in the form of Domain Name System and IP ad-
dresses is utilized to associate the URL-values to the
server resources. Hence, the principal that is central to
the SOP’s purpose, the server, is not even involved in
the actual policy decision. Even worse, security charac-
teristics associated with the server are governed by net-
work resources that are not necessarily controlled by the
server’s owner. As a consequence, a crucial mismatch
exists between the semantics and the implementation of
the SOP. As seen above, DNS Rebinding takes advantage
of this mismatch. In a rebinding scenario, the attacker
utilizes network resources under his control to undermine
the security characteristics of the server.

630 22nd USENIX Security Symposium USENIX Association

In summary, the Web application model actually spans
three principals in total: The browser, the server, and the
network. Hence, to address the currently existing mis-
match between policy semantics and implementation, it
is necessary to investigate approaches that involve the
server in the policy decision process.

6.3 eSOP: Extending the SOP with explicit
server-origin

When considering the SOP from an abstract point of
view, a Web “origin” defines the trust boundaries of a
Web application. Everything within the application’s ori-
gin is fully trusted, everything outside is completely dis-
trusted. Additional browser capabilities, such as domain
relaxation (see Sec. 2.1) and CORS [37], provide meth-
ods to selectively widen the application’s trust bound-
aries. In the last section, we observed that the Web server
itself is left out of the equation in the SOP’s current im-
plementation. This is counterintuitive, as among the in-
volved parties, it is the Web server that should be able
to set its own trust boundaries. However, the Web server
can only indirectly influence the browser’s enforcement
decisions. Hence, to resolve this shortcoming, we pro-
pose to extend the SOP to include Web server-provided
input. For this purpose, our approach expands the cur-
rent, triple-based SOP with a fourth component that is
provided by the server. Simplified, our proposed ex-
tended Same-Origin Policy (eSOP) works as follows: All
HTTP responses of a given server carry explicit, server-
provided information of the server’s trust boundaries.
From now on, we refer to this information as the server-
origin. Thus, in the extended model, a Web origin con-
sists of the quadruple {protocol, domain, port, server-
origin}. In consequence, whenever the browser conducts
an eSOP check, not only the classic protocol/domain/-
port triple has to match, but also the server-origin values.

Example 1 (standard behavior): For simple cases, a
Web origin’s domain and server-origin values should not
differ. Take for instance a script running under the ori-
gin {http, example.org, 80, example.org}. This script at-
tempts to access a document in an iframe which also has
the origin {http, example.org, 80, example.org}. All four
elements of the respective Web origins match, thus, the
eSOP is satisfied and the access is granted.

6.3.1 Multiple domains as server-origin

However, last section’s simplified policy decision logic
is not sufficient to cover all application scenarios, that
are allowed with the current SOP. This primarily con-
cerns Web applications which can be accessed via mul-
tiple domain names. For instance, many Web appli-
cations do not distinguish between the main domain

name (e.g., example.org) and its “www” counterpart
(i.e., www.example.org). Similar scenarios exist for ap-
plications accepting requests for multiple top-level do-
mains (e.g., example.com and example.net). Hence, for
resources served by such applications, it is not straight
forward to decide what their corresponding server-origin
is. As stated in design goal 6.1, our solution shall not
require the implementation of application-layer decision
logic on the server-side. In consequence, a solution is
needed which allows server-side configuration on the
protocol-layer. For this reason, the eSOP permits that the
server specifies more than one domain value as its server-
origin. This way, the server-origin precisely specifies a
server’s trust boundaries, i.e, the set of domains which it
grants access in a same-origin context. Furthermore, we
adjust the criteria under which two Web origin quadru-
ples comply to the eSOP: The eSOP is satisfied if and
only if the classic protocol/domain/port values of both
quadruples match and the domain value of the acting ori-
gin (i.e., the origin of the script) is included in the server-
origin of the resource which the script tries to access.

Example 2 (multiple server-origins): A Web appli-
cation available via example.org and www.example.org
specifies its server-origin as a tuple of both domains:
〈example.org, www.example.org〉. A script running in
a document under the origin {http, example.org, 80,
〈example.org, www.example.org〉} tries to access a doc-
ument in a iframe which also has the origin {http, ex-
ample.org, 80, 〈example.org, www.example.org〉}. As
the script’s domain value (example.org) is included in
the target document’s server-origin list 〈example.org,
www.example.org〉, the eSOP is satisfied and, thus, the
access is granted.

6.3.2 Handling domain relaxation

The specific matching criterion for server-origin also al-
lows simple and robust handling of domain relaxation via
setting the document.domain property during client-
side execution: As long as the newly set origin is still in
the target resource’s list of domains, the eSOP allows ac-
cess under the relaxed domain values. This even works
in situations in which the individual subdomains are han-
dled by separate Web servers with potentially different
server-origin configurations.

Example 3 (domain relaxation): Take a Web appli-
cation on example.org, which has multiple subdomains,
including sub.example.org. The application’s subdo-
mains are handled by dedicated Web servers. Fur-
thermore, the example.org server hosts all resources
that are shared among the subdomains. A script
is executed under the extended Web origin {http,
sub.example.org, 80, 〈sub.example.org〉}. Furthermore,
the browser provides a reference to a resource from

USENIX Association 22nd USENIX Security Symposium 631

the main application with the origin {http, example.org,
80, 〈example.org〉}. The script assigns the value exam-
ple.org to the document.domain property, thus, ef-
fectively relaxes its domain value to the fathering do-
main. As a result, the script’s effective origin is now
{http, example.org, 80, 〈sub.example.org〉}. Conse-
quently, the eSOP is now satisfied in respect to the refer-
enced resource, as the script’s domain value is included
in the domain set of the resource’s server-origin, and the
access is granted.

6.3.3 The eSOP decision logic

To sum up, we now give a precise definition of the eSOP.

The eSOP is satisfied iff:

{prot1,domain1, port1}== {prot2,domain2, port2}
and

domain1 ∈ server-origin2

If the server-origin2 property is empty, the second
criterion always evaluates as “true”.

The last condition of the eSOP provides robustness
and backwards compatibility with the old behavior. In
addition, to facilitate flexible and easy configuration, we
follow the example of the Content-Security Policy for-
mat [33], and allow the usage of wildcards for subdomain
values within the set of domains in the server-origin, e.g.,
〈*.domain.com〉.

6.3.4 Communicating the server-origin

The final missing puzzle piece is the exact method,
how the server communicates the server-origin prop-
erty of his resources to the browser. We pro-
pose to introduce a dedicated HTTP response header,
X-Server-Origin, that carries the server-origin
property in the form of a comma-separated list.

Choosing this approach has several advantages: Fore-
most, it is compatible with the caching behavior of Web
browsers. Web browsers are already required to cache
HTTP response headers along with the actual resources,
as they otherwise would not be able to properly interpret
the cached content after retrieving it from storage.
Also, unlike DNS or IP-based protection schemes,
properties communicated via HTTP response headers
are preserved when the browser accesses the network
via a Web proxy. Finally, adding features using new
response headers is non-disruptive, as older browsers
simply ignore unknown response headers. Furthermore,
implementing server-driven security functionality via

HTTP response headers is a proven technique. In the
recent past, several security measures have successfully
been introduced, that leverage response headers, such as
Clickjacking protection via the X-Frame-Options
header [23], protection against SSL-stripping at-
tacks via the Strict-Transport-Security
header [12], Content Security Policies, that are set
using the X-Content-Security-Policy or
X-WebKit-CSP headers [33], and cross-origin
resource sharing which utilizes the Allow-From-
header [37].

6.3.5 The eSOP and DNS Rebinding

In the previous sections, we discussed the semantics of
the eSOP and the reasoning behind the corresponding
design process. Now finally, we show that the eSOP is
indeed capable of prevention DNS Rebinding attacks. To
conduct a DNS Rebinding attack, the adversary maps the
DNS setting of a domain to the IP address of the tar-
geted Web server. However, the attacker controlled do-
main value is not in the Web server’s trust boundary. In
consequence, the value will not be included in the list
of domain values in the server’s server origin property.
Therefore, the eSOP check will necessarily fail.

Example 4 (DNS Rebinding): The attacker controls
the domain attacker.org. His goal is to access an internal
wiki server under the domain wiki.corp, which sets a cor-
responding server-origin. In the first step of his attack,
the adversary tricks the victim to access the attacker.org,
which still is mapped to a Web server IP under his con-
trol. Hence, the script is handled by the browser under
a Web origin of the form {http, attacker.org, 80, 〈. . . 〉}.
Please note, that this Web origin’s server-origin prop-
erty is fully controlled by the attackers, as he creates the
corresponding HTTP response. However, this does not
cause any issues, as the server-origin of the acting script
is irrelevant for the eSOP decision process. Then, the at-
tacker conducts the DNS Rebinding step. Now, the DNS
entry of attacker.org points to the IP address of the in-
ternal server. From this point on, the browser will inter-
pret all resources from the server under the Web origin
{http, attacker.org, 80, 〈wiki.corp〉}. Following the re-
binding step, the attacker’s script attempts to access Web
resources that are provided by the internal server. How-
ever, as the attacker’s script carries the domain property
attacker.org, which is not included in the list of domains
in the server’s server-origin, the attack fails, even though
the classic protocol/domain/port SOP is satisfied.

6.3.6 Invalid eSOP origins

In [13], Jackson and Barth examine a set of proposed
SOP variants with finer-grained origins. Among other

632 22nd USENIX Security Symposium USENIX Association

techniques they discuss two approaches closely related
to the eSOP: The Locked SOP and IP-based origins (for
details on these techniques please refer to Sec. 8), which
provide basic protection against DNS Rebinding attacks.
For both techniques they uncover a loophole which re-
enables DNS Rebinding attacks, even if the refined SOP
variant is in place: Take a Web page on an internal host
which intends to import a JavaScript file from the same
host using a relative URL (see Lst. 3).

Listing 3: Direct script include using a relative URL

1 <script src="jquery.js"></script>

This Web page is retrieved by the browser using the
adversary controlled hostname attacker.org, which re-
solves to the intranet IP 10.10.10.10. Then, before the
script tag is interpreted the rebinding step takes place.
Attacker.org now points to 6.6.6.6 which is owned by
the adversary. Unlike JavaScript execution, HTML-
based script includes are not subject to origin restric-
tions. Hence, a refined SOP has no direct effect here
and the script code is retrieved from the adversary’s host,
circumventing the protection of the refined policy. For-
tunately, in the case of the eSOP such situations are
reliably detectable. The following condition holds for
all HTML documents with origin {prot, domain, port,
server-origin} that were retrieved from an attacked host:

domain /∈ server-origin
This necessarily results from the fact that the adver-

sary cannot control the server-origin of the internal host,
which only contains domain values within the server’s
trust boundaries (which obviously excludes the adver-
sary’s sites). In such cases, we label the page’s Web
origin as invalid. For Web documents with an invalid
origin caching is disabled and strict DNS pinning is en-
forced for the whole browser session, effectively closing
the loophole.

6.4 Security evaluation

As shown above the eSOP protects against DNS Re-
binding attacks, without requiring additional server-side
logic or specific actions on the client-side. As soon as
the X-Server-Origin header is present, the browser
is capable of transparently enforcing the policy, fulfill-
ing design goals (DG1) and (DG2). Furthermore, due
to communicating the server-origin in the form of an
HTTP response header, the protection is robust in scenar-
ios which caused other countermeasures to fail: HTTP
response headers are cached alongside with the actual
cached resources. Hence, the server-origin is maintained
even in long-term caching scenarios, effectively closing
the attack vector which is the subject of Section 4. In
addition, currently problematic scenarios, in which the

browser has no control over the domain-to-IP mapping,
e.g., through a Web proxy, can be handled conveniently.
The X-Server-Origin header is preserved, even if
Web proxies obstruct the link between domain name and
server address. Hence, the attack scenario described
in [34] (see also Sec. 3.1) is not feasible anymore. Fi-
nally, the eSOP is at least as strong as the currently im-
plemented SOP: The protocol/domain/port-triple is still
required to match, as it is by the classic SOP. Thus, it
is a necessary condition that the access to a resource
is granted under the SOP for the eSOP to be satisfied.
Therefore, implementing the eSOP will never lead to se-
curity degradation.

6.5 Functional evaluation

The eSOP is fully backwards compatible to the classic
SOP. In cases that either the browser does not implement
the extended policy or the Web server does not provide a
X-Server-Origin header, the enforced policy trans-
parently reverts back to the standard behavior of match-
ing protocol/domain/port, fulfilling design goal (DG4).

A major concern during designing the extended pol-
icy was the aspect of maintainability: Especially in large
set-ups that span multiple Web servers, ensuring that
all server installations provide the exact same values for
the server-origin property, is an unrealistic hard require-
ment. Fortunately, the eSOP’s specific server-origin
matching criterion (see Sec. 6.3.3) allows a robust and
flexible handling of such situations. The eSOP does not
require the server-origin values to match exactly. The
only requirement is, that the acting domain is whitelisted
in the receiving server-origin. Hence, even in situations
of slightly different server configurations (much like in
Example 3, Sec. 6.3.2), the functionality of the Web ap-
plication remains undisturbed. Additionally, this robust-
ness property also allows server-origin settings to change
in long term caching scenarios. As long as the initial
domain requirements of the cached resource remain ful-
filled, the server’s server-origin setting can be extended
or modified without causing interoperability problems.

Last but not least, an adaption of the eSOP would
obliterate the requirement of DNS Pinning for security
reasons completely. Hence, for servers that provide the
X-Server-Origin header, the DNS TTL value can
be as small as desired. No security degradation will
occur, when browsers respect such small TTL values.
This in turn allows easy setup of highly flexible load-
balancing and error-correcting network setups with mul-
tiple, redundant servers.

USENIX Association 22nd USENIX Security Symposium 633

7 Practical Implementation

In order to validate the feasibility, security and function-
ality properties of the eSOP, we implemented it for the
Chromium Web browser [6]. Thereby, we enhanced the
so-called Security-Origin which stores the ”protocol, do-
main and port”-triple of a Web site by adding the pro-
posed Server-Origin. Data stored within this data struc-
ture is provided by the X-Server-Origin response
header. Our implementation allows the header to have
two types of values. If the server does not send the header
or sends an empty header, we assume that it does not
implement our approach or wants to opt-out of the pro-
tection mechanism. In these cases, we allow access re-
gardless of the acting domain value for backwards com-
patability. Additionally, the header can be set to a list
of comma-separated domains. Using the stored informa-
tion we are able to successfully prevent rebinding sce-
narios. At this point, we need to distinguish between
XmlHttpRequests (XHRs) and script access to a view-
port, such as frames or popup windows.

Script access to a viewport For a viewport, we want
to align our implementation to how browsers should han-
dle cross-origin requests, thus allowing a popup or frame
from any resource to be rendered but to deny script ac-
cess if the origins do not match. This is also important to-
wards keeping design goal (DG4), i.e., being downwards
compatible. In the current implementation of Chromium
we extended the origin check to verify the server-origin
as well as the protocol, domain and port. If a Web appli-
cation does not implement our suggested extended same-
origin policy, the browser falls back to the normal SOP
validation and renders the page properly.

XmlHttpRequests For XmlHttpRequests, we patched
the functionality for same-origin requests to parse our re-
sponse header field and to grant or revoke scripting ac-
cess depending on the received value.

To be fully interoperable with the browser’s XHR ob-
ject, we had to ensure compatibility with its recently in-
troduced cross-origin capabilities:

To allow XHRs to access cross-origin resources,
the W3C specified cross-origin resource sharing
(CORS) [37]. CORS allows the initiation of simple
requests to a cross-origin resource and only checks
the right to access the response after the request has
been completed. In the context of CORS a requests is
considered to be simple if it also would be possible to
create an equivalent request with other means, such as
IMG-tags or HTML forms. because simple requests
cannot change the state of a web application.

For complex requests, CORS requires that the browser
sends a preflight request to the server to retrieve the

same-domain

XmlHttpRequest

complexno Preflight Requestyes

Request

CORS allows?

yes

no

Request

yes

X-Server-Origin CORS Headers

Response
yes yes

Figure 2: Implementation logic for XHR

CORS-relevant headers. Only if the retrieved headers al-
low access to the resource, the complex request is sent
to the server to ensure that state-changing operations are
only performed if explicitly allowed by the application.

In a sense, requests to rebound domain should also be
treated as cross-origin requests. Thus, we can allow sim-
ple requests to be sent but need to verify the server-origin
before allowing access to the response. For a complex re-
quest, we need to check the preflight response and only
allow the actual request to be sent if the server-origin
matches. To distinguish between simple and complex,
we used the already existing check from the CORS im-
plementation in Chromium. However, using the preflight
functionality from CORS would break constraint DG3.
If - for example - we request a same-domain resource on
a server that does not implement CORS, the CORS head-
ers would not be set and the check would fail. Therefore,
we implemented a function that only check the X-Server-
Origin header.

The flow chart in Fig. 2 shows the resulting implemen-
tation logic of the XHR object. Our addition to the im-
plementation is positioned on the lower left of the chart,
whereas the right part of the figure depicts the original
logic as implemented by Chromium. Note that as an
XHR is not rendered by the browser, we can directly
block access upon receiving the response from the server.

7.1 Implementation and performance
In total, we modified 34 lines of code in Chromium.
As discussed earlier, the implementation manifests it-
self only as parsing and extraction of the HTTP head-
ers, the allocation of a little amount of memory to store
the server-origin and a string comparison of the domain
and the stored value. The parsing of HTTP headers is
executed for any request, thus the performance impact is

634 22nd USENIX Security Symposium USENIX Association

reduced to just one more array access. Thus, in our tests
we had no noticeable overhead when accessing a Web
application.

8 Related Work
Related offensive and protective techniques have already
been the subject of Sections 3.1 and 3.2. Hence, in this
section we focus on approaches that directly relate to
the eSOP, as they propose modifications to the browser-
server interaction to combat DNS Rebinding:

Conceptually closest to our protection approach is the
“Strong Locked SOP” by Karlof et al. [19], which also
proposes to include server-provided information into the
SOP decision. In the case of the “Strong Locked SOP”,
this information is derived from the TLS/SSL certifi-
cates of the involved Web servers in the form of the cer-
tificates’ public keys. Consequently, JavaScript is only
granted access to resources that share the same public
key. In the special case of “pharming” attacks (which
is the approach’s main concern), where the attacker con-
trols the DNS resolving process of the victim, Karlof’s
approach is conceptually stronger than the eSOP. Fur-
thermore, in a scenario in which all communication is
done via HTTPS and all servers are outfitted with valid
SSL certificates, the Strong Locked SOP would provide
reliable protection against rebinding attacks. However,
expecting the Web to go completely HTTPS appears
unrealistic, especially regarding intranet Web resources
which only in very rare cases have valid SSL certificates.
In contrast, the eSOP only requires to configure a single
response header and works well in plain HTTP scenarios.

In [13] it is mentioned that early versions of
the HTML5 specification included “IP-based Origins”,
which utilize the server’s IP as a fourth factor in the ori-
gin check. Compared to the eSOP, IP-based Origins are
neither able to securely handle domain relaxation nor do
they provide evidence of invalid origins (see Sec. 6.3.6),
thus, making them susceptible to library include attacks.

Furthermore, Jackson et al. propose “Host Name Au-
thorization”, a network based service [14], which an-
nounces the host names that are associated with a given
IP address. Host Name Authorization relies on reverse
DNS: Whenever the browser executes a DNS lookup,
it also verifies that the requested domain is actually in
the set of valid domains of the received IP address.
This is done via querying the service under auth.ip.in-
addr.arpa, with ip being the IP address which has been
returned by the DNS server. Compared to our approach,
Host Name Authorization has several drawbacks. For
one, it requires considerable setup effort, as both reverse
DNS as well as the actual service have to be enabled.
Also, Host Name Authorization is realized within the
DNS system, hence, the maintainer of the Web server

also needs administrative access to the corresponding
DNS server. This requirement cannot always be satisfied,
e.g., in shared hosting scenarios, for local machines, or
for internal services in cooperate networks. In addition,
the approach requires two additional DNS round trips for
each DNS resolving process, which could lead to no-
ticeable latency under certain circumstance, e.g., cellu-
lar networks. In comparison, our approach only requires
Web server-provided functionality and does not add any
network overhead.

Finally, for completeness sake, the Internet draft [22]
proposes the HTTP request header X-Request
Origin. The purpose of the header is to transport the
domain value or IP address of the browser-based compo-
nent which was responsible for initiating the HTTP re-
quest within the browser. The draft lists DNS Rebinding
attacks (in the form of “Quick-swap DNS”) as one of its
motivational examples. However, in the context of DNS
Rebinding situations, the header’s value will necessarily
always equal the value of the HTTP host header, and
hence, shares its protection properties and drawbacks.

9 Conclusion

For more than one and a half decades, DNS Rebinding
continued to be a constant problem of the Web. Sev-
eral attempts to mitigate the issue have been undertaken,
but up to now no fundamental solution for the problem
was introduced successfully. In this paper, we presented
a novel attack variant, utilizing the HTML5 AppCache.
We practically validated our attack and demonstrated that
it affects all popular browsers and most plug-in tech-
nologies, while reliably circumventing currently existing
browser-based countermeasures. Using our attack as mo-
tivation, we revisited the attack’s underlying problem and
identified a mismatch between the SOP’s semantics and
its implementation: The SOP’s main purpose is to en-
sure security boundaries of Web servers. However, the
Web servers themselves are only indirectly involved in
the security decision. Instead, the SOP relies on infor-
mation obtained from the domain name system, which
is not necessarily controlled by the Web server’s owners.
This mismatch is exploited by DNS Rebinding.

To overcome this problematic inconsistency, we pro-
posed a light-weight extension to the SOP (eSOP), which
takes input from the Web server into account. The
eSOP robustly defeats DNS Rebinding attacks while be-
ing backward compatible with user-agents that do not
yet implement the extended policy. Our solution does
not require additional network traffic and fully supports
previously problematic scenarios, including domain re-
laxation, content caching, and communication over Web
proxies. Additionally, the eSOP eradicates the need for
DNS Pinning. Thus, browsers implementing the pol-

USENIX Association 22nd USENIX Security Symposium 635

icy can better inter-operate with dynamic DNS settings,
such as DNS based load-balancing or Content Distribu-
tion Networks (CDNs). In summary, adopting the eSOP
comes with very little costs but leads to a significant se-
curity increase and additional benefits in functionality.

Acknowledgments
This work was in parts supported by the EU Project Web-
Sand (FP7-256964), http://www.websand.eu. The sup-
port is gratefully acknowledged.

References
[1] B. Anderson. Why Web Browser DNS Caching Can Be A Bad

Thing. [online], http://dyn.com/web-browser-dns-c
aching-bad-thing/, last accessed 08/06/2012, 2011.

[2] A. Bortz, A. Barth, and C. Jackson. Dnswall. [software], http:
//code.google.com/p/google-dnswall/.

[3] D. Byrne. Anti-DNS Pinning and Java Applets. Posting to the
Bugtraq mailing list, http://seclists.org/fulldiscl
osure/2007/Jul/0159.html, July 2007.

[4] D. Dean, E. Felten, and D. Wallach. Java Security: From Hot-
Java to Netscape and Beyond. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, SP ’96, pages 190–, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[5] S. Dutta. Client-side cross-domain security. Technical report,
Microsoft, Dec. 2011. http://msdn.microsoft.com/en-
us/library/cc709423\%28v=vs.85\%29.aspx.

[6] Google Chromium Developers. The Chromium projects. [online]
http://www.chromium.org.

[7] J. Grossman, R. Hansen, P. Petkov, and A. Rager. Cross Site
Scripting Attacks: XSS Exploits and Defense. Syngress, 2007.

[8] J. Grossman and T. Niedzialkowski. Hacking Intranet
Websites from the Outside. Talk at Black Hat USA,
http://www.blackhat.com/presentations/bh-
usa-06/BH-US-06-Grossman.pdf, 2006.

[9] C. Heffner. How to Hack Millions of Routers. Talk at the Black
Hat USA conference, 2010.

[10] I. Hickson. Html5. W3c working draft, W3C, May 2012.
http://www.w3.org/TR/html5/.

[11] J. Hirth. It’s Time to Rethink the Default Cache Size of Web
Browsers. [online], http://kaioa.com/node/74, last ac-
cess 8/5/2012, 2008.

[12] J. Hodges, C. Jackson, and A. Barth. HTTP Strict Transport
Security (HSTS). [IETF draft], http://tools.ietf.org/h
tml/draft-ietf-websec-strict-transport-sec,
Version 11, July 2012.

[13] C. Jackson and A. Barth. Beware of Finer-Grained Origins. In In
Web 2.0 Security and Privacy (W2SP 2008), 2008.

[14] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protect-
ing Browsers from DNS Rebinding Attacks. In In Proceedings of
ACM CCS 07, 2007.

[15] M. Johns. (somewhat) breaking the same-origin pol-
icy by undermining dns-pinning. Posting to the Bugtraq
mailinglist, http://www.securityfocus.com/archive
/107/443429/30/180/threaded, 2006.

[16] M. Johns and Kanatoko. Using Java in anti DNS-pinning attacks
(Firefox and Opera). [online], Security Advisory, http://sh
ampoo.antville.org/stories/1566124/, (08/27/07),
Februar 2007.

[17] M. Johns and J. Winter. Protecting the Intranet Against
”JavaScript Malware” and Related Attacks. In Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA 2007).
Springer, July 2007.

[18] Kanatoko. Anti-DNS Pinning + Socket in Flash. [online],
http://www.jumperz.net/index.php?i=2&a=3&b=3,
(19/01/07), January 2007.

[19] C. Karlof, U. Shankar, J. Tygar, and D. Wagner. Dynamic pharm-
ing attacks and the locked same-origin policies for web browsers.
In Proceedings of the 14th ACM Conference on Computer and
Communication Security (CCS ’07), October 2007.

[20] G. Maone. NoScript Firefox Extension. [software], http://
www.noscript.net/whats, 2012.

[21] A. Megacz. Firewall circumvention possible with all browsers.
Posting to the Bugtraq mailinglist, http://seclists.org
/bugtraq/2002/Jul/0362.html, July 2002.

[22] A. Megacz and D. Meketa. X-RequestOrigin. Inter-
net Draft, http://tools.ietf.org/html/draft-mega
cz-x-requestorigin-00, June 2003.

[23] Microsoft. IE8 Security Part VII: ClickJacking Defenses, 2009.

[24] M. Mueller. Response to DNS spoofing attack. [Usenet post-
ing], http://sip.cs.princeton.edu/news/sun-02-2
2-96.html, 1996.

[25] Princeton University. DNS Attack Scenario. [online],
http://www.cs.princeton.edu/sip/news/dns-
scenario.html.

[26] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear. Address Allocation for Private Internets. RFC 1918, ht
tp://www.ietf.org/rfc/rfc1918.txt, February 1996.

[27] Rich internet application (ria) market share. http://www.sta
towl.com/custom ria market penetration.php.

[28] B. K. Rios and N. McFeters. Slipping Past The Firewall. Talk
at the HITBSecConf2007 conference, http://conference
.hitb.org/hitbsecconf2007kl/agenda.htm, 2007.

[29] J. Roskind. Attacks Against the Netscape Browser. Talk at the
RSA Conference, April 2001.

[30] D. Ross. Notes on DNS Pinning. [online], http:
//blogs.msdn.com/b/dross/archive/2007/07
/09/notes-on-dns-pinning.aspx, last accessed 8/4/12,
July 2007.

[31] J. Ruderman. The Same Origin Policy. [online],
http://www.mozilla.org/projects/security
/components/same-origin.html (01/10/06), August
2001.

636 22nd USENIX Security Symposium USENIX Association

[32] J. Soref. DNS: Spoofing and Pinning. [online], http:
//web.archive.org/web/20100211170613/http:
//viper.haque.net/˜timeless/blog/11/, (07/07/12),
2003.

[33] B. Sterne and A. Barth. Content Security Policy. W3C Work-
ing Draft, http://www.w3.org/TR/2011/WD-CSP-2011
1129/, 2012.

[34] D. Stuttard. DNS Pinning and Web Proxies. NISR
whitepaper, http://www.ngssoftware.com/research/
papers/DnsPinningAndWebProxies.pdf, 2007.

[35] P. Uhley. Flash content and the same-origin policy.
http://blogs.adobe.com/asset/2009/11/fla
sh content and the same-ori.html, 2009.

[36] D. Ulevitch. Finally, a real solution to DNS rebinding attacks.
[online], http://blog.opendns.com/2008/04/14/fi
nally-a-real-solution-to-dns-rebinding-att
acks/, last accessed 08/06/2012, April 2008.

[37] A. van Kesteren (Editor). Cross-Origin Resource Sharing. W3C
Working Draft, Version WD-cors-20100727, http://www.w
3.org/TR/cors/, July 2010.

[38] W3C. Same Origin Policy. [online], http://www.w3.org
/Security/wiki/Same Origin Policy, (08/01/2012,
2010.

USENIX Association 22nd USENIX Security Symposium 637

Revolver: An Automated Approach to the
Detection of Evasive Web-based Malware

Alexandros Kapravelos
UC Santa Barbara

kapravel@cs.ucsb.edu

Yan Shoshitaishvili
UC Santa Barbara
yans@cs.ucsb.edu

Marco Cova
University of Birmingham
m.cova@cs.bham.ac.uk

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

Abstract
In recent years, attacks targeting web browsers and their

plugins have become a prevalent threat. Attackers deploy
web pages that contain exploit code, typically written in
HTML and JavaScript, and use them to compromise un-
suspecting victims. Initially, static techniques, such as
signature-based detection, were adequate to identify such
attacks. The response from the attackers was to heavily
obfuscate the attack code, rendering static techniques insuf-
ficient. This led to dynamic analysis systems that execute
the JavaScript code included in web pages in order to expose
malicious behavior. However, today we are facing a new
reaction from the attackers: evasions. The latest attacks
found in the wild incorporate code that detects the presence
of dynamic analysis systems and try to avoid analysis and/or
detection.

In this paper, we present Revolver, a novel approach to au-
tomatically detect evasive behavior in malicious JavaScript.
Revolver uses efficient techniques to identify similarities be-
tween a large number of JavaScript programs (despite their
use of obfuscation techniques, such as packing, polymor-
phism, and dynamic code generation), and to automatically
interpret their differences to detect evasions. More precisely,
Revolver leverages the observation that two scripts that are
similar should be classified in the same way by web malware
detectors (either both scripts are malicious or both scripts
are benign); differences in the classification may indicate
that one of the two scripts contains code designed to evade a
detector tool.

Using large-scale experiments, we show that Revolver
is effective at automatically detecting evasion attempts in
JavaScript, and its integration with existing web malware
analysis systems can support the continuous improvement
of detection techniques.

1 Introduction

In the last several years, we have seen web-based malware—
malware distributed over the web, exploiting vulnerabilities

in web browsers and their plugins—becoming a prevalent
threat. Microsoft reports that it detected web-based exploits
against over 3.5 million distinct computers in the first quarter
of 2012 alone [22]. In particular, drive-by-download attacks
are the method of choice for attackers to compromise and
take control of victim machines [12,29]. At the core of these
attacks are pieces of malicious HTML and JavaScript code
that launch browser exploits.

Recently, a number of techniques have been proposed
to detect the code used in drive-by-download attacks. A
common approach is the use of honeyclients (specially in-
strumented browsers) that visit a suspect page and extract
a number of features that help in determining if a page is
benign or malicious. Such features can be based on static
characteristics of the examined code [5,7], on specifics of its
dynamic behavior [6, 20, 25, 28, 32, 40], or on a combination
of static and dynamic features [34].

Drive-by downloads initially contained only the code
that exploits the browser. This approach was defeated by
static detection of the malicious code using signatures. The
attackers started to obfuscate the code in order to make the
attacks impossible to be matched by signatures. Obfuscated
code needs to be executed by a JavaScript engine to truly
reveal the final code that performs the attack. This is why
researchers moved to dynamic analysis systems which exe-
cute the JavaScript code, deobfuscating this way the attacks
regardless of the targeted vulnerable browser or plugin. As a
result, the attackers have introduced evasions: JavaScript
code that detects the presence of the monitoring system and
behaves differently at runtime. Any diversion from the origi-
nal targeted vulnerable browser (e.g., missing functionality,
additional objects, etc.) can be used as an evasion.

As a result, malicious code is not a static artifact that, after
being created, is reused without changes. To the contrary,
attackers have strong motivations to modify the code they
use so that it is more likely to evade the defense mechanisms
employed by end-users and security researchers, while con-
tinuing to be successful at exploiting vulnerable browsers.
For example, attackers may obfuscate their code so that it

638 22nd USENIX Security Symposium USENIX Association

does not match the string signatures used by antivirus tools
(a situation similar to the polymorphic techniques used in
binary malware). Attackers may also mutate their code with
the intent of evading a specific detection tool, such as one of
the honeyclients mentioned above.

This paper proposes Revolver, a novel approach to auto-
matically identify evasions in drive-by-download attacks.
In particular, given a piece of JavaScript code, Revolver
efficiently identifies scripts that are similar to that code,
and automatically classifies the differences between two
scripts that have been determined to be similar. Revolver
first identifies syntactic-level differences in similar scripts
(e.g., insertion, removal, or substitution of snippets of code).
Then Revolver attempts to explain the semantics of such dif-
ferences (i.e., their effect on page execution). We show that
these changes often correspond to the introduction of eva-
sive behavior (i.e., functionality designed to evade popular
honeyclient tools).

There are several challenges that Revolver needs to ad-
dress to make this approach feasible in practice. First, typical
drive-by-download web pages serve malicious code that is
heavily obfuscated. The code may be mutated from one visit
to the page to the next by using simple polymorphic tech-
niques, e.g., by randomly renaming variables and functions
names. Polymorphism creates a multitude of differences
in two pieces of code. From a superficial analysis, two
functionally identical pieces of code will appear as very
different. In addition, malicious code may be produced on-
the-fly, by dynamically generating and executing new code
(through JavaScript and browser DOM constructs such as
the eval() and setTimeout() functions). Dynamic
code generation poses a problem of coverage; that is, not
all JavaScript code may be readily available to the analyzer.
Therefore, a naive approach that attempts to directly com-
pare two malicious scripts would be easily thwarted by these
obfuscation techniques and would fail to detect their similar-
ities. Instead, Revolver dynamically monitors the execution
of JavaScript code in a web page so that it can analyze both
the scripts that are statically present in the page and those
that are generated at runtime. In addition, to overcome poly-
morphic mutations of code, Revolver performs its similarity
matching by analyzing the Abstract Syntax Tree (AST) of
code, thereby ignoring superficial changes to its source code.

Another challenge that Revolver must address is scala-
bility. For a typical analysis of a web page, Revolver needs
to compare several JavaScript scripts (more precisely, their
ASTs) with a repository of millions of ASTs (potential
matches) to identify similar ones. To make this similarity
matching computationally efficient, we use a number of ma-
chine learning techniques, such as dimensionality reduction
and clustering algorithms.

Finally, not all code changes are security-relevant. For
example, a change in a portion of the code that is never exe-
cuted is less interesting than one that causes a difference in

the runtime behavior of the script. In particular, we are inter-
ested in identifying code changes that cause detection tools
to misclassify a malicious script as benign. To identify such
evasive code changes, Revolver focuses on modifications
that introduce control flow changes in the program. These
changes may indicate that the modified program checks
whether it is being analyzed by a detector tool (rather than
an unsuspecting visitor) and exhibits a different behavior
depending on the result of this check.

By automatically identifying code changes designed to
evade drive-by-download detectors, one can improve detec-
tion tools and increase their detection rate. We also leverage
Revolver to identify benign scripts (e.g., well-known li-
braries) that have been injected with malicious code, and,
thus, display malicious behavior.

This paper makes the following contributions:

1. Code similarity detection: We introduce techniques
to efficiently identify JavaScript code snippets that are
similar to each other. Our tool is resilient to obfuscation
techniques, such as polymorphism and dynamic code
generation, and also pinpoints the precise differences
(changes in their ASTs) between two different versions
of similar scripts.

2. Detection of evasive code: We present several tech-
niques to automatically classify differences between two
similar scripts to highlight their purpose and effect on
the executed code. In particular, Revolver has identified
several techniques that attackers use to evade existing
detection tools by continuously running in parallel with
a honeyclient.

2 Background and Overview

To give the reader a better understanding of the motivation
for our system and the problems that it addresses, we start
with a discussion of malicious JavaScript code used in drive-
by-download attacks. Moreover, we present an example of
the kind of code similarities that we found in the wild.
Malicious JavaScript code. The web pages involved
in drive-by-download attacks typically include malicious
JavaScript code. This code is usually obfuscated, and it
fingerprints the visitor’s browser, identifies vulnerabilities
in the browser itself or the plugins that the browser uses, and
finally launches one or more exploits. These attacks target
memory corruption vulnerabilities or insecure APIs that,
if successfully exploited, enable the attackers to execute
arbitrary code of their choice.

Figure 1 shows a portion of the code used in a recent
drive-by-download attack against users of the Internet Ex-
plorer browser. The code (slightly edited for the sake of
clarity) instantiates a shellcode (Line 8) by concatenating
the variables defined at Lines 1–7; a later portion of the
code (not shown in the figure) triggers a memory corruption

USENIX Association 22nd USENIX Security Symposium 639

1 var nop="%uyt9yt2yt9yt2";
2 var nop=(nop.replace(/yt/g,""));
3 var sc0="%ud5db%uc9c9%u87cd...";
4 var sc1="%"+"yutianu"+"ByutianD"+ ...;
5 var sc1=(sc1.replace(/yutian/g,""));
6 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";
7 var sc2=(sc2.replace(/yutian/g,""));
8 var sc=unescape(nop+sc0+sc1+sc2);

Figure 1: Malicious code that sets up a shellcode.

vulnerability, which, if successful, causes the shellcode to
be executed.

