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In this paper, we present the design of Greystar, an innovative defense system for combating the growing SMS spam traffic in cellular networks. By exploiting the fact that most SMS spammers select targets randomly from the finite phone number space, Greystar monitors phone numbers from the grey phone space (which are associated with data only devices like laptop data cards and machine-to-machine communication devices like electricity meters) and employs a novel statistical model to detect spam numbers based on their footprints on the grey phone space. Evaluation using five month SMS call detail records from a large US cellular carrier shows that Greystar can detect thousands of spam numbers each month with very few false alarms and 15% of the detected spam numbers have never been reported by spam recipients. Moreover, Greystar is much faster in detecting SMS spam than existing victim spam reports, reducing spam traffic by 75% during peak hours.
The explosion of mobile devices in the past decade has brought with it an onslaught of unwanted SMS (Short Message Service) spam [1]. It has been reported that the number of spam messages in the US has risen 45% in 2011 to 4.5 billion messages [2]. In 2012, there were 350K variants of SMS spam messages accounted for globally [3] and more than 69% of the mobile users claimed to have received text spam [4]. The sheer volume of spam messages not only inflicts an annoying user experience, but also incur significant costs to both cellular service providers and customers alike. In contrast to email spam where the number of possible email addresses is unlimited - and therefore the spammer generally needs a seed list beforehand, SMS spammers can more easily reach victims by, e.g., simply enumerating all numbers from the finite phone number space. This, combined with wide adoption of mobile phones, makes SMS a medium of choice among spammers. Furthermore, the increasingly rich functionality provided by smart mobile devices also enables spammers to carry out more sophisticated attacks through both voice and data channels, for example, using SMS spam to entice users to visit certain websites for product advertisement or other illicit activities.
Because SMS spam inflicts financial loss to mobile users and adverse impact to cellular network performance, the objective of defense techniques is to restrict spam numbers quickly before they reach too many victims. To this end, instead of applying popular solutions in controlling email spam (e.g., filtering based on sending patterns), which can cause a high false alarm rate, cellular carriers often seek help from their customers to alert them of emerging spamming activities. More specifically, cellular carriers deploy reporting mechanism for spam victims to report received spam messages and then examine and restrict these reported spam numbers accordingly. Such spam detection techniques using victim spam reports are very accurate, thanks to the human intelligence added while submitting these reports. However, these methods can suffer from significant delay due to the low report rate and slow user responses, rendering them inefficient in controlling SMS spam.
To address the issues in existing solutions, in this paper, we carry out extensive analysis of SMS spamming activities using five months of SMS call detail records collected from a large cellular network in the US and the SMS spam messages reported from the spam recipients to that cellular carrier. We find that a majority of spammers choose targets randomly from a few area codes or the entire phone number space, and initiate spam traffic at high rates. To detect such aggressive random spammers, we advance a novel notion of grey phone space. Grey phone space comprises a collection of grey phone numbers (or grey numbers in short). Grey numbers are associated with two types of mobile devices: data only devices (e.g., many laptop data cards and data modems, etc.) and machine-to-machine (M2M) communication devices (e.g., utility meters and medical devices, etc.). These grey numbers usually do not participate actively in SMS communication as other mobile numbers do (e.g., those associated with smartphones), they thereby form a grey territory that legitimate mobile users rarely enter. In the mean time, the wide dispersion of grey numbers makes them hard to be evaded by spammers who choose targets randomly.
On top of grey phone space, we propose the design of Greystar. Greystar employs a novel statistical model to detect spam numbers based on their interactions with grey numbers and other non-grey phone numbers. We evaluate Greystar using five months of SMS call records. Experimental results indicate that Greystar is superior to the existing SMS spam detection algorithms, which rely heavily on victim spam reports, in terms of both accuracy and detection speed. In particular, Greystar detected over 34K spam numbers in five months while only generating two false positives. In addition, more than 15% of the detected spam numbers have never been reported by mobile users. Moreover, Greystar reacts fast to emerging spamming activities, with a median detection time of 1.2 hours after spamming activities occur. In 50% of the cases, Greystar is at least 1 day ahead of victim spam reports. The high accuracy and fast response time allow us to restrict more spam numbers soon after spamming activities emerge, and hence to reduce a majority of the spam messages in the network. We demonstrate through simulation on real network data that, after deploying Greystar, we can reduce 75% of the spam messages during peak hours. In this way, Greystar can greatly benefit the cellular carriers by alleviating the load from aggressive SMS spam messages on network resources as well as limiting their adverse impact on legitimate mobile users.
The remainder of this paper is organized as follows. We introduce the SMS architecture and the datasets used in our study in Section 2. We then motivate the design of Greystar in Section 3. In Section 4 we study the SMS activities of spammers and legitimate users. The definition of grey numbers is presented in Section 5. In Section 6, we explain in detail the design of Greystar. Evaluation results are presented in Section 7. Section 8 discusses the related work and Section 9 concludes the paper.
In this section, we briefly describe the cellular network focused in our study. We then introduce the datasets and our ground truth for identifying spam phone numbers.
The cellular network under study utilizes primarily UMTS (Universal Mobile Telecommunication System), a popular 3G mobile communication technology adopted by many mobile carriers across the globe. Here we introduce the architecture for delivering SMS messages inside UMTS networks (for other aspects regarding UMTS networks, e.g., mobile data channels, see [5]). Fig. 1 depicts a schematic view of the architecture. When sending an SMS message, an end user equipment (UEA) directly communicates with a cell tower (or node-B), which forwards the message to a Radio Network Controller (RNC). The RNC then delivers the message to a Mobile Switching Center (MSC) server, where the message enters the Signaling System 7 (SS7) network and is stored temporarily at a Short Message Service Center (SMSC). From the SMSC, the message will be routed to the serving MSC of the recipient (UEB), then to the serving RNC and Node-B, and finally reaches UEB. Similarly, messages originated from other carrier networks (e.g., from UEC) will also traverse the SS7 network and bypass the serving MSC before arriving at UEB1.
Figure 1: SMS architecture in UMTS networks.
In this paper, we use two different datasets for our study.
SMS Call Detail Records (CDRs) are used for understanding SMS user/spammer activities and evaluating the performance of the proposed Greystar system. These records were collected at the serving MSC's of SMS recipients (see Fig. 1). This means that CDR records represent SMS messages targeting registered mobile customers of the UMTS network under study2 and have been successfully routed through the SS7 network. The CDR dataset spans 5 months from Jan 2012 to May 2012. Each record contains the SMS receiving time, the originating number, the terminating number and the International Mobile Equipment Identity (IMEI) for the device associated with the terminating number3. We note that CDR records do not contain text content of the original SMS messages.
Victim spam reports contain spam messages reported by spam recipients to the carrier. The said cellular carrier deploys an SMS spam reporting service for its users: when a user receives an SMS text and deems it as a spam message, s/he can forward the message to a spam report number designated by the cellular service provider. Once the spam is forwarded, an acknowledgment message is returned, which asks the user to reply with the spammer's phone number (referred to as the spam number hereafter). Once the above two-stage process is completed within a predefined time interval, a spam report is created, which includes the reporter's phone number, the spam number, the reporting time and the text content of the reported spam message. We employ six months of spam reports from Jan 2012 to June 2012 in order to cover spam numbers observed between Jan and May but are reported after May due to the delay of the spam reports (see Section 3.2).
We emphasize that no customer personal information was collected or used for our study. All customer identifies were anonymized before any analysis was conducted. In particular, for phone numbers, only the area code (i.e., the first 3 digits of the 10 digit North American numbers) was used and the remaining digits were hashed. Similarly we only retain the first 8-digit Type Allocation Code (TAC) of the IMEI to identify device types and anonymize the remaining 8-digit to preserve customers' privacy. In addition, to adhere to the confidentiality under which we have access to the data, in places we only present normalized views of our results while retaining the scientifically relevant magnitudes.
Although victim spam reports provide us with ground truth for some spam numbers, they are by no means comprehensive and can be noisy (see Section 3.2). Therefore, in this paper, we employ a more reliable source of ground truth. In particular, we request the fraud agents from the said UMTS carrier to manually verify spam number candidates detected by us. These fraud agents are exposed to much richer (and more expensive) sources of information. For example, fraud agents can investigate the ownership and the price plan information of the candidates, examine their SMS sending patterns and correlate them with known spam numbers in terms of their network locations and active times, etc. The final decision is made conservatively by corroborating different evidence.
Admittedly, fraud agents can make mistakes during their investigation. Meanwhile, their breadth may be limited by not being able to inspect all mobile numbers in the network. Nevertheless, fraud agents provide us with the most authoritative ground truth available for our study. It is worth mentioning that such investigation by fraud agents has been deployed independently for SMS spam number detection and restriction for more than one year and no false alarm has yet been observed (e.g., no user complaint is observed so far regarding incorrectly restricted phone numbers). Therefore, in our study, we will treat fraud agents as a black box authority, i.e., we submit a list of spam number candidates to fraud agents and they return a list of confirmed spam numbers.
In this section, we discuss the objectives of developing an effective defense against SMS spam by comparing the difference between SMS spam and traditional email spam. We then review the most widely adopted SMS spam detection method based on crowdsourcing victim spam reports and point out its inefficacy. In the end, we present the rationale of the proposed Greystar system.
In a conventional SMS spamming scenario, an SMS spammer (note that we refer to an SMS spammer as the person who employs a set of spam numbers to launch SMS spam campaigns) first invests in a set of phone numbers and special high-speed devices, such as 3G modems and SIM boxes [6]. Using these devices, s/he then initiates unsolicited SMS messages to a large number of mobile phone numbers. Akin to traditional email spam, the objective of SMS spam is to advertise certain information to entice further actions from the message recipients, e.g., calling a fraud number or clicking on a URL link embedded in the message which points to a malicious site. However, SMS spamming activities exhibit unique characteristics which shift the focus of the defense mechanisms and hence render inapplicable or inefficient existing solutions for defending against traditional email spam.
Email service providers usually detect and filter email spam at their mail servers, to which they have full access. There they can build accurate spam filters by exploiting rich features in emails including the text content. Spam filters at end user devices are also a common choice, where email clients (apps) filter spam while retrieving emails from remote mail servers. Though blacklist of email spammers are sometimes used to assist spam classification [7–9], restricting email spam senders is usually not the main focus of the defense, since it requires close collaboration between email providers and network carriers. Moreover, it is observed that many spam emails are originated from legitimate hosts due to botnet activities [10], which makes restricting spam originators an inapplicable solution.