A common approach to detect such attacks is to use hon-
eyclients, which are tools that pose as regular browsers, but
are able to analyze the code included in the page and the side-
effects of its execution. More precisely, low-interaction hon-
eyclients emulate regular browsers and use various heuris-
tics to identify malicious behavior during the visit of a web
page [6, 13, 25]. High-interaction honeyclients consist of
full-featured web browsers running in a monitoring environ-
ment that tracks all modifications to the underlying system,
such as files created and processes launched [28, 38, 40].
If any unexpected modification occurs, it is considered to
be a manifestation of a successful exploit. Notice that this
sample is difficult to detect with a signature, as strings are
randomized on each visit to the compromised site.
Evasive code. Attackers have a vested interest in crafting
their code to evade the detection of analysis tools, while
remaining effective at exploiting regular users. This allows
their pages to stay “under the radar” (and actively malicious)
for a longer period of time, by avoiding being included in
blacklists such as Google’s Safe Browsing [11] or being
targeted by take-down requests.

Attackers can use a number of techniques to avoid detec-
tion [31]: for example, code obfuscation is effective against
tools that rely on signatures, such as antivirus scanners;
requiring arbitrary user interaction can undermine high-
interaction honeyclients; probing for arcane characteristics
of browser features (likely not correctly emulated in browser
emulators) can thwart low-interaction honeyclients.

An effective way to implement this kind of circumventing
techniques consists of adding some specialized “evasive
code” whose only purpose is to cause detector tools to fail
on an existing malicious script. Of course, the evasive code
is designed in such a way that regular browsers (used by
victims) effectively ignore it. Such evasive code could, for
example, pack an exploit code in an obfuscation routine,
check for human interaction, or implement a test for detect-
ing browser emulators (such evasive code is conceptually
similar to “red pills” employed in binary malware to detect
and evade commonly-used analysis tools [10]).

Figure 2 shows an evasive modification to the original
exploit of Figure 1, which we also found used in the wild.
More precisely, the code tries to load a non-existent ActiveX

1 try {
2 new ActiveXObject("yutian");
3 } catch (e) {
4 var nop="%uyt9yt2yt9yt2";
5 var nop=(nop.replace(/yt/g,""));
6 var sc0="%ud5db%uc9c9%u87cd...";
7 var sc1="%"+"yutianu"+"ByutianD"+ ...;
8 var sc1=(sc1.replace(/yutian/g,""));
9 var sc2="%"+"u"+"54"+"FF"+...+"8"+"E"+"E";

10 var sc2=(sc2.replace(/yutian/g,""));
11 var sc=unescape(nop+sc0+sc1+sc2);
12 }

Figure 2: An evasion using non-existent ActiveX controls.

control, named yutian (Line 2). On a regular browser,
this operation fails, triggering the execution of the catch
branch (Lines 4–11), which contains an identical copy of
the malicious code of Figure 1. However, low-interaction
honeyclients usually emulate the ActiveX API by simulating
the presence of any ActiveX control. In these systems, the
loading of the ActiveX control does not raise any exception;
as a consequence, the shellcode is not instantiated correctly,
which stops the execution of the exploits and causes the
honeyclient to fail to detect the malicious activity.
Detecting evasive code using code similarity. Code simi-
larity approaches have been proposed in the past, but none of
them has focused specifically on malicious JavaScript. There
are several challenges involved when processing malicious
JavaScript for similarities. Attackers actively try to trigger
parsing issues in analyzers. The code is usually heavily
obfuscated, which means that statically examining the code
is not enough. The malicious code itself is designed to evade
signature detection from antivirus products. This renders
string-based and token-based code similarity approaches
ineffective against malicious JavaScript. We will show later
how regular code similarity tools, such as Moss [37], fail
when analyzing obfuscated scripts. In Revolver, we extend
tree-based code similarity approaches and focus on mak-
ing our system robust against malicious JavaScript. We
elaborate on our novel code similarity techniques in §3.4.

At a high-level overview, we use Revolver to detect and
understand the similarity between two code scripts. Intu-
itively, Revolver is provided with the code of both scripts
and their classification by one or more honeyclient tools. In
our running example, we assume that the code in Figure 1
is flagged as malicious and the one in Figure 2 as benign.
Revolver starts by extracting the Abstract Syntax Tree (AST)
corresponding to each script. Revolver inspects the ASTs
rather than the original code samples to abstract away possi-
ble superficial differences in the scripts (e.g., the renaming
of variables). When analyzing the AST of Figure 2, it detects
that it is similar to the AST of the code in Figure 1. The
change is deemed to be interesting, since it introduces a
difference (the try-catch statement) that may cause a change
in the control flow of the original program. Our system also
determines that the added code (the statement that tries to

640 22nd USENIX Security Symposium USENIX Association

load the ActiveX control) is indeed executed by tools visit-
ing the page, thus increasing the relevance of the detected
change (execution bits are described in more detail in §3.1).
Finally, Revolver classifies the modification as a possible
evasion attempt, since it causes the honeyclient to change its
detection result (from malicious to benign).

Assumptions and limitations. Our approach is based on a
few assumptions. Revolver relies on external detection tools
to collect (and make available) a repository of JavaScript
code, and to provide a classification of such code as either
malicious or benign (i.e., Revolver is not a detection tool by
itself). To obtain code samples and classification scores, we
can rely on several publicly-available detectors [6, 13, 25].

Attackers might write a brand new attack with all com-
ponents (evasion, obfuscation, exploit code) written from
scratch. In such cases, Revolver will not be able to find any
similarities the first time it analyzes these attacks. The lack
of similarities though can be used to our advantage, since
we can isolate brand-new attacks (provided that they can be
identified by other means) based on the fact that we have
never observed such code before.

In the same spirit, to detect evasions, Revolver needs to
inspect two versions of a malicious script: the “regular”
version, which does not contain evasive code, and the “eva-
sive” version, which attempts to circumvent detection tools.
Furthermore, if an evasion is occurring, we assume that a de-
tection tool would classify these two versions differently. In
particular, if only the evasive version of a JavaScript program
is available, Revolver will not be able to detect this evasion.
We consider this condition to be unlikely. In fact, trend
results from a recent Google study on circumvention [31]
suggest that malicious code evolves over time to incorporate
more sophisticated techniques (including evasion). Thus,
having a sufficiently large code repository should allow us
to have access to both regular and evasive versions of a
script. Furthermore, we have anecdotal evidence of mal-
ware authors creating different versions of their malicious
scripts and submitting them to public analyzers, until they
determine that their programs are no longer detected (this
situation is reminiscent of the use of anti-antivirus services
in the binary malware world [18]).

Revolver is not effective when server-side evasion (for
example, IP cloaking) is used: in such cases, the malicious
web site does not serve at all the malicious content to a de-
tector coming from a blocked IP address, and, therefore, no
analysis of its content is possible. This is a general limitation
of all analysis tools and can be solved by means of a better
analysis infrastructure (for example, by visiting malicious
sites from IP addresses and networks that are not known
to be associated with analysts and security researchers and
cannot be easily fingerprinted by attackers).

3 Approach

In this section, we describe Revolver in detail, focusing
on the techniques that it uses to find similarities between
JavaScript files.

A high-level overview of Revolver is presented in Figure 3.
First, we leverage an existing drive-by-download detection
tool (an “Oracle”) to collect datasets of both benign and
malicious web pages (§3.1). Second, Revolver extracts the
ASTs (§3.2) of the JavaScript code contained in these pages
and, leveraging the Oracle’s classification for the code that
contains them, marks them as either benign or malicious.
Third, Revolver computes a similarity score for each pair of
ASTs, where one AST is malicious and the other one can
be either benign or malicious (§3.3–§3.4). Finally, pairs
that are found to have a similarity score higher than a given
threshold are further analyzed to identify and classify their
similarities (§3.5).

If Revolver finds similarities between two malicious
scripts, then we classify this case as an instance of evo-
lution (typically, an improvement of the original malicious
code). On the other hand, if Revolver detects similarities
between a malicious and a benign script, it performs an
additional classification step. In particular, similarities can
be classified by Revolver into one of four possible categories:
evasions, injections, data dependencies, and general evolu-
tions. We are especially interested in identifying evasions,
which indicate changes that cause a script that had been
found to be malicious before to be flagged as benign now.

It is important to note that, due to JavaScript’s ability to
produce additional JavaScript code on the fly (which enables
extremely complex JavaScript packers and obfuscators),
performing this analysis statically would not be possible.
Revolver works dynamically, by analyzing all JavaScript
code that is compiled in the course of a web page’s execution.
By including all these scripts, and the relationships between
them (such as what code created what other code), Revolver
is able to calculate JavaScript similarities among malicious
web pages to an extent that is not, to our knowledge, possible
with existing state-of-the-art code comparison tools.

3.1 Oracle

Revolver relies on existing drive-by-download detection
tools for a single task: the classification of scripts in web
pages as either malicious or benign. Notice that our approach
is not tied to a specific detection technique or tool; therefore,
we use the term “Oracle” to generically refer to any such
detection system. In particular, several popular low- and
high-interaction honeyclients (e.g., [6, 13, 25, 38]) or any
antivirus scanner can readily be used for Revolver.

Revolver analyzes the Abstract Syntax Trees (ASTs) of in-
dividual scripts rather than examining web pages as a whole.
Therefore, Revolver performs a refinement step, in which

USENIX Association 22nd USENIX Security Symposium 641

!"#

$%&# '(#)*+#

,#

-./012#324#

!"#

$%&# '(#)*+#

,#

56761/.689#
0:7;<8/=:># ?46@#7AB#

+/1606:<C#2D:1<=:>#
E/8/FG2;2>G2>09#
H/D/50.6;8#6>I20=:>C#
JD/C6:>C#

K/L2C# %5MC# N/>G6G/82#
;/6.C#

,#

,#

Figure 3: Architecture of Revolver.

i) individual ASTs are extracted from the web pages obtained
from the Oracle, ii) their detection status is determined (that
is, each AST is classified as either benign or malicious),
based on the page classification provided by the Oracle,
and iii) for each node in an AST, it is recorded whether the
corresponding statement was executed. Of course, if an
Oracle natively provides this fine-grained information, this
step can be skipped.

More precisely, Revolver executes each web page using
a browser emulator based on HtmlUnit [1]. The emula-
tor parses the page and extracts all of its JavaScript con-
tent (e.g., the content of script tags and the body of
event handlers). In particular, the ASTs of the JavaScript
code are saved for later analysis. In addition, to obtain
the AST of dynamically-generated code, Revolver executes
the JavaScript code. At the end of the execution, for each
node in the AST, Revolver keeps an execution bit to record
whether the code corresponding to that node was executed.
Whenever it encounters a function that generates new code
(e.g., a call to theeval() orsetTimeout() functions),
Revolver analyzes the code that is generated by these func-
tions. It also saves the parent-child relationship between
scripts, i.e., which script is responsible for the execution
of a dynamically-generated script. For example, the script
containing the eval() call is considered the parent of the
script that is evaluated. Similarly, Revolver keeps track of
which script causes network resources to be fetched, for
example, by creating an iframe tag.

Second, for each AST, Revolver determines if it is mali-
cious or benign, based on the Oracle’s input. More precisely,
an AST is considered malicious if it is the parent of a ma-
licious AST, or if it issued a web request that led to the
execution of malicious code. This makes Revolver flexible
enough to work with any Oracle.

3.2 Abstract Syntax Trees

Revolver’s core analysis is based on the examination of
ASTs rather than the source code of a script. The rationale
for using ASTs is that they abstract away details that are

irrelevant for our analysis (and, in fact, often undesirable),
while retaining enough precision to achieve good results.

For example, consider a script obtained from the code in
Figure 1 via simple obfuscation techniques: renaming of
variables and function names, introduction of comments,
and randomization of whitespace. Clearly, we want Revolver
to consider these scripts as similar. Making this decision can
be non-trivial when inspecting the source code of the scripts.
In fact, as a simple validation, we ran Moss, a system for
determining the similarity of programs, which is often used
as a plagiarism detection tool [37], on the original script and
the one obtained via obfuscation. Moss failed to flag the two
scripts as similar, as shown in the tool’s output here [23].
However, the two scripts are identical when their AST repre-
sentations are considered, since, in the trees, variables are
represented by generic VAR nodes, independently of their
names, and comments and whitespaces are ignored. This
makes tree-based code similarity approaches more suitable
for malicious JavaScript comparisons (and this is the reason
why our analysis leverages ASTs as well). However, as
shown in §3.4, we need to treat malicious code in a way
that is different from previous techniques targeting benign
codebases. Below, we describe our approach and necessary
extensions in more detail.

Revolver transforms the AST produced by the JavaScript
compiler into a normalized node sequence, which is the
sequence of node types obtained by performing a pre-order
visit of the tree. In total, there are 88 distinct node types,
corresponding to different constructs of the JavaScript lan-
guage. Examples of the node types includeIF,WHILE, and
ASSIGN nodes.

Figure 4 summarizes the data structures used by Revolver
during its processing. We discuss sequence summaries in
the next Section.

3.3 Similarity Detection

After extracting an AST and transforming it in its normal-
ized node sequence, Revolver finds similar normalized node
sequences. The result is a list of normalized node sequence

642 22nd USENIX Security Symposium USENIX Association

!"#$%&'#$()#$*+,#$-$

.#$$$$$$-$$$$$$$$$$$$/0$

1#$21#$.#$-#$$$$1.$
!"$

%&'$ ()$ *+,$

-$

&34$ *56789:;<=$$
>5=<$?<@A<>B<$

3<@A<>B<$
?A7786C$

• $'<D><7<>E$ • $F<=AG9:B8H5>$
• $*5=<$?<@A<>B<$$
$$$?:7:986:EC$

• $*<86<?E$><:IJK56$
$$$?<86BJ$

Figure 4: Data structures used by Revolver.

pairs. In particular, pairs of malicious sequences are com-
pared to identify cases of evolution; pairs where one of the
sequences is benign and the other malicious are analyzed to
identify possible evasion attempts.

The similarity computation is based on computing the
directed edit distance between two node sequences, which,
intuitively, corresponds to the number of operations that are
required to transform one benign sequence into the malicious
one. Before discussing the actual similarity measurement,
we discuss a number of minimization techniques that we use
to make the computation of the similarity score feasible in
datasets comprising millions of node sequences.
Deduplication. As a first step to reduce the number of
similarity computations, we discard duplicates in our dataset
of normalized node sequences. Since we use a canonical
representation for the ASTs, we can easily and efficiently
compute hashes of each sequence, which enables us to
quickly identify groups of identical node sequences. In the
remaining processing phases, we only need to consider one
member of a group of identical node sequences (rather than
all of its elements). Notice that identical normalized node
sequences may correspond to different scripts, and may also
have a different detection classification (we describe such
cases in §3.5). Therefore, throughout this processing, we
always maintain the association between node sequences
and the scripts they correspond to, and whether they have
been classified as malicious or benign.
Approximate nearest neighbors. Given a repository of
n benign ASTs and m malicious ones, Revolver needs to
compute n×m comparisons over (potentially long) node
sequences. Even after the deduplication step, this may
require a significantly large number of operations.

To address this problem, we introduce the idea of se-
quence summaries. A sequence summary is a compact sum-
marization of a regular normalized node sequence, which
stores the number of times each node type appears in the cor-
responding AST. Since there are 88 distinct node types, each
node sequence is mapped into a point in an 88-dimensional
Euclidean space. An advantage of sequence summaries
is that they bound the length of the objects that will be
compared (from potentially very large node sequences, cor-
responding to large ASTs, down to more manageable vectors

of fixed length).
Then, for each sequence summary s, we identify its ma-

licious neighbors, that is, up to k malicious sequence sum-
maries t, such that the distance between s and t is less than
a chosen threshold τn. Intuitively, the malicious neighbors
correspond to the set of ASTs that we expect to be most
similar to a given AST. Determining the malicious neighbors
of a sequence summary is an instance of the k-nearest neigh-
bor search problem, for which various efficient algorithms
have been proposed. In particular, we solve it by using the
FLANN library [24].

In the remaining step, we compare sequence summaries
only with their malicious neighbors, thus dramatically re-
ducing the number of comparison to be performed.
Normalized node sequence similarity. Finally, we can
compute the similarity between two normalized node se-
quences. More precisely, Revolver compares the normalized
node sequence corresponding to a sequence summary s
with each normalized node sequence that corresponds to a
sequence summary of the malicious neighbors of s.

The similarity measurement is based on the pattern match-
ing algorithm by Ratcliff et al. [33]. More precisely, given
two node sequences, a and b, we first find their longest con-
tiguous common subsequence (LCCS). Then, we recursively
search for LCCS between the pieces of a and b to the left
and right of the matching subsequence. The similarity of a
and b is then returned as the number of nodes in common
divided by the total number of nodes in the malicious node
sequence. Therefore, identical ASTs will have similarity 1,
and the similarity values decrease toward zero as two ASTs
contain higher amounts of different nodes. This technique is
robust against injections, where one benign script includes a
malicious one, since all malicious nodes will be matched.

In addition to a numeric similarity score, the algorithm
also provides a list of insertions for the two node sequences,
that is, a list of AST nodes that would need to be added to one
sequence to transform it into the other one. This information
is very useful for our analysis, since it identifies the actual
code that was added to an original malicious code.

After the similarity score is computed, we discard any
pairs that have a similarity below a predetermined thresh-
old τs.
Expansion. Once pairs of ASTs with high similarity have
been identified, we need to determine the Oracle’s classifica-
tion of the scripts they originate from. We, therefore, expand
out any pairs that we deduplicated in the initial Deduplica-
tion step so that we associate the AST similarities to the
scripts that they correspond to.

3.4 Optimizations
There are several techniques that we utilize to improve
the results produced by the similarity detection steps. In
particular, our objective is to restrict the pairs identified

USENIX Association 22nd USENIX Security Symposium 643

as similar to “interesting” ones, i.e., those that are more
likely to correspond to evasion attempts or significant new
functionality. The techniques introduced here build upon
tree-based code similarity approaches and are specific to
malicious JavaScript.

Size matters. We observed that JavaScript code contains
a lot of very small scripts. In the extreme case, it includes
scripts comprising a single statement. We determined that
the majority of such scripts are generated dynamically
through calls to eval(), which, for example, dynamically
invoke a second function. Such tiny scripts are problematic
for our analysis: they have not enough functionality to per-
form malicious actions and they end up matching other short
scripts, but their similarity is not particularly relevant. As
a consequence, we combine ASTs that contain less than a
set number of nodes (τz). We do this by taking into account
how a script was generated: if another script generated code
under our threshold, we inline the generated script back to
its parent. If the script was not dynamically generated, then
we treat it as if one script contained all static code under our
threshold. This way the attacker cannot split the malicious
code into multiple parts under our threshold in order to evade
Revolver.

Repeated pattern detection. We also observed that, in
certain cases, an AST may contain a set of nodes repeated
a large number of times. This commonly occurs when the
script uses some JavaScript data structure that yields many
repeated AST nodes. For example, malicious scripts that un-
pack or deobfuscate their exploit payload frequently utilize
a JavaScript Array of elements to store the payload. Their
ASTs contain a node for every single element in the Array,
which, in many cases, may have thousands of instances. An
unwanted consequence, then, is that any script with a large
Array will be considered similar to the malicious script (due
to the high similarity of the array nodes), regardless of the
presence of a decoding/unpacking routine (which, instead,
is critical to determine the similarity of the scripts from a
functional point of view). These obfuscation artifacts affect
tree-based similarity algorithms, which will result in the
detection of similar code pairs where the common parts are
of no interest in the context of malicious JavaScript. To
avoid this problem, we identify sequences of nodes that are
repeated in a script more than a threshold (τp) and truncate
them.

Similarity fragmentation. Although we have identified
blocks of code that are shared across two scripts, it can be
the case that these blocks are not continuous. One script
can be broken down into small fragments that are matched
to the other script in different positions. This is why we
take into account the fragmentation of the matching blocks.
To prune these cases, we recognize a similarity only if the
fragmentation of the similarities is below a set threshold τ f .

AST Executed nodes Classification

= ∗ Data-dependency
∗ = Data-dependency

B ⊆ M �= JavaScript injection
M ⊆ B �= Evasion
�= �= General evolution

Table 1: Candidate pairs classification (B is a benign se-
quence, M is a malicious sequence, ∗ indicates a wildcard
value).

3.5 Classification

The outcome of the previous similarity detection step is
a list of pairs of scripts that are similar. As we show in
§5.1 we can have hundreds of thousands of similar pairs.
Therefore, Revolver performs a classification step of similar
pairs. That is, Revolver interprets the changes that were
made between two scripts and classifies them. There are two
cases, depending on the Oracle’s classification of the scripts
in a pair. If the pair consists solely of malicious scripts, then
we classify the similarity as a malicious evolution. The other
case is a pair in which one script is malicious and one script
is benign. We call such pairs candidate pairs (they need to
be further tested before we can classify their differences).
While the similarity detection has operated on a syntactic
level (essentially, by comparing AST nodes), Revolver now
attempts to determine the semantics of the differences.

In practice, Revolver classifies the scripts and their similar-
ities into one of several categories, corresponding to different
cases where an Oracle may flag differently scripts that are
similar. Table 1 summarizes the classification algorithm
used by Revolver.
Data-dependency category. Revolver checks if a pair of
scripts belongs to the data-dependency category. A typical
example of scripts that fall into this category is packers.
Packers are tools that allow JavaScript authors to deliver
their code in a packed format, significantly reducing the
size of the code. In packed scripts, the original code of
the script is stored as a compacted string or array, and its
clear-text version is retrieved at run-time by executing an
unpacking routine. Packers have legitimate uses (mostly,
size compression): in fact, several open-source popular
packers exist [9], and they are frequently used to distribute
packed version of legitimate JavaScript libraries, such as
jQuery. However, malware authors also rely on these very
same packers to obfuscate their code and make it harder to
be fingerprinted.

Notice that the ASTs of packed scripts (generated by
the same packer) are identical, independently of their (un-
packed) payload: in fact, they consist of the nodes of the
unpacking routine (which is fixed) and of the nodes holding
the packed data (typically, the assignment of a string literal

644 22nd USENIX Security Symposium USENIX Association

to a variable). However, the actual packed contents, which
eventually determine whether the script is malicious or be-
nign, are not retained at the AST level of the packer, but the
packed content will eventually determine the nature of the
overall script as benign or malicious.

Revolver categorizes as data-dependent pairs of scripts
that are identical and have different detection classification.

As a slight variation to this scenario, Revolver also classi-
fies as data-dependent pairs of scripts for which the ASTs are
not identical, but the set of nodes that were actually executed
are indeed the same. For example, this corresponds to cases
where a function is added to the packer but is never actually
executed during the unpacking.
Control-flow differences. The remaining categories are
based on the analysis of AST nodes that are different in the
two scripts, and, specifically, of nodes representing control-
flow statement. We focus on such nodes because they give
an attacker a natural way to implement a check designed
to evade detection. In fact, such checks generally test a
condition and modify the control flow depending on the
result of the test.

More precisely, we consider the following control-flow
related nodes: TRY, CATCH, CALL, WHILE, FOR, IF, ELSE,
HOOK, BREAK, THROW, SWITCH, CASE, CONTINUE,
RETURN, LT (<), LE (<=), GT (>), GE (>=), EQ (==)
, NE (! =), SHEQ (===), SNE (! ==), AND, and OR.
Depending on where these control-flow nodes were added,
whether in the benign or in the malicious script, a candidate
pair can be classified as a JavaScript injection or an evasion.
Notice that we leverage here the execution bits to detect
control flow changes that were actually executed and affected
the execution of code that was found as malicious before.
JavaScript injection category. In some cases, malware
authors insert malicious JavaScript code into existing benign
scripts on a compromised host. This is done because, when
investigating a compromise, webmasters may neglect to
inspect files that are familiar to them, and thus such injections
can go undetected. In particular, it is common for malware
authors to add their malicious scripts to the code of popular
JavaScript libraries hosted on a compromised site, such as
jQuery and SWFObject.

In these cases, Revolver identifies similarities between
a benign script (the original, legitimate jQuery code) and a
malicious script (the library with the added malicious code).
In addition, Revolver detects that the difference between
the two scripts is due to the presence of control-flow nodes
in the malicious script (the additional code added to the
library), which are missing in the benign script. Revolver
classifies such similarities as JavaScript injections, since the
classification of the analyzed script changes from benign to
malicious due to the introduction of additional code in the
malicious version of the script.
Evasions category. Pairs of scripts that only differ because
of the presence of additional control-flow nodes in the benign

script are categorized as evasions. In fact, these correspond
to cases where a script, which was originally flagged as ma-
licious by an Oracle, is modified to include some additional
functionality that modifies its control flow (i.e., an evasive
check) and, as a consequence, appears to be benign to the
Oracle.
General evolution cases. Finally, if none of the previous
categories applies to the current pair of scripts, it means
that their differences are caused by the insertion of control-
flow nodes in both the benign and malicious scripts. Unlike
similarities in the evasion category, these similarities may
signify generic evolution between the two scripts. Revolver
flags these cases for manual review, at a lower priority than
evasive cases.

4 Implementation

In this section, we discuss specific implementation choices
for our approach.

We used the Wepawet honeyclient [6] as the Oracle of
Revolver. In particular, the input to Revolver was the web
pages processed by the Wepawet tool at real-time together
with their detection classification. We used Revolver to
extract ASTs from the pages analyzed by Wepawet, and to
perform the similarity processing described in the previous
sections.

As our processing infrastructure, we used a cluster of four
worker machines to process submissions in parallel with the
Oracle. Notice that all the steps in Revolver’s processing can
be easily parallelized. In terms of performance, we managed
to process up to 591,543 scripts on a single day, which was
the maximum number of scripts that we got on a single day
from the Oracle during our experiments.

We will now discuss the parameters that can be tuned in
our algorithms (discussed in §3), explaining the concrete
values we have chosen for our experiments.
Minimum tree size (τz). We chose 25 nodes as the min-
imum size of the AST trees that we will process before
combining them to their parent. Smaller ASTs can result
from calls to eval with tiny arguments, and from calls to
short event handlers, such as onLoad and onMouseOver. We
expect that such small ASTs correspond to short scripts that
do not implement any interesting functionality alone, but
complement the functionality of their parent script.
Minimum pattern size (τp). Another threshold that we
set is the minimum pattern size. Any node sequence that is
repeated more than this threshold is truncated to the threshold
value. The primary application of pattern detection is to
handle similar packers that decode payloads of different size.
We chose 16 for this value, as current packers either work on
relatively long arrays (longer than 16, and thus detected) or
on single strings (one node, and thus irrelevant to this issue).
This amount also excludes the possibility of compressing
interesting code sequences, since we rarely see such long

USENIX Association 22nd USENIX Security Symposium 645

Figure 5: Number of detected similarities as a function of
the distance threshold.

Figure 6: The resulting amount of similarities for different
similarity thresholds.

patterns outside of packed payloads. Reducing this value
would have the effect of making the tree similarity algorithm
much more lax.
Nearest neighbor threshold (τn). In the nearest neighbors
computation, we discard node sequences that are farther
than a given distance d from the node sequence currently
being inspected. We empirically determined a value for this
parameter, by evaluating various values for d and inspecting
the resulting similarities. From Figure 5, it is apparent that
the amount of similarities that are detected levels off fairly
sharply past d = 1,000. We determined that 10,000 is a safe
threshold that includes a majority of trees while allowing
the similarity calculation to be computationally feasible.
Normalized node sequence similarity threshold (τs).
Care has to be taken when choosing the threshold used
to identify similar normalized node sequences. Intuitively,
if this value is too low, we risk introducing significant noise
into our analysis, which will make Revolver consider as
similar scripts that in reality are not related to each other. On
the contrary, if the value is too high, it will discard interesting
similarities. Experimentally (see Figure 6), we determined
that this occurs for similarity values in the 70%–80% inter-
val. Therefore, we chose 75% as our similarity threshold
(in other words, only node sequences that are 75% or more
similar are further considered by Revolver).

Category
Similar
Scripts

Groups
by malicious AST

JavaScript Injections 6,996 701
Data-dependencies 101,039 475
Evasions 4,147 155
General evolutions 2,490 273

Total 114,672 1,604

Table 2: Benign scripts from Wepawet that have similarities
with malicious scripts and their classification from Revolver.

5 Evaluation

We evaluated the ability of Revolver to aid in detecting
evasive changes to malicious scripts in real-world scenarios.
While Revolver can be leveraged to solve other problems,
we feel that automatically identifying evasions is the most
important contribution to improving the detection of web-
based malware.

5.1 Evasions in the wild

Revolver identifies possible evasion attempts by identifying
similarities between malicious and benign code. Therefore,
Revolver’s input is the output of any Oracle that classifies
JavaScript code as either malicious or benign. To evaluate
Revolver, we continuously submitted to Revolver all web
pages that Wepawet examined. Since September 2012, we
collected 6,468,623 web pages out of which 265,692 were
malicious. We analyzed 20,732,766 total benign scripts
and 186,032 total malicious scripts. Out of these scripts, we
obtained 705,472 unique benign ASTs and 5,701 unique
malicious ASTs.

Revolver applied the AST similarity analysis described in
Section 3, and extracted the pairs of similar ASTs. Table 2
summarizes the results of classifying these similarities in the
categories considered by Revolver. In particular, Revolver
identified 6,996 scripts where malicious JavaScript was
injected, 101,039 scripts with data-dependencies, 4,147
evasive scripts, and 2,490 scripts as general evolutions. We
observe that many of these scripts can be easily grouped by
their similarities with the same malicious script. Therefore,
for ease of analysis, we group the pairs by their malicious
AST component, and identify 701 JavaScript injections, 475
data-dependencies, 155 evasions, and 273 general evolu-
tions. Our results indicate a high number of malicious scripts
that share similarities with benign ones. This is due to the
fact that injections and data-dependent malicious scripts
naturally share similarities with benign scripts and we are
observing many of these attacks in the wild.

To verify the results produced by Revolver, we manually
analyzed all groups categorized as “evasions”. For the

646 22nd USENIX Security Symposium USENIX Association

rest of the categories we grouped the malicious ASTs into
families based on their similarities with each other and
examined a few similar pairs from each family. We found
the results for the JavaScript injection and data-dependencies
categories to be correct. The reason why Revolver classified
a large number of scripts as data-dependencies is due to the
extensive use of a few popular packers, such as the Edwards’
packer [9]. For example, the jQuery library was previously
officially distributed in a packed state to reduce its size.

Of the 155 evasions groups, we found that only five were
not intended evasion attempts. We cannot describe all eva-
sions in detail here, but we provide a brief summary for the
most interesting ones in the next section.

The pairs in the “general evolutions” category consisted of
cases where Revolver identified control flow changes in both
the benign and malicious scripts. We manually looked into
them and did not find any behavior that could be classified
as evasive.

5.2 Evasions case studies

The evasions presented here exploit differences in the im-
plementation of Wepawet’s JavaScript interpreter and the
one used by regular browsers. Notice that these evasions
can affect Oracles other than Wepawet; in particular, low-
interaction honeyclients, such as the popular jsunpack [13]
and PhoneyC [25].

We describe in more detail a subset of the evasions that
we found from our experiment on real-world data. In the 22
evasion groups described here, we identified seven distinct
evasion techniques, and one programming mistake in a
malicious PDF.

We found three cases which leveraged subtle details in
the handling of regular expressions and Unicode to cause
a failure in a deobfuscation routine when executing in the
Oracle (on the contrary, regular browsers would not be af-
fected). In another case, the attackers replaced the JavaScript
code used to launch an ActiveX exploit code with equivalent
VBScript code. This is done because Internet Explorer can
interpret VBScript, while most emulators do not support it.
In a different case, the evasive code creates a div tag and
checks for specific CSS properties, which are set correctly in
Internet Explorer but not when executing in our Oracle. We
will examine in more detail the next four evasion techniques.

Variable scope inside eval. We found that a successful
evasion attack can be launched with minor changes to a
malicious script. In one such case, shown in Figure 7, the
authors of the malicious script changed a replace call with
a call to eval, which, in turn, executed the same replace.
While this change did not affect the functionality of the
script in Internet Explorer, it did change it for our Oracle.
In fact, in Wepawet’s JavaScript engine, the code inside the
eval runs in a different scope, and thus, the locally-defined
variable on which replace is called is not accessible. While

1 // Malicious
2 function foo() {
3 ...
4 W6Kh6V5E4 = W6Kh6V5E4.replace(/\W/g,Bm2v5BSJE);
5 ...
6 }
7 // Evasion
8 function foo(){
9 ...

10 var enryA = mxNEN+F7B07;
11 F7B07 = eval;
12 {}
13 enryA = F7B07('enryA.rep' + 'lace(/\\W/g,CxFHg)←↩

');
14 ...
15 }

Figure 7: Evasion based on differences in the scope handling
inside eval in different JavaScript engines.

!""#$%&'($)* +,-!./*

01"$#$%&'($)*

2,232#$%&* 4$('%($56!7*

!""8&9#$%&*

9$$2*

:;<=><?=* ?:<:?<?=* ?:<:@<?=* ?:<?A<?=* ?:<==<?=* ?:<=;<?=* ??<:A<?=* ??<?=<?=*

Figure 8: Timeline of PDF evasions automatically detected
by Revolver.

the code successfully exploits Internet Explorer, it fails in
our Oracle and is marked as benign.

Adobe-specific JavaScript execution. Figure 9 shows
an evasion that leverages a specific characteristic of the
JavaScript engine implementation included in Adobe Reader.
In particular, in Adobe’s engine (unlike other engines), the
eval function is accessible as a property of native objects,
e.g., a string (line 8) [2]. Wepawet’s analyzer is not aware
of this difference and fails on scripts that make use of this
feature (marking them as benign). The functionally-identical
script that does not use this trick, but directly invokes the
eval() function, is correctly marked as malicious. We also
found several instances of evasions related to PDF specific
objects, like app and target, where missing functionality
was used to render the malicious script harmless. We show a
snippet of this evasion type found in the wild in Figure 10.

In Figure 8 we see the evasions related to the app object
that were automatically detected by Revolver as found in
the wild. Every time Revolver detected an evasion there is a
spike in the figure, and we made the appropriate patches to
Wepawet as soon as possible. What is of particular interest
is the fact that attackers react to Wepawet’s patching by
introducing a new evasion within a few days, making a
tool like Revolver necessary to automatically keep track of
this behavior and keep false negative detections as low as
possible.

Evasion through exceptions. Another interesting eva-
sion that Revolver found also leverages subtle differences
in the JavaScript implementation used in Wepawet and in
real browsers. In this case, the malicious script consists of a
decryption function and a call to that function. The function

USENIX Association 22nd USENIX Security Symposium 647

1 // Malicious
2 OlhG='evil_code'
3 wTGB4=eval
4 wTGB4(OlhG)
5
6 // Evasion
7 OlhG='evil_code'
8 wTGB4="this"["eval"]
9 wTGB4(OlhG)

Figure 9: Evasion based on the ability to access the eval
function as a property of native objects in Adobe’s JavaScript
engine.

1 if((app.setInterval+/**/"")["indexOf"](aa)!=-1){
2 a=/**/target.creationDate.split('|')[0];}

Figure 10: Evasion based on PDF specific objects app and
target.

first initializes a variable with a XOR key, which will be used
to decrypt a string value (encoding a malicious payload).
The decoded payload is then evaluated via eval.

The evasion that we found follows the same pattern (see
Figure 11), but with a few critical changes. In the modified
code, the variable containing the XOR key is only initialized
the first time that the decryption function runs; in sequential
runs, the value of the key is modified in a way that depends
on its prior value (Lines 16–17). After the key computation,
a global variable is accessed. This variable is not defined
the first time the decryption function is called, so that the
function exits with an exception (Line 19). On Internet
Explorer, this exception is caught, the variable is defined,
and the decryption function is called again. The function
then runs through the key calculation and then decrypts and
executes the encrypted code by calling eval.

On our Oracle, a subtle bug (again, in the handling of
eval calls) in the JavaScript engine caused the function
to throw an exception the first two times that it was called.
When the function is called the third time, it finally succeeds,
modifies the XOR key, and attempts to decrypt the string.
However, since the key calculation is run three times instead
of two, the key is incorrect, and the decrypted string results
in garbage data. We found three variations of this technique
in our experiments.

A very interesting exception-based evasion that we found
with Revolver was based on the immutability of window-
.document.body. The attacker checks if she can replace
the body object with a string, something that should not be
possible and should result in an exception, but it does not
raise an exception in our Oracle because the body object is
mutable. The interesting part is that we found three com-
pletely different malicious scripts evolving to incorporate
this evasion, one of them being part of the popular exploit
kit Blackhole 2.0. This is the first indication that evasion
techniques are propagating to different attacking compo-

1 // Malicious
2 function deobfuscate(){
3 ... // Define var xorkey and compute its ←↩

value
4 for(...) { ... // XOR decryption with xorkey←↩

}
5 eval(deobfuscated_string);
6 }
7 try {
8 eval('deobfuscate();')
9 }

10 catch (e){
11 alert('err');
12 }
13
14 // Evasion
15 function deobfuscate(){
16 try { ... // is variable xorkey defined? }
17 catch(e){ xorkey=0; }
18 ... // Compute value of xorkey
19 VhplKO8 += 0; // throws exception the first ←↩

time
20 for(...) { ... // XOR decryption with xorkey←↩

}
21 eval(deobfuscated_string);
22 }
23 try { eval('deobfuscate();') } // 1st call
24 catch (e){
25 // Variable VhplKO8 is not defined
26 try {
27 VhplKO8 = 0; // define variable
28 eval('deobfuscate();'); // 2nd call
29 }
30 catch (e){
31 alert('ere');
32 }
33 }

Figure 11: An evasion taking advantage of a subtle bug in
Wepawet’s JavaScript engine in order to protect the XOR
key.

nents and indicates that attackers care to keep their attacks
as stealthy as possible.

Unicode deobfuscation evasion. This evasion lever-
aged the fact that Unicode strings in string initializations
and regular expressions are treated differently by different
JavaScript engines. For example, Revolver found two scripts
with a similarity of 82.6%. The script flagged as benign
contained an additional piece of code that modified the way a
function reference to evalwas computed. More precisely,
the benign script computed the reference by performing a
regular expression replacement. While this operation ex-
ecutes correctly in Internet Explorer, it causes an error in
the JavaScript engine used by Wepawet due to a bug in the
implementation of regular expressions.

Incorrect PDF version check. Another similarity that
Revolver identified involved two scripts contained inside two
PDF files, one flagged as benign by Wepawet and the other
as malicious. These scripts had a similarity of 99.7%. We de-
termined that the PDF contained an exploit targeting Adobe
Reader with versions between 7.1 and 9. The difference
found by Revolver was caused by an incorrect version check
in the exploit code. The benign code mistakenly checked
for version greater or equal to 9 instead of less or equal to 9,

648 22nd USENIX Security Symposium USENIX Association

which combined with the previous checks for the version
results in an impossible browser configuration and as a con-
sequence the exploit was never fired. This case, instead of
being an actual evasion, is the result of a mistake performed
by the attacker. However, the authors quickly fixed their
code and re-submitted it to Wepawet just 13 minutes after
the initial, flawed submission.

False positives. The evasion groups contained five false
positives. In this context, a false positive means that the
similarity identified by Revolver is not responsible for the
Oracle’s misdetection. More precisely, of these false posi-
tives, four corresponded to cases where the script execution
terminated due to runtime JavaScript errors before the actual
exploit was launched. While such behavior could be evasive
in nature, we determined that the errors were not caused by
any changes in the code, but by other dependencies. These
can be due to missing external resources required by the
exploit or because of a runtime error. In the remaining
case, the control-flow change identified by Revolver was not
responsible for the misdetection of the script.

Revolver’s impact on honeyclients. By continuously
running Revolver in parallel with a honeyclient, we can im-
prove the honeyclient’s accuracy by observing the evolution
of malicious JavaScript. The results from such an integra-
tion with Wepawet indicate a shift in the attackers’ efforts
from hardening their obfuscation techniques to finding dis-
crepancies between analysis systems and targeted browsers.
Popular exploit kits like Blackhole are adopting evasions
to avoid detection, which shows that such evasions have
emerged as a new problem in the detection of malicious web
pages. Revolver’s ability to pinpoint, with high accuracy,
these new techniques out of millions of analyzed scripts
not only gives a unique view into the attackers’ latest steps,
but indicates the necessity of such system as part of any
honeyclient that analyzes web malware.

6 Discussion

As with any detection method, malware authors could find
ways to attempt to evade Revolver. One possibility consists
in splitting the malicious code into small segments, each
of which would be interpreted separately through eval.
Revolver is resilient against code fragmentation like this
because it combines such scripts back to the parent script
that generated them, reconstructing this way the original
non-fragmented script.

It is also possible for malware authors to purposefully
increase the Euclidean distance between their scripts so that
otherwise similar scripts are no longer considered neighbors
by the nearest neighbor algorithm. For example, malware
authors could swap statements in their code, or inject junk
code that has no effect other than decreasing the similar-
ity score. Attackers could also create fully metamorphic
scripts, similar to what some binary malware does [19]. We

can counteract these attacks by improving the algorithms
we use to compute the similarity of scripts. For example,
we could use a preprocessing step to normalize a script’s
code (e.g., removing dead code). A completely different
approach would be to leverage Revolver to correlate differ-
ences in the code of the same web pages when visited by
multiple oracles: if Revolver detects significant differences
in the code returned during these visits, then we can identify
metamorphic web pages. In addition, metamorphic code
raises the bar, since an attack needs to be programmatically
different every time, and the code must be automatically gen-
erated without clearly-detectable patterns. Therefore, this
would force attackers to give up their current obfuscation
techniques and ability to reuse code.

An attacker could include an evasion and dynamically
generate the attack code only if the evasion is successful. The
attacker has two options: He can include the evasion code
as the first step of the attack, or after initial obfuscation and
environment setup. Evasions are hard to find and require sig-
nificant manual effort by the attackers. Therefore, attackers
will not reveal their evasion techniques since they are almost
as valuable as the exploits they deliver. Moreover, introduc-
ing unobfuscated code compromises the stealthiness of the
attack and can yield into detection through signature match-
ing. The second option works in Revolver’s favor, since it
allows our system to detect similarities in obfuscation and in
environmental setup code.

Finally, an operational drawback of Revolver is the fact
that manual inspection of the similarities that it identifies
is currently needed to confirm the results it produces. The
number of similarities that were found during our experi-
ments made it possible to perform such manual analysis. In
the future, we plan to build tools to support the inspection of
similarities and to automatically confirm similarities based
on previous analyses.

7 Related Work

Detection of evasive code. The detection of code that
behaves differently when run in an analysis environment
than when executed on a regular machine is a well-known
problem in the binary malware community. A number
of techniques have been developed to check if a binary is
running inside an emulator or a virtual machine [10, 30, 36].
In this context, evasive code consists of instructions that
produce different results or side-effects on an emulator and
on a real host [21,26]. The original malware code is modified
to run these checks: if the check identifies an analysis system,
the code behaves in a benign way, thus evading the detection.

Researchers have dealt with such evasive checks in two
ways. First, they have designed systems that remain transpar-
ent to a wide range of malware checks [8, 39]. Second, they
have developed techniques to detect the presence of such
checks, for example by comparing the behavior of a sample

USENIX Association 22nd USENIX Security Symposium 649

on a reference machine with that obtained by running it on
an analysis host [3, 15].

Similar to the case of evasions against binary analysis
environments, the results produced by honeyclients (i.e.,
the classification of a web page as either malicious or be-
nign) can be confused by sufficiently-sophisticated evasion
techniques. Honeyclients are not perfect and attackers have
found ways to evade them [16, 31, 40]. For example, mali-
cious web pages may be designed to launch an exploit only
after they have verified that the current visitor is a regular
user, rather than an automated detection tool. A web page
may check that the visitor performs some activity, such as
moving the mouse or clicking on links, or that the browser
possesses the idiosyncratic properties of commonly-used
modern browsers, rather than being a simple emulator. If any
of these checks are not satisfied, the malicious web page will
refrain from launching the attack, and, as a consequence, will
be incorrectly classified as benign, thus evading detection.

The problem of evasive code in web attacks has only
recently been investigated. Kolbitsch et al. [17] have stud-
ied the “fragility” of malicious code, i.e., its dependence
for correct execution on the presence of a particular ex-
ecution environment (e.g., specific browser and plugins
versions). They report several techniques used by malicious
code for environment matching: some of these techniques
may well be used to distinguish analysis tools from regu-
lar browsers and evade detection. They propose ROZZLE,
a system that explores multiple execution paths in a pro-
gram, thus bypassing environment checks. Rozzle only
detects fingerprinting that leverages control flow branches
and depends upon the environment. It can be evaded by
techniques that do not need control-flow branches, e.g.,
those based on browser or JavaScript quirks. For exam-
ple, the property window.innerWidth contains the
width of the browser window viewport in Firefox and
Chrome, and is undefined in Internet Explorer. There-
fore, a malicious code that initialized a decoding key as
xorkey=window.innerWidth*0+3 would compute a differ-
ent result for xorkey in Firefox/Chrome (3) and IE (Not a
Number error), and could be used to decode malicious code
in specific browsers. Rozzle will not trigger its multi-path
techniques in such cases and can be evaded.

Revolver takes a different approach to identifying evasive
code in JavaScript programs. Instead of forcing an evasive
program to display its full behavior (by executing it in paral-
lel on a reference host and in an analysis environment [3],
or by forcing the execution through multiple, interesting
paths [17]), it leverages the existence of two distinct but sim-
ilar pieces of code and the fact that, despite their similarity,
they are classified differently by detection tools. In addition,
Revolver can precisely and automatically identify the code
responsible for an evasion.
JavaScript code analysis. In the last few years, there
have been a number of approaches to analyzing JavaScript

code. For example, Prophiler [5] and ZOZZLE [7] have
used characteristics of JavaScript code to predict if a script
is malicious or benign. ZOZZLE, in particular, leverages
features associated with AST context information (such as,
the presence of a variable named scode in the context of a
loop), for its classification.

Cujo [34] uses static and dynamic code features to identify
malicious JavaScript programs. More precisely, it processes
the static program and traces of its execution into q-grams
that are classified using machine learning techniques.

Revolver performs the core of its analysis statically, by
computing the similarity between pairs of ASTs. How-
ever, Revolver also relies on dynamic analysis, in particular
to obtain access to the code generated dynamically by a
script (e.g., via the eval() function), which is a common
technique used by obfuscated and malicious code.
Code similarity. The task of automatically detecting
“clones,” i.e., segments of code that are similar (accord-
ing to some notion of similarity), is an established line of
work in the software engineering community [27, 35]. Un-
fortunately, many of the techniques developed here assume
that the code under analysis is well-behaved or at least not
adversarial, that is, not actively trying to elude the classi-
fication. Of course, this assumption does not hold when
examining malicious code.

Similarity between malicious binaries has been used to
quickly identify different variants of the same malware
family. The main challenge in this context is dealing with
extremely large numbers of samples without source code and
large feature spaces from runtime data. Different techniques
have been proposed to overcome these issues: for example,
Bayer et al. [4] rely on locality sensitive hashing to reduce
the number of items to compare, while Jong et al. [14] use
feature hashing to reduce the number of features.

As a comparison, Revolver aims not only to identify pieces
of JavaScript code that are similar, but also to understand why
they differ and especially if these differences are responsible
for changing the classification of the sample.

8 Conclusions

In this paper, we have introduced and demonstrated Re-
volver, a novel approach and tool for detecting malicious
JavaScript code similarities on a large scale. Revolver’s
approach is based on identifying scripts that are similar
and taking into account an Oracle’s classification of every
script. By doing this, Revolver can pinpoint scripts that have
high similarity but are classified differently (detecting likely
evasion attempts) and improve the accuracy of the Oracle.

We performed a large-scale evaluation of Revolver by
running it in parallel with the popular Wepawet drive-by-
detection tool. We identified several cases of evasions that
are used in the wild to evade this tool (and, likely, other tools

650 22nd USENIX Security Symposium USENIX Association

based on similar techniques) and fixed them, improving this
way the accuracy of the honeyclient.

Acknowledgements: This work was supported by the
Office of Naval Research (ONR) under grant N00014-12-1-
0165 and under grant N00014-09-1-1042, and the National
Science Foundation (NSF) under grants CNS-0845559 and
CNS-0905537, and by Secure Business Austria.

References

[1] HtmlUnit. http://htmlunit.sourceforge.

net/.

[2] JavaScript for Acrobat API Reference.
http://wwwimages.adobe.com/www.adobe.

com/content/dam/Adobe/en/devnet/

acrobat/pdfs/js_api_reference.pdf.

[3] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel,
E. Kirda, and G. Vigna. Efficient Detection of Split
Personalities in Malware. In Proc. of the Symposium
on Network and Distributed System Security (NDSS),
2010.

[4] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, Behavior-Based Malware
Clustering. In Proc. of the Symposium on Network and
Distributed System Security (NDSS), 2009.

[5] D. Canali, M. Cova, G. Vigna, and C. Kruegel.
Prophiler: A Fast Filter for the Large-scale Detection
of Malicious Web Pages. In Proc. of the International
World Wide Web Conference (WWW), 2011.

[6] M. Cova, C. Kruegel, and G. Vigna. Detection and
Analysis of Drive-by-Download Attacks and Mali-
cious JavaScript Code. In Proc. of the International
World Wide Web Conference (WWW), 2010.

[7] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert.
Zozzle: Low-overhead Mostly Static JavaScript Mal-
ware Detection. In Proc. of the USENIX Security
Symposium, 2011.

[8] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization Exten-
sions. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2008.

[9] D. Edwards. Dean Edwards Packer. http://bit.
ly/TWQ46b.

[10] P. Ferrie. Attacks on Virtual Machines. In Proc. of
the Association of Anti-Virus Asia Researchers Con-
ference, 2003.

[11] Google. Safe Browsing API. http://code.

google.com/apis/safebrowsing/.

[12] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J.
Dietrich, K. Levchenko, P. Mavrommatis, D. McCoy,
A. Nappa, A. Pitsillidis, N. Provos, M. Z. Rafique,
M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S. Sav-
age, and G. M. Voelker. Manufacturing Compromise:
The Emergence of Exploit-as-a-Service. In Proc. of the
ACM Conference on Computer and Communications
Security (CCS), 2012.

[13] B. Hartstein. jsunpack – a generic JavaScript unpacker.
http://jsunpack.jeek.org/dec/go.

[14] J. Jang, D. Brumley, and S. Venkataraman. BitShred:
Feature Hashing Malware for Scalable Triage and
Semantic Analysis. In Proc. of the ACM Conference
on Computer and Communications Security (CCS),
2011.

[15] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and
D. Song. Emulating Emulation-Resistant Malware.
In Proc. of the Workshop on Virtual Machine Security
(VMSec), 2009.

[16] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna. Es-
cape from Monkey Island: Evading High-Interaction
Honeyclients. In Proc. of the Conference on Detection
of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2011.

[17] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert.
Rozzle: De-Cloaking Internet Malware. In Proc. of
the IEEE Symposium on Security and Privacy, 2012.

[18] B. Krebs. Virus Scanners for Virus Authors, Part
II. http://krebsonsecurity.com/2010/

04/virus-scanners-for-virus-authors-

part-ii/, 2010.

[19] F. Leder, B. Steinbock, and P. Martini. Classification
and detection of metamorphic malware using value set
analysis. In Proc. of the Conference on Malicious and
Unwanted Software (MALWARE), 2009.

[20] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. BLADE:
An Attack-Agnostic Approach for Preventing Drive-
By Malware Infections. In Proc. of the ACM Con-
ference on Computer and Communications Security
(CCS), 2010.

[21] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi.
Testing CPU Emulators. In Proc. of the International
Symposium on Software Testing and Analysis (ISSTA),
2009.

[22] Microsoft. Microsoft Security Intelligence Report,
Volume 13. Technical report, Microsoft Corporation,
2012.

USENIX Association 22nd USENIX Security Symposium 651

[23] Moss. Moss with obfuscated scripts. http://goo.
gl/XzJ7M.

[24] M. Muja and D. G. Lowe. Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration.
In Proc. of the Conference on Computer Vision Theory
and Applications (VISAPP), 2009.

[25] J. Nazario. PhoneyC: A Virtual Client Honeypot.
In Proc. of the USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2009.

[26] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi.
A Fistful of Red-Pills: How to Automatically Gen-
erate Procedures to Detect CPU Emulators. In Proc.
of the USENIX Workshop on Offensive Technologies
(WOOT), 2009.

[27] J. Pate, R. Tairas, and N. Kraft. Clone Evolution: a
Systematic Review. Journal of Software Maintenance
and Evolution: Research and Practice, 2011.

[28] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose.
All Your iFRAMEs Point to Us. In Proc. of the USENIX
Security Symposium, 2008.

[29] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The Ghost in the Browser: Analy-
sis of Web-based Malware. In Proc. of the USENIX
Workshop on Hot Topics in Understanding Botnet,
2007.

[30] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
System Emulators. In Proc. of the Information Security
Conference, 2007.

[31] M. A. Rajab, L. Ballard, N. Jagpal, P. Mavromma-
tis, D. Nojiri, N. Provos, and L. Schmidt. Trends in
Circumventing Web-Malware Detection. Technical
report, Google, 2011.

[32] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A Defense Against Heap-spraying Code Injection At-
tacks. In Proc. of the USENIX Security Symposium,
2009.

[33] J. W. Ratclif. Pattern Matching: the Gestalt Approach.
Dr. Dobb’s, 1988.

[34] K. Rieck, T. Krueger, and A. Dewald. Cujo: Effi-
cient Detection and Prevention of Drive-by-Download
Attacks. In Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2010.

[35] C. K. Roy and J. R. Cordy. A Survey on Software
Clone Detection Research. Technical report, School
of Computing, Queen’s University, 2007.

[36] J. Rutkowska. Red Pill. . . or how to de-
tect VMM using (almost) one CPU instruc-
tion. http://www.invisiblethings.org/

papers/redpill.html, 2004.

[37] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing:
local algorithms for document fingerprinting. In Proc.
of the 2003 ACM SIGMOD international conference
on Management of data, 2003.

[38] The Honeynet Project. Capture-HPC. https://

projects.honeynet.org/capture-hpc.

[39] A. Vasudevan and R. Yerraballi. Cobra: Fine-grained
Malware Analysis using Stealth Localized Executions.
In Proc. of the IEEE Symposium on Security and Pri-
vacy, 2006.

[40] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Ver-
bowski, S. Chen, and S. King. Automated Web Patrol
with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In Proc. of the Sym-
posium on Network and Distributed System Security
(NDSS), 2006.

USENIX Association 22nd USENIX Security Symposium 653

Language-based Defenses against Untrusted Browser Origins

Karthikeyan Bhargavan
INRIA Paris-Rocquencourt

Antoine Delignat-Lavaud
INRIA Paris-Rocquencourt

Sergio Maffeis
Imperial College London

Abstract
We present new attacks and robust countermeasures for
security-sensitive components, such as single sign-on
APIs and client-side cryptographic libraries, that need to
be safely deployed on untrusted web pages. We show
how failing to isolate such components leaves them vul-
nerable to attacks both from the hosting website and
other components running on the same page. These
attacks are not prevented by browser security mecha-
nisms alone, because they are caused by code interact-
ing within the same origin. To mitigate these attacks,
we propose to combine fine-grained component isola-
tion at the JavaScript level with cryptographic mecha-
nisms. We present Defensive JavaScript (DJS), a subset
of the language that guarantees the behavior integrity of
scripts even when loaded in a hostile environment. We
give a sound type system, type inference tool, and build
defensive libraries for cryptography and data encodings.
We show the effectiveness of our solution by implement-
ing several applications using defensive patterns that fix
some of our original attacks. We present a model extrac-
tion tool to analyze the security properties of our appli-
cations using a cryptographic protocol verifier.

1 Defensive Web Components

Web users increasingly store sensitive data on servers
spread across the web. The main advantage of this dis-
persal is that users can access their data from browsers on
multiple devices, and easily share this data with friends
and colleagues. The main drawback is that concentrat-
ing sensitive data on servers makes them tempting targets
for cyber-criminals, who use increasingly sophisticated
browser-based attacks to steal user data.

In response to these concerns, web applications now
offer users more control over who gets access to their
data, using authorization protocols such as OAuth [23]
and application-level cryptography. These security
mechanisms are often implemented as JavaScript com-
ponents that may be included by any website, where they
mediate a three-party interaction between the host web-
site, the user (represented by her browser), and a server
that holds the sensitive data on behalf of the user.

Website	 (W)	

Web Page (HTML)

Cookies

Local
Storage

Security	
Component	
(JavaScript)	 API

u’s Browser

Data	 Server	 (S)	 Db	

Figure 1: JavaScript Security Component

The typical deployment scenario that concerns us is
depicted in Figure 1. A website W wishes to access sen-
sitive user data stored at S. So, it embeds a JavaScript
component provided by S. When a user visits the web-
site, the component authenticates the user and exposes
an API through which W may access the user’s data, if
the user has previously authorized W at S. For authenti-
cated users on authorized websites, the component typ-
ically holds some client-side secret, such as an access
token or encryption key, which it can use to validate data
requests and responses. When the user closes or navi-
gates away from the website, the component disappears
and the website can no longer access the API.

A popular example of this scenario is single sign-on
mechanism, such as Login with Facebook (detailed in
Section 2). Facebook (S) provides a JavaScript compo-
nent that websites like Pinterest (W) may use to request
the identity and social profile of a visiting user, via an
API that obtains a secret OAuth token for the current user
and attaches it with each request to Facebook.

Other examples include payment processing APIs like
Google Checkout, password manager bookmarklets like
Lastpass, anti-CSRF protections like OWASP CSRF-
Guard, and client-side encryption libraries for cloud stor-
age services like Mega. More generally, a website may
host a number of components from different providers,
each keeping its own secrets and protecting its own API.

What we find particularly interesting is that the data
and functionality of these JavaScript components is of-
ten of higher value that the website that hosts it. This is
contrary to the usual web security threat model where

1

654 22nd USENIX Security Symposium USENIX Association

a website tries to defend itself from third-party com-
ponents. Instead, we consider components that are de-
signed to increase security of a website by delegating
sensitive operations (e.g. password storage, credit card
approval) to trusted third-party servers. For the data han-
dled by such components, we seek to offer a limited se-
curity guarantee to the user. If a user temporarily vis-
its (and authorizes) a compromised website W , any data
read by the website during the visit may be leaked to the
adversary, but the user can still expect the component to
protect long-term access to her data on S. Our aim is
not to prevent compromises in W or to prevent all data
leaks. Instead, we enable a robust defense-in-depth strat-
egy, where the security mechanisms of a website do not
completely break if it loads a single malicious script.

Goals, Threats, and Attacks. Our goal is to design
hardened JavaScript components that can protect sensi-
tive user data and other long-term secrets such as access
tokens and encryption keys from unauthorized parties.
So far, such goals have proven surprisingly hard to guar-
antee for components written in JavaScript that run in
the browser environment and interact with standard web-
sites (e.g. see [1, 5, 6, 10, 41, 42]). What makes such
components so hard to secure?

In Section 2, we survey the state of the art in three
categories of security components: single sign-on mech-
anisms, password managers, and client-side encryption
libraries used for cloud storage. We find that these com-
ponents must defend against three kinds of threats. First,
they may be loaded into a malicious website that pretends
to be a trusted website. Second, even on a trusted web-
site they may be loaded alongside other scripts that may
innocently (or maliciously) modify the JavaScript builtin
objects in a way that changes the runtime behavior of the
component. Third, some webpage on the same domain
(or subdomain) as W may either host malicious user-
provided content or might contain a cross-site scripting
(XSS) attack or any number of web vulnerabilities.

We found that the defenses against these threats prove
inadequate for many of the components in our survey.
We report previously-unknown attacks on widely-used
components that completely compromise their stated se-
curity goals, despite their use of sophisticated protocols
and cryptographic mechanisms. Our attacks exploit a
wide range of problems, such as bugs in JavaScript com-
ponents, bugs in browsers, and standard web vulnerabili-
ties (XSS, CSRF, open redirectors), and build upon them
to fool components into revealing their secrets. Eliminat-
ing specific bugs and vulnerabilities can only be a stop-
gap measure. We aim instead to design JavaScript com-
ponents that are provably robust against untrusted hosts.

Same Origin Policy (SOP). Most browser security
mechanisms (including new HTML5 APIs, such as

������������� ��������������

�����������

�����������

Web Page (HTML)

Browser

age

Cookies

Local
Storage

����������

�����������

�����
�
��

API

	������������������

DJS checker

ProVerif

��������������

yes

yes

no

no

defensive?

secure? nono ?secu

Figure 2: DJS Architecture

postMessage, localStorage, and WebCrypto) are based
on the origin from which a webpage was loaded, defined
as the domain of the website and the protocol and port
used to retrieve it (e.g. https://facebook.com:443). The
SOP isolates the JavaScript execution environments of
frames and windows loaded from different origins from
each other. In contrast, frames from the same origin
can directly access each other’s variables and functions,
across a page and even across windows.

The SOP does not directly apply to our scenario since
our components run in the same origin as the host web-
site. To use the SOP, components must open new frames
or windows on a separate origin and implement a mes-
saging protocol between them and the host website. As
we show in Section 2, such components are difficult to
get right and the JavaScript programs that implement
them require close analysis.

Our Proposal. We advocate a language-based approach
that is complementary to the SOP and protects scripts
running in the same origin from each other. This enables
a defense-in-depth strategy where the functionality and
secrets of a component can be protected even if some
page on the host origin is compromised.

We propose a defensive architecture (Figure 2) that en-
ables developers to write verified JavaScript components
that combine cryptography and browser security mecha-
nisms to provide strong formal guarantees against entire
classes of attacks. Its main elements are:

DJS: A defensive subset of JavaScript, with a static type
checker, for writing security-critical components.

DJS Library: A library written (and typechecked) in
DJS, with cryptographic and encoding functions.

DJS2PV: A tool that automatically analyzes the compo-
sitional security of a DJS component by translating
it to the applied pi calculus for verification when
combined with models of the browser and DJS li-
brary, using the ProVerif protocol analyzer.

Script Server: A verified server for distributing defen-
sive scripts embedded with session-specific encryp-
tion keys.

2

USENIX Association 22nd USENIX Security Symposium 655

Our architecture relies on the willingness of devel-
opers to program security-critical code in DJS, a well-
defined restricted subset of JavaScript. In return, they
obtain automated analysis and strong security guarantees
for their code. Moreover, no restriction is enforced on
untrusted code. In order to verify authentication and se-
crecy properties of the defensive components once em-
bedded in the browser, we rely on ProVerif [13], a stan-
dard protocol verification tool that has been used exten-
sively to analyze cryptographic mechanisms, with the
WebSpi library [6], a recent model for web security
mechanisms. Unlike previous works that use WebSpi,
we automatically extract models from DJS code.

As we show in Section 6, DJS can significantly im-
prove the security of current web applications with min-
imal changes to their functionality. Emerging web se-
curity solutions, such as Content Security Policy, EC-
MAScript 5 Strict, and WebCryptoAPI, offer comple-
mentary protections, and when they become widespread,
they may enable us to relax some DJS restrictions, while
retaining its strong security guarantees.
Towards Defensive JavaScript. A cornerstone of our
defensive architecture is the ability of trusted scripts
to resist same-origin attacks, because requiring that all
scripts on an origin be trusted is too demanding. We
investigate language-based isolation for such trusted
scripts, and identify the defensive JavaScript problem:
Define a defensive subset of JavaScript to write state-
ful functions whose behavior cannot be influenced (be-
sides by their arguments) by untrusted code running in
the same environment, before or after such functions are
defined. Untrusted code should not be able to learn se-
crets by accessing the source code of defensive functions
or directly accessing their internal state.

This problem is harder than the one tackled by
JavaScript subsets such as ADsafe [16] or Caja [40],
which aim to protect trusted scripts by sandboxing un-
trusted components. In particular, those subsets assume
the initial JavaScript environment is trusted, and that all
untrusted code can be restricted. In our case, defensive
code must run securely in a JavaScript engine that is run-
ning arbitrary untrusted code.
Contributions. Our main contributions are:

1. We identify common concerns for applications that
embed secure components in arbitrary third party
websites, and new attacks on these applications;

2. We present DJS, a defensive subset of JavaScript for
programming security components. DJS is the first
language-based isolation mechanism that does not
restrict untrusted JavaScript and does not rely on a
first-running bootstrapper;

3. We develop tools to verify that JavaScript code is
valid DJS, and to extract ProVerif models from DJS;

4. We define DJCL, a defensive crypto library with en-
coding and decoding utilities that can be safely used
in untrusted JavaScript environments. DJCL can be
included as is on any website;

5. We identify general patterns that leverage DJS and
cryptography to enforce component isolation in the
browser, and in particular, we propose fixes to sev-
eral broken web applications.

Supporting materials for this paper, including code,
demos, and a technical report with proofs are available
online [11].

2 Attacks on Web Security Components

We survey a series of web security components and in-
vestigate their security; Table 1 presents our results. Our
survey focuses on three categories of security compo-
nents that implement the pattern depicted in Figure 1.

Single Sign-On Buttons: (e.g. Facebook login on Hulu)
W loads a script from S that allows it to access the
verified identity of u at S, and possibly other social
data (photo, friend list, etc.).

Password Managers: (e.g. LastPass, 1Password)
u installs a browser plugin or bookmarklet from S;
when the browser visits W , the plugin retrieves an
(encrypted) password or credit card number for u
from S and uses it to fill in a form on W .

Host-Proof Cloud Storage: (e.g. ConfiChair, Mega)
A privacy-sensitive website W loads a client-side
encryption library from S that retrieves an encrypted
file from the cloud, decrypts it with a user-specified
key (or passphrase) and releases the file to W .

We conjecture that other security components that fit our
threat model, such as payment processing APIs and so-
cial sharing widgets, would have similar security goals
and solutions, and suffer from similar weaknesses.

Methodology. Our method for studying each compo-
nent is as follows. We first study the source code of
each component and run it in various environments to
discover the core protection mechanisms that it depends
on. For example, in order to protect the integrity of their
JavaScript code from the hosting webpage, some com-
ponents require users to install them as bookmarklets
(e.g. LastPass) or browser extensions (e.g. 1Password),
whereas others rely on their code being downloaded
within frames (e.g. Facebook), within signed Java ap-
plets (e.g. Wuala) or as signed JavaScript (e.g. Mega). In
order to protect the confidentiality of data, many compo-
nents rely on cryptography, implemented either in Java
or in JavaScript. We anticipate that many of these will
eventually use the native HTML Web Cryptography API
when it becomes widely available.

3

656 22nd USENIX Security Symposium USENIX Association

Product Category Protection Mechanism Attack Vectors Found Secrets Stolen
Facebook Single Sign-On Provider Frames Origin Spoofing,

URL Parsing Confusion
Login Credential,
API Access Token

Helios, Yahoo, Bitly
WordPress, Dropbox

Single Sign-On Clients OAuth Login HTTP Redirector,
Hosted Pages

Login Credential,
API Access Token

Firefox Web Browser Same-Origin Policy Malicious JavaScript,
CSP Reports

Login Credential,
API Access Token

1Password, RoboForm Password Manager Browser Extension URL Parsing Confusion,
Metadata Tampering

Password

LastPass, PassPack
Verisign, SuperGenPass

Password Manager Bookmarklet, Frames,
JavaScript Crypto

Malicious JavaScript
URL Parsing Confusion

Bookmarklet Secret,
Encryption Key

SpiderOak Encrypted Cloud Storage Server-side Crypto CSRF Files,
Encryption Key

Wuala Encrypted Cloud Storage Java Applet, Crypto Client-side Exposure Files,
Encryption Key

Mega Encrypted Cloud Storage JavaScript Crypto XSS Encryption Key
ConfiChair, Helios Crypto Web Applications Java Applet, Crypto XSS Password,

Encryption Key

Table 1: Survey: Representative Attacks on Security Components

Next, we investigate whether any of these protection
mechanisms make assumptions about the browser, or the
security of the host website, or component server, that
could be easily broken. We found a variety of bugs
in specific JavaScript components and in the Firefox
browser, and we found standard web vulnerabilities in
various websites (CSRF, XSS, Open Redirectors).

Finally, the bulk of the analysis consists in converting
these bugs and vulnerabilities to concrete exploits on our
target JavaScript components. Table 1 only reports the
exploits that resulted in a complete circumvention of the
component’s security, that is, attacks where long-term se-
crets like encryption keys and user files are leaked. We
also found other, arguably less serious, attacks not noted
here, such as CSRF and login CSRF attacks on the data
server and attacks that enable user tracking and finger-
printing.

In this section, we detail two illustrative examples of
our analysis. For details on our other attacks, see [11].

2.1 Login with Facebook

login	
Facebook	 JavaScript	 SDK	

Facebook	 OAuth	
IFrame	

/oauth/?origin=W	

Facebook	 Proxy	
IFrame	

/proxy?parent=W	

0. login()

Hosting Webpage (W)

3. token
1. cookie, W

2. token

4. token

Facebook	
API	

 token

When a website W wants to incorporate single-sign on
with Facebook (S) on one of its pages, it can simply in-
clude the Facebook JavaScript SDK and call FB.login().
Behind the scene, this kicks off a three-party authoriza-

tion protocol called OAuth 2.0 [23], where an authoriza-
tion server on Facebook issues an access token to W if
the currently logged-in user has authorized W for single
sign-on; otherwise, the user is asked to log in and autho-
rize W . W may then call FB.getAccessToken to obtain the
raw token, but more commonly, it calls FB.api to make
specific calls to Facebook’s REST API (with the token
attached). Hence, W can read the current user’s veri-
fied identity at Facebook or other social data. Google,
Live, and Twitter provide a similar experience with their
JavaScript SDKs.

When W calls FB.login, two iframes are created.

The first OAuth iframe is sourced from Facebook’s au-
thorization server with W ’s client id (IW) as parameter:
https://www.facebook.com/dialog/oauth?client id=IW

This page authenticates the user (with a cookie), verifies
that she has authorized W, issues a fresh access token (T)
and redirects the iframe to a Facebook URL with the to-
ken as fragment identifier:
https://static.ak.facebook.com/connect/xd arbiter.php#token=T

Meanwhile, the second Proxy iframe is loaded from:
https://static.ak.facebook.com/connect/xd arbiter.php#origin=W

where the fragment identifier indicates the origin W of
the host page. Since both frames are now on the same
origin, they can directly read each other’s variables and
call each other’s functions. The OAuth iframe calls a
function on the Proxy iframe with the access token T, and
this function forwards T in a postMessage event to the par-
ent frame (with target origin set to W). The token is then
received by a waiting FB.login callback function, and to-
ken retrieval is complete. W can call FB.api to verify the
user’s identity and access token.

4

USENIX Association 22nd USENIX Security Symposium 657

Protection Mechanisms. The main threat to the above
exchange is from a malicious website M pretending to be
W . The Facebook JavaScript SDK relies on the following
browser security mechanisms:

• Both iframes are sourced from origins distinct from
M, so scripts on M cannot interfere with these
frames, except to set their source URIs;

• The redirection of the OAuth frame is transparent to
the page; M cannot read the redirection URI;

• Scripts on M cannot directly access Facebook be-
cause the browser and the web server will prevent
such cross-origin accesses;

• Scripts on M will not be able to read the postMessage

event, since it is set to target origin W .

All four mechanisms are variations of the SOP (ap-
plied to iframes, redirection URIs, XmlHttpRequest, and
postMessage). The intuition is that if M and W are dif-
ferent origins, their actions (even on the same page) are
opaque to each other. However, many aspects of the SOP
are not standard but browser-specific and open to inter-
pretation [43]. For example, we show bugs in recent ver-
sions of Firefox that break redirection transparency.

Writing JavaScript code to compose browser mecha-
nisms securely is not easy. We demonstrate several bugs
in the Facebook SDK that enable M to bypass origin au-
thentication. Moreover, the SOP does not distinguish be-
tween same-origin pages or scripts. Hence, a hidden as-
sumption in the above exchange is that all scripts loaded
on all pages of W have access to the token and must be
trusted. We show how sub-origin attacks on Facebook’s
client can steal tokens.

Breaking Redirection Transparency on Firefox. We
found two bugs in how Firefox enforced the same origin
policy for redirection URIs.

First, we found that recent versions of the Firefox
browser failed to isolate frame locations. If a script opens
an iframe and stores a pointer to its document.location ob-
ject, then it continues to have access to this object even if
the URL of the frame changes, because of a user action
or a server redirection.

A second bug was in Firefox’s implementation of Con-
tent Security Policy (CSP) [38], a new mechanism to re-
strict loading of external contents to a authorized URIs.
In its CSP, a website can ask for a report on all policy
violations. If M sets its CSP to block all access to W , a
frame on M gets redirected to W , M would be notified of
this violation by the browser. A bug in Firefox caused
the violation report to include the full URL (including
fragment identifier) of the redirection, despite W and M
being different origins.

By themselves, these bugs do not seem very seri-
ous; they only allow adversaries to read URIs, not even
page contents, on frames that the adversary himself has

created. However, when combined with protocols like
OAuth that use HTTP redirection to transmit secret to-
kens in URIs, these bugs become quite serious. For ex-
ample, a malicious website M can steal a user’s Facebook
token by creating an OAuth iframe with W ’s client id and
reading the token in the redirected Facebook URI.

We reported these bugs and they are now fixed, but
they highlight the difficulty of implementing a consistent
policy across an increasing number of browser features.

Breaking Origin Authentication in FB.login. Al-
though the OAuth iframe only obtains access tokens for
an authorized origin W and the Proxy iframe only re-
leases access tokens to the origin in its fragment identi-
fier, there is no check guaranteeing that these origins are
the same. Suppose a malicious website M opened the
OAuth iframe with W ’s client id, but a Proxy iframe with
M’s origin. The OAuth iframe duly gets the token for W
and passes it to the Proxy iframe that forwards the token
to M. Hence, M has stolen the user’s access token for an
arbitrary W .

We reported this bug and Facebook quickly addressed
the attack by adding code for origin agreement between
the two frames. However, we found two other ways to
bypass this origin comparison by exploiting bugs in the
component’s URL parsing functions.

Sub-origin Attacks on Facebook Clients. The design
of the Facebook login component protects against cross-
origin attackers (e.g. an unauthorized host website) but
not provide any protections against untrusted content and
ordinary web vulnerabilities on authorized host websites.