In comparison to emails which are generally stored on servers and wait for users to retrieve them, SMS messages are delivered instantly to the recipients through the SS7 network. Along the path, SMS messages are only cached temporarily at SMSC (only when the recipients are offline), leaving little time for cellular carriers to react to them. The task becomes even more challenging especially when the SMS traffic volume peaks during busy hours. Filtering SMS spam at end user devices (e.g., using mobile apps) is also not applicable given many SMS capable devices (e.g., feature phones) do not support running such apps. In addition, for a user with a pay-per-use SMS plan, she is already charged for the spam message once it arrives at her device. More importantly, even when SMS spam filters are deployed at SMSC's and end user devices, SMS spammers can still inflict significant loss to the carrier and other mobile users. This is because the huge number of spam messages can lead to a significant increase in the SMS traffic volume at the cell towers serving the spam senders, possibly causing congestion and hence deteriorating voice/data usage experience of nearby users. For example, we have found the SMS traffic volume at cell towers can easily get multiplied by more than 10 times due to the activities of spammers. Therefore, the focus of the SMS spam defense is to control spam numbers as soon as possible before they reach a large number of victims.
An efficient SMS spam detection algorithm is hence expected to react quickly to emerging spamming activities. Meanwhile, the focus on restricting spam numbers places a strong emphasis on the accuracy of the algorithm. First, it requires a spam detection algorithm to limit false alarms, because false alarms can lead to incorrect restriction of legitimate users from accessing SMS services. Second, it demands the algorithm detect as many spam numbers as possible so as to minimize the impact of SMS spam activities on the network. Such high accuracy requirements are hard to achieve solely based on the SMS sending patterns of the spammers. For example, it is difficult to separate spam campaigns from legitimate SMS campaigns, such as a school sending messages to its students to alert adverse weather conditions. These legitimate senders can exhibit characteristics that are common to SMS spammers4. Spammers may also alter their sending patterns to mimic legitimate users to avoid detection. As a result, cellular carriers often seek the assistance from their customers to alert them of emerging SMS spam activities.
The emphasis on high accuracy gives rise to the wide adoption of spam detection methods based on victim spam reports which were introduced in Section 2. Victim spam reports represent a more reliable and cleaner source of SMS spam samples, as all the spam messages contained in the reports have been vetted and classified by mobile users (using human intelligence). To further mitigate the possible errors caused during the two-step reporting process, cellular carriers often crowdsource spam reports from different users. For example, a simple yet effective strategy is to identify a spam number after receiving reports from K distinct users. Meanwhile, defense mechanisms based on victim spam reports are also of low cost, because only numbers reported by users need to be further analyzed. Due to this reason, spam reports are usually a trigger for more sophisticated investigation on the senders, such as their sending patterns, service plans, etc..
Despite the high accuracy and low cost, detecting SMS spam based on spam reports is analogus to performing spam filtering at user devices. The major drawback is detection delay, which we illustrate in Fig. 2 based on the CDR data from January 2012. The red solid curve in Fig. 2 measures how long it takes for a spam number to be reported after spam starts (a.k.a. report delay). We consider a spam number starts spamming when it first reaches at least 50 victims in an hour (see Section 4 for discussion on spamming rates). From Fig. 2, we observe that less than 3% of the spam numbers are reported within 1 hour after spamming starts. More than 50% of the spam numbers are reported 1 day after. The report delay is mainly due to the extremely low report rate from users. In fact, less than 1 in 10,000 spam messages were reported during the five month observation period. Aside from causing a long detection delay, the low report rate also leads to many missed detections (see Section 7).
Figure 2: Lags of user reports.
Figure 3: Spamming rate.
Figure 4: Target selection strategies.
In addition, even when a victim reports a spam message, how long it takes him/her is at the reporter's discretion. The blue dotted curve in Fig. 2 shows how fast a user reports a spam message after receiving it (user delay). Note that each user can receive multiple spam messages (possibly with different text content) from the same sender and hence can report the same sender multiple times. Thus, we define user delay as the time difference between when a user reports a spam message and the last time that the user receives spam from that particular spam number before the report. We observe in Fig. 2, among users who report spam, half of the spam messages are reported more than 1 hour after they receive the spam messages. Around 20% spam are reported even after a day. Due to such a long delay, spammers have already inflicted significant loss to the network and its customers.
In addition to the problem of detection delay, the current two-stage reporting method is error-prone. We find around 10% reporters fail to provide a valid spam number at the second stage. Moreover, spam report based methods are vulnerable to attacks, as attackers can easily game with the detection system by sending bogus reports to Denial-of-Service (DoS) legitimate numbers. All these drawbacks render spam detection using victim spam reports an insufficient solution.
Recognizing the drawbacks of existing victim report based solutions, we introduce the rationale behind Greystar. The objective of Greystar is to accurately detect SMS spam while at the same time being able to control spam numbers as soon as possible before they reach too many victims. To this end, we advance a novel notion of grey phone numbers. These grey numbers usually do not communicate with other mobile numbers using SMS, they thereby form a grey territory that legitimate mobile users rarely enter. On the other hand, as we shall see in Section 4, it is difficult for spammers to avoid touching these grey numbers due to the random target selection strategies that they usually adopt. Greystar then passively monitors the footprints of SMS senders on these grey numbers to detect impending spam activities targeting a large number of mobile users.
Greystar addresses the problems in existing spam report based solutions as follows. First, the population of grey numbers is much larger and widely distributed (see Section 5), providing us with more “spam alerts” to capture more spam numbers more quickly. Second, by passively monitoring SMS communication with grey numbers, we avoid the user delay and errors introduced when submitting spam reports. Last, Greystar detects spammers based on their interactions with grey phone space. This prevents malicious users from gaming the Greystar detection system and launching DoS attacks against other legitimate users.
In the following, we first discuss related work in Section 8. We then study the difference of spamming and legitimate SMS activities in Section 4, which lays the foundation of the Greystar system. In Section 5 we introduce our methodology for identifying grey numbers. We then present the design of Greystar in Section 6 and evaluate it in Section 7.
We first formally define SMS spamming activities. During a spamming process, a spammer selects (following a certain strategy) a sequence of target phone numbers, X := {x1, x2, ···, xi,···} (1 ≤ i ≤ n), to send SMS messages to over a time window T. Each target phone number is a concatenation of two components, the 3-digit area code xia, which is location specific, and the 7-digit subscriber number xis. Note that we only examine US phone numbers (which have 10 digits excluding the leading country code “1”). Phone numbers of SMS senders from other countries which follow the same North American Numbering Plan (NANP) are removed before the study. All the statistics in this section are calculated based on a whole month data from January 2012. To compare the activities of spam numbers and legitimate numbers, we obtain an equal amount of samples from both groups. In particular, the spam numbers are identified from victim spam reports and the legitimate numbers are randomly sampled from the remaining SMS senders appearing in the month-long CDR data set. Both samples of phone numbers are checked by fraud agents before the analysis to remove false positives and false negatives.
We first compare the SMS sending rates of known spam numbers and legitimate numbers. We measure the sending rate at the granularity of hours, i.e., the average number of unique recipients a phone number communicates with hourly. The CCDF curves of the sending rates are shown in Fig. 3.
From Fig. 3, spam numbers have a much higher SMS sending rate than legitimate numbers. This is not surprising given the purpose of spamming is to reach as many victims as possible within a short time period. In particular, more than 95% of spam numbers have a sending rate above 5 and more than 70% spam numbers exhibit a sending rate above 50. In contrast, more than 97% of the legtimate numbers have a sending rate below 5. As we can see in Section 6, by enforcing a threshold on the sending rate, we can filter out most of the legitimate numbers without missing many spam numbers.
Due to their high spamming rates, at the node-Bs that spam numbers are connected to, we find that the sheer volume of spamming traffic is astonishing. Spamming traffic can exceed normal SMS traffic by more than 10 times. Even at RNCs, which serve multiple node-Bs, traffic from spamming can account for 80% to 90% of total SMS traffic at times. Such a high traffic volume from spammers can exert excessive loads on the network, affecting legitimate SMS traffic. Furthermore, since SMS messages are carried over the voice control channel, excessive SMS traffic can deplete the network resource, and thus can potentially cause dropped calls and other network performance degradation. Meanwhile, the increasing malware app instances that propagate through the SMS channel also emphasize the importance of restricting SMS spam activities in cellular networks.
We note that, although most legitimate numbers send SMS at low rates (e.g., below 50), due to the large population size of the legitimate numbers, there are still many of them with high sending rates indistinguishable from those of spam numbers. Investigation shows that they belong to organizations which use the SMS service to disseminate information to their stakeholders, e.g., churches, schools, restaurants, etc. How to distinguish these legitimate intensive SMS senders from SMS spammers is the main focus of our Greystar system.
We next study how spammers select spamming targets. We characterize their target selection strategies at two levels, i.e., how spammers choose area codes and how they select phone numbers within each area code.
We define the metric area code relative uncertainty (rua) to measure whether a spammer favors phone numbers within certain area codes. The rua is defined as:
where P(q) represents the proportion of target phone numbers with the same area code q and |Q| is the total number of area codes in the US. Intuitively, a large rua (e.g., greater than 0.7) indicates that the spammer uniformly chooses targets across all the area codes. In contrast, a small rua means the targets of the spammer come from only a few area codes.
We next define a metric random spamming ratio to measure how spammers select targets within each area code. Let Pa be the proportion of active phone numbers5 within area code a. For a particular spamming target sequence Xa of a spam number, if the spammer randomly chooses targets, the proportion of active phone numbers in Xa should be close to Pa. Otherwise, we believe the spammer has some prior knowledge (e.g., with an obtained target list) to select specific phone numbers to spam. Based on this idea, we carry out a one sided Binomial hypothesis test for each spammer and each area code to see if the corresponding target selection strategy is random within that area code. The random spamming ratio is then defined as the proportion of area codes within which a spammer selects targets randomly (i.e., the test fails to reject the randomness hypothesis with P-value=0.05). Note that, for each spam number, only area codes with more than 100 victims are tested to ensure the validity of the test.