We found that Wordpress and Dropbox both allow
users to host HTML pages on subdomains; we were able
to exploit this feature to write user content that obtained
access tokens meant for the main website. We also found
an open redirector on the electronic voting site Helios
that allowed any malicious website to steal a user’s ac-
cess token for Helios; the website could then vote in the
user’s name. This was a bug, but similar redirectors ap-
pear by design on Yahoo search and Bitly, leading to to-
ken theft, as shown in previous work [6].

These attacks were reported and are now prevented by
either moving user content to a different domain or by
ensuring that Facebook only releases tokens to a distinct
subdomain (e.g. open.login.yahoo.com). However, pages
on the main website still need to be given the token so
that they can access the Facebook profile of the user.
We found that websites like Wordpress and Hulu leave
their Facebook access tokens embedded in their web-
pages, where they may be read by any number of other
scripts, including competing social plugins from Twitter,
framework libraries like jQuery, and advertising and an-
alytics libraries from Google and others. At their most
benign, these scripts could read the access token to track

5

658 22nd USENIX Security Symposium USENIX Association

Facebook users; if they were malicious, they could im-
personate the user and read her Yahooo mail or exfiltrate
her full social profile for advertising use.

2.2 Client-side Decryption for Cloud Data

Web applications often use cryptography to protect sen-
sitive user data that may be stored on untrusted servers
or may pass through untrusted browsers. A typical ex-
ample is a cloud-based file storage service, where both
users and server owners would prefer the cloud server
not to be able to read or modify any user file. To be host-
proof in this way, all user files are stored encrypted in the
cloud, using keys that are known only to the user or her
browser, but not to the storage service. All plaintext data
accesses are performed in the browser, after downloading
and decrypting ciphertext from the cloud. This architec-
ture has also been adopted by password managers and
other privacy conscious applications such as electronic
voting, encrypted chats, and conference management.

There are many challenges in getting browser-based
cryptographic solutions right, but the two main design
questions are how to trust the cryptographic library and
protect its execution, and how to store encryption keys
securely. Our survey found a variety of choices:

Browser Extensions. Password managers are often im-
plemented as browser extensions so that they can read
and write into login forms on webpages while being iso-
lated from the page. Communication between the web-
site and the page uses a browser-specific messaging API.
We found attacks on the 1Password and RoboForm ex-
tensions where a malicious website could use this API
to steal user passwords for trusted websites by exploiting
buggy URL parsing and the lack of metadata integrity in
the encrypted password database format.

Bookmarklets. Some password managers offer login
bookmarklets that contain JavaScript code with an em-
bedded encryption key that users can download and store
in their browsers. When the bookmarklet is clicked on
the login page of a website, its code is injected into the
page; it retrieves encrypted login data from the password
manager website, decrypts it, and fills in the login form.
Even if the bookmarklet is accidentally clicked on a ma-
licious page that tampers with the JavaScript builtin ob-
jects and pretends to be a different website, the book-
marklet is meant to at most reveal the user’s password for
the current site. Indeed, several bookmarklets modified
their designs to guarantee this security goal in response
to previously found attacks [1]. However, we found sev-
eral new attacks on a number of these fixed bookmarklets
that still enabled malicious websites to steal passwords,
the bookmarklet encryption key, and even the user’s mas-
ter encryption key.

Website JavaScript. Cloud storage services and crypto-
graphic web applications use JavaScript in the webpage
to decrypt and display files downloaded from the cloud.
Some of them (e.g. ConfiChair) use Java applets to im-
plement cryptography whereas others (e.g. Mega) rely
on reputed JavaScript libraries such as SJCL [37]. How-
ever, storing encryption keys securely during an ongo-
ing session remains an open challenge. ConfiChair stores
keys in HTML5 localStorage; SpiderOak stores keys for
shared folders on the server, and Wuala stores encryption
keys in a hidden user file on the client. We found a CSRF
attack on SpiderOak, a client-side bug on Wuala, and an
XSS attack on ConfiChair, all three of which allowed
malicious websites to steal a user’s encryption keys if
the user visited the website when logged into the corre-
sponding web application.

2.3 Summary
All the attacks described in this survey were responsi-
bly disclosed; most were found first by us and fixed on
our suggestion; a few were reported by us in previous
work [5, 6, 10]; some were reported and fixed indepen-
dently. Our survey is not exhaustive, and many of the at-
tack vectors we employed are quite well-known. While
finding exploits on individual components took time and
expertise, the ease with which we were able to find web
vulnerabilities on which we built these exploits was sur-
prising. In many cases, these vulnerabilities were not
considered serious until we showed that they enabled un-
intended interactions with specific security components.

On the evidence of our survey, eliminating all un-
trusted contents and other web vulnerabilities from host-
ing websites seems infeasible. Instead, security com-
ponents should seek to defend themselves against both
malicious websites and same-origin attackers on trusted
websites. Moreover, security checks in JavaScript com-
ponents are hard to get right, and a number of our attacks
relied on bugs in that part of the application logic. This
motivates a more formal and systematic approach to the
analysis of security-sensitive components.

3 DJS: Defensive JavaScript

In this section we define DJS, a subset of JavaScript that
enforces a strict defensive programming style using lan-
guage restrictions and static typing. DJS makes it possi-
ble to write JavaScript security components that preserve
their behavior and protect their secrets even when loaded
into an untrusted page after other scripts have tampered
with the execution environment.

We advocate using DJS only for security-critical code;
other code in the component or on the page may remain
in full JavaScript. Hence, our approach is more suited to

6

USENIX Association 22nd USENIX Security Symposium 659

our target applications than previous proposals that seek
to restrict untrusted code (e.g. [16, 26, 39, 40] or require
trusted code to run first (e.g. [2]).

The rest of the section informally describes the DJS
subset and its security properties; full formal definitions
can be found in the technical report [11].

3.1 Defensiveness
The goal of defensiveness is to protect the behavioral
integrity of sensitive JavaScript functions that will be
invoked in an environment where arbitrary adversarial
code has already run. How do we model the capabili-
ties of an adversary who may be able to exploit browser
and server features that fall outside JavaScript, such as
frames, browser extensions, REST APIs, etc?

We propose a powerful attacker model inspired by
the successful Dolev-Yao attacker [18] for cryptographic
protocols, where the network is the attacker. In
JavaScript, we claim that the memory is the attacker. We
allow the attacker to arbitrarily change one (well-formed)
JavaScript memory into another, thus capturing even
non-standard or undocumented features of JavaScript.

Without further assumptions, this attacker is too pow-
erful to state any property of trusted programs. Hence,
like in the Dolev-Yao case where the attacker is as-
sumed unable to break encryption, we make the reason-
able assumptions that the attacker cannot forge pointers
to memory locations it doesn’t have access to, and that it
cannot break into the scope frames of functions. This as-
sumption holds in principle for all known JavaScript im-
plementations, but in practice it may fail to hold because
of use-after-free bugs or prototype hijacking attacks [22].

Let a heap be a map from memory locations to
language values, including locations themselves (like
pointers). We often reason about equivalent heaps up
to renaming of locations and garbage collection (re-
moval of locations unreachable from the native ob-
jects). Let an attacker memory be any well-formed re-
gion of the JavaScript heap containing at least all na-
tive objects required by the semantics, and without any
dangling pointer. Let a user memory be any region
of the JavaScript heap that only contains user-defined
JavaScript objects. A user memory may contain pointers
to the attacker memory. Let attacker code and user code
be function objects stored respectively in the attacker and
user memories.

Assumption 1 (Memory safety). In any reasonable
JavaScript semantics, starting from a memory that can
be partitioned in two regions, where one is an attacker
memory and the other a user memory, the execution of
attacker code does not alter the user memory.

User code cannot run in user memory alone because it

lacks native objects and default prototypes necessary for
JavaScript executions. For that reason, we consider user
code that exposes an API in the form of a function that
may be called by the attacker. Let a function wrapper
be an arbitrary JavaScript expression E parametric in a
function definition F , which returns a wrapped function
GF . GF is meant to safely wrap F , acting as a proxy to
call F . For example:

1 E = (function() {

2 var F = function(x) {

3 var secret = 42, key = 0xC0C0ACAFE;

4 return x===key ? secret : 0 }

5 return function G_F(x) { return F(x>>>0) }

6 })();

We now informally define the two properties that cap-
ture defensiveness of function wrappers:

Definition 1 (Encapsulation). A function wrapper E en-
capsulates F over domain D if no JavaScript program
that runs E can distinguish between running E with F
and running E with an arbitrary function F ′ without call-
ing the wrapped function GF . Moreover, for any tuple
of values ṽ ∈D , the heap resulting from calling GF(ṽ) is
equivalent to the heap resulting from calling F(ṽ).

In other words, encapsulation states that an attacker
with access to GF should not learn anything more about
F than is revealed by calling F on values from D . For
example, if the above E encapsulates the oracle F (lines
2-4) on numbers, an attacker may not learn secret un-
less it is returned by F , even by trying to tamper with
properties of GF such as arguments, callee...

The next property describes the integrity of the the
input-output behavior of defensive functions:

Definition 2 (Independence). A function wrapper E pre-
serves the independence of F if any two sequences of
calls to GF , interleaved with arbitrary JavaScript code,
return the same sequence of values whenever corre-
sponding calls to GF received the same parameters and
no call to GF triggered an exception.

This property is different from functional purity [19]:
since F may be stateful, it is not enough to enforce single
calls to GF to return the same value as arbitrary call se-
quences must yield matching results. Note that GF is not
prevented by this definition form causing side-effects on
its execution environment. For example, E given above
can still satisfy independence even though it will cause
a side effect when GF is passed as argument the object
{valueOf:function(){window.leak=42;return 123}}.

The above F (lines 2-4) returns its secret only when
passed the right key, and does not cause observable side-
effects. If E encapsulates F over numbers and preserves
its independence, then an attacker may not learn this se-
cret without knowing the key.

7

660 22nd USENIX Security Symposium USENIX Association

〈djs-program〉 ::= ‘(function(){’
‘ var _ = ’ 〈function〉 ‘;’
‘ return function(x){’
‘ if(typeof x == "string") return _(x);’
‘}})();’

〈function〉 ::=
| ‘function(’ (@identifier ‘,’)*‘){’

(‘var’ (@identifier (‘=’ 〈expression〉)? ‘,’)+)?
(〈statement〉 ‘;’)*
(‘return’ 〈expression〉)? ‘}’

〈statement〉 ::= ε
| ‘with(’ 〈lhs expression〉 ‘)’ 〈statement〉
| ‘if(’ 〈expression〉 ‘)’ 〈statement〉

(‘else’ 〈statement〉)?
| ‘while(’ 〈expression〉 ‘)’ 〈statement〉
| ‘{’ (〈statement〉 ‘;’)* ‘}’
| 〈expression〉

〈expression〉 ::= 〈literal〉
| 〈lhs expression〉 ‘(’ (〈expression〉 ‘,’)* ‘)’
| 〈expression〉 〈binop〉 〈expression〉
| 〈unop〉 〈expression〉
| 〈lhs expression〉 ‘=’ 〈expression〉
| 〈dyn accessor〉
| 〈lhs expression〉

〈lhs expression〉 ::=
| @identifier | ‘this.’ @identifier
| 〈lhs expression〉 ‘[’ @number‘]’
| 〈lhs expression〉 ‘.’ @identifier

〈dyn accessor〉 ::=
| (〈x〉 = @identifier) ‘[(’ 〈expression〉

‘>>> 0) %’ 〈x〉 ‘.length]’
| ‘(’ (〈y〉 = @identifier) ‘>>>=0)<’ (〈x〉 = @identifier)

‘.length ? x[y] : ’ @string
| @identifier ‘[’ 〈expression〉 ‘&’ (n=@number) ‘]’

n ∈ �1,230 −1�

〈literal〉 ::= 〈function〉
| ‘{’ (@identifier ‘:’ 〈expression〉 ‘,’)* ‘}’
| ‘[’ (〈expression〉 ‘,’)* ‘]’
| @number | @string | @boolean

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’
| ‘&’ | ‘|’ | ‘^’ | ‘>>’ | ‘<<’ | ‘>>>’
| ‘&&’ | ‘||’ | ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’

〈unop〉 ::= ‘+’ | ‘-’ | ‘!’ | ‘~’

Figure 3: DJS Syntax.

Since in practice an attacker can set up the heap in such
a way that calling GF will raise an exception (e.g. stack
overflow) regardless of the parameters passed to GF , in-
dependence only considers sequences of calls to GF that
do not trigger exceptions in GF . When an exception oc-
curs in GF , the attacker may gain access to a stack trace.
Even though stack traces only reveal function names and
line numbers in current browsers, we prevent this infor-
mation leak by always executing E within a try block.

3.2 DJS Language
In practice, JavaScript code is considered valid DJS if it
is accepted by the automatic conformance checker de-
scribed in Section 4.1, which in turn is based on the type
system of Section 3.3. The type system effectively im-
poses a restricted grammar on DJS that is given in Fig-
ure 3. In this section, we describe the language more
informally.

Besides defensiveness, the main design goals for DJS
are: automated conformance checking (by typing), com-
patibility with currently deployed browsers (supporting
ECMAScript 3 and 5), and minimal performance over-
head. A side effect of our type system is to impose hy-
gienic coding practices similar to those of the popular
JSLint tool, encouraging high quality code that is easy to
reason about and extract verifiable models from.
Programs. A DJS program is a function wrapper (in the
sense of Definitions 1 and 2); its public API consists of a
single stub function from string to string that is a proxy
to a function (stored in a variable “ ”) in its closure. We
denote this wrapper by EDJS:

1 (function(){

2 var _ = <function>;

3 return function(x){

4 if(typeof x == "string") return _(x)}

5 })();

For simplicity, functions must begin with all their local
variables declarations, and end with a return statement:

1 function (<id>,...,<id>){

2 var <id> = <expr>,...,<id> = <expr>;

3 <statements>

4 return <expr>}

Our type system further restricts DJS statements and ex-
pressions as described below.
Preventing External References. DJS programs may
not access variables or call functions that they do not
define themselves. For example, they may not access
DOM variables like document.location, call global func-
tions like encodeURIComponent, or access prototype func-
tions of native objects like String.indexOf.

This restriction follows directly from our threat sce-
nario, where every object not in the defensive program is
in attacker memory and may have been tampered with.
So, at the very least, values returned by external refer-
ences must be considered tainted and not used in defen-
sive computations to preserve independence. More wor-
ryingly, in JavaScript, an untrusted function that is called
by defensive code can use the caller chain starting from
its own arguments object to traverse the call stack and ob-
tain direct pointers to defensive objects (inner functions,
their arguments objects, etc.), hence breaking encapsula-
tion. Some countermeasures have been proposed to pro-

8

USENIX Association 22nd USENIX Security Symposium 661

tect against this kind of stack-walking, but they rely on
non-standard browser features and are not very reliable
(e.g. we discovered a flaw against the countermeasure
in [21]: trying to set the caller property of a function
to null fails, an issue immediately fixed by the authors
in their online version). Future versions of JavaScript
may prohibit stack-walking, but in current browsers our
restriction is the prudent choice.

To enforce this restriction, the type system requires
all variables used in a DJS program to be lexically
scoped, within a function or scope object. For example,
var s = {x:42}; with (s){x = 4;} is valid DJS code, but
x = 4 is not.

Preventing Implicit Function Calls. In JavaScript,
non-local access can arise for example from its non-
standard scoping rules, from the prototype-based inher-
itance mechanism, from automated type conversion and
from triggering getters and setters on object properties.

Hence, to prevent defensive code from accidentally
calling malicious external functions, DJS requires all ex-
pressions to be statically typed. This means that vari-
ables can only be assigned values of a single type; arrays
have a fixed non-extensible number of (same-typed) val-
ues; objects have a non-extensible set of (typed) proper-
ties. Typing ensures that values are only accessed at the
right type and that objects and arrays are never accessed
beyond their boundaries (preventing accidental accesses
to prototypes and getters/setters). To prevent automatic
type conversion, overloaded operators (e.g. +) must only
be used with arguments of the same type.

Due to these restrictions, there is no general computed
property access e[e] in the syntax. Instead, we include a
variety of dynamic accessors to enable numeric, within-
bound property access to arrays and strings using built-in
dynamic checks, such as x[(e>>>0)%x.length].

DJS also forbids property enumeration for(i in o),
constructors and prototype inheritance.

Preventing Source Code Leakage. The source code
of a DJS program is considered secret, and should not
be available to untrusted code. We identify four attack
vectors that a trusted script can use to read (at least part
of) the source code of another script in the same origin:
using the toSource property of a function, using the stack

property of an exception, reading the code of an inline
script from the DOM, or re-loading a remote script as
data using AJAX or Flash.

To avoid the first attack, DJS programs only export
stub functions that internally call the functions whose
source code is sensitive. Calling toSource on the former
only shows the stub code and does not reveal the source
code of the latter. As discussed at the end of Section 3.1,
we can avoid the second attack by running wrapped DJS
code within a try block. To avoid the third and fourth

Types and Environments.

〈τ〉 ::= number | boolean | string | undefined Base types
| τ̃ → τ Function
| τ̃[ρ] → τ Method operating on properties ρ
| δ Objects and arrays

〈δ 〉 ::= σ | σ∗ Extensible or Fixed types
〈σ〉 ::= ρ | [τ]n,n ∈ N Array of length n
〈ρ〉 ::= {x1 : τ1, . . . ,xn : τn} Object with fields x1 · · ·xn

〈κ〉 ::= s | o Scope kind
〈Φ〉 ::= ε | Φ,x:τ Scope frame
〈Γ〉 ::= ε | Γ, [Φ]κ Typing environment

[σ∗ and σ are same thing sometimes]
Subtyping.

τ <: τ
σ <: τ
σ∗<: τ

m ≤ n
[τ]n <: [τ]m

J ⊆ I
{xi : τi}i∈I <:{x j : τ j} j∈J

ν1 <: ν2 µ̃2 <: µ̃1

µ̃1 → ν1 <: µ̃2 → ν2

ρ2 <: ρ1 µ̃1 → ν1 <: µ̃2 → ν2

µ̃1[ρ1] → ν1 <: µ̃2[ρ2] → ν2

Figure 4: DJS types, subtyping and environments.

attacks, we advise that a defensive script should never be
directly inlined in a page; it may either be injected and
executed by a bookmarklet or browser extension, or else
it should be sourced from a dedicated secure origin that
does not allow cross-domain resource sharing.

From Coding Discipline to Static Analysis. DJS im-
poses a number of seemingly harsh restrictions on secu-
rity component developers, but most of these are moti-
vated by the hostile environments in which these com-
ponents must execute, and the strict coding discipline
pays dividends in static analysis. In Sections 5 and 6, we
show that despite these restrictions, it is still possible to
code large security components in DJS that enjoy strong
defensiveness guarantees and can be automatically ana-
lyzed for security.

3.3 Type System
DJS types and their subtyping relation are defined in Fig-
ure 4. In addition to the JavaScript base types, it includes
functions, methods, arrays and objects. Method types re-
quire a type ρ for the this parameter. Arrays are indexed
by a lower bound n on their size.

The type system of DJS is static, that is, new variables
must be initialized with a value of some type, and once
a type is assigned to a variable it cannot subsequently
change. A standard width-subtyping relation <: cap-
tures polymorphism in the length of arrays and the set
of properties of objects. However, fixed types σ∗ do not
have subtypes to guarantee soundness [14, 15, 33]. For
example, our type systems does not admit a type for the
term (function(x,y){x[0]=y; return true;})([[1]],[]).

Typing environments Γ reflect the nesting of the lexi-
cal scoping up to the expression that is being typed. Each

9

662 22nd USENIX Security Symposium USENIX Association

Obj
Γ � ei : τi i ∈ [1..n]

Γ � {x1 : e1, . . . ,xn : en} : {xi : τi}∗i∈[1..n]
PropA

Γ � e : δ δ <:{x : τ}
Γ � e.x : τ

ArrA
Γ � e : δ δ <: [τ]n+1

Γ � e[n] : τ

Arr
Γ � ei : τ i ∈ [1..n]
Γ � [e1, . . . ,en] : [τ]∗n

StrD
Γ � x : string Γ � y : number

Γ � ((y ≫= 0) < x.length?x[y] : @string) : string
ArrD

Γ � x : [τ]n Γ � e : number n > 0
Γ � x[(e ≫ 0)%x.length] : τ

Scope
Φ(x) = τ

Γ, [Φ]κ � x : τ
RecScope

x �∈ dom(Φ) Γ � x : τ
Γ, [Φ]s � x : τ

FunDef

Γ, [x̃ : α̃,(yi : µi)i< j]s � e j : µ j j ∈ [1..m]
Γ, [x̃ : α̃, ỹ : µ̃]s � s : undefined Γ, [x̃ : α̃, ỹ : µ̃]s � r : τ

Γ � function (x̃){var y1 = e1, . . . ,ym = em;s; return r} : α̃ → τ

Assign
Γ � e1 : τ Γ � e2 : τ

Γ � e1 = e2 : τ
With

Γ � e : {x̃ : τ̃} Γ, [x̃ : τ̃]o � s : undefined

Γ � with(e)s : undefined
MetDef

Γ � function (this, x̃){s} : (ρ, α̃) → τ
Γ � function (x̃){s} : α̃[ρ] → τ

FunCall
Γ � e : µ Γ � ẽ : α̃ µ <: α̃ → τ

Γ � e(ẽ) : τ
MetCall

Γ � e : µ Γ � ẽ : α̃ µ <:{x : α̃[ρ] → τ}
Γ � e.x(ẽ) : τ

Figure 5: Selected typing rules.

scope frame Φ contains bindings of identifiers to types,
and is annotated with s or o depending on whether the
corresponding scope object is an activation record cre-
ated by calling a function, or a user object loaded onto
the scope using with. This distinction is important to stat-
ically prevent access to prototype chains: unlike activa-
tion records, user objects cause a missing identifier to be
searched in the (untrusted) object prototype rather than
in the next scope frame; thus, scope resolution must stop
at the first frame of kind o.

Typing Rules. Most of our typing rules are standard;
here we only discuss a few representative examples, re-
ported in Figure 5; the other typing rules are detailed
in the full version [11]. For soundness, Rule Assign
does not allow subtyping. Rule Obj keeps the object
structure intact and only abstracts each ei into its cor-
responding type τi. The rule for accessors and dynamic
accessors ensure that the property being accessed is di-
rectly present in the corresponding string, array or ob-
ject. For example, to typecheck Γ � s[3] : number using
rule ArrA, s must be typeable as an array of at least 4
numbers. The rules for dynamic accessors benefit from
knowing that the index is a number modulo the size of
admissible index values. Rule RecScope looks up vari-
ables recursively only through activation records, as ex-
plained above. Rule With illustrates the case when an
object frame is added to the typing environment. The
FunDef typing rule is helped by the structure we impose
on the function body. It adds an activation record frame
to the typing environment and adds all the local variable
declarations inductively. Finally, it typechecks the body
statement s and the type of the return expression r. Rule
MetDef invokes rule FunDev after adding a formal this
parameter to the function and extending the input type
with the this type ρ . Rule FunCall is standard, whereas
rule MetCall forces an explicit syntax for method invoca-
tion in order to determine the type ρ and binding of this.

In particular, ρ must be such that method l has a function
type compatible with the potentially more general type of
its parent object l.

Formal Guarantees. The DJS type system enjoys both
type soundness (types are preserved by computation) and
progress (typed programs terminate with a final value
and do not raise exceptions). A consequence of type
soundness is that well-typed programs are defensive. All
formal definitions and proofs leading to Theorem 1 can
be found in the technical report [11].

Theorem 1 (Defensiveness). If /0 � F :string → string
then the DJS wrapper EDJS encapsulates F over strings
and preserves its independence.

Another consequence of type soundness is that the ex-
ecution of well-typed programs does not affect attacker
memory [11]. As a consequence, execution of DJS pro-
grams is invisible to the attacker.

Extensions. We do not claim that DJS is the maximal
defensive subset of JavaScript: with a more expressive
type system, it would for instance be possible to sup-
port one level of prototype inheritence (i.e. constructors
having a literal object as prototype), or avoid certain dy-
namic accessors. Because we expect that DJS compo-
nents will mostly consist of basic control flow and calls
to our libraries, we do not think more expressive defen-
sive subsets of JavaScript are necessary for our goals.

4 DJS Analysis Tools

We developed two analysis tools for DJS programs. The
first verifies that a JavaScript program conforms to DJS.
The second extracts applied pi calculus models from DJS
programs, so that they may be verified for security prop-
erties. For lack of space, we do not detail the implemen-
tation of these tools; both are available from our website.

10

USENIX Association 22nd USENIX Security Symposium 663

./djst --check
x = function(s){return s.split(",")}; x("a,b");
Cannot type the following expression at file <stdio>,
line 1:38 to 1:46: x("a,b")
type <{"split":(string) -> ’a}> was expected but got <string>.

./djst --pv >model.pv && proverif -lib djcl model.pv
(function(){ var mackey = _lib.secret("xxx")+"";
var _ = function(s){return _lib.hmac(s,mackey)};
return function(s){if(typeof s=="string") return _(s)}})

Typing successful, CPU time: 4ms.
--- Free variables ---
_lib:{"hmac":(string,string)->string,"secret":string->string}
Process:
{1}new fun_9: channel;
(

{2}!
{3}in(fun_9, ret_10: channel);
{4}new var_mackey: Memloc;
{5}let s_11: String = str_1 in

Figure 6: Screenshot of the DJS tool: first a type-
checking error, then a (cut off) ProVerif translation.

4.1 Conformance Checker

We implement fully automatic type inference for the DJS
type system. Our tool can check if an input script is valid
DJS and provides informative error messages if it fails to
typecheck. Figure 6 shows a screenshot with a type error
and then the correct inferred type.

In our type system, an object such as {a:0, b:1}

can be assigned multiple types: {a:number,b:number},
{a:number}, {b:number} or {}. Subtyping induces a partial
order relation on the admissible types of an expression;
the goal of type inference is to compute the maximal ad-
missible type of a given expression.

To compute this type, we implement a restricted
variant of Hindley–Milner inference that incorpo-
rates width subtyping and infers type schemes.
For example, the generalized type for the function
function f(x){return x[0]} is ∃τ. [τ]1 → τ . Note the ex-
istential quantifier in front of τ: function types are not
generalized, which would be unsound because of muta-
ble variables. Thus, if the type inference processes the
term f([1]), unification will force τ = number, and any
later attempt to use f(["a"]) will fail, while f([1,2]) will
be accepted.

The unification of object type schemes yields the
union of the two sets of properties: starting from x : τ , af-
ter processing x.a+x.b, unification yields τ = {a : τ1,b :
τ2} and τ1 = τ2. Literal constructors are assigned their
maximal, fixed object type {xi : Ti}∗i∈[1..n]. Unification of
an object type {X} with the fixed {xi : Ti}∗i∈[1..n] ensures
X ⊆ {xi : Ti}i∈[1..n].

Our tool uses type inference as a heuristic, and re-
lies on the soundness of the type checking rules of Sec-
tion 3.3 for its correctness. Our inference and unification
algorithms are standard. We refer interested readers to
our implementation for additional details.

HttpServer HttpClient
net

WebSpi

DJS

SrvApp1 httpSvReq

SrvAppN

httpSvReq
. . .

UsrAgent1

pageC
lick

UsrAgentN

aj
ax

R
eq

ue
st

. . .

getC
ookStor se

tC
oo

kS
to

r

serverIdentities cookies storage

pageOrigin

credentials

Library

serverSessions

Figure 7: WebSpi model and DJS components

4.2 Model Extraction
DJS is a useful starting point for a security component
developer, but defensiveness does not in itself guarantee
security: for example it does not say that a program will
not leak its secrets to the hosting webpage, say by expos-
ing them in its exported API. Moreover, security compo-
nents like those in Section 2 consist of several scripts ex-
changing encrypted messages with each other and with
other frames and websites. Such designs are complex
and prone to errors, analyzing their security thus requires
a detailed model of cryptography, the browser environ-
ment and the web attacker.

In prior work, the WebSpi library of the ProVerif tool
has been used to analyze the security of web applica-
tions [5, 6]. The main processes, channels and data ta-
bles of WebSpi are represented on Figure 7. UsrAgent

processes model the behavior of JavaScript running on a
page, while the other processes handle communications
and processing of server requests.

The advantage of this methodology is that an applica-
tion can be automatically verified against entire classes
of web attackers. ProVerif can handle an unbounded
number of sessions, but may fail to terminate. If it ver-
ifies a model, it can serve to increase confidence in the
security application. The disadvantage is that to model
a JavaScript component in WebSpi, a programmer nor-
mally has to write an applied pi calculus process for each
script by hand.

We developed a model extraction tool that automati-
cally generates user agent process models of components
written in the subset of DJS without loops, using a pro-
cess and data constructor library for cryptographic oper-
ations and serialization (matching our implemented DJS
libraries introduced in the next section).

Our generated processes may then be composed with
existing WebSpi models of the browser and (if neces-
sary) hand-written models of trusted servers and auto-
matically verified. To support our translation, we ex-
tended the WebSpi model with a more realistic treatment
of JavaScript that allowed multiple processes to share the
same heap.

We do not fully detail our translation from DJS to the

11

664 22nd USENIX Security Symposium USENIX Association

applied pi calculus here for lack of space; it follows Mil-
ner’s famous “functions as processes” encoding of the
lambda calculus into the pi calculus [30]. Similar trans-
lations to ours have previously been defined (and proved
sound) for F# [12] and Java [4]. Our translation only
works for well-typed DJS programs that use our DJS li-
braries; it does not apply to arbitrary JavaScript.

DJS programs may prefix a function name by _lib to
indicate that the code of certain functions should not be
translated to applied pi and they must instead be treated
as trusted primitives. A typical example is cryptographic
functions, which get translated to symbolic functions.

Our translation recognizes two kinds of security an-
notations in source DJS programs. First, functions may
be annotated with security events; for example, the ex-
pression _lib.event(Send(a,b,x)) may be triggered be-
fore a uses a secret key shared with b to compute a MAC
of x. Second, functions may label certain values as se-
crets _lib.secret(x). Such annotations are reflected in
the generated models and can be analyzed by ProVerif
to prove authentication and secrecy queries; we describe
complex components we verified in Section 6.

5 Defensive Libraries

In this section, we present defensive libraries for cryptog-
raphy (DJCL), data encoding (DJSON), and JSON sig-
nature and encryption (JOSE). These libraries amount to
about two thousand lines of DJS code, verified for de-
fensiveness using our conformance checker. Hence, they
can be relied upon even in hostile environments.

5.1 Defensive JavaScript Crypto Library
Our starting points for DJCL are two widely used
JavaScript libraries for cryptography: SJCL [37] (cover-
ing hashing, block ciphers, encoding and number gener-
ation) and JSBN (covering big integers, RSA, ECC, key
generation and used in the Chrome benchmark suite). We
rewrote and verified these libraries in DJS.

Our implementation covers the following primitives:
AES on 256 bit keys in CBC and CCM/GCM modes,
SHA-1 and SHA-256, HMAC, RSA encryption and sig-
nature on keys up to 2048 bits with OAEP/PSS padding.
All our functions operate on byte arrays encoded as
strings; DJCL also includes related encoding and decod-
ing functions (UTF-8, ASCII, hexadecimal, and base64).

We evaluated the performance of DJCL using the
jsperf benchmark engine on Chrome 24, Firefox 18,
Safari 6.0 and IE 9. We found that our AES block func-
tion, SHA compression functions and RSA exponentia-
tion performed at least as fast as their SJCL and JSBN
counterparts, and sometimes even faster. Defensive cod-
ing is well suited for bit-level, self-contained crypto com-

putations, and JavaScript engines can easily optimize our
non-extensible arrays and objects.

On the other hand, when implementing high-level con-
structions such as HMAC or CCM encryption that oper-
ate on variable-length inputs, we pay a cost for not be-
ing able to access native objects in DJS. DJCL encodes
variable-length inputs in strings, since it cannot use
more efficient but non-defensive objects like Int32Array.
Encoding and decoding UTF-8 strings without relying
on a pristine String.fromCharCode and String.charCodeAt

means that we need to use table lookups that are substan-
tially more expensive than the native functions. The re-
sulting performance penalty is highly dependent on the
amount of encoding, the browser and hardware being
used, but even on mobile devices, DJCL achieves en-
cryption and hashing rates upwards of 150KB/s, which is
sufficient for most applications. Of course, performance
can be greatly improved in environments where proto-
types of the primordial String object can be trusted (for
instance, by using Object.freeze before any script is run).

5.2 Defensive JSON and JOSE

In most of our applications, the input string of a DJS pro-
gram represents a JSON object; our DJSON library seri-
alizes and parses such objects defensively for the internal
processing of such data within a defensive program.

DJSON.stringify takes a JSON object and a schema de-
scribing its structure (i.e. an object describing its DJS
type) and generates a serialized string. Deserializing
JSON strings generally requires the ability to create ex-
tensible objects. Instead, we rewrite DJSON.parse defen-
sively by requiring two additional parameters: the first is
a schema representing the shape of the expected JSON
object; the second is a preallocated object of expected
shape that will be filled by DJSON.parse. Our typechecker
processes these schemas as type annotations and uses
them to infer types for code that uses these functions.

This approach imposes two restrictions. Since DJS
typing fixes the length of objects, our library only works
with objects whose sizes are known in advance. This
restriction may be relaxed by using extensions of DJS
(described in our technical report [11]) that use algebraic
constructors for extensible objects and arrays. Also, at
present, we require users of the DJSON library to provide
the extra parameters (schemas, preallocated objects), but
we plan to extend our conformance checker to automati-
cally inject these parameters based on the inferred types
of the serialized and parsed JSON objects.

Combining DJCL and DJSON, we implemented a
family of emerging IETF standards for JSON cryptog-
raphy (JOSE), including JSON Web Tokens (JWT) and
JSON Web Encryption (JWE) [25]. Our library interop-
erates with other server-side implementations of JOSE

12

USENIX Association 22nd USENIX Security Symposium 665

Program LOC Typing PV LOC ProVerif
DJCL 1728 300ms 114 No Goal
JOSE 160 36ms 9 No Goal
Sec. AJAX 61 7ms 243 12s
LastPass 43 42ms 164 21s
Facebook 135 42ms 356 43s
ConfiChair 80 31ms 203 25s

Table 2: Evaluation of DJS codebase

(notably those implementing OpenID Connect). Us-
ing JOSE, we can write security components that ex-
change encrypted and/or authenticated AJAX requests
and responses with trusted servers. More generally, we
can build various forms of secure RPC mechanisms be-
tween a DJS script and other principals (scripts, frames,
browser extensions, or servers.)

6 Applications

We revisit the password manager bookmarklet, single
sign-on script, and encrypted storage website examples
from Section 2 and evaluate how DJS can help avoid at-
tacks and improve confidence in their security. For each
component, we show that DJS can achieve security goals
even stronger than those currently believed possible us-
ing standard browser security mechanisms. Table 2 sum-
marizes our codebase and verification results.

6.1 Secret-Keeping Bookmarklets
Bookmarklets are fragments of JavaScript stored in a
bookmark that get evaluated in the scope of the active
page when they are clicked. Password manager book-
marklets (like LastPass Login, Verisign One-Click, Pass-
pack It) contain code that tries to automatically fill in
login forms (or credit card details) on the current page,
by retrieving encrypted data the user has stored on the
password manager’s web server.

For example, the LastPass server authenticates the user
with a cookie (she must be currently logged in), authenti-
cates the host website with the Referer or Origin header,
and returns the login data encrypted with a secret key
(LASTPASS_RAND) that is unique to the bookmarklet and
embedded in its code. The bookmarklet then decrypts
the login data with its key and fills in the login form.

The code in these bookmarklets is typically not defen-
sive against same origin attacks; this leads to a family
of rootkit attacks, where a malicious webpage can fool
the bookmarklet into revealing its secrets [1]; indeed, we
found new variations of these attacks (Section 2) even
after the original designs were fixed to use frames.

We wrote two, improved versions of the LastPass
bookmarklet using DJS that prevent such attacks:

• The first uses DJCL’s AES decryption to decrypt the
login data retrieved from the LastPass server.

• The second uses DJCL’s HMAC function to authen-
ticate the bookmarklet (via postMessage) to a frame
loaded from the LastPass origin; the frame then de-
crypts and reveals the login data to the host page.

Assuming the host page is correctly authenticated by
LastPass, both designs prevent rootkit attacks.

Moreover, both our bookmarklets guarantee a stronger
click authentication property. The bookmarklet key rep-
resents the intention of the user to release data to the cur-
rent page. If a script on the page could capture this key,
it would no longer need the bookmarklet; it could use the
password manager server directly to track (and login) the
user on subsequent visits, even if the user wished to re-
main anonymous, and say had erased her cookies for this
site. Instead, by protecting the key using DJS, and using
the key only once per click, both our designs guarantee
that the user must have clicked on the bookmarklet each
time her identity and data is released to the webpage.

Evaluation. Our bookmarklets are fully self-contained
DJS programs and with a trimmed-down version of
DJCL can fit the 2048 bytes length limit of bookmarklets.
They require minimal changes to the existing LastPass
architecture. More radical redesigns are possible, but
even those would benefit from being programmed in
DJS. We verified our bookmarklets for defensiveness by
typing, and for key secrecy and click authentication by
using ProVerif. In ProVerif, we compose the models ex-
tracted from the bookmarklets with the WebSpi library
and a hand-written model for the LastPass server (and
frame).

Click authentication is an example of a security goal
that requires DJS; it cannot be achieved using frames
for example. The reason is that bookmarklets (unlike
browser extensions) cannot reliably create or commu-
nicate with frames without their messages being inter-
cepted by the page. They need secrets for secure com-
munication; only defensiveness can protect their secrets.

6.2 Script-level Token Access Control
The Facebook login component discussed in Section 2
keeps a secret access token and uses it to authenticate
user data requests to the Facebook REST API. How-
ever, this token may then be used by any script on the
host website, including social plugins from competitors
like Twitter and Google, and advertising libraries that
may track the user against her wishes. Can we restrict
the use of this access token only to selected scripts, say
only (first-party) scripts loaded from the host website?
Browser-based security mechanisms, like iframes, can-
not help, since they operate at the origin level. Even CSP

13

666 22nd USENIX Security Symposium USENIX Association

policies that specify which origins can provide scripts to
a webpage cannot differentiate between scripts once they
are loaded into the page.

We propose a new design that uses DJS to enforce
fine-grained script-level access control for website se-
crets like access tokens and CSRF tokens. We implement
it by modifying the Facebook JavaScript SDK as follows.

We assume that the website has registered a dedicated
Token Origin (e.g. open.login.yahoo.com) with Facebook
where it receives the access token. We assume that the
token is obtained and stored securely by this origin.

Website Origin

Facebook Server

Token Origin
Facebook API

Trusted Scripts

Access Token

XHR Proxy
DJS FB.api

DJS header

id, token

API key

FB.api()

The token origin then provides a proxy frame to the
main website (e.g. *.yahoo.com) that only allows autho-
rized scripts to use the token. The frame listens for re-
quests signed with JWT using an API key; if the signa-
ture is valid, it will inject the access token into the request
and forward it to the network (using XHR, or JSONP
for Facebook), and return the result. An useful exten-
sion to this mechanism when privacy is important is to
accept encrypted JWE requests and encrypt their result
(we leave this out for simplicity).

On the main website, we use a slightly modified ver-
sion of the Facebook SDK that has no access to the real
access token, but still provides the same client-side API
to the webpage. We replace the function that performs
network requests (FB.api) with a DJS function that con-
tains the secret API key, hence can produce signed re-
quests for the proxy frame. This function only accepts
requests from pre-authorized scripts; it expects as its ar-
gument a serialized JSON Web Token (JWT) that con-
tains the request, an identifier for the source script, and a
signature with a script-specific key (in practice, derived
from the API key and the script identifier). If the sig-
nature is valid, the API request is signed with the API
key and forwarded to the proxy frame. This function can
also enforce script-level access control; for instance, it
may allow cross-origin scripts to only request the user
name and profile picture, but not to post messages.

For this design to work, the API key must be fresh for
each user, which can be achieved using the user’s ses-
sion or a cookie. Such keys should have a lifetime limit
corresponding to the cache lifetime of the scripts that are
injected with secret tokens. One may also want to add

freshness to the signed requests to avoid them being re-
played to the proxy frame.

Finally, each (trusted) script that requires access to the
Facebook API is injected with a DJS header that pro-
vides a function able to sign the requests to FB.api us-
ing its script identifier and a secret token derived from
the identifier and API key. We provide a sample of the
DJS code injected into trusted scripts below, for basic
Facebook API access (/me) with no (optional) parame-
ters. Note that only the sign_request function is defen-
sive; we put it in the scope of untrusted code using with

because it prevents the call stack issues of closures:

1 with({sign_request: (function(){

2 var djcl = {/*...*/};

3 var id = "me.js", tok = "1f3c...";

4 var _ = function(s){

5 return s == "/me" /* || s== "..." */ ?

6 djcl.jwt.create(

7 djcl.djson.stringify({jti: id, req: s}), tok

8) : "" };

9 return function(s){

10 if(typeof s=="string") return _(s)}

11 })(), __proto__:null})

12 {

13 // Trusted script

14 FB.api(sign_request("/me"),

15 function(r){alert("Hello, "+r.name)});

16 }

Evaluation. Besides allowing websites to keep the ac-
cess token secret, our design lets them control which
scripts can use it and how (a form of API confinement).
Of course, a script that is given access to the API (via a
script key) may unintentionally leak the capability (but
not the key), in which case our design allows the web-
site to easily revoke its access (using a filter in FB.api).
Our proposal significantly improves the security of Face-
book clients, in ways it would be difficult to replicate
with standard browser security mechanisms.

We only change one method from the Facebook API
which accounts for less than 0.5% of the total code. Our
design maintains DOM access to the API, which would
be difficult to achieve with frames. Without taking DJCL
into account, each of the DJS functions added to trusted
scripts is less than 20 lines of code. We typechecked our
code for defensiveness, and verified with ProVerif that it
provides the expected script-level authorization guaran-
tees, and that it does not leak its secrets (API key, script
tokens) to the browser.

6.3 An API for Client-side Encryption

In Section 2 we showed that encrypted cloud storage ap-
plications are still vulnerable to client-side web attacks
like XSS (e.g. ConfiChair, Mega) that can steal their keys
and completely break their security. Finding and elimi-
nating injection attacks from every page is not always

14

USENIX Association 22nd USENIX Security Symposium 667

easy or feasible. Instead, we propose a robust design for
client-side crypto APIs secure despite XSS attacks.

First, we propose to use a defensive crypto library
rather than Java applets (Helios, Wuala, and ConfiChair)
or non-defensive JavaScript libraries (Mega, SpiderOak).
In the case of Java applets, this also has the advantage of
significantly increasing the performance of the applica-
tion (DJCL is up to 100 times faster on large inputs) and
of reducing the attack surface by removing the Java run-
time from the trusted computing base.

Second, we propose a new encrypted local storage
mechanism for applications that need to store encryption
keys in the browser. This mechanism relies on the avail-
ability of an embedded session key that is specific to the
browser session and is embedded into code served by the
script server, but not given to the host page.

As a practical example, we show how to use both
these mechanisms to make the ConfiChair conference
management system more resilient against XSS attacks.
ConfiChair uses the following cryptographic API (types
shown for illustration):

derive_secret_key

//:(input:string,salt:string)->key:string

base64_encode, base64_decode //:string->string

encryptData, decryptData

//:(data:string,key:string)->string

encryptKeypurse//:(key:string,keypurse:json)->string

decryptKeypurse//:(key:string,string)->keypurse:json

When the user logs in, a script on the login page calls
derive_secret_key with the password to compute a se-
cret user key which is stored in localStorage. When the
user clicks on a particular document to download (a pa-
per or a review), the conference page downloads the en-
crypted PDF along with an encrypted keypurse for the
user. It decrypts the keypurse with the user key, stores it
in localStorage, and uses it to decrypt the PDF. The main
vulnerability here is that any same-origin script can steal
the user key (and keypurse) from local storage.

We write a drop-in replacement for this API in DJS.
Instead of returning the real user key and keypurse in
derive_secret_key and decryptKeypurse, our API returns
keys encrypted (wrapped) under a sessionKey. When
decryptData is called, it transparently unwraps the pro-
vided key, never exposing the user key to the page. Both
the encrypted user key and keypurse can be safely stored
in localStorage, because it cannot be read by scripts that
do not know sessionKey. We protect the integrity of these
keys with authenticated encryption.

Our design relies on a secure script server that can de-
liver defensive scripts embedded with session keys. Con-
cretely, this is a web service running in a trusted, isolated
origin (a subdomain like secure.confichair.org)
that accepts GET requests with a script name and a target
origin as parameters. It authenticates the target origin by

verifying the Origin header on the request, and may re-
ject requests for some scripts from some origins. It then
generates a fresh sessionKey, embeds it within the defen-
sive script and sends it back as a GET response. The
sessionKey remains the same for all subsequent requests
in the same browsing session (using cookies).

Evaluation. Our changes to the ConfiChair website
amount to replacing its Java applet with our own cryp-
tographic API and rewriting two lines of code from the
login page. The rest of the website works without further
modification while enjoying a significantly improved se-
curity against XSS attacks. Using ProVerif, we analyzed
our API (with an idealized model of the script server and
login page) and verified that it does not leak the user
key, keypurse, or sessionKey. Our cryptographic API
looks similar to the upcoming Web Cryptography API
standard, except that it protects keys from same-origin
attackers, whereas the proposed API does not.

7 Related Work

Attacks similar to the ones we describe in Section 2 have
been reported before in the context of password manager
bookmarklets [1], frame busting defenses [35], single
sign-on protocols [6, 36, 41], payment processing com-
ponents [42], smartphone password managers [9], and
encrypted cloud storage [5, 10]. These works provide
further evidence for the need for defensive programming
techniques and automated analysis for web applications.

A number of works explore the use of frames and
inter-frame communication to isolate untrusted compo-
nents on a page or a browser extension by relying on
the same origin policy [2, 7, 8, 27, 44]. Our approach
is orthogonal; we seek to protect scripts against same-
origin attackers using defensive programming in stan-
dard JavaScript. Moreover, DJS scripts require fewer
privileges than frames (they cannot open windows, for
example) and unlike components written in full HTML,
DJS programs can be statically analyzed for security.

A variety of JavaScript subsets attempt to protect
trusted web pages from untrusted [20, 26, 28, 29, 31, 32,
34, 39]. Our goal is instead to run trusted components
within untrusted web pages, hence our security goals are
stronger, and our language restrictions are different. For
example, these subsets rely on first-starter privilege, that
is, they only offer isolation on web pages where their
setup code runs first so that it can restrict the code that
follows. Our scripts do not need such privileges.

[21] proves full abstraction for a compiler from f* (a
subset of ML) to JavaScript. Their theorem ensures that
programmers can reason about deployed f* programs en-
tirely in the semantics of the source language, ignoring
JavaScript-specific details. As such, their translation is

15

668 22nd USENIX Security Symposium USENIX Association

also robust against corruption of the JavaScript environ-
ment. However, there are also some significant limita-
tions. In particular, their theorems do not account for
HTML-level attackers who can, say, open frames and
call their functions. We also reported flaws in their trans-
lation (since fixed in their online version). In compar-
ison, our programs are written directly in a subset of
JavaScript and can defend themselves against stronger
threats, including full HTML adversaries that may exe-
cute before, after, and concurrently with our programs.

Dynamic information flow analyses for various sub-
sets of JavaScript [3, 17, 24] enforce a security property
called noninterference. Our static type system enforces
defensiveness and we analyze security by model extrac-
tion. Relating defensiveness to noninterference remains
future work; we conjecture that DJS may be more suit-
able than JavaScript to static information flow analysis.

8 Conclusion

Given the complexity and heterogeneity of the web pro-
gramming environment and the wide array of threats it
must contend with, it is difficult to believe that any web
application can enjoy formal security guarantees that do
not break easily in the face of concerted attack. Instead
of relying on the absence of web vulnerabilities, this pa-
per presents a defense-in-depth strategy. We start from a
small hardened core (DJS) that makes minimal assump-
tions about the browser and JavaScript runtime, and then
build upon it to obtain defensive security for critical com-
ponents. We show how this strategy can be applied to ex-
isting applications, with little change to their code but a
significantly increase in their security. We believe our
methods scale, and lifting these results to protect full
websites that use HTML and PHP is ongoing work.

Acknowledgements The authors would like to thank
David Wagner, Nikhil Swamy and the anonymous re-
viewers for their helpful comments leading to signifi-
cant improvements to this paper. We would also like to
acknowledge the Mozilla and Facebook security teams
for prompt and constructive discussions about our at-
tacks. Bhargavan and Delignat-Lavaud are supported by
the ERC Starting Grant CRYSP. Maffeis is supported by
EPSRC grant EP/I004246/1.

References

[1] B. Adida, A. Barth, and C. Jackson. Rootkits for
JavaScript environments. In WOOT, 2009.

[2] D. Akhawe, P. Saxena, and D. Song. Privilege sep-
aration in HTML5 applications. In USENIX Secu-
rity, 2012.

[3] T. Austin and C. Flanagan. Multiple facets for dy-
namic information flow. In POPL, pages 165–178,
2012.

[4] M. Avalle, A. Pironti, D. Pozza, and R. Sisto.
JavaSPI: A framework for security protocol imple-
mentation. International Journal of Secure Soft-
ware Engineering, 2:34–48, 2011.

[5] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and
S. Maffeis. Keys to the cloud: Formal analysis
and concrete attacks on encrypted web storage. In
POST, 2013.

[6] C. Bansal, K. Bhargavan, and S. Maffeis. Discov-
ering concrete attacks on website authorization by
formal analysis. In CSF, pages 247–262, 2012.

[7] A. Barth, C. Jackson, and W. Li. Attacks on
JavaScript mashup communication. In W2SP,
2009.

[8] A. Barth, C. Jackson, and J.C. Mitchell. Securing
browser frame communication. In USENIX Secu-
rity, 2008.

[9] A. Belenko and D. Sklyarov. “Secure pass-
word managers” and “Military-grade encryption”
on smartphones: Oh, really? Technical report, El-
comsoft Ltd., 2012.

[10] K. Bhargavan and A. Delignat-Lavaud. Web-based
attacks on host-proof encrypted storage. In WOOT,
2012.

[11] K. Bhargavan, A. Delignat-Lavaud, and S. Maf-
feis. Defensive JavaScript website with testbed,
technical report and supporting materials. http:

//www.defensivejs.com, 2013.

[12] K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Tse. Verified interoperable implementations of
security protocols. In CSFW, pages 139–152, 2006.

[13] B. Blanchet and B. Smyth. ProVerif: Auto-
matic Cryptographic Protocol Verifier, User Man-
ual and Tutorial. http://www.proverif.inria.fr/

manual.pdf.

[14] P. Canning, W. Cook, W. Hill, W. Olthoff, and
J. Mitchell. F-bounded polymorphism for object-
oriented programming. In FPCA, pages 273–280,
1989.

[15] L. Cardelli. Extensible records in a pure cal-
culus of subtyping. In In Theoretical Aspects
of Object-Oriented Programming, pages 373–425.
MIT Press, 1994.

16

USENIX Association 22nd USENIX Security Symposium 669

[16] D. Crockford. ADsafe: Making JavaScript safe for
advertising. http://www.adsafe.org/, 2008.

[17] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: a web browser with flexi-
ble and precise information flow control. In CCS,
pages 748–759, 2012.

[18] D. Dolev and A.C. Yao. On the security of public
key protocols. IEEE Transactions on Information
Theory, IT–29(2):198–208, 1983.

[19] M. Finifter, A. Mettler, N. Sastry, and D. Wagner.
Verifiable functional purity in Java. In CCS, pages
161–174. ACM, 2008.

[20] M. Finifter, J. Weinberger, and A. Barth. Preventing
Capability Leaks in Secure JavaScript Subsets. In
BDSS, 2010.

[21] C. Fournet, N. Swamy, J. Chen, P. Dagand, P. Strub,
and B. Livshits. Fully abstract compilation to
JavaScript. In POPL’13, 2013.

[22] P. Haack. JSON hijacking. http://hhacked.com/

2009/06/25/json-hijacking.aspx, 2009.

[23] D. Hardt. The OAuth 2.0 authorization framework.
IETF RFC 6749, 2012.

[24] D. Hedin and A. Sabelfeld. Information-flow secu-
rity for a core of JavaScript. In CSF, pages 3–18,
2012.

[25] IETF. JavaScript Object Signing and Encryption
(JOSE), 2012. http://tools.ietf.org/wg/
jose/.

[26] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating
JavaScript with filters, rewriting, and wrappers. In
ESORICS’09, 2009.

[27] L. Meyerovich, A. Porter Felt, and M. Miller. Ob-
ject views: Fine-grained sharing in browsers. In
WWW, 2010.

[28] L. Meyerovich and B. Livshits. ConScript: Spec-
ifying and enforcing fine-grained security policies
for JavaScript in the browser. In IEEE S&P, 2010.

[29] J. Mickens and M. Finifter. Jigsaw: Efficient, low-
effort mashup isolation. In USENIX Web Applica-
tion Development, 2012.

[30] R. Milner. Functions as processes. In Automata,
Languages and Programming, volume 443, pages
167–180. 1990.

[31] P. Phung, D. Sands, and D. Chudnov. Lightweight
self-protecting JavaScript. In ASIACCS, 2009.

[32] J. Politz, S. Eliopoulos, A. Guha, and S. Krish-
namurthi. ADsafety: Type-based verification of
JavaScript sandboxing. In USENIX Security, 2011.

[33] F. Pottier. Type inference in the presence of sub-
typing: from theory to practice. Research Report
3483, INRIA, September 1998.

[34] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: Vulnerability-driven fil-
tering of dynamic HTML. ACM Transactions on
the Web, 1(3), 2007.

[35] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jack-
son. Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In W2SP’10, 2010.

[36] J. Somorovsky, A. Mayer, A. Worth, J. Schwenk,
M. Kampmann, and M. Jensen. On breaking
SAML: Be whoever you want to be. In WOOT,
2012.

[37] E. Stark, M. Hamburg, and D. Boneh. Symmetric
cryptography in JavaScript. In ACSAC, pages 373–
381, 2009.

[38] B. Sterne and A. Barth. Content Security Policy
1.0. W3C Candidate Recommendation, 2012.

[39] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. Miller,
and J. Nagra. Automated analysis of security-
critical JavaScript APIs. In IEEE S&P, 2011.

[40] Google Caja Team. A source-to-source translator
for securing JavaScript-based web. http://code.
google.com/p/google-caja/.

[41] R. Wang, S. Chen, and X. Wang. Signing me
onto your accounts through facebook and google:
A traffic-guided security study of commercially de-
ployed single-sign-on web services. In IEEE S&P,
pages 365–379. IEEE Computer Society, 2012.

[42] R. Wang, S. Chen, X. Wang, and S. Qadeer. How
to shop for free online - security analysis of cashier-
as-a-service based web stores. In IEEE S&P, pages
465–480, 2011.

[43] M. Zalewski. The Tangled Web. No Starch Press,
November 2011.

[44] L. Zhengqin and T. Rezk. Mashic compiler:
Mashup sandboxing based on inter-frame commu-
nication. 2012.

17

USENIX Association 22nd USENIX Security Symposium 671

Take This Personally: Pollution Attacks on Personalized Services

Xinyu Xing, Wei Meng, Dan Doozan, Alex C. Snoeren†, Nick Feamster, and Wenke Lee
Georgia Institute of Technology and †UC San Diego

Abstract
Modern Web services routinely personalize content

to appeal to the specific interests, viewpoints, and con-
texts of individual users. Ideally, personalization allows
sites to highlight information uniquely relevant to each
of their users, thereby increasing user satisfaction—and,
eventually, the service’s bottom line. Unfortunately, as
we demonstrate in this paper, the personalization mech-
anisms currently employed by popular services have not
been hardened against attack. We show that third parties
can manipulate them to increase the visibility of arbi-
trary content—whether it be a new YouTube video, an
unpopular product on Amazon, or a low-ranking website
in Google search returns. In particular, we demonstrate
that attackers can inject information into users’ profiles
on these services, thereby perturbing the results of the
services’ personalization algorithms. While the details of
our exploits are tailored to each service, the general ap-
proach is likely to apply quite broadly. By demonstrating
the attack against three popular Web services, we high-
light a new class of vulnerability that allows an attacker
to affect a user’s experience with a service, unbeknownst
to the user or the service provider.

1 Introduction

The economics of the Web ecosystem are all about clicks
and eyeballs. The business model of many Web services
depends on advertisement: they charge for prime screen
real estate, and focus a great deal of effort on develop-
ing mechanisms that make sure that the information dis-
played most prominently is likely to create revenue for
the service, either through a direct ad purchase, com-
mission, or at the very least improving the user’s ex-
perience. Not surprisingly, malfeasants and upstanding
business operators alike have long sought to reverse engi-
neer and exploit these mechanisms to cheaply and effec-
tively place their own content—whether it be items for

sale, malicious content, or affiliate marketing schemes.
Search engine optimization (SEO), which seeks to im-
pact the placement of individual Web pages in the results
provided by search engines, is perhaps the most widely
understood example of this practice.

Modern Web services are increasingly relying upon
personalization to improve the quality of their customers’
experience. For example, popular websites tailor their
front pages based on a user’s previous browsing history
at the site; video-sharing websites such as YouTube rec-
ommend related videos based upon a user’s watch his-
tory; shopping portals like Amazon make suggestions
based on a user’s previous purchases; and search engines
such as Google return customized results based upon a
wide variety of user-specific factors. As the Web be-
comes increasingly personal, the effectiveness of broad-
brush techniques like SEO will wane. In its place will
rise a new class of schemes and outright attacks that ex-
ploit the mechanisms and algorithms underlying this per-
sonalization. In other words, personalization represents
a new attack surface for all those seeking to steer user
eyeballs, regardless of their intents.

In this paper, we demonstrate that contemporary per-
sonalization mechanisms are vulnerable to exploit. In
particular, we show that YouTube, Amazon, and Google
are all vulnerable to the same class of cross-site scripting
attack, which we call a pollution attack, that allows third
parties to alter the customized content the services return
to users who have visited a page containing the exploit.
Although the attack is quite effective, we do not claim
that it is the most powerful, broadly applicable, or hard
to defeat. Rather, we present it as a first example of a
class of attacks that we believe will soon—if they are not
already—be launched against the relatively unprotected
underbelly of personalization services.

Our attack exploits the fact that a service employing
personalization incorporates a user’s past history (includ-
ing, for example, browsing, searching and purchasing ac-
tivities) to customize the content that it presents to the

1

672 22nd USENIX Security Symposium USENIX Association

user. Importantly, many services with personalized con-
tent log their users’ Web activities whenever they are
logged in regardless of the site they are currently visiting;
other services track user activities on the site even if the
user is logged out (e.g., through a session cookie). We
use both mechanisms to pollute users’ service profiles,
thereby impacting the customized content returned to the
users in predictable ways. Given the increasing portfolio
of services provided by major players like Google and
Amazon, it seems reasonable to expect that a large frac-
tion of users will either be directly using the service or at
least logged in while browsing elsewhere on the Web.

We show that pollution attacks can be extremely effec-
tive on three popular platforms: YouTube, Google, and
Amazon. A distinguishing feature of our attack is that
it does not exploit any vulnerability in the user’s Web
browser. Rather, it leverages these services’ own person-
alization mechanisms to alter user’s experiences. While
our implementation employs cross-site request forgery
(XSRF) [13], other mechanisms are possible as well.

The ability to trivially launch such an attack is es-
pecially worrisome because it indicates the current ap-
proach to Web security is ill-equipped to address the
vulnerabilities likely to exist in personalization mecha-
nisms. In particular, today’s Web browsers prevent ex-
ploits like cross-site scripting and request forging by en-
forcing boundaries between domains though “same ori-
gin” policies. The limitations of these approaches are
well known, but our attack represents a class of exploits
that cannot be stopped by client-side enforcement: in an
attempt to increase the footprint of its personalization en-
gine (e.g., Google recording search queries that a user
enters on a third-party page), a service with personalized
services is providing the cross-site vector itself. Hence,
only the service can defend itself from such attacks on its
personalization. Moreover, enforcing isolation between
independent Web sessions seems antithetical to the goal
of personalization, which seeks to increase the amount of
information upon which to base customization attempts.

This paper makes the following contributions:

• We describe pollution attacks against three
platforms—YouTube, Google, and Amazon—that
allow a third party to alter the personalized content
these services present to users who previously
visited a Web page containing the exploit.

• We study the effectiveness of our attack on each of
these platforms and demonstrate that it (1) can in-
crease the visibility of almost any YouTube chan-
nel; (2) dramatically increase the ranking of most
websites in the short term, and even have lasting im-
pacts on the personalized rankings of a smaller set
of sites, and (3) cause Amazon to recommend rea-
sonably popular products of the attacker’s choosing.

• Our attack and its effectiveness illustrates the im-
portance of securing personalization mechanisms in
general. We discuss a number of implications of our
study and ways for websites to mitigate similar vul-
nerabilities in the future.

The rest of the paper is organized as follows. Section 2
provides a general overview of pollution attacks on per-
sonalized services. Sections 3, 4, and 5 introduce specific
attacks that can be launched against YouTube, Google,
and Amazon, respectively, and report on our success. We
survey related work in Section 6 and discuss limitations
of our work and possible defenses in Section 7 before
concluding in Section 8.

2 Overview and Attack Model

In this section, we present a brief overview of personal-
ization as it is used by popular Web services. We then
present a model of pollution attacks, which we apply
to three different scenarios later in the paper: YouTube,
Amazon, and Google.

2.1 Personalization
Online services are increasingly using personalization to
deliver information to users that is tailored to their inter-
ests and preferences. Personalization potentially creates
a situation where both the service provider and the user
benefit: the user sees content that more closely matches
preferences, and the service provider presents products
that the user is more likely to purchase (or links that the
user is more likely to click on), thus potentially resulting
in higher revenues for the service provider.

The main instrument that a service provider can use to
affect the content that a user sees is modifying the choice
set, the set of results that a user sees on a particular screen
in response to a particular query. The size of a choice
set differs for different services. For example, YouTube
shows the user anywhere from 12–40 videos; Amazon
may show the user up to five sets of recommended prod-
ucts; Google’s initial search results page shows the top
ten results. Figure 1 shows several examples of choice
sets on different sites.

When a user issues a query, a service’s personaliza-
tion algorithm affects the user’s choice set for that query.
The choice set that a personalization algorithm produces
depends on a user query, as well as a number of auxil-
iary factors, including the universe of all possible con-
tent and the user’s browsing history. Previous work has
claimed that many factors, ranging from geography to
time of day, may affect the choice set that a user sees.
For the purposes of the attacks in this paper, we focus on
how changes to a user’s history can affect the choice set,

2

USENIX Association 22nd USENIX Security Symposium 673

(a) Customized YouTube. (b) Customized Amazon. (c) Customized Google.

Figure 1: websites with personalized services (personalized services tailor the data in the red rectangles).

Figure 2: Overview of how history pollution can ulti-
mately affect the user’s choice set.

holding other factors fixed. In particular, we study how
an attacker can pollute the user’s history by generating
false clicks through cross-site request forgery (XSRF).
We describe these attacks in the next section.

2.2 Pollution Attacks

The objective of a pollution attack is to affect a user’s
choice set, given a particular input. In some cases, a
user’s choice set appears before the user enters any in-
put (e.g., upon an initial visit to the page). In this case,
the attacker’s goal may be to affect a default choice set.
Figure 2 shows an overview of the attacker’s goal: the
attacker aims to affect the resulting choice set by alter-
ing the user’s history with false clicks, using cross-site
request forgery as the attack vector. This attack requires
three steps:

1. Model the service’s personalization algorithm. We
assume that the attacker has some ability to model
the personalization algorithm that the site uses to af-
fect the user’s choice set. In particular, the attacker
must have some idea of how the user’s past history
affects the user’s choice set. This information is of-
ten available in published white papers, but in some
cases it may require experimentation.

2. Create a “seed” to pollute the user’s history. Given
some knowledge of the personalization algorithm
and a goal for how to affect the choice set, the at-
tacker must design the seed that is used to affect

the user’s choice set. Depending on the service, the
seed may be queries, clicks, purchases, or any other
activity that might go into the user’s history. A good
seed can affect the user’s choice set with a minimal
number of “false clicks”, as we describe next.

3. Inject the seed with a vector of false clicks. To pol-
lute a user’s history, in most cases we require that
the user be signed in to the site. (For some services,
pollution can take place even when the user is not
signed in.) Then, the attacker can use a mechanism
to make it appear as though the user is taking action
on the Web site for a particular service (e.g., click-
ing on links) using a particular attack vector.

In the following sections, we explore how an attacker can
apply this same procedure to attack the personalization
algorithms of three different services: YouTube, Ama-
zon, and Google search.

3 Pollution Attacks on YouTube

In this section, we demonstrate our attack on YouTube1.
Following the attack steps we described in Section 2,
we first model how YouTube uses the watch history of a
YouTube user account to recommend videos by review-
ing the literature [5]. Second, we discuss how to prepare
seed data (i.e., seed videos) to promote target data (i.e.,
target videos belonging to a specific channel). Third, we
introduce how to inject the seed videos to a YouTube user
account. Finally, we design experiments and quantify the
effectiveness of our attack.

3.1 YouTube Personalization
YouTube constructs a personalized list of recommended
videos based upon the videos a user has previously
viewed [5]. YouTube attempts to identify the subset of
previously viewed videos that the user enjoyed by con-
sidering only those videos that the user watched for a
long period of time. Typically, YouTube recommends
videos that other users with similar viewing histories

1A demo video is available at http://www.youtube.com/

watch?v=8hij52ws98A.

3

674 22nd USENIX Security Symposium USENIX Association

have also enjoyed. YouTube tracks the co-visitation re-
lationship between pairs of videos, which reflects how
likely a user who watched a substantial portion of video
X will also watch and enjoy video Y . In general, there
may be more videos with co-visitation relationships than
there is display area, so YouTube prioritizes videos with
high rankings. YouTube will not recommend a video the
user has already watched.

YouTube displays recommended videos in the sugges-
tion list placed alongside with a playing video (e.g., Fig-
ure 5) and in the main portion of the screen at the end of
a video (Figure 1(a)). A suggestion list appearing next to
a video typically contains 20–40 suggested videos, two
of which are recommended based upon personalization.
At the end of a video, YouTube shows an more concise
version of the suggestion list that contains only twelve of
the videos from the full list; these videos may or may not
contain personal recommendations.

3.2 Preparing Seed Videos
YouTube organizes videos into channels, where each
channel corresponds to the set of uploads from a particu-
lar user. In our attack, we seek to promote a set of target
videos, ΩT , all belonging to the same YouTube channel,
C. To do so, we will use an additional set of seed videos,
ΩS, that have a co-visitation relationship with the target
videos. By polluting a user’s watch history with videos in
ΩS, we can cause YouTube to recommend videos in ΩT .
There are two ways to obtain ΩS: we can identify videos
with pre-existing co-visitation relationships to the target
videos, or we can create the relationships ourselves.

Existing Relationships. In the simplest version of the
attack, the attacker identifies existing videos to use as
the seed set. For example, given a target video set
ΩT belonging to channel C, the attacker could con-
sider all of the other videos in the channel, C − ΩT ,
as candidate seeds. For every candidate video, the at-
tacker checks which videos YouTube recommends when
a fresh YouTube account (i.e., a YouTube account with
no history) watches it. YouTube allows its users to view
their recommended videos at http://www.youtube.

com/feed/recommended. If the candidate video trig-
gers YouTube to recommend a video in ΩT , then the at-
tacker adds the injected video to seed video set ΩS.

In general, this process allows the attacker to identify
seed videos for every target video in ΩT . The attacker
cannot yet launch the attack, though, because a YouTube
video in ΩS may trigger YouTube to also recommend
videos not in ΩT . To address this issue, the attacker can
simply add these unwanted videos to the seed video set
ΩS because YouTube does not recommend videos that
the user has already watched. As we will show later, the

attacker can convince YouTube that the user watched, but
did not enjoy, these unwanted videos, so their inclusion
in ΩS will not lead to additional recommendations.

Fabricating Relationships. For some videos, it may
be difficult to identify a seed set ΩS that recommends all
of the elements of ΩT due to lack of co-visitation rela-
tionships for some of the target elements. Instead, attack-
ers who upload their own content to use as the seed set
can create co-visitation relationships between this con-
tent and the target set. In particular, an attacker uploads
a set of videos, Ω0, and establishes co-visitation relation-
ships between Ω0 and ΩT through crowd-sourcing (e.g.,
Mechanical Turk or a botnet): YouTube visitors need
only watch a video in Ω0 followed by a video in ΩT .
After a sufficient number of viewing pairs, the attacker
can use videos in Ω0 as the seed set. As we will show in
Section 3.4.1, a relatively small number of viewing pairs
suffices.

3.3 Injecting Seed Videos

To launch the attack and inject seed videos into a
victim’s YouTube watch history, an attacker can harness
XSRF to forge the following two HTTP requests for each
video in the seed set: (1) http://www.youtube.com/
user_watch?plid=<value>&video_id=<value>,
and (2) http://www.youtube.com/set_awesome?

plid=<value>&video_id=<value>, where plid

and video id correspond to the values found in the
source code of the seed video’s YouTube page. The
first HTTP request spoofs a request from the victim to
start watching the seed video, and the second convinces
YouTube that the victim watched the video for a long
period of time. Both HTTP requests are required for
videos in ΩS to trigger the recommendation of videos in
ΩT , but only the first HTTP request is needed to prevent
the recommendation of unwanted videos.

3.4 Experimental Design

We evaluated the effectiveness of our attack both in con-
trolled environments and against real YouTube users. We
first validated the the attack in the simplest scenario,
where the attack promoted existing YouTube channels
through existing co-visitation relationships. We then
considered the scenario where an attack seemed to up-
load and promote content from a channel that the attacker
created. Finally, we conducted a small-scale experiment
to demonstrate the effectiveness of the attack against a
volunteer set of real YouTube users.

4

USENIX Association 22nd USENIX Security Symposium 675

3.4.1 New Accounts

We first promoted existing YouTube channels by launch-
ing our attack against victims with fresh YouTube user
accounts. This experiment confirms the effectiveness of
our approach in the absence of other, potentially counter-
vailing influences, such as recommendations based on a
user’s existing history.

We began by selecting 100 existing YouTube channels
at random from the list of the top 2,000 most-subscribed
channels published by VidStatsX [19]. For each of the
selected YouTube channels, we randomly selected 25
videos from the channel as the target video set, used the
method described in the previous section to identify a
seed video set, and injected the seed videos to a fresh
YouTube account.

We then considered promoting new content by creat-
ing our own YouTube channel and similarly attacking
fresh YouTube accounts. Our YouTube channel contains
two 3-minute videos. We selected one of the videos as
a one-element target video set and used the other as the
seed set. We created a co-visitation relationship by em-
bedding both videos on a web page and recruiting volun-
teers to watch both videos sequentially. We obtained 65
and 68 views for our seed and target video respectively.

3.4.2 Existing Accounts

We studied the effectiveness of our pollution attack using
real YouTube user accounts. We recruited 22 volunteers
with extensive pre-existing YouTube watch histories. To
limit the inconvenience to our volunteers, we limited our
study to attempting to promote one moderately popular
YouTube channel based upon existing co-visitation rela-
tionships. We selected a moderately popular account be-
cause a popular channel may be recommended anyway
(regardless of out attack); conversely, an entirely new
channel requires a certain amount of effort to establish
the co-visitation relationships as described above and we
have limited volunteer resources.

Based on these parameters, we arbitrarily selected the
channel OnlyyouHappycamp. We believe this selection
is a reasonable candidate to be promoted using our attack
for several reasons. First, compared to popular chan-
nels, most videos in OnlyyouHappycamp have low view
counts (about 2,000 view counts per video on average)
and the number of subscribers to the channel is a simi-
larly modest 3,552. Both of these are easily achievable
by an attacker at fairly low cost2. Second, most videos in
OnlyyouHappycamp are 22 minutes long, which makes
them suitable for promotion. As we will explain in Sec-
tion 3.5.1, the length of a target video affects its likeli-

2According to the prices in underground markets such as
freelancer.com and fiverr.com, 40,000 view counts and 10,000
subscribers cost $15 and $30 US dollars, respectively.

1 3 5 7 9 11 14 17 20 23

Target video ID

Pr
om

ot
io

n
ra

te

0.
0

0.
1

0.
2

0.
3

Figure 3: The promotion rate for each of the 25 target
videos in channel lady16makeup. Two videos were rec-
ommended in each of the 114 trials.

hood for being recommended as a result of a co-visitation
relationship with another video.

Similar to the experiments with new accounts, we ran-
domly selected 15 target videos from channel Onlyy-
ouHappycamp, identified a seed set, and injected the
seed videos into the volunteers’ YouTube accounts. Af-
ter pollution, the volunteers were asked to use their ac-
counts to watch three videos of their choice and report
the suggestion list displaying alongside each of their
three videos.

3.5 Evaluation

We evaluated the effectiveness of our pollution attacks
by logging in as the victim user and viewing 114 repre-
sentative videos3. We measured the effectiveness of our
attack in terms of promotion rate: the fraction of the 114
viewings when at least one of the target videos was con-
tained within the video suggestion list. Recall that the
list contains at most two personalized recommendations
(see Section 3.1); we deem the attack successful if one
or both of these videos are videos that were promoted as
a result of a pollution attack.

3.5.1 New Accounts

Pollution attacks successfully promoted target videos
from each of the 100 selected existing channels: Each
time we injected seed videos for a particular channel, we
observed the target videos in the suggestion list for each
of the 114 videos. Since these are fresh accounts, there
is no other history, so our targeted videos always occupy
both of the personalized recommendation slots.

In addition, we observed the particular target videos
shown in the suggestion video list varied, even when

3We attempted to view 150 videos random from a trace of YouTube
usage at our institution over the course of several months. Unfortu-
nately, 36 of the videos were no longer available at the time of our
experiment.