Figure 5: SMS sent vs. received.
Figure 6: Activeness vs. spar prop.
Figure 7: Device activeness (log).
Fig. 4 plots the rua (the x-axis) and the random sparring ratio (the y-axis) for individual spar numbers. For ease of visualization, we illustrate the marginal densities along both axes using boxplots. Based on the marginal density of rua, we find that many spar numbers (more than 60%, with rua 0.7) concentrate on phone numbers within a few area codes. We find that spammers tend to focus on area codes with more users, i.e., those corresponding to large cities and metro areas, e.g., New York City, Chicago, Los Angeles, etc. In comparison, the remaining 40% of spar numbers select targets across many area codes or even the entire phone number space.
Meanwhile, based on the y-axis of Fig. 4, we find that, no matter how spar numbers choose area codes, a predominant portion of them select targets randomly within each area code. We refer to these spammers as random spammers hereafter. This also explains why spammers favor large metro areas, because they are likely to reach more active mobile users by randomly selecting phone numbers within these area codes.
In summary, due to the finite phone space, spammers can simply enumerate phone numbers to send spar messages. Compared to having a target phone number list before spamming, this random target selection strategy is effective and of low cost, and hence has been adopted by most SMS spammers. Due to their predominance, in this paper, we focus on detecting these random spammers. Meanwhile, the spammers who utilize non-random target selection strategies (e.g., the points at the bottom of Fig. 4) will be discussed in Section 7.3.
Since many SMS spammers adopt random target selection strategies, mobile users (within the same area code) have the same exposure to spar. In other words, given a fixed (long enough) observation period, these mobile users are expected to receive an equal amount of spar messages. In this section, we study the SMS activities of legitimate mobile users and demonstrate that certain users can be used for detecting spar activities.
We first obtain a general understanding on the volume of SMS activities from legitimate mobile users in the network. Fig. 5 shows the number of messages sent (x-axis) and received (y-axis) by each user over a month6. We observe that a majority of users send and receive a similar amount of SMS messages and thereby form an approximate diagonal line. However, there are mobile users who deviate from such a pattern noticeably. For example, the points close to the x-axis represent users who send far more SMS messages than the ones they receive. These users consist of senders who own a large subscriber base, e.g., cellular providers, university emergency contact lines, political campaign lines, etc. In contrast, we observe quite a few points that reside near the y-axis. Investigation shows that they are phone numbers which receive periodic updates (e.g., electricity readings) from machine-to-machine (M2M) devices through SMS messages (see Section 5.2 for discussion of M2M devices).
Fig. 5 implies the different magnitude that mobile users engaged in SMS communication. To quantify the intensity of SMS activities from mobile users, we define (SMS) activeness as the number of messages sent from a mobile user during the observation period. Intuitively, for users who are less active, the spar messages tend to account for a more dominant proportion of their overall SMS communication. We illustrate this point in Fig. 6, where we bin all users based on their activeness (x-axis, in log scale), and calculate the distribution of the proportion of spar messages out of all SMS messages received by each user within each bin. Note that spar messages are identified as the SMS messages originated from spar numbers contained in victim spar reports. From Fig. 6, we observe an upward shift of spar message proportions as the activeness decreases. Interestingly, we find quite a few numbers which have sent no more than 1 SMS message during the one month period. For a majority of these numbers, all the messages they have received are spam (as indicated by the fact that most probability mass is squeezed to a small region close to 1). This implies that these SMS inactive numbers are good indicators of spamming activities, i.e., SMS senders who communicate with them are more likely to be spammers.
In order to utilize these SMS inactive numbers for spam detection, we want to first answer the following questions. Why do these numbers have a low volume of SMS activity? Is there an inexpensive way to identify a stable set of such numbers for building the detection system? To answer these questions, we carry out an in-depth analysis of SMS inactive users. We then define grey phone space and propose a method for identifying the grey phone space using CDR records. In the end, we study properties of grey phone space and show the potential of using it to detect spamming activities.
Cellular carriers often provide their customers with a rich set of features to build their personal service plans. Users are free to choose the best combination of features to balance their needs and the cost. For example, a frequent voice caller often opts in an unlimited voice plan and a user who watches online videos a lot can choose a data plan with a larger data cap. Therefore, service plans encode demographic properties of the associated users. We hence study the correlations between different service plan features and SMS activeness to understand these SMS inactive users.
More specifically, we extract all the service plans associated with the legitimate user samples, which include features related to voice, data and SMS services. We calculate the Pearson correlation coefficients of the SMS activeness and individual plan features (treated as binary variables). The features are then ranked according to the correlation values. We summarize the top 5 features that are positively and negatively correlated with SMS activeness in Table 1.
Table 1: Corr. of activeness and plan features.
The top 5 features with negative correlations are in the first column of Table 1. Many of these SMS inactive users are enrolled in the pay-per-use SMS plan, a common economical choice for users who rarely access SMS services. Interestingly, a large number of SMS inactive users have restrictions on their voice/text plans and have been simultaneously enrolled in large cap data plans. Such restrictions only apply for mobile users with data only devices, such as tablets and laptop data cards, etc. In contrast, the top 5 features with positive correlations are summarized in the second column. Most of SMS active users have unlimited SMS plans, a favorable choice of frequent SMS communicators. Many of them have also enrolled in small cap data plans and unlimited MMS plans, which are dedicated for smartphone users.
Though service plans demonstrate clear distinctions between SMS inactive and active users, relying on service plans to identify SMS inactive users is not effective in practice due to two reasons. First, service plans change frequently, especially when users upgrade their devices. Second, query service plan information persistently during run time can be very expensive. Fortunately, our analysis above also reveals that service plans are strongly correlated with the device types, e.g., data only device users are less active compared to smartphone users. Can we use device types as a proxy to identify SMS inactive users instead? We shall explore such possibilities in the following section.
SMS towards data only devices. Like phones, laptops and other data only devices are also equipped with SIM cards and hence, once connected to the network, are able to receive SMS messages. We therefore can capture CDR records to these devices at MSCs. However, manufacturers often restrict text usage on these devices by masking the APIs related to SMS functions. Meanwhile, at the billing stage, text messages to these data only devices (with a text restricted plan) are not charged by the carrier. There are exceptions such as laptops enrolled in regular text messaging plans, however, such cases are rare based on our observations.
The device associated with each phone number can be found in the CDR data based on the first eight-digit TAC of the IMEI. We use the most updated TAC to device mapping from the UMTS carrier in January 2013 and have identified 27 mobile device types (defined by the carrier) which we summarize in Table 2. We note that finer grained analysis at individual device level is also feasible. However, we find that, except for the vehicle tracking devices which we shall see soon, devices within each category have strong similarity in their SMS activeness distributions. Hence we gain little by defining grey numbers at the device level.
Figure 8: Grey number distribution.
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Figure 10: Distr. of θ and θ*.
Table 2: Device categories and examples.
Fig. 7 shows the CDF distributions of SMS activeness of phone numbers associated with different device types. We observe three clusters of CDF curves. The first one consists of curves concentrating at the top-left corner, representing devices with very low SMS activeness. This cluster covers all data only devices and a majority of machine-to-machine devices (see [11] for more discussions of M2M devices). The second cluster lies in the middle of the plot, which includes all phone devices. The third cluster contains only one M2M device type, which covers all vehicle tracking devices. Interestingly, the curve of such devices shows a bi-modal shape, where some devices communicate frequently using SMS while other devices mainly stay inactive. Based on Fig. 7, we define grey numbers as the ones that are associated with devices in the first cluster, i.e., data only devices and M2M devices excluding the vehicle tracking device category. The collection of all grey number are referred to as the grey phone space. The grey numbers are representatives of a subset of SMS inactive users7. Meanwhile, the grey phone space defined in this way is stable because it is tied to mobile devices instead of specific phone numbers, whose behaviors can change over time (e.g., when a user upgrades the device). Furthermore, grey numbers can be identified directly based on the IMEIs in the CDR data with little cost, as opposed to querying and maintaining service plan information for individual users.
We next study the distribution of grey numbers and show how grey phone space can help us detect spamming activities.
Fig. 8 shows the size of each area code in the phone space (the x-axis, in terms of the number of active phone numbers) and the proportion of grey phone numbers out of all active phone numbers in that area code (the y-axis). The correlation coefficient of two dimensions is close to 0, indicating that grey numbers exist in both densely and sparsely populated areas. The wide distribution of grey numbers ensures a better chance of detecting spam numbers equipped with random spamming strategies. To illustrate this point, we calculate the proportion of grey numbers out of all the numbers accessed by spam numbers (red solid curve) and legitimate users (blue dotted curve). We observe that a predominant portion of legitimate users never touch grey phone space. In fact, less than 1% of the users have ever accessed grey numbers in the 1 month observation period. In addition, we show the same distribution for legitimate users (who have sent to at least 50 recipients in a month) conditioned on having touched at least one grey number. Compared to the spam numbers which tend to access more grey numbers (red solid curve), these legitimate users communicate with much fewer grey numbers. In most cases, the access of grey numbers is triggered by users replying to spam numbers who usually use M2M devices to launch spam.
In addition to the grey phone space, the “dark” phone space (i.e., formed by unassigned phone numbers) can also be a choice for detecting spam activities using the same technique proposed in this paper. Analogous concepts of grey IP addresses and dark IP addresses for detecting anomalous activities have been explored in [12, 13]. However, unlike IP addresses which are often assigned to organizations in blocks (i.e., sharing the same IP prefix), the phone number space is shared by different cellular service providers, landline service providers and even (IP) TV providers. Even if some phone numbers are assigned in blocks initially to a certain provider, the frequent phone number assignment changes caused by new user subscription, old user termination, recycling of phone numbers and phone number porting in/out between different providers will ultimately result in the shared ownership of the phone number space as we have seen today. For example, different cellular and landline providers can have phone numbers under the same legitimate area code. It is difficult to tell which phone number belongs to which provider without inquiring the right provider.