5

676 22nd USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 9
Target video rank

Pr
om

ot
io

n
ra

te
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

(a) Higher ranked video

1 2 3 4 5 6 7 8 9 11
Target video rank

Pr
om

ot
io

n
ra

te
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

(b) Lower ranked video

Figure 4: Distribution of the suggestion slots occupied
by each of the two successfully promoted target videos.

we were viewing the same video using the same victim
YouTube account. In other words, every target video has
a chance to be promoted and shown on the suggestion
video list no matter which video a victim plays. Fig-
ure 3 shows the frequency with which each of the 25 tar-
get videos for a representative channel, lady16makeup.
In an attempt to explain this variation, we computed (1)
the Pearson correlation between the showing frequencies
and the lengths of the target videos for each channel (ρt);
(2) the Pearson correlation between the showing frequen-
cies and the view counts of these target videos for each
channel (ρcnt). We found the average Pearson correla-
tion values are medium (ρt = 0.54) and moderate (ρcnt =
0.23), respectively. This suggests that both the length and
view count of a target video influence its recommenda-
tion frequency, but the length of a target video is a more
significant factor.

Since screen real estate is precious, and users typically
focus on the first few items of a list, we report on the po-
sition within the suggested video lists that our targeted
videos occupied when they were promoted. We observed
that the two target videos were usually placed back-to-
back on the suggestion list. Figure 4 shows that YouTube
usually placed our target videos among the top few spots
of a victim’s suggestion list: in our tests with new ac-
counts, the target videos were always recommended and
placed on the top 12, which meant they also appeared
at the end of viewed videos. This finding is particu-
larly significant because it implies that our target videos
are shown even if a victim finishes watching a YouTube
video on a third-party website (which typically embeds
only the view-screen portion of the YouTube page, and
not the full suggestion list).

Our attacks were similarly completely successful in
promoting newly uploaded content. As a control, we
also signed in as non-polluted fresh YouTube accounts
and, unsurprisingly, did not find any of our new con-
tent among the videos in the suggestion list. In other
words, the videos were recommended exclusively be-
cause of our attacks; our experiments were sufficiently

Figure 5: Suggestion lists before (left) and after (right)
a pollution attack against a fresh YouTube user account.
The video highlighted in red is our uploaded video.

200 500 1000 2000 5000 10000

0.
2

0.
4

0.
6

0.
8

1.
0

Watch history

Pr
om

ot
io

n
ra

te

Figure 6: Promotion success rates for 10 real YouTube
user accounts with varying watch history lengths.

small that we did not lead YouTube to conclude that our
content was, in fact, universally popular. Figure 5 shows
a sample screenshot comparing the suggestion lists from
a victim account and another, non-exploited fresh ac-
count. Finally, we found that one of our target videos
occupied the top suggestion slot while viewing 80 out of
the 114 test videos.

3.5.2 Existing Accounts

Our attacks were somewhat less successful on real
YouTube accounts. We found that 14 out of the 22 volun-
teer YouTube users reported that at least one of our tar-
get videos from channel OnlyyouHappycamp appeared
in the suggestion list during each of their three video
viewings, a 64% promotion rate.

To understand why we were able to exploit some ac-
counts and not others, we asked our volunteers to share
their YouTube watch histories. Ten of our volunteers
shared their histories with us and allowed us to sign in to

6

USENIX Association 22nd USENIX Security Symposium 677

their YouTube accounts to conduct a further study. The
number of videos in the watch histories of the ten vol-
unteers ranged from a few hundred to tens of thousands.
Figure 6 shows the relationship between the number of
watched videos in a watch history and the number of
times that at least one of our target videos is displayed
along with a playing video. While there appears to be an
intuitive decreasing trend (i.e., the longer the history an
account has the more resistant it is to pollution), there are
obvious outliers. For example, one account with almost
3,500 previous viewings in its history succumbed to our
attacks almost 80% of the time.

Consistent with the Pearson coefficients reported ear-
lier, we found that the success of our attacks depends on
the rankings and lengths of the videos that are otherwise
suggested based upon a user’s history. In particular, we
observed that the majority of the videos recommended
to users for whom our attacks have low promotion rates
have longer lengths and more view counts than our tar-
get videos, while the videos that YouTube recommends
based on the watch history of the user with 3,500 previ-
ous viewings have shorter lengths than our target videos
(though they generally have higher view counts than our
targets).

Although we believe our attack demonstrates that
YouTube’s personalization mechanism is subject to ex-
ploit, the persistence of the attack effects is unclear. In
our experiments, volunteers watched arbitrary YouTube
videos right after being attacked, but we believe our pol-
lution attacks on YouTube are likely to last for some
time. Although YouTube does not explicitly disclose
how time factors into their recommendation system (if
at all) [5], analysis of volunteers’ watch histories indi-
cates that a YouTube video that was watched as long as
two weeks prior is still used for generating recommended
videos.

4 Google Personalized Search

In this section, we show how history pollution attacks
can be launched against Google’s search engine4. The
goal of our attack is to promote a target webpage’s rank
in the personalized results that Google returns for an ar-
bitrary search term by injecting seed search terms into a
victim’s search history.

4.1 Search Personalization
Search personalization customizes search results using
information about users, including their previous query
terms, click-through data and previously visited web-
sites. The details of Google’s personalization algorithms

4A demo video is available at http://www.youtube.com/

watch?v=73E5CLFYeu8.

are not public, but many previous studies have explored
aspects of personalized search [2,4,6,7,9,10,14–18]. We
describe two classes of personalization algorithms: con-
textual personalization and persistent personalization.
According to recent reports [11,12], many search engines
including Google, Bing, and Yahoo! apply both types of
personalization.

Contextual personalization constructs a short-term
user profile based on recent searches and clicks-
through [4, 16]. When a user searches for “inexpen-
sive furniture” followed by “maternity clothes,” Google’s
contextual personalization algorithm typically promotes
search results that relate to “inexpensive maternity
clothes” for the next few searches (we provide an anal-
ysis of precisely how long this effect lasts in Ap-
pendix A.2). In contrast, persistent personalization uses
the entire search history—as opposed to only recent
searches—to develop a user profile [9, 15]. Personaliza-
tion that occurs over the longer term may not affect a
user’s search results as dramatically, but can have longer-
lasting effects for the results that a user sees. For exam-
ple, searching for “Egypt” using different accounts may
result in two distinct result sets: one about tourism in
Egypt and one related to the Arab Spring.

4.2 Identifying Search Terms
Given the differing underlying algorithms that govern
contextual and persistent personalization, an attacker
needs to select different sets of seed search terms depend-
ing on the type of attack she hopes to launch.

Contextual Personalization. For the contextual per-
sonalization attack, the keywords injected into a user’s
search history should be both relevant to the promot-
ing keyword and unique to the website being promoted.
In particular, the keywords should be independent from
other websites that have similar ranking in the search re-
sults, to ensure that only the target website is promoted.
Presumably, an attacker promoting a specific website is
familiar with the website and knows what keywords best
meet these criteria, but good candidate keywords are also
available in a website’s meta keyword tag. While Google
no longer incorporates meta tags into their ranking func-
tion [3], the keywords listed in the meta keyword tag still
provide a good summary of the page’s content.

Persistent Personalization. Launching a persistent
personalization attack requires a different method of ob-
taining keywords to inject. In this case, the size of the
keyword set should be larger than that used for a contex-
tual attack in order to have a greater effect on the user’s
search history. Recall that contextual attacks only affect
a user’s current session, while persistent attacks pollute

7

678 22nd USENIX Security Symposium USENIX Association

a user’s search history in order to have a lasting effect on
the user’s search results. An attacker can determine suit-
able keywords using the Google AdWords tool, which
takes as an input a search term and URL and produces a
list of about one hundred related keywords. Ideally, an
attacker could pollute a user’s search history with each
of these terms, but a more efficient attack should be ef-
fective with a much smaller set of keywords. We deter-
mined that an attacker can safely inject roughly 50 key-
words a minute using cross-site request forgery; more
rapid search queries are flagged by Google as a screen-
scraping attack. For this study, we assume an attacker
can inject at most 25 keywords into a user’s profile, but
the number of keywords can increase if the user stays on
a webpage for more than 30 seconds. Not all keyword
lists that AdWords returns actually promote the target
website. The effectiveness of this attack likely depends
on several factors, including the user’s current search his-
tory. In Section 4.5, we evaluate the effectiveness of this
attack under different conditions.

4.3 Injecting Search Terms
As with the pollution attacks on YouTube, the attack on
Google’s personalized search also uses XSRF to inject
the seeds. For example, an attacker can forge a Google
search by embedding https://www.google.com/

search?hl=en&site=&q=usenix+security+2013

into an invisible iframe. A Web browser will issue
an embedded HTTP request, even if Google search
response has an enabled X-Frame-Option header.
Injecting search terms into a Google user’s account
affects the search results of the user’s subsequent
searches. The number and set of search terms to inject
differs depending on whether an attacker can execute a
contextual or persistent personalization attack.

4.4 Experimental Design
To cleanly study the effects of our proposed attacks on
contextual and persistent search personalization, we con-
ducted most of our experiments using Google accounts
with no search history. To validate whether our results
apply to real users, we also conducted a limited number
of tests using accounts that we constructed to mimic the
personae of real users.

To quantify the effectiveness of our attack in general,
we must select an unbiased set of target web pages whose
rankings we wish to improve. We built two test corpora,
one for attacks on contextual personalization, and one for
attacks on persistent personalization. We attempted to
promote existing web sites using only their current con-
tent and link structure; we did not perform any SEO on
websites before conducting the attacks. We believe this

represents a conservative lower bound on the effective-
ness of the attack, as any individual website owner could
engineer the content of their site to tailor it for promotion
through search history pollution.

4.4.1 Contextual Pollution

We started by scraping 5,671 shopping-related keywords
from made-in-china.com to use as search terms. We
then entered each of these terms into Google one-by-one
to obtain the top 30 (un-personalized) search results for
each. Since some of our search terms are related, not all
of these URLs are unique. Additionally, we cannot hope
to improve the URLs that are already top-ranked for each
of the search terms. We obtained 151,363 URLs whose
ranking we could hope to improve.

Because we cannot manually inspect each of these
websites to determine appropriate seed search terms, we
instead focused a subset that include the meta keyword
tag. For the approximately 90,000 such sites, we ex-
tracted the meta keywords or phrases from the website.
Many of these keywords are generic and will appear in
a wide variety of websites. To launch the attack, we re-
quire keywords that are unique to the website we wish to
promote (at least relative to the other URLs returned in
response to the same query), so we ignored any keywords
that were associated with multiple URLs in the same set
of search results.

This procedure ultimately yielded 2,136 target URLs
spanning 1,739 different search terms, for which we had
a set of 1–3 seed keywords to try to launch a contextual
pollution attack. The average search term has 1.23 results
whose ranking we tried to improve. Figure 11 in the Ap-
pendix shows the distribution of the original rankings for
each of these target websites; the distribution is skewed
toward highly ranked sites, perhaps because these sites
take care in selecting their meta tag keywords.

4.4.2 Persistent Pollution

Once again, we begin by selecting 551 shopping-related
search terms and perform Google searches with each of
the search terms to retrieve the top 30 search results. As
opposed to the contextual attack, where we search for
keywords that differentiate the results from one another,
we aim to determine search terms that will be associated
with the website and search-term pair for the long term.

As described in Section 4.2, we use a tool provided by
Google AdWords to obtain a set of keywords that Google
associates with the given URL and search term. Con-
structing related keyword lists for each of the 29 search
returns (again excluding the top hit, which we cannot
hope to improve) and 551 search terms yields 15,979 dis-
tinct URLs with associated lists of keywords.

8

USENIX Association 22nd USENIX Security Symposium 679

For each URL, we select 25 random keywords from
the AdWords list for 25 distinct trials. If a trial improved
a URL’s ranking, we then test the persistence of the at-
tack by performing 20 subsequent queries, each with
a randomly chosen set of Google trending keywords.
These subsequent queries help us verify that the URL
promotion is not just contextual, but does not vanish
when a user searches other content. If after all 25 trials
we find no keyword sets that promote the URL’s ranking
and keep it there for 20 subsequent searchers, we deem
this URL attempt a failure. If multiple keyword sets suc-
ceed, we select the most effective (i.e., the set of 25 key-
words that induces the largest ranking improvement) trial
to include in the test set.

4.5 Evaluation

In this section, we quantify the effectiveness of search
history pollution with attacks that aimed to promote the
target websites identified in the previous section. To
scope our measurements, we consider the effectiveness
of the attacks only for the set of search terms that we
identify; it is quite possible, of course, that our pollution
attacks also affect the rankings of the targeted URLs for
other search terms.

When measuring the effectiveness of our attack, we
use two different criteria, depending upon a website’s
original position in the search results. In the case of
URLs that are already in the first ten search results but
not ranked first, we consider the pollution attack success-
ful if it increases the ranking of a URL at all. For URLs
subsequent pages, we consider the attack successful only
if the attack moves the URL to the first page of search
results, since improved ranking on any page that is not
the first page is unlikely to have any utility.

4.5.1 Top-Ranked Sites

For the 2,136-page contextual attack test corpus, of the
846 pages that appeared on the front page prior to our
attack, we improved the ranking of 371 (44%). The per-
sistent attack was markedly less effective, with only 851
(17%) of the 4,959 test cases that originally appeared
on the first page of the search results had ranking im-
provements surviving the persistence test (i.e., they re-
mained promoted after 20 random subsequent queries).
In both cases, however, the probability of success de-
pends greatly on the original ranking of the targeted
URL. For example, promoting a second-ranked URL
to the top-ranked position for contextual personalization
succeeded 1.1% of the time, whereas promoting a tenth-
ranked URL by at least one position succeeded 62.8%
of the time. Similarly, for attacks on persistent person-
alization, moving a second-ranked URL to the top suc-

ceeded 4.3% of the time, and moving a tenth-ranked
URL to a higher-ranked position succeeded 22.7% of the
time. These results make sense, because second-ranked
sites can only move into the top-ranked position, whereas
sites that are ranked tenth can move into any one of nine
higher spots.

To illustrate this effect and illuminate how far each
webpage was promoted, Figure 7 shows the PDF of an
improved webpage’s rank after contextual history pol-
lution, based upon its position in the non-personalized
search results. We observed that contextual pollution was
able to promote most webpages by one or two spots, but
some low-ranking webpages were also promoted to very
high ranks. Similarly, Figure 8 shows the distributions
for each result ranking for those websites whose rankings
were improved by a persistent history pollution attack.
Here, the distributions appear roughly similar (although
the absolute probability of success is much lower), but
it is difficult to draw any strong conclusions due to the
small number of promoted sites of each rank for either
class of attack.

4.5.2 The Next Tier

The remaining 1,290 test websites for the contextual at-
tack were initially on the second or third page of search
results. By polluting a user’s search history with the
unique meta tag keywords associated with each site, we
promoted 358 of them (28%) to the front page. Fig-
ure 7(j) shows that these websites were more likely to
appear at the top of the results than those pages that were
initially at the bottom of the first page. We suspect this
phenomenon results from the choice of keywords used
in pollution: because their original rankings were low,
the pollution attack requires a distinguishing keyword to
move one of the webpages to the front page at all. If
such a keyword can move a search result to the first page,
it might also be a good enough keyword to promote the
page to a high rank on the first page, as well.

The results from the persistent test set are markedly
different. Figure 8(j) shows that sites starting on the sec-
ond or third page are unlikely to end up at the very top
of the result list due to a persistent history attack: Only
80 (less than 1%) of the 11,020 attacks that attempted
to promote a website appearing on the 2nd or 3rd page
of results was successful in moving it to the front page
(and keeping it there). This results shows that persis-
tent search history attacks are generally best launched for
sites that are already highly ranked, as opposed to con-
textual attacks, which can help even lower-ranked sites.

9

680 22nd USENIX Security Symposium USENIX Association

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(a) Non-personalized rank
= 2

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(b) Non-personalized rank
= 3

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(c) Non-personalized rank
= 4

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(d) Non-personalized rank
= 5

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(e) Non-personalized rank
= 6

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(f) Non-personalized rank
= 7

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(g) Non-personalized rank
= 8

1 3 5 7 9

Personalized rank
P

ro
m

ot
io

n
ra

te

0.
0

0.
2

0.
4

0.
6

(h) Non-personalized rank
= 9

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(i) Non-personalized rank =
10

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
0

0.
2

0.
4

0.
6

(j) Non-personalized rank
> 10

Figure 7: Promotion rates of promoted Google search rankings for successful contextual history pollution attacks.

4.5.3 Real Users

We also evaluate the effectiveness of pollution attacks
on ten volunteers’ accounts with extensive pre-existing
search histories. We find that, on average, 97.1% of our
729 previously successful contextual attacks remain suc-
cessful, while only 77.78% of the persistent pollution at-
tacks that work on fresh accounts achieve similar suc-
cess. We believe that users’ search histories sometimes
interfere with the attacks, and that user history inter-
feres more with the attacks on persistent personalization.
Contextualized attacks rely only on a small set of re-
cent search terms to alter the personalized search results,
which is unlikely to be affected by a user’s search history.
In contrast, pollution attacks against persistent personal-
ization rely on more of a user’s search history. If relevant
keywords are already present in a user’s search history,
keyword pollution may be less effective. In any event,
both attacks are relatively robust, even when launched
against users with long search histories.

5 Pollution Attacks on Amazon

Of the three services, Amazon’s personalization is per-
haps the most evident to the end user. On one hand, this
makes pollution-based attacks less insidious, as they will
be visible to the observant user. On the other, of the three
services, Amazon has the most direct monetization path,
since users may directly purchase the goods from Ama-
zon. Therefore, exploitation of Amazon’s personaliza-
tion may be profitable to an enterprising attacker.

Amazon tailors a customer’s homepage based on the

previous purchase, browsing and searching behavior of
the user. Amazon product recommendations consider
each of these three activities individually and explicitly
labels its recommendations according to the aspect of the
user’s history it used to generate them. We focused on the
personalized recommendations Amazon generates based
on the browsing and searching activities of a customer
because manipulating the previous purchase history of a
customer may have unintended consequences.

5.1 Amazon Recommendations

Amazon displays five recommendation lists on a cus-
tomer’s homepage that are ostensibly computed based on
the customer’s searching and browsing history. Four of
these lists are derived from the products that the customer
has recently viewed (view-based recommendation); the
fifth is based on the latest search term the customer en-
tered (search-based recommendation). For each of the
view-based recommendation lists, Amazon uses relation-
ships between products that are purchased together to
compute the corresponding recommended products; this
concept is similar to the co-visitation relationship that
YouTube uses to promote videos. For the recommenda-
tion list that is computed based on the latest search term
of a customer, the recommended products are the top-
ranked results for the latest search term.

In contrast to the types of personalization used for
YouTube and Google Search, Amazon’s personalization
is based on history that maintained by the user’s web
browser, not by the service. Because customers fre-
quently brows Amazon without being signed in, both the

10

USENIX Association 22nd USENIX Security Symposium 681

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(a) Non-personalized rank
= 2

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(b) Non-personalized rank
= 3

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(c) Non-personalized rank
= 4

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(d) Non-personalized rank
= 5

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(e) Non-personalized rank
= 6

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(f) Non-personalized rank
= 7

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(g) Non-personalized rank
= 8

1 3 5 7 9

Personalized rank
P

ro
m

ot
io

n
ra

te

0.
00

0.
10

0.
20

0.
30

(h) Non-personalized rank
= 9

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(i) Non-personalized rank =
10

1 3 5 7 9

Personalized rank

P
ro

m
ot

io
n

ra
te

0.
00

0.
10

0.
20

0.
30

(j) Non-personalized rank
> 10

Figure 8: Promotion rates of promoted Google search rankings for successful persistent history pollution attacks.

latest viewed products and search term of the customer
are stored in session cookies on the user’s browser rather
than in profiles on Amazon servers.

5.2 Identifying Seed Products and Terms
Because Amazon computes the view and search-based
recommendation lists separately, the seed data required
exploit each list must also be different.

Visit-Based Pollution. To promote a targeted product
in a view-based recommendation list, an attacker must
identify a seed product as follows. Given a targeted prod-
uct that an attacker wishes to promote, the attacker visits
the Amazon page of the product and retrieves the related
products that are shown on Amazon page of the targeted
product. To test the suitability of these related products,
the attacker can visit the Amazon page of that product
and subsequently check the Amazon home page. If the
targeted product appears in a recommendation list, the
URL of the candidate related product can serve as a seed
to promote the targeted product.

Search-Based Pollution. To promote a targeted prod-
uct in a search-based recommendation list, it suffices to
identify an appropriate search term. If automation is de-
sired, an attacker could use a natural language toolkit to
automatically extract a candidate keyword set from the
targeted product’s name. Any combination of these key-
words that successfully isolates the targeted product can
be used as the seed search term for promoting the tar-
geted product. For example, to promote product “Bre-
ville BJE200XL Compact Juice Fountain 700-Watt Juice

Extractor”, an attacker can use XSRF to inject the search
term “Breville BJE200XL” to replace an Amazon cus-
tomer’s latest search term.

5.3 Injecting Views and Searches
As with the attacks on the previous two services, the at-
tacker embeds the Amazon URLs of the desired seed
items or search queries into a website that the victim’s
browser is induced to visit with XSRF. For example, if
one seed search terms is “Coffee Maker”, the seed URL
would be something like http://www.amazon.com/s/
?field-keywords=Coffee+Maker. Similarly, an at-
tacker could embed the URL of a seed product into an
invisible img tag as the src of the image. When a victim
visits the attacker’s website, Amazon receives the request
for that particular query or item and customizes the vic-
tim’s Amazon website based on that search.

5.4 Experiment Design
To evaluate the effectiveness of the pollution attack
against, we conducted two experiments. The first exper-
iment measured the effectiveness of our attack when tar-
geted toward popular items across different categories of
Amazon products. The second quantified the effective-
ness of our attack on randomly selected, mostly unpopu-
lar Amazon products.

5.4.1 Popular Products

Amazon categorizes sellers’ products into 32 root cat-
egories. To select products from each category, we

11

682 22nd USENIX Security Symposium USENIX Association

ns
trGard

en

e

G

t.F
.Prod

enoo
d

Pr
om

ot
io

n
ra

te

0.0
0.2
0.4
0.6
0.8
1.0

Pati
o.L

aw
n.

Mus
ica

l.I
um

en
ts

Hom
e.K

itch

roc
ery

.G
ou

rm
e

Offic

uc
ts
Bab

y

App
lian

ce
s

Bea
uty

Kitch
en

.Dinin
g

Hom
e.I

mpro
ve

men
t

Arts
.Craf

ts.
Sew

ing

Pet.
Sup

plie
s

Je
welr

y

Watc
he

s

Cam
era

.Pho
to
Sho

es

Spo
rts

.O
utd

oo
rs

To
ys.

Gam
es

Ind
us

tria
l.S

cie
nti

fic

Elec
tro

nic
s

Com
pu

ter
s.A

cce
sso

rie
s

Clot
hin

g

Hea
lth

.Pers
on

al.
Care

Auto
moti

ve

Vide
o.G

am
es

Mus
ic.A

lbu
ms

Soft
ware

Cell.
Pho

ne
s.A

cce
sso

rie
s

Mag
az

ine
s

Boo
ks

Mov
ies

.TV

Gift.
Card

s.S
tor

e

Search based View based

Figure 9: Promotion rates across Amazon categories.

scraped the top 100 best-selling products in each cate-
gory in January 2013 and launched a separate attack tar-
geting each of these 3,200 items.

5.4.2 Random Products

To evaluate the effectiveness of the polution attack for
promoting arbitrary products, we also selected prod-
ucts randomly. We downloaded a list of Amazon Stan-
dard Identification Number (ASIN) [1] that includes
75,115,473 ASIN records. Because each ASIN repre-
sents a Amazon product, we randomly sampled ASINs
from the list and constructed a set of 3,000 products cur-
rently available for sale. For every randomly selected
product in the list, we recorded the sale ranking of that
product in its corresponding category.

5.5 Evaluation

Because Amazon computes search and visit-based rec-
ommendations based entirely upon the most recent his-
tory, we can evaluate the effectiveness of the pollution
attack without using Amazon accounts from real users.
Thus, we measured the effectiveness of our attack by
studying the success rate of promoting our targeted prod-
ucts for fresh Amazon accounts.

5.5.1 Promoting Products in Different Categories

To evaluate the effectiveness of the pollution attack for
each targeted product, we checked whether the ASIN of
the targeted product matches the ASIN of an item in the
recommendation lists on the user’s customized Amazon
homepage.

Figure 9 illustrates the promotion rate of target prod-
ucts in each category. The view-based and search-based

attacks produced similar promotion rates across all cate-
gories, about 78% on average. Two categories had sig-
nificantly lower propotion rates: Gift-Cards-Store and
Movies-TV (achieving 5% and 25%, respectively).

To understand why these categories yielded lower pro-
motion rates, we analyzed the top 100 best selling prod-
ucts for each category. For Gift-Cards-Store, we found
that there were two factors that distinguish gift cards
from other product types. First, the gift cards all had
similar names; therefore, using the keywords derived
from the product name resulted in only a small number
of specific gift cards being recommended. Second, we
found that searching any combination of keywords ex-
tracted from the product names always caused a promo-
tion of Amazon’s own gift cards, which may imply that
it is more difficult to promote product types that Amazon
competes with directly.

Further investigation into the Movies-TV category re-
vealed that Amazon recommends TV episodes differ-
ently. In our attempts to promote specific TV episodes,
we found that Amazon recommends instead the first or
latest episode of the corresponding TV series or the en-
tire series. Because we declared a promotion success-
ful only if the exact ASIN appears in the recommenda-
tion lists, these alternate recommendations are consid-
ered failures. These cases can also be considered suc-
cessful because the attack caused the promotion of very
similar products. Therefore, we believe that for all cat-
egories except for Gift-Cards-Store, an attacker has a
significant chance of successfully promoting best-selling
products.

5.5.2 Promoting Randomly Selected Products

We launched pollution attacks on 3,000 randomly se-
lected products. We calculated the Cumulative Success
Rate of products with respect to their rankings. The Cu-

12

USENIX Association 22nd USENIX Security Symposium 683

Figure 10: Cumulative promotion rates across varying
product ranks for different Amazon pollution attacks.

mulative Success Rate for a given range of product rank-
ings is defined as the ratio of the number of successfully
promoted products to the number of target products in
that range.

Figure 10 shows the cumulative promotion rate for dif-
ferent product rankings for the two different types of pol-
lution attacks. As the target product decreases in popu-
larity (i.e., has a higher ranking position within its cat-
egory) pollution attacks become less effective, but this
phenomenon reflects a limitation of Amazon recommen-
dation algorithms, not our attack. Products with low
rankings might not be purchased as often; as a result,
they may have few and weak co-visit and co-purchase re-
lationships with other products. Our preliminary inves-
tigation finds that products which rank 2,000 or higher
within their category have at least a 50% chance of be-
ing promoted by a visit-based pollution attack, and prod-
ucts with rankings 10,000 and higher have at least a 30%
chance to be promoted using search-based attacks.

6 Related Work

To the best of our knowledge, the line of work most
closely related to ours is black-hat search engine op-
timization (bSEO). Although sharing a common goal
as search history pollution—illicitly promoting website
rankings in search results—bSEO follows a completely
different approach, exploiting a search engine’s reliance
on crawled Web content. Blackhat SEO engineers the
content of and links to Web pages to obtain a favorable
ranking for search terms of interest [8]. Thus, techniques
that address bSEO are unlikely to be effective against
pollution attacks. On the other hand, because bSEO
targets the general indexing and ranking process inside
search engines, any successfully promoted website will
be visible to all search engine users, potentially signifi-
cantly boosting the volume of incoming traffic. Yet, ef-
fective bSEO campaigns typically involve support from

a complex network infrastructure, which may consist
of hundreds of search-indexed websites (preferably with
non-trivial reputations at established search engines) to
coordinate and form a link farm [20]. These infrastruc-
tures not only require a considerable amount of money
to build and maintain, but also take time to mature and
reach their full effectiveness [8]. By contrast, launching
a search history pollution attack is significantly easier.

We showed in Section 4 that a user’s personalized
search results can be manipulated simply by issuing
crafted search queries to Google. Without requiring any
external support, the entire process happens instantly
while the user is visiting the offending Web page. Al-
though our attack targets individual search users (i.e., the
polluted result is only visible to individual victims), it by
no means limits the scale of the victim population, espe-
cially if an exploit is placed on a high-profile, frequently
visited website.

7 Discussion

Our current study has several limitations. Most notably,
the scale of our experiments is modest, but because we
typically randomly select the target items, we believe that
the results of our experiments are representative, and that
they illustrate the substantial potential impacts of pollu-
tion attacks. Similarly, our specific pollution attacks are
fragile, as each service can take relatively simple steps to
defend againt them.

A possible defense against pollution attacks arises
from the fact that cross-site request forgery can be
stopped if requests to a website must carry tokens issued
by the site. Enforcing this constraint, however, also pre-
vents information and behaviors at third-party sites from
being harvested for personalization and hampers the cur-
rent trend of increasing the scope of data collection by
websites for improved personalization. One short-term
effect from this study may be that (some) websites will
begin to consider the tradeoffs between the security and
benefits of personalization.

YouTube in particular uses two separate HTTP re-
quests to track a YouTube’s user viewing activity that
are independent from the act of streaming of the video.
One straightforward defense against pollution attacks is
to monitor the time between the arrivals of the two HTTP
requests. If YouTube finds the interval is substantially
less than the length of the video, it could ignore the sig-
nal. An attacker can still always inject a short video or
control the timing of the HTTP requests in an effort to
bypass such a defense mechanism. We did notice that
an injected short video can be used to promote multi-
ple longer videos; for example, watching a single two-

13

684 22nd USENIX Security Symposium USENIX Association

second video5 causes YouTube to recommend several
long videos.

8 Conclusion

In this paper, we present a new attack on personalized
services that exploits the fact that personalized services
use a user’s past history to customize content that they
present to the user. Our attack pollutes a user’s history
by using cross-site request forgery to stealthily inject and
execute a set of targeted browsing activities in the user’s
browser, so that when the user subsequently accesses the
associated service specific content is promoted. We illus-
trate how an attacker can pollute a user’s history to pro-
mote certain content across three platforms. While our
attack is simple, its impact can be significant if enough
users’ histories are compromised.

As personalization algorithms and mechanisms in-
creasingly control our interactions with the Internet, it is
inevitable that they will become the targets of financially
motivated attacks. While we demonstrate pollution at-
tacks on only YouTube, Google, and Amazon, we believe
that our methods are general and can be widely applied to
services that leverage personalization technologies, such
as Facebook, Twitter, Netflix, Pandora, etc. The attacks
we present here are just the first few examples of poten-
tially many possible attacks on personalization. With in-
creasingly complex algorithms and data collection mech-
anisms aiming for ever higher financial stakes, there are
bound to be vulnerabilities that will be exploited by moti-
vated attackers. The age of innocence for personalization
is over; we must now face the challenge of securing it.

Acknowledgments

This research was supported in part by the National
Science Foundation under grants CNS-1255453, CNS-
1255314, CNS-1111723, and CNS-0831300, and the Of-
fice of Naval Research under grant no. N000140911042.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors
and do not necessarily reflect the views of the National
Science Foundation or the Office of Naval Research.

References

[1] Amazon.com product identifiers. http://archive.

org/details/asin_listing.

[2] BENNETT, P. N., RADLINSKI, F., WHITE, R. W., AND

YILMAZ, E. Inferring and using location metadata to per-
sonalize web search. In Proceedings of the 34th Annual

5http://www.youtube.com/watch?v=UPXK3AeRvKE

International ACM SIGIR Conference on Research and
Development in Information Retrieval (2011).

[3] CUTTS, M. Does Google use the “keywords” meta tag?
http://www.youtube.com/watch?v=jK7IPbnmvVU.

[4] DAOUD, M., TAMINE-LECHANI, L., AND

BOUGHANEM, M. A session based personalized
search using an ontological user profile. In Proceed-
ings of The 24th Annual ACM Symposium on Applied
Computing (2009).

[5] DAVIDSON, J., LIEBALD, B., LIU, J., NANDY, P.,
VAN VLEET, T., GARGI, U., GUPTA, S., HE, Y., LAM-
BERT, M., LIVINGSTON, B., AND SAMPATH, D. The
YouTube video recommendation system. In Proceedings
of the 4th ACM Conference on Recommender Systems
(2010).

[6] DOU, Z., SONG, R., AND WEN, J.-R. A large-scale
evaluation and analysis of personalized search strategies.
In Proceedings of the 16th ACM International Conference
on the World Wide Web (2007).

[7] LIU, F., YU, C., AND MENG, W. Personalized web
search by mapping user queries to categories. In Pro-
ceedings of the 11th ACM International Conference on
Information and Knowledge Management (2002).

[8] LU, L., PERDISCI, R., AND LEE, W. Surf: detecting
and measuring search poisoning. In Proceedings of the
18th ACM Conference on Computer and communications
security (2011).

[9] MATTHIJS, N., AND RADLINSKI, F. Personalizing Web
search using long term browsing history. In The Fourth
ACM International Conference on Web Search and Data
Mining (2011).

[10] QIU, F., AND CHO, J. Automatic identication of user
interest for personalized search. In Proceedings of the
15th ACM International Conference on the World Wide
Web (2006).

[11] SEARCH ENGINE LAND. Bing results get localized
& personalized. http://searchengineland.com/

bing-results-get-localized-personalized-

64284.

[12] SEARCH ENGINE LAND. Google now personalizes
everyones search results. http://searchengineland.
com/google-now-personalizes-everyones-

search-results-31195.

[13] SHIFLETT, C. Cross-site request forgeries.
http://shiflett.org/articles/cross-site-

request-forgeries, 2004.

[14] SIEG, A., MOBASHER, B., AND BURKE, R. Web search
personalization with ontological user profiles. In Pro-
ceedings of the 16th ACM Conference on Conference on
Information and Knowledge Management (2007).

[15] SONTAG, D., COLLINS-THOMPSON, K., BENNETT,
P. N., WHITE, R. W., DUMAIS, S., AND BILLERBECK,
B. Probabilistic models for personalizing Web search. In
Proceedings of the 5th ACM International Conference on
Web Search and Data Mining (2012).

14

USENIX Association 22nd USENIX Security Symposium 685

[16] SRIRAM, S., SHEN, X., AND ZHAI, C. A session-based
search engine. In Proceedings of the 27th Annual Inter-
national ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (2004).

[17] TAN, C., GABRILOVICH, E., AND PANG, B. To each
his own: personalized content selection based on text
comprehensibility. In Proceedings of the 5th ACM In-
ternational Conference on Web Search and Data Mining
(2012).

[18] TEEVAN, J., DUMAIS, S. T., AND HORVITZ, E. Person-
alizing search via automated analysis of interests and ac-
tivities. In Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (2005).

[19] VIDSTATSX. Youtube channel, subscriber, & video
statistics. http://vidstatsx.com/.

[20] WU, B., AND DAVISON, B. D. Identifying link farm
spam pages. In Proceedings of the Special Interest Tracks
and Posters of the 14th ACM International Conference on
the World Wide Web (2005).

A Appendix

Here we provide more details regarding the actual exploit
and test corpora for the search personalization attack.

A.1 Search Term Variance
As with the various product categories on Amazon, it is
reasonable to expect that the effectiveness of search his-
tory pollution depends on the value of the search term
being polluted. In other words, just as Amazon tightly
controls the gift cards it recommends, it might be the case
that a website cannot be promoted in Google’s search re-
sults as easily for a highly competitive search term, such
as “laptop”, as it can for relatively uncontested search
terms. To obtain an estimate of the value of differ-
ent search terms, we again turned to Google’s AdWords
Keyword Tool. The tool provides a function that asso-
ciates a given search term with a level of competition.
The competition level is a measure of how expensive
it would be for URL to consistently pay enough to be
ranked at the top of the list of advertisers for a particular
search term. Competition level is expressed as a value
from 0 to 1, with 0 having no competition and 1 having
fierce competition.

Recall that out of the 2,136 webpages that we at-
tempted to promote using a contextual pollution attack,
729 were successful. It is important to note that some
of the promoted results were for the same initial search
terms. Therefore, the number of search terms asso-
ciated with the webpages are 1,740 and 606, respec-
tively. As an example, we attempted to promote both
made-in-china.com and DHgate.com with respect to

2 4 6 8 11 14 17 20 23 26 29

Non−personalized rank

N
um

be
r o

f w
eb

pa
ge

s

0
40

80
12

0

Figure 11: Google’s original rank distribution for the
2,136 webpages whose ranking we attempt to improve
with contextual search history pollution.

the original search term “watch”. The keywords injected
by the pollution attack differ, however, and are “China”
and “China wholesale” respectively. For the persistent
attacks, we were successful in promoting at least one re-
turned website for 247 out of the 551 search terms.

Figure 12 shows the competition level distribution for
both types of attacks. Figures 12(a) and 12(b) corre-
spond to the 1,740 search terms associated with our en-
tire contextual test corpus and the 606 search terms for
which there was a website we could promote. Like-
wise, Figures 12(c) and 12(d) plot the competitiveness
of the search terms for the 551 tested and the 247 suc-
cessful persistent pollution attacks. Although the distri-
butions are different between test corpora, in both cases,
the distributions suggest there is no obvious correlation
between search term competition or value and the like-
lihood of being able to launch a search history pollution
attack.

A.2 Robustness

Because a contextual history pollution attack uses only
a few recent search history entries to promote a website,
the lifetime of this attack is limited to the period when
Google’s personalization algorithm considers this con-
textual information. We empirically determine Google’s
timeout threshold by injecting sets of contextual key-
words into a Google search profile and then pausing
Google’s history collection. We then search alternatively
for two distinct search terms—one that we know is af-
fected by the injected keywords, and another we know is
not. We continue to search for these two terms, recording
and time stamping all the search returns.

Our analysis of many such tests with different sets
of search terms indicates that Google appears to en-
force a ten-minute threshold on context-based personal-
ized search, which thereby limits the scope of the con-
textual pollution attack. Similarly, there are limits on
how many different searches can be conducted before the

15

686 22nd USENIX Security Symposium USENIX Association

Competition level

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0

(a) Entire corpus, contextual

Competition level

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12

0

(b) Successful attacks, contextual

Competition level

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0

(c) Entire corpus, persistent

Competition level

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1.0

0
40

80
12

0

(d) Successful attacks, persistent

Figure 12: Distribution of search-term competition levels.

injected context is no longer used to personalize subse-
quent queries. Our initial testing indicates that person-
alization falls off after the fourth search. Hence, we
conclude that the pollution attack can last for at most
four subsequent queries or ten minutes, whichever comes
first.

Our testing of persistent attacks shows that if a web-
page remains promoted after several search terms, it will
remain promoted for a long time. To determine how

long, we identified a set of 100 webpages and search
terms on which we launch a successful persistent pol-
lution attack. We then inject additional randomly se-
lected trending keywords one-by-one and continually
check whether the promotion remains. 72% of the web-
sites remain promoted after 60 additional keywords, indi-
cating that, when successful, persistent pollution attacks
are likely to remain effective for quite some time.

16

USENIX Association 22nd USENIX Security Symposium 687

Steal This Movie - Automatically Bypassing DRM Protection in Streaming
Media Services

Ruoyu Wang1,2, Yan Shoshitaishvili1, Christopher Kruegel1, and Giovanni Vigna1

1University of California, Santa Barbara, CA, USA
{fish,yans,chris,vigna}@cs.ucsb.edu

2Network Sciences and Cyberspace, Tsinghua University, Beijing, China

Abstract
Streaming movies online is quickly becoming the way in
which users access video entertainment. This has been
powered by the ubiquitous presence of the Internet and the
availability of a number of hardware platforms that make
access to movies convenient. Often, video-on-demand
services use a digital rights management system to prevent
the user from duplicating videos because much of the
economic model of video stream services relies on the
fact that the videos cannot easily be saved to permanent
storage and (illegally) shared with other customers. In this
paper, we introduce a general memory-based approach that
circumvents the protections deployed by popular video-on-
demand providers. We apply our approach to four different
examples of streaming services: Amazon Instant Video,
Hulu, Spotify, and Netflix and we demonstrate that, by
using our technique, it is possible to break DRM protection
in a semi-automated way.

1 Introduction
Digital Rights Management (DRM) is used by content

distributors to restrict the way in which content may be
used, transferred, and stored by users. This is done for sev-
eral reasons. To begin with, content creators try to prevent
content from reaching non-paying users through pirated
copies of the content. While estimates of the cost impact of
piracy are considered to be hugely inaccurate and research
on this issue is inconclusive [41], they vary from $446
million [14] to $250 billion [8] for the movie and music
industries in the US alone, and are far from insignificant in
other parts of the world [12, 27]. Consequently, DRM is
used to protect the media distributed through subscription-
based services. In these services, such as Netflix, Spotify,
Hulu, and Amazon Prime Instant Video, a user pays a re-
curring fee for access to a large database of media. This
media can be played as much and as often as the user
wishes, but becomes unavailable when a user stops paying
for the service. The need to protect content in this scenario
is obvious: if users can save the content for playback later

and simply cancel their account, the streaming service will
lose substantial amounts of money.

DRM protection of media, especially passive media such
as movies and music, has a fundamental difficulty. In or-
der to enable the viewing of content, such content must at
some point be decrypted. Different DRM schemes put this
decryption at various stages of the media playback pipeline.
Schemes such as High-bandwidth Digital Copy Protection
(HDCP) [9] attempt to put this decryption outside of the
reach of software and into the media playback hardware
itself. However, use of these schemes are not always feasi-
ble. Specifically, many mobile devices, virtual machines,
and lower-end computers do not support schemes such as
HDCP. To function on such devices, DRM schemes must
carry out decryption in software. On top of this limita-
tion, hardware DRM schemes suffer from a problem of
being too brittle against attacks. This was demonstrated,
in the case of HDCP, with the compromise of the HDCP
master keys [30], which rendered that DRM scheme use-
less. DRM schemes that do not rely on special hardware
support are much more flexible in recovering from such
compromises.

In order for an effective DRM scheme to be imple-
mented, the possible attacks that it could succumb to must
be well understood. In this paper, our goal is to examine
one such attack: the identification of the transition between
encrypted and decrypted data in the media player software.

To this end, we introduce MovieStealer, an approach
for the automatic defeating of DRM in media playing pro-
grams. This approach takes advantage of several central
intuitions. Our first intuition is that most data-processing
operations, and specifically decryption operations, are car-
ried out on buffers of data. This allows us to concentrate
our analysis on the flow of data between buffers, making
the analysis task considerably more tractable. Secondly,
we observe that all popular media services of which we are
aware utilize existing media codecs. We believe that this is
because coming up with new codecs is a very complicated
task, and many of the technologies behind efficient codecs

1

688 22nd USENIX Security Symposium USENIX Association

are patented. Additionally, high-definition codecs are ex-
tremely performance-intensive, and many media player
devices rely on hardware support to decode them. This
reliance on hardware support makes changing these codecs
extremely difficult, making it far easier to license an ex-
isting codec than to create a new one. Utilizing this ob-
servation, we are able to identify buffers that contain data
similar to what we would expect to be present in popular
codecs. Our final observation is that we can distinguish
three distinct classes of data by carrying out a statistical
analysis: encrypted data (which will possess high random-
ness and high entropy), encoded media data (which will
possess low randomness and high entropy), and other data
(which will possess lower randomness and entropy).

We utilize these observations and develop an approach
that tracks the flow of data from buffer to buffer within
a program and identifies, using information theoretical
techniques, the point in the program at which the data
is decrypted. After automatically identifying this loca-
tion in the program, MovieStealer dumps the decrypted
stream. This stream can then be reconstructed into an un-
protected media file and played back in an unauthorized
media player.

Furthermore, we design optimizations that allow this
online approach to be carried out on a running media player.
Such optimizations are necessary due to the performance-
demanding nature of the services that we target.

We implemented this approach and evaluated it on sev-
eral streaming services, namely Netflix, Amazon Instant
Video, Hulu, and Spotify. The latter is a music streaming
service, while the others are video streaming services. All
of these services are real-time, high-performance products
which must be analyzed with low overhead in order to
function. In all cases, MovieStealer is able to successfully
pinpoint the decryption location and dump the decrypted
stream. After this point, we consider the DRM protec-
tion to be broken. We have also implemented media file
reconstructors to recover a playable media file.

To showcase our optimizations, we have also evaluated
our approach against GPG, an open-source cryptographic
suite.

The task of dumping the decrypted stream is completely
automated. MovieStealer dynamically analyzes a program
while it is used to play media, and dumps the decrypted
streams. However, the final step of reconstruction requires
a component to be developed for each protocol. We have
implemented three such components to cover our four
target streaming services. Since we consider the DRM
to be bypassed as soon as we recover the decrypted data,
automating this last step is out of the scope of our DRM
analysis.

MovieStealer was developed in order to gain insight
into the weaknesses of cryptographic DRM schemes. The
implementation and utilization of such an approach for

piracy purposes is, of course, illegal. Our intention is not
to aid illegal activity, and we present a discussion on ethics
and legality in Section 7.

In summary, we make the following contributions:

1. We present an approach capable of automatically identi-
fying and exploiting weaknesses in DRM scheme imple-
mentations by identifying cryptographic functionality
in real-time, with no offline analysis, and duplicating
the decrypted data.

2. To make such an approach work on performance-
demanding applications and to reduce the amount of
time the approach requires to locate the decrypted data,
we utilize a set of optimizations that would be useful
for any similar dynamic analysis approaches.

3. We show the effectiveness of this approach on four pop-
ular streaming services (Amazon Instant Video, Hulu,
Netflix, and Spotify) and a general-purpose encryption
tool (GPG).

4. To the best of our knowledge, we demonstrate the first
publicly-described approach to duplicate PlayReady-
protected content (such as modern versions of Netflix)
without the use of a screen scraper. While we have
been informed that there have been other attacks on
PlayReady, we have been unable to find any public
evidence of this fact.

5. Finally, we suggest several countermeasures that ven-
dors of content protection schemes could employ to
resist an attack such as MovieStealer. These range from
technical solutions, attacking the technical details of
our approach, to social solutions, such as increased use
of watermarking to make piracy more prosecutable.

2 Background and Related Work
Over the last several decades, there has been an arms

race between content owners, wishing to restrict the use
of their content, and content consumers, who wish to use
such content in an unrestricted way. New Digital Rights
Management techniques are created on a regular basis, and
new workarounds are quickly found to counter them. In
this section, we survey several popular DRM techniques to
better frame the research presented in this paper.

DRM schemes can generally be split into two classes:
non-cryptographic DRM schemes and cryptographic DRM
schemes. The former relies on verifying that the user is au-
thorized to use the protected content by somehow utilizing
a physical aspect of this content. Of course, this requires
that the content ships with something like a manual, disk,
or hardware dongle to use for verification. With the ad-
vent of digital distribution for software and multimedia,
non-cryptographic DRM schemes have fallen in popularity.

On the other hand, cryptographic DRM schemes work
by cryptographically verifying that the user attempting
to access the content is authorized to do so. This ap-
proach is usable for digital distribution of content, and

2

USENIX Association 22nd USENIX Security Symposium 689

is the paradigm according to which modern DRM schemes
are developed.

In this paper, we include link-protection schemes, such
as HDCP, which protect content in transit from being in-
tercepted, with true Digital Rights Management systems,
which ensure that only an authorized user is accessing
the content in question. From the viewpoint of removing
the protection, these two categories of content protection
schemes are quite similar, and our system is general enough
to handle both.

2.1 Cryptographic DRM Techniques
One of the early examples of cryptographic DRM tech-

niques was the DVD Content Scramble System [44]. CSS
is an encryption scheme to prevent DVDs from being
played on unauthorized devices. It functioned by assigning
a limited number of keys to manufacturers of DVD playing
devices. These keys would then be used to decrypt the key
chain of a given DVD and play back the video. CSS was
broken in 1999 through cryptanalysis by a group of secu-
rity researchers including Jon Lech Johansen (afterwards
known as DVD Jon) [48]. This was done by reverse engi-
neering a software DVD player to identify the encryption
algorithm.

CSS was a forerunner of the type of copy protection that
MovieStealer was created to analyze. While DRM schemes
have since evolved to be more flexible, the basic premise
remains the same: content is shipped in an encrypted form
(whether through physical media or as a download), and is
decrypted by an authorized player.

2.2 Hardware-based DRM
Hardware-based DRM has been around since the early

days of copy protection. Early examples of this class of
approaches are copy-protection dongles shipped with soft-
ware [49]. Software protected by such dongles does not
run without the presence of the dongle, and duplication of
the dongle is infeasible. While early dongles simply con-
tained static information that would be checked in software,
modern dongles are complex cryptographic co-processors
that actually carry out operations, such as decrypting the
program code, on behalf of the protected program.

A specific adaptation of this into the realm of multime-
dia is HDCP [9], a link protection scheme which moves
the decryption of media content outside of the computer.
In a perfect implementation of this scheme, all content
handled by the computer is always encrypted [11], and
the decryption occurs in the media playback hardware
(such as the monitor) itself. This would be problematic
for our approach, but is not a problem in practice for sev-
eral reasons. To begin with, all of our surveyed streaming
services allow playback without HDCP. This is necessary
because systems such as netbooks and virtual machines
lack support for HDCP, and these services attempt to re-

Encryption type
DRM Platform Connection File Stream

PlayReady No No Yes
RTMPE Yes No No
Spotify Yes Yes No

Table 1: The present encryption locations for our analyzed
platforms.

main compatible with them. Additionally, HDCP does not
integrate seamlessly with the encryption used in the media
streaming services of which we are aware. Encrypted con-
tent streamed from these services must first be decrypted,
usually in memory, before being re-encrypted with HDCP.
While some media devices exist that can handle this step
in dedicated hardware, thus disallowing any access to the
unencrypted stream, general purpose consumer devices are
not among them. This means that on such devices, even
in the presence of HDCP, MovieStealer can intercept the
protected content on such devices while it is unencrypted.
Finally, HDCP has been irrevocably broken with the leak of
the HDCP master key. Hardware-based DRM schemes like
HDCP are very hard to patch because they need to work
on many devices that are not easily upgradeable. While
the upgradeability of these devices might be improved in
the future, there is currently no clear solution to this issue.

2.3 Streaming DRM Platforms
We analyze three different DRM schemes used by four

platforms in this paper: Microsoft PlayReady (used by Net-
flix) [10], RTMPE (a link protection mechanism used by
Adobe’s Flash streaming platforms such as Amazon Instant
Video and Hulu) [3], and Spotify’s content protection [15].

We stress that our approach, as implemented by Movi-
eStealer, does not exploit any particular vulnerability inher-
ent to any single platform. Instead, these DRM schemes
are vulnerable due to their inherent design, and not the
inadequacies of any specific vendor or organization.

In this section, we provide some details about how these
schemes function, in order to better frame our approach.

2.3.1 PlayReady

Microsoft’s PlayReady DRM, as implemented in its
Silverlight streaming platform, which is used most promi-
nently by Netflix, is a cross-platform content protection
mechanism. PlayReady supports individualization, mean-
ing that the media is encrypted with a content key, which
is then encrypted with different keys for every user. Ev-
ery time a user streams content on Silverlight, PlayReady
provides an individualized license, ensuring that the con-
tent key can be decrypted and protected content viewed
only by the intended recipient. The process to play back
PlayReady-protected media using Silverlight comprises

3

690 22nd USENIX Security Symposium USENIX Association

several steps. To improve understanding, we present a
high-level overview of these steps.

Metadata. To initialize playback, the Silverlight client
requests metadata from the media server provider (such as
Netflix). This metadata is a file that contains available res-
olutions and bit rates for the content, whether the payload
is encrypted or not, the domain name of the license server,
and the expiration time of the request.

License. If the metadata specifies that the payload is en-
crypted, the Silverlight client must acquire the license (con-
taining the decryption key) from the license server, which
is specified in the metadata. When a client sends the license
request to the license server, the license server responds
with the Individualized Black Box (IBX). The IBX is a cus-
tom, easily-upgradeable, and highly-obfuscated DLL that
can be customized by individual content providers. Using
the IBX, the client generates an individualized request to
the license server.

The license server verifies this request and responds with
a license. The client uses the IBX to decrypt the license
and extract the content key, which is a 128-bit AES key.

Data. Having acquired the license, the client can now
play back the protected content. This content takes the
form of a fragmented MPEG-4 file transferred from the
service provider. The protection works by encrypting the
media stream data, while leaving the headers and stream
metadata unencrypted. The data is encrypted using AES
and is decrypted using the key acquired from the license
server.

Performance. PlayReady has several performance re-
quirements. To begin with, as with any network service,
the client must be able to communicate with the server
without letting the connection time out. Additionally, as a
security measure against piracy, the IBX and correspond-
ing license request have an expiration time, and the license
will stop working after this timeout has elapsed. Finally,
the media player (Netflix) itself has a minimum perfor-
mance threshold, below which it will stop processing the
stream and display an error. A successful online analy-
sis of a PlayReady-protected media player must have a
low-enough overhead to allow the player to meet these
performance obligations.

2.3.2 RTMPE

RTMPE is a lightweight link protection mechanism de-
veloped by Adobe on top of the Real Time Messaging
Protocol (RTMP) [2]. The addition to RTMP is a simple
encryption layer.

Encryption layer. RTMPE generates a stream key us-
ing a Diffie-Hellman [29] key exchange. Once this key is
agreed upon, the entire communication stream is encrypted
using RC4 [1]. No extra encryption is done on the media
itself.

Performance. Any online analyzer running against

RTMPE must be fast enough to allow the processing of the
data stream without dropping the connection.

2.3.3 Spotify
Spotify implements a custom protection scheme to pre-

vent duplication of their content. This scheme was reverse-
engineered by the Despotify Project in their attempt to cre-
ate an interoperable client [5]. The scheme uses a stream
cipher to protect its communication, and, in addition, it
encrypts each individual song.

Stream cipher. The Spotify client performs a key ex-
change with the server to create a key to be used for the
remainder of the session. After the key is generated, the
session is encrypted using a Shannon stream cipher [42].

Song encryption. Individual music files sent by Spotify
in the encrypted stream are themselves encrypted with AES.
The keys to this encryption are sent in the stream along
with the music files. Upon receipt of a music file and its
corresponding key, the Spotify client decrypts the file for
playback. For offline playback, Spotify can cache this data.

Performance. An online analysis of Spotify must be
fast enough to process the data stream without dropping
the connection. Additionally, if the Spotify client runs too
slow, it will mistakenly perceive that the connection to the
server has been lost.

2.4 Bypassing DRM
As noted above, DRM methods tend to have unique

workarounds, depending on their specific characteristics.
For non-interactive multimedia, one general approach is
called the Analog Hole [47]. The Analog Hole is a “flaw”
in any DRM scheme, which is due to the fact that any
media must eventually be consumed by a human. For
example, a video will eventually have to be displayed on a
screen and seen by someone’s eyes. In the simplest setting,
a human could just record the protected music or movie
with a microphone or a camcorder. Programs [4] exist that
will even record a movie as it is playing on the screen by
scraping the screen’s pixels.

However, since all the streaming media platforms known
to us use lossy encoding for space and bandwidth-saving
reasons, this type of DRM bypassing has the downside
of a loss of quality due to the necessity to re-encode the
captured audio and video. The only way to duplicate such
content without quality loss is to capture the decrypted
content after decryption but before decoding. There are
two ways to do this: recovery of the keys used in the cryp-
tographic process and the interception of the decrypted
content. The former method requires approaches that may
vary widely based on the DRM scheme and the type of
encryption and key management used. Additionally, white-
box cryptography [24] could be used to greatly complicate
such an implementation by obscuring the usage of the cryp-
tographic keys. The latter approach, which MovieStealer
uses, allows us to intercept decrypted content irrespective

4

USENIX Association 22nd USENIX Security Symposium 691

of the underlying encryption protocols. By doing this, it is
possible to recover the original high-quality media sent by
the media originator in a general way.

2.5 Cryptographic Function Identification
Since the identification of cryptographic functions is

relevant to many other fields of study, and particularly
relevant to malware analysis, other works have looked into
identifying cryptographic routines.

An early approach to detecting decryption in memory is
detailed by Noe Lutz [39]. This approach slows down the
instrumented program by a factor of 2,400, an unaccept-
able slowdown for a high-performance media streaming
application. Additionally, this approach detects encrypted
data by measuring entropy. Such a detection would be
unable to distinguish between encrypted and compressed
(or, in our case, encoded) data.

Another approach, ReFormat [46], functions by detect-
ing the flow of input data from a decryption routine to a
handling routine followed by a flow of output data to an
encryption routine. This approach does not work for our
application domain for two reasons. Depending on the
protocol, an analyzed media player might not necessarily
encrypt a response. For example, the actual communica-
tion protocol of Microsoft’s Silverlight streaming platform
is not encrypted. As such, the client only decrypts the
encrypted stream data, but does not have to encrypt any
responses. Furthermore, ReFormat detects the transition
from encrypted to decrypted data based on the percentage
of arithmetic and bitwise functions processing it. However,
since the decrypted stream in a media player is passed on
to the decoding step, this heuristic does not necessarily
hold true.

Dispatcher [20] is an approach that analyzes the data
flow of bots to determine their communication protocol. To
find the decrypted data, the system uses a similar method
to ReFormat. Dispatcher also functions through offline
analysis, and would be unsuitable for our application.

Another interesting approach is presented by Caballero,
et al [21]. This approach is geared toward removing the
decryption and decoding functionality in a malware pro-
gram to easier interact with it (in the paper, the authors
interacted with the malware to find bugs). This is not appli-
cable to our case, since we gain no benefit from interacting
with a media player directly. In any case, the overhead in
this approach likely makes it unfeasible for use on large
programs such as media players, although we are unable
to verify this as the authors did not publish the tool itself.

BCR [19] is a tool that implements an algorithm,
similar to MovieStealer’s buffer detection, for detecting
cryptographically-relevant loops and buffers. However,
this approach has very heavy overhead, requires several
similar executions, and relies heavily on offline analy-
sis, which makes it ineffective for our target applications.

Aside from the performance issue, this is also due to the
fact that streaming media players are not completely de-
terministic because of changes in behavior due to network
latency, user interaction, and other factors. These factors
are often hard or impossible to control between execu-
tions, especially with complicated DRM platforms such as
PlayReady. Additionally, by avoiding this requirement in
MovieStealer, we are able to simplify our approach by not
worrying about buffers being relocated by ASLR.

The approach described by Grobert, et al [32] also de-
tects cryptographic primitives, but is another offline analy-
sis and would not be performant enough for a media player.
Additionally, this approach, along with other similar ap-
proaches that check for cryptographic primitives, would be
sensitive to white-box obfuscation.

Finally, a recent result in this area of research is
Aligot [22]. Aligot works by identifying loops in programs,
identifying data flow between such loops, and comparing
the result against reference implementations of crypto-
graphic primitives. However, it also functions in an offline
manner and (considering the amount of time its offline
phase requires) would be too slow for a media player to
function. Additionally, Aligot requires that the program
being analyzed utilize a standard implementation of cryp-
tographic primitives, while our approach avoids such an
assumption.

These existing approaches are not adequate for breaking
DRM in media players. Since the media services that we
analyze have real-time requirements, any approach must
have minimal overhead to function. However, these ap-
proaches were mostly designed to be run against small,
non-demanding malicious programs. In general, they have
high overhead and rely on offline analysis while Movi-
eStealer is designed to be a fast, online approach. Fur-
thermore, these approaches do not address the distinction
between encrypted and encoded/compressed data with the
regards to randomness as opposed to entropy, which is
necessary to locate the appropriate buffer from which to
extract the decrypted-but-encoded media stream.

3 Approach
Our intuition is that the authors of a media player would

reuse existing, proven codecs for ease of deployment, per-
formance, and reliability. Thus, at some point during the
processing, one should see the data decrypted and sent to
the media codec for decoding. By examining the data as it
flows through the authorized media player, one can detect
the point at which the player transforms the data from an
encrypted stream to an encoded stream. Once this location
in the program is detected, the decrypted stream can be
dumped and reconstructed. Our approach leverages this
observation and provides an automatic mechanism to break
the DRM schemes of several popular streaming services.

The process of copying protected content can be divided

5

692 22nd USENIX Security Symposium USENIX Association

into three separate phases:

1. Analyze the way in which the authorized media player
handles the encrypted stream and identify the point at
which the stream is decrypted.

2. Dump this decrypted stream.
3. Reconstruct the original media file from the decrypted

stream.

Normally, the first step would have to be done once per
media player (or, depending on the DRM implementation,
once per media codec), while the second and third steps
would be repeated for each dumped movie.

Given an authorized media player executable, Movi-
eStealer will execute the binary, trace its execution flow,
monitor and log its data access, recover loops and buffers
(defined as consecutive bytes of data), recognize the de-
cryption step, dump the decrypted data, and construct a
media file with the unprotected content.

3.1 Stream Decryption Analysis
The first step in the copying of protected content is the

analysis of the authorized media player’s processing of the
encrypted stream. Of course, much of the code dealing
with Digital Rights Management is heavily obfuscated,
packed, or protected, and so our approach must be able to
work with countermeasures such as dynamically generated
functions. Therefore, the stream decryption detection is
based on the dynamic analysis of the player application.

A media player processes a substantial amount of data
in the course of downloading, decrypting, decoding, and
playing media. Intuitively, such data, whether encrypted or
decrypted, is stored in buffers in memory. While this data
could conceivably be stored in evasive schemes (for exam-
ple, splitting up buffers so that no two bytes are adjacent),
we have not observed such evasiveness in the real-world
applications that we have analyzed. Moreover, this would
complicate the development process and would impede
performance.

Thus, our goal in this step is to identify the location in
the program where an encrypted buffer is turned into a
decrypted buffer.

3.1.1 Loop Detection
The intuitive way to access data buffers is through a loop

(or a loop-equivalent CPU instruction). As data decryption
involves accessing the encrypted buffers, we would expect
(and, indeed, this is what we have observed) it to be done
using loops. Our intuition here is that a loop will exist
that carries out a decryption operation on a small chunk of
data. This loop (or, more precisely, its output) is what we
are looking for. Hence, the first step of our solution is to
automatically identify loops in the program.

Subsequent parts of our analysis work on loops rather
than either functions or individual instructions for several
reasons. First, loops are more likely to access a small

mov eax, 0
.head:

mov ebx, (0x1000, eax, 4)
mov (0x2000, eax, 4), ebx
inc eax
cmp eax, 5
jne .head

Table 2: An example of a loop.

mov eax, 0xBAADF00D
xor dword ptr [esp], eax

Table 3: An example of an implicit read by a loop.

number of buffers for a single purpose, while functions
might access many buffers for several purposes. Secondly,
a single instruction might only carry out a partial operation
on the buffer. For example, a loop might carry out an entire
decryption step while a single instruction in the loop might
simply XOR two words together. Thus, by performing
our analysis at the loop level, we can better see individual
actions that a program carries out on its buffers. Thirdly,
identifying functions within a program, without symbol
tables and in the presence of obfuscation, is a complicated
and error-prone task. We bypass this problem by operating
on loops, which are more straightforward to identify. A
loop can usually be identified as long as its basic blocks
are executed at least twice.

Although we perform our analysis on loops, our ap-
proach is inspired by some basic concepts taken from func-
tion analysis. A good example is the input and output of
a loop. We mark all data that a given loop reads as its
input, and all data that it writes as its output. Table 2 gives
an example of a loop that reads 5 dwords from the buffer
starting at 0x1000 as input and writes them to the buffer at
0x2000 as output.

It is important to note that, in the x86 architecture, data
can be an input to a loop without being explicitly read by
that loop. For example, Table 3 demonstrates such a case,
where esp, despite not being explicitly read by the code in
question, is an input to the XOR operation.

Our approach assumes that the decryption process hap-
pens inside a loop. More specifically, we expect to find a
loop in the authorized media player that has at least one en-
crypted buffer as an input and at least one decrypted buffer
as an output. We expect this decryption to be done in a loop
because such DRM schemes on media must process large
volumes of data, and the most efficient way of processing
such data is through a loop or loop-like instruction.

Detecting the loops. Our approach to detecting loops
is mainly inspired by LoopProf [40]. LoopProf maintains
a Basic Block Stack (BBLStack) per thread. A BBLStack
is a stack of basic block addresses. Whenever a basic block

6

USENIX Association 22nd USENIX Security Symposium 693

is executed, its start address is pushed to this stack, and
when the basic block exits, the start address is popped.

Our analysis routine is called every time a Basic Block
(BBL) is executed. The analysis routine attempts to find
the same BBL by tracing back in the BBLStack. If the
same BBL is found in the BBLStack, the basic blocks
between this BBL and the top of the stack are considered
to be a loop.

Note that when using this approach, some additional
care must be taken to avoid misdetection of recursive calls
as loops.

Although the basic idea of loop detection is simple,
much attention was given to performance. We explain our
optimizations in detail in Section 4.2.

Maintaining a call stack. As described in LoopProf,
loop detection by BBLStack can cause our program to
identify loops that occur across function boundaries, which
is often the case with recursive function calls. While this
would not break our approach, we have chosen to detect
and remove these loops to improve the performance of
the analysis, given that we have not seen any example of
decryption being done in a recursive fashion.

Using our call stack, we only check BBL inside the
current frame when searching for loops. We maintain this
call stack for every thread by instrumenting every call and
return instruction. Of course, functions do not have to use
these instructions, in which case one would still detect the
blocks as a loop. In the cases we have examined cases, this
is acceptable for our approach.

Apart from aiding in loop detection, the presence of
a call stack allows us to identify loops that are used for
multiple purposes. For example, one loop could be used
both to encrypt and to decrypt buffers. In this case, if the
loop is called by one function, it behaves like a decryption
routine, and has a random input as well as a non-random
output. However, when called by a different function,
the loop might behave like an encryption routine, and
would throw off our detection if we did not differentiate
between these two cases. Table 4 illustrates this scenario.
Differentiating between these two scenarios is important
for our analysis, since we analyze all of the data read and
written by each loop in aggregate across several runs. Thus,
we must differentiate between the two execution paths of
this loop in order to distinguish the two different cases.
Therefore, a loop is identified not only by its basic blocks,
but also by the top several functions on the call stack at the
time it was called.

Detecting unrolled loops. Loops are frequently un-
rolled for increased performance. Specifically, the first or
last few iterations are often unrolled, with the rolled loop
present in case more data needs to be processed. In order
to detect unrolled loops, we take note of the basic blocks
that were executed between any two loops. We later check
if these basic blocks do operations on the same buffer as

void crypto_loop(void *key, void *in,
void *out, int len);

void encrypt() {
crypto_loop("key", decrypted,

encrypted, len);
}

void decrypt() {
crypto_loop("key", encrypted,

decrypted, len);
}

Table 4: An example of both the encryption and decryption
being done in one loop.

either of the two loops.

3.1.2 Buffer Identification
According to prior work in the field of data reverse-

engineering, most buffers are accessed in loops [43]. Thus,
having identified loops, we must then identify the buffers
on which they operate. For the sake of performance, and
unlike the approaches outlined in Howard [43] and RE-
WARDS [37], which track the base pointers of and offsets
into buffers by instrumenting every instruction, our ap-
proach is based on recording and analyzing reading and
writing operations inside a loop. This is similar to what is
implemented in BCR [19]. In addition, several heuristic
methods are applied to improve the detection of the buffers.
By applying these heuristics, even complex buffers such as
the key permutation array used in RC4, which is accessed
neither consecutively nor completely in most cases, can be
identified by our approach.

Fetching memory access patterns. When Movi-
eStealer is analyzing a loop, it dynamically instruments
each read and write within that loop. For each such read
and write, we record the target memory location that it ac-
cesses, the instruction pointer where the access occurs, and
the size of the read or write. Note that some instructions,
when called with specific operands, execute both a read
and a write operation.

Whenever control flow leaves the loop, we move on to
analyzing the loop’s memory access patterns.

Analyzing memory access patterns. A loop can ac-
cess a buffer in one of several different access patterns.
Our approach focuses on detecting the following ones:

1. Consecutively accessing the buffer byte-by-byte.
2. Consecutively accessing the buffer dword-by-dword.
3. Consecutively accessing the buffer at single-byte offsets

and reading a dword at a time.
4. Consecutively accessing the buffer using multimedia

CPU extensions, such as SSE instructions [45].

7

694 22nd USENIX Security Symposium USENIX Association

Address Step 1 Step 2 Step 3
0x1000 O (size 4) C (element C (element
0x1004 O (size 4) size 4) size 4)
0x1008 O (size 4) C (element C (element
0x100c O (size 4) size 4) size 4)
0x1010 O (size 4) O (size 4)
0x1010 O (size 8) O (size 8) C (element
0x1014 size 8

Table 5: An example of the creation of composite buffers
(C) from the memory read operations (original buffers O)
of the code in Table 2.

5. Accessing the buffer in a predictable pattern. For exam-
ple, two first bytes out of every three consecutive bytes
are read in a buffer.

6. Accessing the buffer in an unpredictable pattern. In
most such cases, the buffer is not fully accessed during
the execution of a loop. For instance, accessing the key
permutation array of the RC4 [1] algorithm.

To identify a read or write buffer, we perform our analy-
sis in several steps. First, we classify each memory region
affected by an individual memory access as an original
buffer and sort them by their starting memory addresses.
Then, we merge these buffers into composite buffers by
recursively applying the following steps until there are no
more candidates for merging. As we merge the buffers,
we attempt to determine the size of the elements in each
buffer.

• Two original buffers are merged if they are adjacent and
are of equal size. In this case, the element size for the
resulting composite buffer is set to the size of the two
original buffers.

• Two original buffers are merged if they overlap, are of
equal size, and their size is divisible by the size of the
overlapping portion. In this case, the element size for
the resulting compound buffer is set to the size of the
overlapping region between the two original buffers.

• An original buffer is merged with a composite buffer if
they are adjacent and the element size of the composite
buffer is equal to the size of the original buffer.

This is applied recursively until there are no more origi-
nal buffers that can be merged. At this point, any remaining
original buffers are reclassified as compound buffers with
an element size equal to their length. An example of this
is detailed in Table 5.

This step merges the individual memory accesses into a
preliminary representation of buffers. The sizes of these
composite buffers will vary, but will be divisible by their
element size. This representation is finalized in the next
step, where the composite buffers are merged.

Merging composite buffers. Due to the way in which
some buffers are accessed, they will be split into several

composite buffers in the previous step. One example of
this is the key permutation array used in RC4 [1]. This
buffer usually has a size of 256 bytes, and is not likely to
be completely read or written if there are less than 100
bytes to be decrypted. One approach is to aggregate the
memory accesses over several different calls to the function
to identify the buffer, but that brings up questions of when
to terminate such an analysis. Therefore we use a simple
heuristic to better identify such buffers: Given two existing
composite buffers C and D, where buffer C starts at addrc
and has a size of sizec, while buffer D starts at addrd and
has a size of sized , and addrd > addrc. We define the
term gap ratio as the size of gap between buffers C and D
divided by the sum of sizes of buffers C and D:

gratio(C,D) =
addrd − (addrc + sizec)

sizec + sized

We then perform the following algorithm:

1. If C and D have the same element size, and they are
adjacent, they will be merged into a larger buffer.

2. If C and D are not adjacent, and they have the same
element size, they will be merged if the gap ratio is less
than 0.2. We determined this number experimentally.
Of course, setting this threshold to a value too large will
create false positives in the buffer detection (and will
add noise to our subsequent statistical testing), while
leaving it too small will cause us to miss parts of the
buffers.

This algorithm is applied on the set of composite buffers
until no more buffers can be merged.

Tracking unrolled loops. After the composite buffers
are merged, we add any memory accesses done by blocks
that are adjacent to the buffers and are identical to the
blocks inside a loop. This allows us to catch the marginal
parts of buffers that are modified by unrolled loops.

Data paths. After this step, we will have obtained a
full list of buffers that are accessed inside each loop. We
define a data path as an input-output buffer pair within a
loop. A loop could have multiple data paths, as shown in
Table 6. In the absence of detailed data-flow analysis, we
conclude that every input buffer and every output buffer in
a loop make a data path. Thus, in a loop with N input and
M output buffers, we will have N ×M data paths.

3.1.3 Decryption Detection

After identifying the buffers and the paths between them,
the next step is to identify the buffer that holds the de-
crypted content. While a full analysis of every data path
in a real-world application could be unfeasible due to the
complexity of modern media players, we can utilize several
heuristics to identify the data path that contains the decryp-
tion of the protected content. First of all, the data path that

8

USENIX Association 22nd USENIX Security Symposium 695

mov eax, 0
.head:

inc eax
mov ebx, (0x1000, eax, 4)
mov (0x2000, eax, 4), ebx
mov ebx, (0x3000, eax, 4)
mov (0x4000, eax, 4), ebx
cmp eax, 10
jne .head

Table 6: An example of a loop with four data paths: 0x1000
to 0x2000, 0x1000 to 0x4000, 0x3000 to 0x2000, and
0x3000 to 0x4000.

Input Output
Stage E R E R
Download high high high high
Decrypt high high high low
Decode high low low low

Table 7: The entropy (E) and randomness (R) of data paths
when playing a protected media file.

we are looking for should have a similar throughput to the
size of the media file. Additionally, since we are looking
for a data path that has an encrypted input and a decrypted
(but encoded with a media codec) output, we can utilize
information theoretical properties of the buffers to improve
our analysis.

We perform this step on the aggregated input and the
aggregated output buffers of each data path. That is, we
append all of the input and all of the output of a given data
path across multiple executions of the loop in question,
resulting in an overall input buffer and an overall output
buffer. This allows us, for example, to analyze all of
the output of a given operation across the runtime of the
program. In the case of a decryption function, this will
allow us to collect all of the decrypted content.

Entropy test. The data path in which we are interested
will have an encrypted input buffer and a decrypted but
encoded output buffer. The input buffer, being encrypted,
will have very high entropy. The output buffer, being
encoded (and effectively compressed), will also have very
high entropy. We use this property to further filter out
unrelated data paths.

This also helps filter out the decoding step. Media
codecs are highly compressive functions, resulting in high-
entropy buffers. On the contrary, a buffer of, for example,
YUV color frames is likely to have a comparatively low
entropy.

Randomness test. A fundamental property of en-
crypted data is that it is indistinguishable from random
data. This is called ciphertext indistinguishability, and is a
basic requirement for a secure cryptosystem [31]. Further-

more, randomness is very difficult to achieve, and is not
a feature of data encoding algorithms. Such algorithms,
which are essentially specialized compression algorithms,
produce data with high entropy but low randomness. Thus,
as shown in Table 7, we can distinguish between the en-
crypted and decrypted stream by using a randomness test.

The Chi-Square randomness test is one such test, de-
signed to determine if a given input is random. Often used
to test the randomness of psuedo-random number genera-
tors, we use it to determine whether or not the content of a
buffer is encrypted. The implementation details of the Chi-
Square randomness test is detailed by Donald Knuth [33]
and its application to randomness testing is presented by
L’Ecuyer, et al [36]. Our approach does not rely on the im-
plementation details of the randomness test, and we have
omitted them in the interest of space. Furthermore, the
Chi-Square randomness test is not the only one that can
be used; any measure of randomness of a buffer can be
utilized for this purpose.