This poses significant challenges when we want to identify dark (unassigned) phone numbers. As dark phone numbers can be anywhere in the phone number space (within legitimate area codes) and can belong to any provider, it is rather difficult to determine a dark number, at least from the perspective of a single provider. For instance, just because a phone number is not assigned to any user/device belonging to a particular provider, it does not necessarily mean that such a number is dark. In other words, accurate detection of dark numbers requires the collaboration of all the owners of the phone number space, which is an intractable task. Meanwhile, such dark number repository needs to be updated frequently to reflect the changes of phone number assignments.
In comparison, grey numbers can be defined easily with respect to a particular provider: these are phone numbers assigned to devices belonging to customers of that provider where there are usually less SMS activities originated from these numbers (devices). Meanwhile, whether a number is grey is readily available to us (based on the existing the IMEI numbers inside CDR records) without any extra work.
In this section, we first present an overview of Greystar. We then introduce the detection model and how we choose parameters for the model.
The logic of Greystar is illustrated in Alg. 1, which runs periodically at a predefined frequency. In our experiment, we run Greystar hourly. Greystar employs a time window of W (e.g., W equals 24 hours in our studies). The footprint of each SMS originating number s, e.g., the sets of grey and non-grey numbers accessed by s (denoted as Gs and Ns, respectively), are identified from the CDR data within W. After that, a filtering process is conducted which asserts two requirements on originating numbers to be classified, i.e., in the past 24 hours: i) the sender is active enough (which has sent messages to no less than M = 50 recipients. Recall the high sending rates of known spam numbers in Fig. 3); and ii) the sender has touched at least one grey number. These two criteria, especially the second one, can help significantly reduce the candidates to be classified in the follow-up step. In fact, we find that, on average, less than 0.1% of users send SMS to grey numbers in each day. More importantly, these users cover a majority of active SMS spammers in the network as we shall see in Section 7. As a consequence, this filtering step can noticeably reduce the system load as well as potential false alarms.
Once a sender passes the filtering process, the function detect_spamnbr is called to classify the sender into either a spam number or a legitimate number based on Gs and Ns associated with that sender. In this paper, we propose a novel Beta-Binomial model for building the classifier, which we explain in detail next.
We assume a random SMS spammer selects spamming targets following a two-step process. First, the spammer chooses a specific target phone number block. Second, the spammer uniformly chooses target phone numbers from that block. Let θ denote the density of grey numbers in the target block and X := {xi},1 ≤ i ≤ n be the sequence of target phone numbers selected. Meanwhile, let k be the number of grey numbers in X. The target selection process can then be formulated as the following generative process.
We note that θ varies as a spammer chooses different phone number blocks. The choice of phone number blocks is arbitrary. For example, A spammer can choose a large phone block across multiple area codes or a small one consisting of only a fraction of phone numbers within one area code. Therefore, θ itself can be considered as a random variable. We assume θ follows a Beta distribution8, i.e., θ ~ Beta(α, β), with a probability density function as:
where Γ is the gamma function. Therefore, the random variable k follows a Beta-Binomial distribution:
The target selection process of legitimate users can be expressed using the same process. Because legitimate users tend to communicate less with grey numbers, their corresponding θ*'s are usually much smaller. Let α* and β* be the parametrization of the Beta distribution associated with θ*. For a phone number that has accessed n targets, out of which k are grey numbers, we classify it as a spam number (i.e., detect_spamnbr returns 1) if
where the first equation is derived using the Bayes theorem. It is equivalent to
In practice, it is usually unclear how many spammers are in the network, therefore, to estimate η directly is challenging. We instead choose η through experiments.
There are five parameters to be estimated in the classifier, , , *, * and η. We use the data from January 2012 to determine these parameters. To obtain ground truth, we submit to the fraud agents a list of all the SMS senders that i) have sent to more than 50 recipients in a 24 hour time window; and ii) at least one of the recipients is grey (recall the filtering criteria in Algorithm 1). Fraud agents carry out investigation on these numbers for us and label spam numbers in the list. We then divide the January data into two subsets, the first two weeks of data for fitting the Beta-binomial models (i.e., to determine the first four parameters) and the rest of data is reserved for testing the classifier to estimate η.
In particular, using the training data set, we estimate the parameters for two Beta-binomial models using maximum likelihood estimation. With the estimated parameters, we illustrate the probability density function θ ~ Beta(α, β) and θ* ~ Beta(*, *) in Fig. 10. The density functions agree with our previous observations in Fig. 9. The mass of the probability function corresponding to the legitimate users concentrates on a narrow region close to 0, implying that legitimate users communicate much less with grey numbers than non-grey numbers. In contrast, the density associated with spam numbers widely spreads out, indicating more grey numbers are touched by spam numbers due to their random target selection strategies.
We evaluate the accuracy of the classifier given different choices of η on the test data set and the Receiver Operating Characteristic (ROC) curve is displayed in Fig. 11. The x-axis represents the false alarm rate (or the false positive rate) and the y-axis stands for the true detection rate (or the true positive rate). From Fig. 11, with a certain η, Greystar can detect more than 85% spam numbers without producing any false alarm. We will choose this η value in the rest of our experiments9.
In this section, we conduct an extensive evaluation of Greystar using five months of CDR data and compare it with the methods based on victim spam reports in terms of accuracy, detection delay and the effectiveness in reducing spam traffic in the network.
Figure 11: ROC curve (false positive rate vs. true positive rate.
Figure 12: Accuracy evaluation (in comparison to victim spam reports).
Figure 13: Detection speed compared to spam report based methods.
To estimate the accuracy and the false alarm rate, we again consult with the fraud agents to check the numbers from Greystar detection results. False negatives (or missed detections), on the other hand, are more difficult to identify. Given the huge number of negative examples classified, we are unable to have all of them examined by the fraud agents to identify all missed detections because of the high manual investigation cost. As an alternative solution, we compare Greystar detection results with victim spam reports to obtain a lower bound estimate of the missed detections.
More formally, let Sg denote the detection results from Greystar and Sc be the spam numbers contained in the victim spam reports received during the same time period. We define missed detections of Greystar as Sc − Sg. In addition, we define additional detections of Greystar as Sg − Sc to measure the value brought by Greystar to the existing spam defense solution. The monthly accuracy evaluation results are displayed in Fig. 12.
The blue bars in Fig. 12 illustrate the spam numbers validated by fraud agents in each month. Greystar is able to detect thousands of spam numbers per month. The ascending trend of detected spam numbers coincides with the increase of victim spam reports in the five-month observation window. This implies that Greystar is able to keep up with the increase of spam activities. In addition to the large number of true detections, Greystar is highly accurate given only two potential false alarms are identified by fraud agents in 5 months. Interestingly, these two numbers are associated with tenured smartphone users who suddenly behave abnormally and initiate SMS messages to many recipients whom they have never communicated with in the past. We suspect these users have been infected by SMS spamming malware that launch spam campaigns from the users' devices without their consent. To identify SMS spamming malware and hence removing such false alarms will be our future work.
Figure 14: Number of spam messages after restriction.
In comparison to the victim spam reports, Greystar detects over 1000 addition spam numbers that were not reported by spam victims while missing less than 500 monthly. Meanwhile, although a majority of the spam numbers detected by Greystar are also reported by spam victims, Greystar can detect these numbers much faster than methods based on victim reports, and consequently can suppress more spam messages in the network. We illustrate this point in the next section.
We note that, to reduce noise, cellular carriers often rely on multiple spam reports (e.g., K reports) from different victims to confirm a spam number. We refer to such a crowdsourcing method as the K+ algorithm. To evaluate the speed of Greystar, we compare it with two versions of the K+ algorithms, namely, 1+ and 3+. Comparing with 1+ supplies us with the lower bound of the time difference and comparison with 3+ illustrates the real benefit brought by Greystar to practical spam defense solutions. More specifically, we measure how many hours Greystar detects a spam number ahead of 1+ and 3+, respectively. Fig. 13 shows the CDF curves of the comparison results, where we highlight the location on the x-axis corresponding to 24 hours with a green vertical line. We observe that Greystar is much faster than K+ algorithms. For example, Greystar is one day ahead of 1+ in 50% of the cases and is one day before 3+ in more than 90% of the times.
We find that, on average, it takes less than 1.2 hours for Greystar to detect a spam number after it starts spamming (i.e., starts sending messages to more than 50 victims in an hour). The fast response time of Greystar is accredited to the much larger population of grey numbers, from which Greystar can gather evidence to detect more spam numbers more quickly. In addition, collecting evidence passively from grey numbers eliminates the delay during the human reporting process (recall Fig. 2). Therefore, Greystar is characterized with a much faster detection speed than the K+ algorithm. Such a gain in the detection speed can lead to more successful reduction of spam traffic in the network. We illustrate this point next.
For simplicity, we assume a spam number can be instantly restricted after being detected. We run simulation on a one week dataset (the first week of January 2012) and calculate the number of spam messages appearing in each hour assuming a particular spam detection algorithm is deployed exclusively in the network. The results are illustrated in Fig. 14. The total spam messages are contributed by known spam numbers observed in that week. We observe that Greystar can successfully suppress the majority of spam messages. During peak hours when the total number of spam messages exceeds 600K, only around 150K remains after Greystar is deployed. In other words, Greystar leads to an overall reduction of 75% of spam messages during peak hours. In comparison, 1+ only guarantees a spam reduction of 50% due to long detection delay. We note that, due to the noise in the spam reports, cellular providers often employ K+ (K ≥ 3) instead of 1+ to avoid false alarms. In this case, the benefit from Greystar is even more substantial.
In this section, we investigate the missed detections (false negatives) from Greystar, i.e., the spam number candidates that were not detected by Greystar but have been reported by spam victims. There are around 500 such numbers in each month and totally around 27K missed detections. We note that we focus only on a subset of the candidates who are customers of the cellular network under study, for whom we have access to a much richer set of information sources to carry out the investigation. We believe the conclusions from analyzing this subset of candidates also apply for other candidates outside the network.
We classify these candidates into three groups based on the volume of the associated CDR records.
No volume. We do not observe any CDR record for 19.5% of the numbers. We inquiry the SMS billing records for these numbers and find that many of them initiate a vast amount of SMS traffic to foreign countries, such as Canada and Jamaica, etc., and hence no CDR record has been collected to trigger Greystar detection.
Low volume. We find around 27% of the missed detections have accessed less than 50 recipients during the observation period. We study the text content inside the victim spam reports to understand the root cause of these missed detections. The most popular text content are party advertisements and promotions from local restaurants. Users are likely to have registered with these merchants in the past and hence received ads from them. For the rest of the numbers, we find many send out spam messages to advertise mobile apps and premium SMS services. From the users' comments posted on online forums and social media sites [14, 15], we find two of the advertised apps are messenger/dating apps which have issues with their default personal settings. Without manual correction, these apps, once initiated, will send out friend requests to a few random users of the apps. Spam messages from the remaining numbers are also likely to be sent out without users' consent, especially the ones that broadcast premium SMS services. We suspect they are caused by apps abusing permissions or even behaviors of malware apps. For example, one app advertised by spam is reported to contain malware that sent SMS text to the contact list on the infected device, where the text contains a URL for downloading that malware.
High volume. The rest of the phone numbers send SMS to a large number of recipients. From the reported spam text, we find 7.1% of them belong to legitimate advertiser who broadcast to registerred customers and are somehow reported by the recipients. For the rest of numbers, we find their spam topics are quite different from those of the detected ones. In particular, 11% of these numbers are associated with adult sites or hotlines, in comparison to only 0.06% among the detected numbers. Meanwhile, 17.6% of them advertise local shopping deals, as opposed to only 2.1% among the detected ones. Such difference suggests that these spam victims somehow gave out their phone numbers to spammers, e.g., while visiting malicious sites to register services or to purchase products. In addition, we extract the voice call history associated with these high volume candidates. Interestingly, we find that about 4% of these numbers have initiated phone calls to many terminating numbers in the past. We suspect that these spammers employ auto-dialers to harvest active phone numbers (i.e., the ones that have answered the calls) from the phone number space. With the list of active phone numbers, spammers can send spam more effectively and avoid detection in the mean time.
Admittedly, there are spam numbers in these three categories that are missed by Greystar because they are equipped with a target number list obtained through auto-dialing or social engineering techniques (for example, accurate target lists can potentially be obtained by applying techniques discussed in [16]). SMS traffic from these users is not differentiable from that of the legitimate users. However, we emphasize that these missed detections only account for less than 9% of all the spam numbers detected and they will not have a significant impact on the efficacy of Greystar for reducing the overall spam traffic. In fact, we find that, on average, the missed detections sent 37% less spam messages in comparison to the spam numbers detected by Greystar. On the other hand, we do see the needs of combining Greystar and other methods to build a more robust defense solution. For example, many malicious activities can be better detected by correlating different channels (e.g., voice, SMS and data). Meanwhile, cellular carriers can collaborate with mobile marketplace to detect and control suspicious apps that can potentially initiate spam.
The demographic features and network behaviors of SMS spammers were analyzed in [6]. [16] investigated the security impact of SMS messages and discussed the potential of denying voice service by sending SMS to large and accurate phone hitlists at a high rate. Meanwhile, [16] also discussed several ways of harvesting active phone numbers, which can potentially be employed by SMS spammers to generate accurate target number lists to launch spam campaign more efficiently and to evade detection. Similar short message services carried by the data channel were also studied. For example, [17] characterized spam campaigns from “wall” messages between Facebook users. [18–21] analyzed Twitter spam. [22, 23] studied talkback spam on weblogs. Meanwhile, akin to SMS spammers, the behaviors of email spammers were characterized in [24–27]. In comparison, we not only study the strategies of SMS spammers but also propose an effective spam detection solution based on our analysis.
In addition to the victim spam reports mentioned earlier, network behaviors of spammers, e.g., sending patterns, have been used in SMS spam detection, such as [28]. Similar network statistics based methods designed for email spam detection can also be applied for identifying SMS spam, such as [29–32]. However, these methods often suffer from large false positive rates, because many legitimate customers can exhibit SMS sending patterns similar to those of spammers. In contrast, Greystar utilizes a novel concept of grey phone space to detect spam numbers, which yields an extremely low false alarm rate.
Some systems have been developed in the form of smartphone apps to classify spam messages on user mobile devices [33–35]. However, not all mobile devices support executing such apps. Furthermore, from a user's perspective, this method is a late defense as the spam message has already arrived on his/her device and the user may already be charged for the spam message. Moreover, the high volume of spam messages that have already traversed the cellular network may have resulted in congestion and other adverse network performance impacts. Greystar is deployed inside the carrier network and hence do not have these drawbacks. As we have seen in Section 7, Greystar can quickly detect spam numbers once they start spamming and hence significantly reduce spam traffic volume in the network.
Similar to our work, many works have leveraged unwanted traffic for anomaly detection, such as Internet dark space [13, 36], grey space [12], honeynet [37, 38] and failed DNS traffic [39], etc. We are the first to advance the notion of grey phone space and propose a novel statistical method for identifying SMS spam using grey phone space.
In this paper, we presented the design of Greystar, an innovative system for fast and accurate detection of SMS spam numbers. Greystar monitors a set of grey phone numbers, which signify impending spam activities targeting a large number of mobile users, and employs an advanced statistical model for detecting spam numbers according to their interactions with grey phone numbers. Using five months of SMS call detail records collected from a large cellular network in the US, we conducted extensive evaluation of Greystar in terms of the detection accuracy and speed, and demonstrated the great potential of Greystar for reducing SMS spam traffic in the network.
Our future work will focus on applying Greystar to detect other suspicious activities in cellular networks, such as telemarketing campaigns. Meanwhile, we will correlate Greystar detection results with cellular data traffic to detect malware engaged in such spamming activities.
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1Note that similar SMS architecture is also adopted in other types of 3G/4G cellular networks. Additionally, in this paper, we only focus on SMS through the voice control channel. Short message services through mobile data channels, such as iMessage, Tweets and MMS, etc., are out of the scope of this paper (though defenses for fighting email spam can be applied to detect short message spam through data channels, which we shall discuss in Section 8).2SMS messages targeting mobile users in other carrier networks and landline numbers are not seen at the serving MSCs and hence are not included in CDR records.3IMEI's are stored at MSC's and are updated every time users connect to the network. Although we have observed that spammers sometimes modify the IMEIs of their spamming devices (e.g., through special equipment like SIM boxes), IMEI spoofing among legitimate users is rare. Therefore we can reliably identify the types of user devices based on their corresponding IMEIs. Meanwhile, since all the CDRs are collected at MSCs, we can identify the original phone numbers that initiate the SMS messages. Hence our approach is not affected even when spammers employ spoofing techniques to change their caller IDs.4Maintaining a whitelist of such legitimate intensive SMS users can be challenging. First, we have little information to identify the white list if the users are outside the network. Second, even for the users inside the network, the whitelist can still be dynamic, with new businesses/organizations initiating/stopping SMS broadcasting services every day. More importantly, users are not obliged to report to the carrier when they intend to start such services.5The active phone numbers are identified as all registered phone numbers inside the carrier's billing database who have unexpired service plans. We find that the active numbers are uniform across all area codes, possibly due to frequent phone number recycling within carrier networks (e.g., phone numbers originally used by landlines are reassigned to mobile phones) and users switching between cellular carriers while retaining the same phone numbers.6We note that the constants used for normalization (denoted as a and b) vary across individual figures.7We use devices in the first cluster as our definitions of grey space, however, as we have seen in Fig. 7, even within the grey number categories there are still (a very few) numbers that are highly active in SMS communication. The proposed beta-binomial classification model (discussed in detail in Section 6) will take into account this fact. Intuitively, the model detects a spam number only when it is observed to have significant interaction with the grey space. Given a majority of the grey numbers that are SMS inactive, the chance that a phone number is misclassified as a spam number due to its interaction with these outliers in the grey space is very small.8In Bayesian inference, the Beta distribution is the conjugate prior probability distribution for the Bernoulli and binomial distributions. Instead of using the Bernoulli model, we can model the second stage of the target selection process as sampling from a multinomial distribution corresponding to different device types. In this case, the conjugate prior distribution of the multinomial parameters is the Dirichlet distribution. However, our preliminary experiments show little performance gain from applying the more sophisticated model in comparison to the increased computation cost.9Note that the exact parameter values used in Greystar are proprietary and we are not able to release them in the paper. We have also tested the choice of η using different partitioning of the training/test data. The η remains stable across experiments.
Vern Paxson* Mihai Christodorescu† Mobin Javed Josyula Rao‡ Reiner Sailer‡ Douglas Schales‡ Marc Ph. Stoecklin‡ Kurt Thomas Wietse Venema‡ Nicholas Weaver* §
UC Berkeley *ICSI †Qualcomm Research ‡IBM Research §UC San Diego
DNS queries represent one of the most common forms of network traffic, and likely the least blocked by sites. As such, DNS provides a highly attractive channel for attackers who wish to communicate surreptitiously across a network perimeter, and indeed a variety of tunneling toolkits exist [7, 10, 13–15]. We develop a novel measurement procedure that fundamentally limits the amount of information that a domain can receive surreptitiously through DNS queries to an upper bound specified by a site's security policy, with the exact setting representing a tradeoff between the scope of potential leakage versus the quantity of possible detections that a site's analysts must investigate.
Rooted in lossless compression, our measurement procedure is free from false negatives. For example, we address conventional tunnels that embed the payload in the query names, tunnels that repeatedly query a fixed alphabet of domain names or varying query types, tunnels that embed information in query timing, and communication that employs combinations of these. In an analysis of 230 billion lookups from real production networks, our procedure detected 59 confirmed tunnels. For the enterprise datasets with lookups by individual clients, detecting surreptitious communication that exceeds 4 kB/day imposes an average analyst burden of 1–2 investigations/week.
Some of the most serious security threats that enterprises face concern the potential use of surreptitious communication (Figure 1). One such scenario takes the form of exfiltration, when an attacker with internal access aims to transmit documents or other substantive data out of the enterprise to a remote location [4]. Another scenario arises in the context of interactive remote access: an attacker who has patiently compromised a local system subsequently interacts with it over the network in order to assay the information it holds and employ it as an internal stepping stone for further probing of the enterprise.
DNS plays a pervasive role in Internet communication; indeed, the vast majority of any Internet communication ultimately begins with DNS queries. Even sites that are highly security-conscious will find that they still must allow internal clients to issue DNS queries and receive the replies. Unless sites can restrict their systems to only intra-enterprise communication, some of these queries will necessarily reach external systems, giving attackers the opportunity to piggyback their actual communication over seemingly benign DNS traffic. Thus, DNS provides a highly-attractive target for attackers seeking a means of surreptitious communication.