One important consideration is the amount of data that
we should collect before performing our randomness test.
A commonly accepted rule for the Chi-Square randomness
test, mentioned by Knuth [33], is that given n, the number
of observations, and ps, the probability that n is observed
to be in category s, the expected value n× ps is greater
than 5 for all categories s. We consider the contents of
each buffer one byte at a time, giving us 256 categories of s.
According to calculations presented by Knuth, we would
need to collect 320 kilobytes of data for a reliable test. In
fact, we carried out an empirical analysis of the minimum
amount of data that needed to be analyzed to be confident
of avoiding misdetection. The analysis determined that
a safe threshold to avoid misclassifying random data as
non-random is 800 kilobytes, and a safe threshold to avoid
misclassifying non-random media data as random is 3800
bytes, both of which are easily feasible for any sort of
media playback.

We have observed that the Chi-Square randomness test
returns extremely low values (very close to 1.0) for en-
crypted data, and very high values (in the thousands) for
encoded data.

3.2 Dumping the Stream
After the previous steps, we are able to identify the

specific data path that has the encrypted input and the
decrypted, but decoded, output. Then, our system instru-
ments the authorized media player and dumps the output
buffer.

3.3 Reconstructing the File
Finally, with the decrypted data available, the last step is

to reconstruct the media file. In the trivial case, the DRM
scheme works by encrypting the entire media file whole-
sale. This is simple to recover because the decrypted buffer

9

696 22nd USENIX Security Symposium USENIX Association

that we dump will then contain the whole, unprotected file.
However, this is not the case in general. For example, the
approach used in Microsoft’s PlayReady DRM encrypts
just the media stream, leaving the headers and metadata
decrypted. Thus, the decrypted stream will contain the raw
media stream, which cannot be directly played by a media
player. In the general case, this is a problem of program
analysis and writing an automated tool to reconstruct the
file given an unknown protocol is quite complicated.

In order to recreate the media file in these circumstances,
knowledge of the streaming/DRM protocol is required.
For example, knowing that PlayReady encrypts the media
stream, we wrote a reconstruction plugin to reconstruct
the file with the newly decrypted media stream (and the
already decrypted headers and metadata) so that it would
be playable in conventional media players.

Depending on the protocol and the expertise of the oper-
ator, this stage can involve reading documentation, reverse
engineering, and file analysis. However, at this point the
automated decryption of the content, which is the central
aim of our paper, is already completed. While the media
content will need to be reconstructed for every dumped file,
the development process is only required once per DRM
platform (or, depending on the implementation, once per
DRM platform/media codec combination).

4 Implementation

We implemented our system using the PIN [38] Dy-
namic Binary Instrumentation framework. We chose this
tool for its ease of development, but our approach can
be implemented on top of a full-system emulator such as
QEMU in order to avoid anti-DBI techniques by the media-
playing applications. However, the use of QEMU would
raise the question of performance, since it is not clear if
QEMU’s dynamic recompilation of binaries can match the
performance of PIN. Additionally, though our system is
implemented under the x86 architecture, the approach is
easily translatable to other architectures as well.

We will detail some of the specific implementation de-
tails related to the individual DRM platforms that we ana-
lyzed. Additionally, in the course of implementing our ap-
proach, we made several implementation decisions, which
we will discuss hereinafter. After describing these, we will
also detail optimizations that we used to increase the speed
of our approach.

4.1 DRM Platforms

We specifically investigated three DRM platforms: Flash
video with Amazon Instant Video and Hulu, Microsoft
PlayReady with Netflix, and Spotify. Here we will give an
overview of the protocols and the tools we developed to
support them.

4.1.1 Flash RTMPE
Amazon Instant Video and Hulu both use the RTMPE

protocol, developed by Adobe, to transmit video. RTMPE
works by encrypting the whole media file on the fly before
sending it across the network.

Since the entire file is encrypted, reconstructing it did
not present a challenge because it was decrypted in a con-
tinuous manner in one function.

4.1.2 Microsoft PlayReady
Netflix uses Microsoft’s Silverlight PlayReady DRM to

protect its content. PlayReady presents several challenges.
Relocating code. In Silverlight, the actual routine used

for decrypting AAC audio, WMV video and H.264 video
is frequently relocated inside the process’ memory space.
We assume that this is done to frustrate would-be pirates.
An additional benefit, given the required flexibility of the
surrounding code, would be the ability to dynamically
update the decryption routine over the network. However,
we did not observe the latter ever occurring. Ironically,
this evasive behavior gives us a clear signal that such code
is interesting, and could enable us to prioritize it in our
analysis.

To cover the case of relocated code, we identify such
loops based on the non-relocating portions of their call
stack and the hash of their basic blocks. This allows us to
handle relocating code automatically as part of the normal
analysis.

Disabling adaptive streaming. Netflix automatically
adjusts the quality of the video stream to compensate for
bandwidth and CPU inadequacies. This can result in a
varied quality in the generated media file, which would lead
to a confusing subsequent media consumption experience.
Furthermore, because the MovieStealer implementation is
extremely CPU-intensive, such adaptive streaming features
will invariably select the stream with the worst available
quality.

Our solution to this problem, specifically for Silverlight-
based streaming services, is to use a Winsock introspection
tool named Esperanza [7] to inspect the browser’s traffic
and filter the lower-bandwidth stream options out of the
metadata. While this is a protocol-specific fix, a general-
ized version of this would be outside of the scope of this
paper.

Partial encryption. PlayReady is hard to work with
because it only encrypts the raw stream data of its media
files. Header information and meta-data is not encrypted.
Because of this, the decrypted file must be pieced back to-
gether by combining the original metadata and the dumped
stream. Furthermore, some of the headers have to be modi-
fied to reflect the fact that the file is no longer encrypted.

4.1.3 Spotify
Spotify’s distinguishing factor is the use of the Themida

packer to frustrate our DBI platform. Since our instrumen-

10

USENIX Association 22nd USENIX Security Symposium 697

tation is done dynamically, we would normally be able
to copy protected content of packed programs. However,
because Themida contains some evasive behavior that is
able to confuse PIN, we had to use the OllyDBG debug-
ger to first neutralize Themida’s evasiveness by hiding
PIN’s presence. After this, we were able to extract music
from Spotify, despite it being packed with the Themida
packer. While this is not automated in our implementation,
automating such anti-debugging practices is quite feasible.

Spotify encrypts its music files as a whole, so recon-
structing them is straightforward.

4.2 Optimization
A basic implementation of our approach is able to de-

tect and duplicate decrypted data in a program, but is not
yet performant enough to analyze media players. To rem-
edy this, we developed several optimizations. There are
three stages that can be optimized: the selection of loops
to analyze, the instrumentation and analysis of the loops
themselves, and general performance optimizations.

Admittedly, some of the optimizations presented here
are not automated. Specifically, limiting code coverage
requires some domain knowledge to determine which code
should be instrumented. However, MovieStealer can still
function, albeit at a reduced speed, without this optimiza-
tion.

4.2.1 Intelligent Loop Selection
Due to the overhead involved in instrumenting the mem-

ory operations of a loop and keeping track of the data that
a loop is accessing, MovieStealer instruments a limited
number of loops at a time. While a loop is instrumented,
data from its buffers is saved and passed to our analyses.
When a loop is determined by the randomness test to not
be the decryption loop, or it is eliminated by one of the
optimizations mentioned below, we discard the tracked
state and instrument the next loop. To minimize the time
necessary for MovieStealer to find the decryption routine,
we need to select these loops in the most optimal matter.

Limit code coverage. Code coverage greatly influ-
ences the execution speed of MovieStealer. In most cases
it is not necessary to instrument every module of the target
process. For example, only the core libraries of Silverlight
need to be instrumented to bypass PlayReady DRM, rather
than the whole set of libraries of the browser. To reduce
the number of loops that need to be analyzed, we only
select the ones in the suspected DRM code, cutting out a
significant amount of overhead.

On-demand instrumentation. Although we limit
code coverage, there are still many instructions that are
executed only once during initialization, which have noth-
ing to do with decryption. Instrumenting and analyzing
such loops would be a waste of resources. Inspired by
PrivacyScope [50], we have designed MovieStealer to start
after the program has initially loaded. After we load the

authorized media player, we start MovieStealer and begin
the media playback process. Thus, the initialization code
will not be analyzed and MovieStealer will immediately
begin zeroing in on the actual decryption functionality. We
have observed that this significantly reduces the amount of
loops that MovieStealer has to instrument and analyze.

Loop execution frequency. Additionally, we have ob-
served that, in a streaming media player, the decryption
routine is usually one of the most frequently-executed
loops. This is because additional media is constantly being
loaded over the network and must be constantly decrypted.
On the other hand, loops pertaining to other functionality
(for example, UI processing), are executed comparatively
less frequently. To take advantage of this, we prioritize
these loops for analysis ahead of less-frequently executed
loops.

Static instruction analysis. As described in prior
works [20, 46], code that carries out cryptographic func-
tionality tends to utilize a large amount of certain types of
operations. To optimize our analysis, we statically analyze
the amount of arithmetic and bitwise operations in every
loop and de-prioritize loops that lack such operations.

Additionally, we have observed that decryption routines
often contain unrolled loops for increased performance. As
such, we assign a higher priority to loops that are unrolled.
We statically detect unrolled loops by detecting a repeating
pattern of instructions before or after a loop body. While
this is a very simplistic approach to unrolling detection,
we feel that it is adequate. It works for the code that we
have observed in our analyses, and if it fails to detect an
unrolled loop, such a loop would still be analyzed later.

Loop hashing. In order to allow MovieStealer to func-
tion over several executions of a program, we save the
results of our analyses for analyzed loops. We identify
loops using a tuple consisting of the offsets of the basic
blocks comprising the loop from the base address of their
module, and the name of the module. When the analysis
of a loop is finished, the results are saved before the state
for the loop is discarded. This allows us to keep results
over multiple executions of MovieStealer in case it takes
an exceptionally long time to identify the decryption point.
While this optimization can be useful, we did not run into
any cases where we had to rely on it.

The astute reader will note that the relocating loops of
DRM schemes such as Microsoft PlayReady will not be
successfully recorded by this approach. However, this
optimization would still allow us to avoid reanalyzing the
majority of loops in a program, and being able to thus
focus on just the relocating ones will greatly reduce the
time required for MovieStealer to identify the decryption
loop.

4.2.2 Improved Instrumentation
Intelligently selecting loops to instrument greatly im-

proves MovieStealer’s performance, but lots of time is

11

698 22nd USENIX Security Symposium USENIX Association

Stage Input bandwidth Output bandwidth
Download roughly S roughly S
Decrypt roughly S roughly S
Decode roughly S greater than S

Table 8: The bandwidth of data paths when playing a
protected media file of size S.

still spent analyzing loops that turn out to be unrelated to
decryption. For loops that handle a lot of data, this data
needs to be analyzed in a performant fashion. However,
when instrumenting loops that do not handle much data,
much time is spent waiting to acquire enough data for the
statistical tests. To further optimize this, we created several
approaches to increase the performance of loop instrumen-
tations and to decrease the time necessary to arrive at a
classification.

Bandwidth filtering. Since protected media needs to
be decrypted before being played, we should be able to
find the decryption loop more efficiently by examining its
data throughput. We define the input bandwidth of a data
path as the amount of data in the aggregated input buffer
and the output bandwidth of a data path as the amount
of data in the aggregated output buffer. In Table 8, we
detail the steps that an authorized media player takes when
playing protected content, along with the expected input
and output bandwidth of these functions. Intuitively, a loop
that is decrypting the network traffic should have a similar
bandwidth to the network traffic itself.

We carry out a bandwidth check on each instrumented
loop every two seconds and compare it against the network
traffic (for streaming media players) or the disk traffic (for
GPG). Empirically, we determined that it’s safe to discard
a loop after 20 seconds if it fails the bandwidth test at least
60% of the time. A loop is considered to have failed a
bandwidth test if its bandwidth is not within 60% of the
expected bandwidth.

Avoiding unnecessary data copying. For the random-
ness test, the entropy test and the data dumping, we must
record data chunks that are read or written during the loop
execution, as described before. Since memory operations
happen very frequently, performance is critical in tracking
these reads and writes. Our approach must fulfill these
basic requirements:

1. Moving, copying and modifying data as little as possi-
ble.

2. Imposing as little overhead as possible for addressing
the buffer.

We did not include thread safety as one of the basic
requirements, as in real-world media players few buffers
are accessed simultaneously by multiple threads. We as-
sume that programs that do access buffers concurrently
will handle their own synchronization.

We have different strategies for reading and writing. For
written data, rather than logging what is written, two vari-
ables holding the starting address and the ending address
are maintained for every buffer. Each time a buffer write
occurs, we update the starting address and ending address
so that they correctly reflect the start and end positions that
are written. As we expect these buffers to be consecutive,
there is no problem with expanding the margins over bytes
that are not read yet. For the randomness and entropy tests,
MovieStealer analyzes every byte in the buffers between
the start and end positions.

For content that is read out of buffers, we have a differ-
ent strategy. As data being read during a loop might be
overwritten inside the same loop, our write-buffer strategy
does not always work. Hence it is necessary for Movi-
eStealer to not only record the memory ranges, but also
record the data located at the memory ranges at the time
that reading happens. It is important to note that memory
reading is not always consecutive nor always starts from
the beginning of the buffer. Thus, through the single run of
a loop, only parts of a buffer might be updated. To achieve
better performance, we try to avoid re-copying unchanged
data. This is done by treating each buffer as a concatena-
tion of 4,096-byte blocks. As a loop executes, we mark
the blocks that it modifies, and copy only the modified
blocks when it exits. Our copied-off buffer is an array of
pointers to these blocks. Any unchanged blocks on a new
run are stored as pointers to previously-copied versions of
that data.

4.2.3 Other Optimizations

Call stack optimization. To improve performance, a
call stack key is maintained for each thread, and is updated
each time a call or ret instruction is executed. When a
new function is called, its start address is XORed onto the
call stack key when the function is added to the call stack.
When the program is about to return from a function, we
pop the function from the call stack and wipe it from the
call stack key by XORing its start address again. This way,
we can use the call stack key instead of the whole call
stack to identify a given loop. A dword comparison has
considerably less overhead than a list comparison and, in
practice, we have not seen any call stack key collisions due
to this in our experiments.

This optimization is especially useful in loop selection,
loop analysis, and data dumping.

5 Evaluation
In the course of our evaluation, we strived to demon-

strate two things: that our optimizations work and are
effective at improving performance, and that MovieStealer
is an effective tool for bypassing the DRM of streaming
media services. Since most of the streaming media ser-
vices do not function at all without our optimizations, we

12

USENIX Association 22nd USENIX Security Symposium 699

ran the optimization evaluation on GPG, an open source
cryptography suite. GPG has fewer real-time processing
requirements than real-world media players and as such
works despite high overhead from unoptimized analyses.

We evaluated MovieStealer’s effectiveness on a series of
online streaming services, including Netflix, Hulu, Ama-
zon Video, and Spotify. Our experiments consisted of
loading the streaming application (in all cases except for
Spotify, this was done by visiting the appropriate web-
page in the browser. Spotify is a stand-alone application),
starting MovieStealer, and playing a video or a song. Movi-
eStealer would then pinpoint the decryption location and,
on future runs, would begin dumping the media file. The
reconstructor would then be run to create a playable media
file. We verified that the media file was playable by playing
it in a different, unauthorized player.

We carried out three experiments for each DRM plat-
form, treating Hulu and Amazon Video as a single platform.
For each experiment, we started MovieStealer from scratch.
We recorded the number of loops identified, the loops ana-
lyzed before MovieStealer zeroed in on the sensitive loop,
the total amount of analyzed loops that contain detected
buffers, the total number of buffers identified, the total
number of decryption loops that MovieStealer identified,
and the total time until data could start being dumped. In
all of the experiments, the loop responsible for decrypting
the encrypted content was partially unrolled as a perfor-
mance optimization.

To the best of our knowledge, MovieStealer is the first
publicly described approach with the ability to successfully
copy content protected by Microsoft PlayReady DRM with-
out screen scraping techniques, as well as the first imple-
mentation to do cryptographic identification and copying
of content at runtime.

MovieStealer was able to function on all DRM ap-
proaches that we evaluated.

Effect of optimizations. We carried our our optimiza-
tion evaluations by executing MovieStealer against GPG
as it decrypted a video file. First, we measured the per-
formance of MovieStealer with all optimizations enabled,
then measured the performance of first the callstack key
optimization and then the code coverage limit optimiza-
tion by running MovieStealer with all other optimizations
enabled, and finally enabled some of our optimizations
one-by-one to demonstrate their effects. The results can be
seen in Table 9.

Necessary optimizations. Some of our optimizations
were necessary to get the media players to function at
all. As described in Section 2.3, these media players are
high-performance pieces of software with some real-time
requirements. For example, Netflix implements content
expiration and has minimum performance requirements
below which it will not play videos, and an unoptimized
approach fails to meet such requirements. We have found

Optimizations enabled LT S
All 7 31
All but callstack key 6 47
All but limit code coverage 10 34
Only limit code coverage 9 65
Only static instruction analysis 10 49
Only bandwidth filtering 35 180
Only execution frequency 40 3,480

Table 9: Results for GPG. LT = loops traced, S = total
seconds before the decryption loop was identified.

Experiment no. 1 2 3
Loops identified 1,529 1,258 1,647
Buffers identified 14 6 1
Loops traced 46 35 62
Seconds elapsed 281 146 175

Table 10: Results for Amazon Video and Hulu

Experiment no. 1 2 3
Loops identified 2,876 2,274 2,950
Buffers identified 88 80 152
Loops traced 8 58 54
Seconds elapsed 86 110 191

Table 11: Results for Netflix

Experiment no. 1 2 3
Loops identified 2,305 1,845 1,667
Buffers identified 60 69 63
Loops traced 224 204 138
Seconds elapsed 536 739 578

Table 12: Results for Spotify

that it is possible to analyze the streaming media players
by enabling, at minimum, all of the loop selection opti-
mizations.

Non-determinism. Non-determinism is introduced
into the results from several sources. To begin with, the
programs in question are complex and multi-threaded, and
rely on external resources to function. This means that
the sequence that code is executed (and that MovieStealer
analyzes it) in varies between runs.

Additionally, MovieStealer starts on demand, so it might
begin analyzing different parts of the program in different
runs. This will also make it analyze code in different order.
Finally, the code relocations used by PlayReady DRM adds
extra indeterminism to the mix. However, this does not
have an effect on the final, successful decryption result.

13

700 22nd USENIX Security Symposium USENIX Association

6 Discussion
The expected use of an approach such as MovieStealer

would be to save streamed movies either for later watching
or for sharing with others. The latter approach is, of course,
illegal. Our intention is not to aid illegal activity, and we
discuss this further in Section 7.

It is also important to stress that in order for Movi-
eStealer to function, the user must be authorized to play
the content in the first place.

One possibility for future direction is a look into au-
tomatically cracking HDCP-protected content. Since the
master keys are leaked, it might be possible to analyze
encrypted-encrypted data paths and attempt to automati-
cally use the HDCP keys to decrypt the content further.
With the relatively low amount of buffers identified in
the video experiments, this might be feasible from a per-
formance standpoint. This would allow MovieStealer to
function on devices with dedicated hardware for hiding
content as it’s re-encrypted for HDCP.

Another potential direction would be use MovieStealer
to automatically recover encryption keys from running
software. After detecting a decryption loop, MovieStealer
could check the other inputs to that loop or to other loops
that touched the encrypted buffer to determine if such
inputs are the keys to the encryption.

Furthermore, it would be interesting to investigate the
use of our approach to inform systems such as Inspector
Gadget [34] in order to automatically export the encryp-
tion/decryption functionality of programs.

6.1 Countermeasures
Although our approach proved to be effective on cur-

rent online streaming services, there are steps that could
be taken by the authors of the DRM schemes to protect
themselves against MovieStealer.

Anti-debugging. Applying extreme anti-debugging
and anti-DBI techniques would prevent our implemen-
tation, in its current form, from working. However, noth-
ing prevents one from implementing MovieStealer in a
full-system emulator such as QEMU [16], rendering the
approach immune to such evasions.

Attacking our loop detection. There are several ways
to prevent MovieStealer from properly detecting loops
within a program. A full unrolling of relative loops could
effectively prevent the real loop from being detected by
MovieStealer. However, full unrolling will result in loss of
flexibility of the loop, and detection might still be possible
using pattern matching approaches. Alternatively, protect-
ing sensitive program modules by using virtual machine
interpreted instructions would be very effective, as most of
our loop identification approaches would not work. How-
ever, the performance penalty for doing this would likely
be unacceptable.

Attacking the buffer detection. We cannot properly
analyze a buffer that has a nonconsecutive layout in mem-
ory. For example, if a buffer only occupies one byte every
three bytes, these bytes will not be identified as a valid byte
array, let alone a buffer. We have not seen these techniques
being used, and implementing them will likely carry an
overhead cost. However, it is a definite possibility with
modern hardware.

Along these lines, an effective countermeasure would
be a functional hardware DRM scheme. However, it is not
clear how to implement this in a way flexible enough to
be resistant to events such as key leaks while being secure
enough to be resistant to bypass.

Attacking the decryption detection. One very effec-
tive countermeasure would be to intersperse non-random
data in the encrypted buffers, and to insert random data
into the decrypted buffer. This would lower the random-
ness of the encrypted buffer and raise the randomness of
the decrypted buffer, possibly defeating our analysis. The
decoder would then be modified to ignore the inserted ran-
dom bytes so that it can successfully replay the video. It
is important to note that this approach would require a
modification of the decoder, as removing the random bytes
beforehand (and reducing the randomness of the buffer in
question) would trigger MovieStealer’s decryption detec-
tion.

Attacking the pirates. Watermarking has proven to
be incredibly effective in tracking piracy. The originator
could watermark the media [28, 17, 18], and in the event
of piracy, the pirates could be identified by this watermark.
This is a very effective technique, and it has been used
to successfully track down pirates [13, 6]. While some
research has been done toward the circumvention of wa-
termarks [26, 35], a watermark-related arms race might be
easier for content providers than the design of mechanisms
to counteract approaches similar to MovieStealer.

7 Ethical and Legal Issues
In this section, we discuss the ethical and legal implica-

tions of our work.
First of all, obviously our work was never motivated

by the desire to obtain protection-free copies of the me-
dia for re-distribution (piracy) or to create and distribute
tools that would allow others to bypass content protection
mechanisms.

Our goal was to analyze the security of the cryptographic
mechanisms used by these emerging services, and to de-
velop an approach that would demonstrate the general
fallacy behind these schemes, in the hope that our findings
would prompt the development of new, more secure ap-
proaches to content protection that are not vulnerable to
our attack. This is especially important if cryptography-
based protection mechanisms are touted to “protect” user-
generated content (e.g., independent movies distributed

14

USENIX Association 22nd USENIX Security Symposium 701

exclusively through streamed media) and give to the con-
tent authors (i.e., the users of the distribution service) a
false sense of security with regards to the possibility of
malicious third parties stealing their content.

The legality of this research is tightly related to the
location where the research is performed. For example,
there are some subtle but important differences between
the laws in the United States and the laws of the European
Union and Italy [23].

The research was carried out in the United States, and
hence, it falls under the Digital Millenium Copyright
Act [25]. The DMCA prohibits the circumvention of con-
tent protection mechanisms, but includes explicitly pro-
tection of security research (referred to as “Encryption
Research” – see Section 1201(g) of the DMCA.) We feel
that this research falls under this protection and is there-
fore legal. Citing from the DMCA document: “Factors in
determining exemption: In determining whether a person
qualifies for the exemption under paragraph (2), the fac-
tors to be considered shall include the information derived
from the encryption research was disseminated, and if so,
whether it was disseminated in a manner reasonably calcu-
lated to advance the state of knowledge or development of
encryption technology, versus whether it was disseminated
in a manner that facilitates infringement under this title
or a violation of applicable law other than this section,
including a violation of privacy or breach of security.”

We feel that the way in which this research is dissem-
inated is clearly focused on advancing research and not
to facilitate infringement. In fact, we have chosen not
to publicly distribute the source code of our tool or to
provide ways to easily attack specific technologies. In ad-
dition, with the help of the Electronic Frontier Foundation,
we contacted each of the companies involved in order to
disclose these DRM workarounds responsibly. Microsoft
was notified because they are the vendor of the Silverlight
DRM used in Netflix. Adobe was notified because they
are the vendor the RTME implementation for Amazon and
Hulu. Netflix, Amazon, and Hulu were notified because
the DRM being bypassed is used by their services. Spotify
was in the unique position of falling into both categories.
Of course, we contacted them as well.

Of the companies contacted, Netflix, Amazon, and Hulu
did not respond to our initial or follow-up contacts, nor
when contacted through EFF’s channels of communication.
However, Microsoft, Adobe, and Spotify responded, ac-
knowledged the issues, and discussed workarounds. All
three companies reviewed our work, provided comments
for this paper, and encouraged its publication, for which
we are grateful.

In summary, our goal is to improve the state-of-the-art
in cryptographic protection and not to create and distribute
tools for the violation of copyright laws.

8 Conclusions
In this paper, we have proposed MovieStealer, a novel

approach to automated DRM removal from streaming me-
dia by taking advantage of the need to decrypt content be-
fore playing. Additionally, we have outlined optimizations
to make such DRM removal feasible to do in real-time, and
have demonstrated its effectiveness against four streaming
media services utilizing three different DRM schemes.

Acknowledgements We would like to thank representa-
tives from Microsoft, Spotify, and Adobe for their feedback
in regards to the drafts that we sent them. Additionally, we
are eternally grateful to the EFF and UCSB’s legal counsel
for their help with legal and ethical concerns during the
publication process. Finally, we thank Dr. Jianwei Zhuge
for his advice.

This work was supported by the Office of Naval Re-
search (ONR) under Grant N00014-12-1-0165 and un-
der grant N00014-09-1-1042, and the National Science
Foundation (NSF) under grants CNS-0845559 and CNS
0905537, and by Secure Business Austria. This work was
partly supported by Project 61003127 supported by NSFC.

References
[1] RC4, 1994. http://web.archive.org/web/20080404222417/

http://cypherpunks.venona.com/date/1994/09/
msg00304.html.

[2] RTMP, 2009. http://wwwimages.adobe.com/www.adobe.
com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_
specification_1.0.pdf.

[3] Adobe RTMPE, 2012. http://lkcl.net/rtmp/RTMPE.txt.

[4] Audials software, 2012. http://audials.com/en/how_to_
record_stream_capture_music_videos_movies_from/
netflix.html.

[5] The despotify project, 2012. http://despotify.se/.

[6] E-city nabs pirates using thomson watermarking tech, 2012. http:
//businessofcinema.com/bollywood-news/ecity-nabs\
%2Dpirates-using-thomson\%2Dwatermarking\%2Dtech/
27167.

[7] Esperanza project, 2012. http://code.google.com/p/
esperanza.

[8] Freakonomics - How Much Do Music And Movie Piracy Really Hurt
the U.S. Economy?, 2012. http://www.freakonomics.com/
2012/01/12/how-much\%2Ddo-music\%2Dand-movie\
%2Dpiracy\%2Dreally-hurt\%2Dthe-u-s\%2Deconomy/.

[9] High-bandwidth Digital Content Protection System - Interface In-
dependent Adaptation - 2.2, 2012. http://www.digital-cp.
com/files/static_page_files/6FEA6756-1A4B\
%2DB294\%2DD0494084C37A637F/HDCP\%20Interface\
%20Independent\%20Adaptation\%20Specification\
%20Rev2_2_FINAL.pdf.

[10] Microsoft PlayReady DRM, 2012. http://msdn.microsoft.com/
en-us/library/cc838192(VS.95).aspx.

[11] Microsoft protected media path, 2012. http://scholar.google.
com/scholar?hl=en&q=protected+media+path&btnG=
&as_sdt=1%2C5&as_sdtp=.

[12] Nation of unrepentant pirates costs $900m, 2012. http://www.
smh.com.au/technology/technology-news/nation-of\
%2Dunrepentant-pirates-costs\%2D900m-20110305\
%2D1bix5.html.

15

702 22nd USENIX Security Symposium USENIX Association

[13] Porn studio awarded 1.5 million from man who shared 10 movies,
2012. http://www.slate.com/blogs/trending/2012/11/
02/kywan_fisher_flava_works_wins_1_5_million_in_
biggest_ever_torrent_judgement.html.

[14] SOPA: How much does online piracy really cost the econ-
omy?, 2012. http://www.washingtonpost.com/blogs/
ezra-klein/post/how-much\%2Ddoes-online-piracy\
%2Dreally-cost-the\%2Deconomy/2012/01/05/
gIQAXknNdP_blog.html.

[15] Spotify DRM, 2012. http://www.defectivebydesign.org/
spotify.

[16] F. Bellard. QEMU, a fast and portable dynamic translator. USENIX, 2005.

[17] J. Bloom and C. Polyzois. Watermarking to track motion picture theft. In
Signals, Systems and Computers, 2004. Conference Record of the Thirty-
Eighth Asilomar Conference on, volume 1, pages 363–367. IEEE, 2004.

[18] L. Boney, A. Tewfik, and K. Hamdy. Digital watermarks for audio signals.
In Multimedia Computing and Systems, 1996., Proceedings of the Third
IEEE International Conference on, pages 473–480. IEEE, 1996.

[19] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary code
extraction and interface identification for security applications. Technical
report, DTIC Document, 2009.

[20] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dispatcher:
Enabling active botnet infiltration using automatic protocol reverse-
engineering. In Proceedings of the 16th ACM conference on Computer
and communications security, pages 621–634. ACM, 2009.

[21] J. Caballero, P. Poosankam, S. McCamant, D. Song, et al. Input genera-
tion via decomposition and re-stitching: Finding bugs in malware. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 413–425. ACM, 2010.

[22] J. Calvet, J. M. Fernandez, and J.-Y. Marion. Aligot: Cryptographic func-
tion identification in obfuscated binary programs. 2012.

[23] R. Caso. Digital Rights Management: Il commercio delle informazioni
digitali tra contratto e diritto d’autore. CEDAM, 2006.

[24] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot. A white-box des
implementation for drm applications. In Digital Rights Management, pages
1–15. Springer, 2003.

[25] U. S. Congress. Digital Millennium Copyright Act, October 1998.

[26] I. Cox and J. Linnartz. Some general methods for tampering with water-
marks. Selected Areas in Communications, IEEE Journal on, 16(4):587–
593, 1998.

[27] G. Danby. Key issues for the new parliament 2010 - copyright and piracy,
2010. http://www.parliament.uk/documents/commons/
lib/research/key_issues/Key%20Issues%20Copyright%
20and%20piracy.pdf.

[28] E. Diehl and T. Furon. © watermark: Closing the analog hole. In Consumer
Electronics, 2003. ICCE. 2003 IEEE International Conference on, pages
52–53. IEEE, 2003.

[29] W. Diffie and M. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644–654, 1976.

[30] Engadget. HDCP ‘master key’ supposedly released, unlocks HDTV
copy protection permanently, 2010. http://www.engadget.
com/2010/09/14/hdcp-master\%2Dkey-supposedly\
%2Dreleased-unlocks\%2Dhdtv-copy\%2Dprotect/.

[31] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications,
volume 2. Cambridge university press, 2004.

[32] F. Gröbert, C. Willems, and T. Holz. Automated identification of crypto-
graphic primitives in binary programs. In Recent Advances in Intrusion
Detection, pages 41–60. Springer, 2011.

[33] D. Knuth. The art of computer programming. addison-Wesley, 2006.

[34] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector gadget: Auto-
mated extraction of proprietary gadgets from malware binaries. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 29–44. IEEE, 2010.

[35] G. Langelaar, R. Lagendijk, and J. Biemond. Removing spatial spread
spectrum watermarks. In Proceedings of the European Signal Processing
Conference (EUSIPCO98), Rodes, Greece, 1998.

[36] P. L’Ecuyer. Testing random number generators. In Winter Simulation
Conference: Proceedings of the 24 th conference on Winter simulation, vol-
ume 13, pages 305–313, 1992.

[37] Z. Lin, X. Zhang, and D. Xu. Automatic reverse engineering of data struc-
tures from binary execution. 2010.

[38] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In ACM SIGPLAN Notices, volume 40,
pages 190–200. ACM, 2005.

[39] N. Lutz. Towards revealing attackers intent by automatically decrypting
network traffic. Master’s thesis, ETH Zuerich, 2008.

[40] T. Moseley, D. Grunwald, D. Connors, R. Ramanujam, V. Tovinkere, and
R. Peri. LoopProf: Dynamic techniques for loop detection and profiling. In
Proceedings of the 2006 Workshop on Binary Instrumentation and Applica-
tions (WBIA), 2006.

[41] M. Peitz and P. Waelbroeck. Piracy of digital products: A critical review of
the economics literature. 2003.

[42] C. Shannon. Communication theory of secrecy systems. Bell system tech-
nical journal, 28(4):656–715, 1949.

[43] A. Slowinska, T. Stancescu, and H. Bos. Howard: a dynamic excavator for
reverse engineering data structures. In Proceedings of NDSS, 2011.

[44] F. A. Stevenson. Cryptanalysis of contents scrambling system,
2000. http://web.archive.org/web/20000302000206/
www.dvd-copy.com/news/cryptanalysis_of_contents_
scrambling_system.htm.

[45] S. Thakkur and T. Huff. Internet streaming SIMD extensions. Computer,
32(12):26–34, 1999.

[46] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. Reformat: Automatic
reverse engineering of encrypted messages. Computer Security–ESORICS
2009, pages 200–215, 2009.

[47] Wikipedia. Analog Hole - Wikipedia, the free encyclopedia, 2012. [Online;
accessed 09-Nov-2012].

[48] Wikipedia. DeCSS - Wikipedia, the free encyclopedia, 2012. [Online;
accessed 09-Nov-2012].

[49] Wikipedia. Software protection dongle - Wikipedia, the free encyclopedia,
2012. [Online; accessed 09-Nov-2012].

[50] Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. Privacy scope: A pre-
cise information flow tracking system for finding application leaks. Techni-
cal report, Tech. Rep. EECS-2009-145, Department of Computer Science,
UC Berkeley, 2009.

16

	Table of Contents
	Conference Organizers
	Message from the Program Chair
	Greystar: Fast and Accurate Detection of SMS Spam Numbers in Large Cellular Networks using Grey Phone Space
	Practical Comprehensive Bounds on Surreptitious Communication Over DNS
	Let Me Answer That For You: Exploiting Broadcast Information in Cellular Networks
	Dowsing for overflows: A guided fuzzer to find buffer boundary violations
	MetaSymploit: Day-One Defense Against Script-based Attacks with Security-Enhanced Symbolic Analysis
	Towards Automatic Software Lineage Inference
	Securing Embedded User Interfaces: Android and Beyond
	Automatic Mediation of Privacy-Sensitive Resource Access in Smartphone Applications
	Flexible and Fine-Grained Mandatory Access Control on Android for Diverse Security and Privacy Policies
	Proactively Accountable Anonymous Messaging in Verdict
	ZQL: A Compiler for Privacy-Preserving Data Processing
	DupLESS: Server-Aided Encryption for Deduplicated Storage
	Trafficking Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse
	Impression Fraud in Online Advertising via Pay-Per-View Networks
	The Velocity of Censorship: High-Fidelity Detection of Microblog Post Deletions
	You are How You Click: Clickstream Analysis for Sybil Detection
	Alice in Warningland:A Large-Scale Field Study of Browser Security Warning Effectiveness
	An Empirical Study of Vulnerability Rewards Programs
	Secure Outsourced Garbled Circuit Evaluation for Mobile Devices
	On the Security of RC4 in TLS
	PCF: A Portable Circuit Format For Scalable Two-Party Secure Computation
	Control Flow Integrity for COTS Binaries
	Native x86 Decompilation using Semantics-Preserving Structural Analysis and Iterative Control-Flow Structuring
	Strato: A Retargetable Framework for Low-Level Inlined-Reference Monitors
	On the Security of Picture Gesture Authentication
	Explicating SDKs: Uncovering Assumptions Underlying Secure Authentication and Authorization
	Enabling Fine-Grained Permissions for Augmented Reality Applications With Recognizers
	CacheAudit: A Tool for the Static Analysis of Cache Side Channels
	Transparent ROP Exploit Mitigation using Indirect Branch Tracing
	FIE on Firmware: Finding Vulnerabilities in Embedded Systems using Symbolic Execution
	Sancus: Low-cost trustworthy extensible networked devices with a zero-software Trusted Computing Base
	Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation
	KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Object
	WHYPER: Towards Automating Risk Assessment of Mobile Applications
	Effective Inter-Component Communication Mapping in Android with Epicc: An Essential Step Towards Holistic Security Analysis
	Jekyll on iOS: When Benign Apps Become Evil
	Measuring the practical impact of DNSSEC Deployment
	ExecScent: Mining for New C&C Domains in Live Networks with Adaptive Control Protocol Templates
	ZMap: Fast Internet-Wide Scanning and its Security Applications
	Eradicating DNS Rebinding with the Extended Same-Origin Policy
	Revolver: An Automated Approach to the Detection of Evasive Web-based Malware
	Language-based Defenses against Untrusted Browser Origins
	Take This Personally: Pollution Attacks on Personalized Services
	Steal This Movie - Automatically Bypassing DRM Protection in Streaming Media Services