Figure 1: Two examples of surreptitious communication via DNS tunnels through perimeter firewalls.
We note that such communication fundamentally cannot be detected at the level of individual DNS queries. For example, an attacker could exfiltrate only one bit of information per day by having a local system under their control each day issue a single query for either www.attacker.com
or mail.attacker.com
, where the label used (www
or mail
) conveys either a 0 bit or a 1 bit.1 It will prove intractable for a site's security analysts (or any detection tool) to tell that such requests reflect adversarial activity, absent a great deal of additional information.
In this work we develop a principled means—rooted in assessments of information-theoretic entropy and free from false negatives—by which sites can analyze their DNS activity and detect the presence of surreptitious communication whose volume exceeds a configurable bound. Simpler metrics, such as volume of DNS traffic, are not useful to distinguish tunnels from normal query traffic, because large-scale traffic naturally exhibits a high degree of diversity (§ 5.2). Approaches that focus on specific syntactical patterns [29] will miss communication with different encodings. Our configurable bound on the volume of surreptitious communication over DNS allows sites to trade off analysis burden (detections requiring investigation) versus assurance that such communication does not exceed a considerably low level.
We formulate this detection problem as having three main components. The first concerns constructing a sound, fairly tight estimate of the amount of information potentially encoded in a stream of DNS queries. Here we need to comprehensively identify all potential information vectors, i.e., aspects of DNS queries that can encode information. The second regards ensuring that we can compute such estimates with reasonable efficiency in the face of very high volumes of DNS activity (tens of millions of lookups per day). Finally, we need to assess to what degree benign DNS query streams encode significant amounts of information, and formulate effective ways of minimizing the burden that such benign activity imposes on a site's security assessment process.
Thus, we conceptualize our overall goal as providing a site's security analysts with a high-quality, tractable set of domains for which the corresponding DNS lookups potentially reflect surreptitious communication. We view it as acceptable that the analyst then needs to conduct a manual assessment to determine which of the candidates actually reflects a problem, provided that we keep the set small and the process of eliminating a benign candidate does not require much attention.
This work makes the following contributions:
After a summary of our information measurement procedure, we define the threat model in § 3. In § 4 we present the extensive datasets used in our study. We discuss information vectors potentially present in DNS queries and ways to estimate their volume in § 5, and explore implementation issues, including filtering techniques for reducing the resources required, in § 6. We evaluate the efficacy of our procedure in § 7, present a real-time detector in § 8, discuss findings, limitations, and future work in § 9, and review prior work in § 10.
Figure 2: The information measurement procedure, summarized in § 2. Figure 5 shows the full detection procedure.
As explained in § 6.3, we analyze DNS queries per client and per registered domain name. For example, we aggregate queries with names ending in site1.com
, site2.co.uk
, and so on. We also aggregate PTR queries, but ignore them here for clarity.
We measure the information in query name, time and record-type sequences separately (§ 5.3). For example, we transform a sequence of query names A to a sequence of indices I into a table with distinct names D, and then compress I and D with gzip. The size of the output then gives us a measurement of the information in the input sequence.
The key insight is that we will never under-estimate the information in a query sequence as long as the transformation and compression are reversible, i.e., we can recover the original input sequence. Taking advantage of this insight, we subject each query attribute sequence to multiple (transformation, compressor) alternatives and use the minimal result as the tightest (upper) bound.
Figure 2 illustrates our measurement procedure. For each client and registered domain we compress both the original and transformed query name sequences with gzip, bzip2 and ppmd [23], and take the size of the smallest output. We apply the same procedure to the recordtype sequences and 32-bit inter-query arrival time distances, and from these compute a combined score.
Table 1: Summary of data sources. The available features are: 0×20
-encoding [27] (C), caching lifetime derived from reply time-to-live (L), query name (N), query type (Q), and timing (T). Sensor vantage points are: aggregated across multiple sites (A), external to site (E), lookups associated with individual clients as seen at internal name servers (I), a mixture of these last two (I/E).
aThe raw UCB dataset includes resolvers that employ0×20
-encoding [27] as well as a single system conducting high-volume DNS lookups for research purposes. We preprocessed this dataset by removing lookups from the research system (totaling more than 250M) and downcasing lookups from0×20
-resolvers (cf.§ 5.3). (Note that the dataset has 3 days with only partial information.)
bThis dataset's first day starts at 7AM local time rather than midnight. The other days are complete.
c“Clients” in the SIE dataset instead reflect site resolvers, each with potentially thousands of actual clients.
dAs discussed later, we omit from our evaluation the PTR
reverse lookups in this data, which comprise about 10% of the lookups.
Our basic model assumes that the attacker controls both a local system and a remote name server. The local system will communicate with the remote name server solely by issuing lookups for DNS names that the site's resolver will ultimately send to the attacker's name server. The attacker inspects both the content of these queries (i.e., the names and the associated query type, such as TXT
or AAAA
) and their arrival timing.
We further assume that the internal system under the attacker's control makes standard queries, either because the site's firewalling requires internal systems to use the site's own resolvers, or because non-standard queries made directly to the public Internet could expose the communication's anomalous nature.
For the investigation we develop in this work, we focus on communication outbound from local systems. (We briefly discuss inbound communication encoded in DNS replies in § 9.) We view the outbound direction as the most apt when concerned about exfiltration threats. In addition, for the interactive communication scenario, the outbound direction corresponds to the replies generated by a local login server in response to keystrokes sent by a remote client. The outbound traffic volume to the login client is typically 20 times larger than the incoming traffic [21], making DNS queries embedding outbound traffic the larger target for that scenario, too.
We do not consider here communication that an attacker spreads across multiple remote domains or multiple remote name servers (such as attacker1.com
, . . ., attackern.com
), nor spread thinly across multiple local clients. We discuss these and other evasion issues in § 9.
For our analysis we draw upon datasets that together comprise 230 billion queries. The data was collected at multiple locations across the US and China, with vantage points ranging from internal DNS servers to network perimeters. We summarize each dataset and its daily traffic statistics in Table 1.
INDLAB: an industrial research laboratory. Collected with a network sniffer near an internal DNS server, this dataset contains queries from internal clients, the reply time-to-live, and microsecond-resolution time stamps.
LBL: a national research laboratory. This dataset contains DNS queries from local clients received by several internal DNS servers. Covering a time span of 7.5 years, this is the largest data set in our analysis.
NERSC: a super-computer center. The dataset contains queries from local clients to the site's DNS servers.
UCB: a university campus. This data was collected on a perimeter network, providing an aggregate view of (outbound) DNS query traffic. This site includes servers that use 0×20
encoding [27], which nearly doubles the number of distinct lookup names.
CHINA: a caching server for several university networks in China, with visibility of individual client IP addresses.
SIE: the Security Information Exchange of the Internet Software Consortium [24]. In this collaboration of infrastructure providers, law enforcement, security companies and researchers, participants2 mirror their DNS reply traffic from name servers across the Internet. (Note that each reply contains a copy of the query.)
With a combined average of 1.5 billion replies a day, SIE has by far the highest data rate in our collection. However, we note that we use it as a means of assessing to what degree our detection procedure indeed can find actual instances of surreptitious communication over DNS; we do not claim our procedure is tenable for actual operational use in this environment, which is hugely aggregated across (likely) millions of actual clients.
In this section we develop a principled approach for bounding the amount of information possibly conveyed by local systems to remote name servers. The next section then presents a number of filtering steps that reduce the resources required for detecting communication that exceeds these bounds.
We first frame the basic communication mechanisms an attacker could employ. In general terms, we consider an attacker who wishes to communicate a significant quantity of information by sending DNS queries to a remote domain (say D.com
) whose name server(s) the attacker controls. Such queries provide a number of information vectors that the attacker can exploit to surreptitiously embed data within the stream of queries.
We note that attackers can potentially employ multiple vectors at the same time. We emphasize that our detection scheme does not presume use of particular encodings for a given vector; the encodings we give here are just meant to illustrate the possibilities.
Query name-content vector. A conceptually straightforward way to embed data is for the attacker to devise a data encoding that conforms with the requirements imposed on DNS labels, limiting each to no more than 63 bytes in length, and complete DNS names to no more than 255 bytes [18]. For example, one could use Base-64 encoded data strings as such as VVNFQwo.D.com
.
To our knowledge, all available tunneling-over-DNS tools reflect this style of approach.
Query name-codebook vector. Rather than using each DNS query to reflect a message many bytes long, attackers can encode messages using a fixed alphabet of symbols and then transmit those symbols one at a time using a series of queries. For example, to convey the bit-string 00101111
one bit at a time, a client could issue the queries: z.D.com
, z.D.com
, o.D.com
, z.D.com
, o.D.com
, o.D.com
, o.D.com
, o.D.com
. They could of course also use larger alphabets to obtain greater efficiency.
Encodings using this vector will in general generate many more lookups of the same names over time compared to those using the query name-content vector.
Query type vector. Along with the query name, clients include in their requests the type of DNS Resource Record they wish to resolve, such as PTR
for reverse-IP-address-to-hostname mappings, or AAAA
to look up IPv6 addresses. Attackers can encode a modest amount of information per query using this 16-bit field.
Query timing vector. A more subtle information vector exists in the specific timing of queries. For example, if the attacker can resolve the arrival times of queries to 1 sec precision, then the attacker can use the number of seconds between successive queries as a means of conveying information.3
A key issue for timing vectors concerns clock precision. With an extremely precise clock (and sufficiently low jitter), intervals between queries can convey several bytes of information without requiring very large inter-query delays. For example, transmitting one query every second using a clock with 1 msec precision can convey lg103 bits per query, totaling more than 108 KB per day.
Other information vectors. Inspecting the DNS query format reveals several additional fields possibly available for communicating information: query identifiers, a number of flags, options, the query count, and the 16-bit address class field included in each query. We argue that none of these provide a reliable end-to-end information vector for an attacker, given the assumption in our threat model that the attacker's client must relay its queries via a site's standard (non-cooperative) resolver. Such relayed queries will not preserve query identifiers. The flags either do not survive the relaying process (e.g., Recursion Desired) or will appear highly anomalous if they vary (e.g., requesting DNSSEC validation), and likewise DNS options (EDNS0
) do not survive relaying, as unknown options return an error [26], and the current options themselves are generally implemented on a hopby-hop basis. Similarly, query counts other than 1 would appear highly anomalous and likely fail to actually propagate through the site's name server. Likewise, use of any address class value other than IN
(Internet) would be readily detectable as anomalous.
A natural starting point when attempting to detect surreptitious DNS communication is to posit that the encodings used for the communication will stand out as strikingly different than typical DNS activity. If so, we can target the nature of the encoding for our detection.
What we find, however, is that while potential encodings may differ from typical DNS activity, they do not sufficiently stand out from the diverse range of benign activity. When we monitor at a large scale—such as analyzing the traffic from the 1000s of systems in an enterprise—we observe a striking degree of fairly extreme forms of DNS lookups.
Figure 3: Distribution of the lengths of all individual (solid) or all distinct (dashed) domain name prefixes queried during a sample day of data from LBL. The horizontal lines mark that 76K (all) and 58K (distinct) lookups were ≥ 100 bytes. Lengths do not include the registered domain targeted by the lookup. Note that the plot shows the upper 1% of all queries, but the upper 18% of all distinct queries.
To illustrate, we consider DNS activity observed on a sample day in 2011 at LBL. It includes 35M queries issued from 9.4k hosts. These queries in total span 1.2M distinct names, and if we discard the first component of each name, 620K distinct subdomains. These subdomains are themselves rooted in 137K distinct registered domains (i.e., one level under com
or co.uk
).
One natural question concerns the frequency with which operational DNS traffic exhibits peculiarly long query names, since many natural encodings for surreptitious communication will aim to pack as much information into each query as possible. Figure 3 shows the distribution of domain name prefix lengths ≥ 50 bytes (i.e., characters) looked up in our sample day. We see that queries with names even larger than 100 bytes occur routinely: while rare in a relative sense (only 0.2% of query names are this large), 76,523 such queries occurred on that day. Restricting our analysis to distinct names (dashed line) does not appreciably lower this prevalence.
For concreteness, here are some examples of what such queries look like:
where we have elided between 63 characters (first example) and 197 characters (last example). See Appendix A for the complete names.
Thus, simply attempting to detect queries that include unusually large names does not appear viable. Similarly, the examples above illustrate that benign traffic already includes DNS queries that use opaque encodings, so we do not see a promising angle to pursue with regard to recognizing surreptitious communication due to the syntax of its encoding.
Figure 4: Distribution of the total length of domain name prefixes sent to different registered domains, computed as the sum of all names (solid) or distinct names (dashed). The horizontal lines mark that 1,186 registered domains received ≥ 4kB of names, while 114 received ≥ 4kB of distinct names.
A different perspective we might pursue is that if only a small number of remote name servers receive the bulk of the site's queries, then we might be able to explicitly examine each such set of traffic. Figure 3, however, shows that large volumes of queries are spread across numerous remote name servers. The plot shows how many registered domains received a given total size of queries (the sum of the lengths of all of the prefixes sent to that domain). If we restrict our view to the total size of distinct queries that a registered domain receives, more than 100 registered domains each received in excess of 4kB of query names. If we include prefixes for repeated lookups, the figure is ten times higher.
Surprising query diversity also manifests in other dimensions. For example, surreptitious communication that leverages the transmission of repeated queries in a codebook-like fashion requires using low-TTL answers to prevent local caching from suppressing queries. However, we find that in benign traffic, low TTLs are not unusual: in a day of queries for external names that we examined, a little under 1% of the answers had TTLs of 0 or 1, and 38% are ≤ 60 sec. We also find instances of large numbers of repeated queries arising from benign activity such as misconfigurations and failures.
In summary, the variations we find operationally are surprisingly rich—enough so to illustrate that our problem domain will not lend itself to conceptually simple approaches due to the innate diversity that benign DNS lookups manifest when observed at scale.
To illustrate the difficulty, we evaluated the performance of a naive detector that simply sums up the volume of lookups sent to each domain, alerting on any client sending the domain more than 4,096 bytes in one day. In steady-state (using the same methodology as in § 7, including the Identified Domain List discussed below), this detector produces 200x more alerts than our actual procedure. If we alter the detector to only sum the volume of distinct lookups, we still must abide 5x more alerts (and lose the ability to detect codebook-style encodings). We emphasize that because our actual procedure has no false negatives, all of these additional alerts represent false positives.
Given that simple heuristic detection approaches will not suffice due to the innate diversity of DNS queries, we now pursue developing principled, direct assessments of upper bounds on the volume of data a given client potentially transmits in its queries.
A key observation is that—provided we do not under-estimate the potential data volume—we can avoid any false negatives; our procedure will indeed identify any actual surreptitious communication of a given size over DNS. Given this tenet, the art then becomes formulating a sufficiently tight upper bound so we do not erroneously flag lookups from a client to a given domain as reflecting a significantly larger volume of information than actually transmitted.
We can obtain tight bounds by quantifying the size of carefully chosen representations of a client's query stream. If we obtain these representations in a lossless fashion (i.e., we can recover the original query stream from the representation), then the bound is necessarily conservative in the sense of never underestimating the true information content of the queries. At the same time, the representation must be compact enough to reduce any redundancy from the query stream as efficiently as possible in order to obtain a tight estimate. Thus, the task we face is to determine a representation of the query stream that efficiently captures its elements, but does so in a reversible fashion. In general, we seek forms of lossless compression with high compression ratios.
Conceptually, the heart of our approach is to take encoded query streams and feed them to compression algorithms such as gzip, using the size of the compressor's output as our estimate. While simple in abstract terms, pursuing this effectively requires (1) care in encoding the streams to try to achieve as tight a bound as possible, and (2) structuring the analysis procedure to execute efficiently given a huge volume of data to process.
For the rest of this section, we address the first of these issues. We then discuss execution efficiency in § 6.
Character casing. The first question regarding encoding query streams concerns the most obvious source of variation, namely the particular names used in the queries. For these, one significant encoding issue concerns casing. While the DNS specification states that names are treated in a case-insensitive manner, in practice resolvers tend to forward along names with whatever casing a client employs when issuing the query to the resolver.
Together, these considerations mean that, for example, a query for foo.D.com
and FoO.D.COM
will both arrive at the same D.com
name server, with the casing of the full query name preserved. Accordingly, we must downcase query name suffixes in order to correctly group them together (i.e., to account for the fact that the same name server will receive them), but preserve casing in terms of computing information content, since indeed the attacker can extract one bit of information per letter in a query (including the domain itself) depending on its casing.
0×20-encoding. Preserving casing in queries can raise a difficulty for formulating tight bounds on information content due to the presence of 0×20
-encoding [27], which seeks to artificially increase the entropy in DNS queries to thwart some forms of blind-spoofing attacks. While the presence of arbitrary casing due to use of 0×20
-encoding does indeed reflect an increase in the actual information content of a stream of queries, this particular source of variation is not of use to the attacker; they cannot in fact extract information from it.
We found that unless we take care, our UCB dataset, which includes queries from a number of resolvers that employ 0×20
-encoding, will indeed suffer from significant overestimates of query stream information content. The presence of such resolvers however means that their clients cannot exploit casing as an information vector, since the resolver will destroy the client's original casing. Accordingly, we developed a robust procedure (details omitted due to limited space) for identifying queries emanating from resolvers that employ 0×20
-encoding. For those query sources we downcase the queries to accurately reflect that casing does not provide any information.
This procedure identified 205 clients in the UCB dataset. Other than those clients, we left casing intact.
Employing codepoints. General compressors such as gzip do not make any assumptions about the particular structure of the data they process. However, our particular problem domain has certain characteristics that can improve the compression process if we can arrange to leverage them. In particular, we know that DNS query streams often repeat at the granularity of entire queries. We can expose this behavior to a general compressor by constructing codepoints, as follows. We preprocess a given client's query stream, replacing each distinct query with a small integer reflecting an index into a table that enumerates the distinct names. For example, this would reduce a query stream of foo.X.com
, bar.X.com
, bar.X.com
, foo.X.com
, bar.X.com
to the stream 1, 2, 2, 1, 2, plus a dictionary that maps 1 to foo.X.com
and 2 to bar.X.com
. The particular encoding we use employs 24-bit integers (we take care in our information-content estimation to include the dictionary size).
Representing query types. For datasets that include query types, we construct a separate, parallel compression stream for processing the corresponding 16-bit values, i.e., we do not intermingle the query types with the query names.
Representing timing. Individual query timings offer only quite limited information content. Thus, for an attacker to make effective use of timing, they will need to send a large number of queries. This means that we likely will benefit from capturing not absolute timestamps but intervals between queries. We compute such intervals as 32-bit integers representing multiples of , our assumed lower bound on the timing resolution the attacker can achieve. Again we construct a separate, parallel compression stream for processing these.
Clearly, the value of can significantly affect the amount of information the attacker can extract from the timing of queries; but will be fundamentally limited by network jitter. To formulate a defensible value of , we asked the authors of [17] regarding what sort of timing variation their measurements found for end systems conducting DNS queries. Using measurements from about a quarter million distinct IP addresses, they computed the maximum timing difference seen for each client in a set of 10 DNS queries it issued. The median value of this difference across all of the clients was 32 msec. Only a quarter of the clients had a difference under 10 msec. Accordingly, for our study we have set to 10 msec.
Constructing unified estimates. As described above, we separately process the query names, types, and timing. Formulating a final estimated bound on a query stream's information content then is simply a matter of adding the three corresponding estimates. We note, though, that by tracking each separately, we can identify which one contributes the most significantly (per Figure 6 below).
Bakeoffs. Finally, as outlined above we have several potential choices to make in formulating our upper-bound information estimates: which compressor should we employ? Should we use codepoints or allow the compressor to operate without them (thus not imposing the size of the dictionary)? We note that we do not in fact have to make particular choices regarding these issues; we can try each option separately, and then simply choose the one that happens to perform best (generates the lowest information estimates) in a given context. Such “bakeoffs” are feasible since we employ lossless techniques to construct our estimates; we know that each estimate is sound, and thus the lowest of a set is indeed the tightest upper bound we can obtain.
The drawback with trying multiple approaches, of course, is that it requires additional computation. In the next section we turn to how to minimize the computation we must employ to formulate our estimates.
The previous section described our approach to developing an accurate bounds on the amount of information conveyed using DNS queries to a given domain's name server(s). Computing these estimates and acting upon their corresponding detections, however, raises a number of issues with regards to reducing the resources required for employing this approach.
In this section we discuss practical issues that arise when implementing our detection approach. One significant set of these concern filtering: either restricting the DNS queries we examine in order to conserve computing (or memory) resources, or reducing the burden that our detection imposes on a site's security analysts. The key property of these filtering stages is their efficacy in concert, which is crucial for the scalability of our approach. Figure 5 shows the different stages of processing in our detection procedure and how they pare down in several steps the volume of both the queries that we must examine and the number of domain name suffixes to consider.
We describe our detection procedure as implemented for off-line analysis here, and discuss our experiences with a real-time detector in § 8.
A query from a DNS client system cannot exfiltrate information unless it is forwarded by the recursive resolver. Thus a highly useful optimization for the internal vantage point (as discussed in § 4) is to model the recursive resolver's cache and not consider any query where the resolver obtained the result from its cache.
We can accomplish this by observing the replies with the TTL field. We maintain a shadow cache based on the query attributes (contained in the reply) and the reply TTL values, and do not consider later queries until their information expires from the shadow cache.
The result of this filtering is to eliminate the disadvantage of the internal vantage point, as this filter ensures that later stages only process uncached requests. With the INDLAB dataset, this reduces the number of detections by about 2x for the timing vector, and about 10% for query names. Unfortunately not all of our datasets support this filtering.
We remove lookups that target domain names within the local organization itself, or within closely-related organizations. Due to their relatively high volume, we find that such lookups can result in a large number of detections, but the likelihood that someone will actually use a DNS tunnel between such domains will be negligible. Likewise, we remove lookups of PTR (address-to-name) records for local and reserved network address ranges.
Figure 5: The full detection procedure. The numbers (grey) reflect a day at the INDLAB network for which the detection procedure flagged a new domain name (a relatively rare event).
Finally, we exclude names without a valid global top-level domain. This eliminates numerous queries from systems that are misconfigured or confused.
In this stage of our detection procedure, we compute statistics per (lookup name suffix, client)-pair that will serve as input to the lightweight filter described in § 6.4.
Due to the voluminous nature of our data, we aggregate these statistics at the level of registered domain names (e.g., one level under com
or co.uk
). With IPv4 PTR lookups we aggregate at two and three labels under in-addr.arpa
(corresponding with /16 or /24 network ranges), and with IPv6 PTR lookups we aggregate at 12 labels under ip6.arpa
(corresponding with /48 network ranges). The reasoning behind these choices is that shorter PTR suffixes will in general represent large blocks that are parents to multiple organizations; thus, the presence of tunneling associated with such suffixes would require compromise of a highly sensitive infrastructure system. In our results for PTR lookups we find no indications of surreptitious communication.
We then compute for each query suffix and client the numbers of unique and distinct lookup names including that suffix, as well as the combined length of those lookup names. We group suffixes in a case-insensitive manner, but count as distinct any lookup names that differ only in case (cf. § 5.3).
The very high volume of DNS queries means we can obtain significant benefit from considering additional measures for pre-filtering the traffic before we compute the principled bounds described in § 5. For each domain suffix, we use computationally lightweight metrics that overestimate the information content present in the information vectors described in § 5.1. We then compare the sum of these metrics across all information vectors against a minimum-information content threshold, . If the sum total (guaranteed to not underestimate) lies below the threshold, the traffic for the corresponding domain suffix cannot represent communication of interest. This approach allows us to short-circuit the detection process and eliminate early on numerous domain suffixes.
Fast filter for the query name vector. We consider the following quantities from a sequence of lookups made by some host during one day: the total number of lookups L, the number of distinct query names Dname in those lookups, and the total number of bytes Cname in those distinct query names. We remark that we can determine all three quantities with minimal computational and memory overhead.
Query name tunnels encode information in terms of the characters and the repetition patterns of the names looked up. Each character in a name may convey up to 1 byte of information, contributing up to Cname bytes in total. According to Shannon's law, the number of bits conveyed per lookup amounts to at most log2Dname. Therefore the combined upper bound on information conveyed in bytes by such a tunnel amounts to:
Fast filter for the query type vector. We filter the query type vector similarly. Again, we consider a sequence of DNS lookups with a given suffix made by some host during one day. If we use Dtype to denote the number of distinct query types in those lookups and Ctype the total number of bytes in those distinct query types, we have:
Fast filter for the query timing vector. The timing vector is more complicated because we need to discretize the time information and create symbols representing the encoded data as it appears in the timing vector. We parametrize this process by the time resolution that the network environment affords to the attacker.
Intuitively, for a given number of lookups L observed over a day, the amount of potential information encoded in time is maximal when the number of distinct inter-arrival times, k, is maximal. This is due to the fact that, without knowing the distribution of inter-arrival times, the empirical entropy from the inter-arrival times may be upper-bounded by L · log2k, where log2k is the number of bits encoded by a single lookup.
As a consequence, to assess the upper-bound on the information content for a fixed L and an assumed timeslot size (expressed as time resolution ), we need to determine into how many distinct inter-arrival times k we can partition one day into, while imposing as uniform a distribution of inter-arrival times as possible (i.e., leading to maximal entropy).
By maximizing k subject to the constraint that the distribution of distinct inter-arrival times is uniform (omitting details for brevity), and upper-bounding k by L − 1 (the number of intervals), we find that we can express the upper bound on the information amount in the timing vector as:
where denotes the number of time slots with resolution over one day (86,400 seconds).
Unified fast filter. From the above equations, we can now formulate the following unified test condition to handle all types of information vectors:
We then eliminate from further detailed analysis the name suffixes that are not candidate tunnels.
Choosing the thresholds. The fast filter relies on two parameters, the information content threshold and the time resolution . In order to select security-relevant values for these parameters, we measured their impact on the analyst's workload. (Note that in § 5.3 we also framed empirical evidence that = 10 msec appears fairly conservative.) It is clear that both reducing the information content threshold and reducing the time resolution can increase the false positive rate, and relatedly the analyst's workload.
Figure 6 shows how varying these parameters affects the analyst for INDLAB data. One can see, for example, that decreasing the information content threshold from 4,096 to 256 bytes (and potentially increasing security) would increase the number of domain name suffixes passed to the analyst for manual inspection 50-fold. The plot also shows a clear power-law relationship between analyst workload and , with the former scaling as approximately x−1.38 in the latter.
Figure 6: The impact of the information content threshold and the time resolution on the number of suffixes to validate manually per week for the INDLAB dataset. The top chart reflects a value = 10 msec, and the bottom chart = 4,096 bytes.
Setting the information content threshold to 4,096 bytes and the time resolution to 10 ms thus provides a good balance between analyst workload and potential detections. Sites might of course revisit these parameters based on their particular threat models and networking environments.
For each (suffix, client)-pair that remains after the preceding filter steps, we compute the size of gzip, bzip2 and ppmd [23] compression for the series of all corresponding lookup names, selecting the lowest value. We also assess a codepoint-oriented analysis (§ 5.3), computing the gzip, bzip2 and ppmd compression sizes for the series of distinct (unique) lookup names, selecting the lowest value, and adding the lowest value of the gzip, bzip2 and ppmd compression sizes for the corresponding distinct lookup name indices. Given these two assessments, we choose the smaller as the best (tightest) upper bound on the amount of information potentially transferred through lookup names to the given domain suffix (cf. box “Bound on Information Content” in Figure 5).
Next, we apply the same procedure to the corresponding inter-query arrival times (in = 10 msec units) and query record types, if this information is available. Finally, we add up the results from the lookup name, time and type information vectors, and if their sum lies below , we discard the (suffix, client)-pair.
We expect sites to employ our analysis procedure over an extended period of time. For example, once a site sets it up, it might run as a daily batch job to process the last 24 hours of lookups. An analyst inspects the traffic associated with any domains flagged by the procedure and renders a decision regarding whether the activity appears benign or malicious.
An important observation is that the same benign domains will often reappear day after day, due to the basic nature of their lookups. However, the analyst needn't reexamine such domains, as the verdict will prove the same. (See § 9 for further discussion of this point.) Given this, we presume the use of an Inspected Domain List (IDL) that accumulates previous decisions regarding domains over time. For a given day's detections, we omit flagging for the analyst any that already appear on the IDL. Once populated, such a dynamic list can greatly reduce the ongoing burden that our detection procedure places on a site's analysts.
A final issue regarding the IDL concerns its granularity. For example, if our procedure flags s1.v4.ipv6-exp.l.google.com
and we put that precise domain on the IDL, then this will not spare the analyst from having to subsequently investigate i2.v4.ipv6-exp.l.google.com
.4 However we note that the analyst's decision process will focus heavily on registered domains. In this example, the analyst will likely quickly decide to mark the detection as benign because for it to represent an actual problem would require subversion of some of Google's name servers, which would represent an event likely significantly more serious than an attacker communicating surreptitiously out of the site. In addition, the analyst will reach this conclusion simply by inspecting the registered domain google.com
, rather than studying all of the sub-domains in depth.
Accordingly, once an analyst inspects a detection, we place on the IDL the corresponding registered domain, which we compute by consulting Mozilla's Effective TLD Names list [20]. In this example, com
appears on the list (meaning that any domain directly under it will reflect a registration), so we add google.com
to the IDL. Any subsequent matching against the IDL likewise employs trimming of names using the same procedure.
We note that we could implement the IDL with finer granularity than described above. In particular, we could frame it in terms of per-client filtering, or using custom entropy thresholds. We leave exploring these refinements for future work.
Table 2: Estimates of data volumes produced by our procedure measured against specific exfiltration scenarios, showing the total estimate, and the individual contributions from the query name, timing, and type information estimation.
In this section we evaluate the efficacy of our detection procedure in terms of assuring that it can detect explicit instances of communication tunneled over DNS (§ 7.1) and investigating its performance on data from production networks (§ 7.2). For this latter, we assess both the procedure's ability to find actual surreptitious communication, and, just as importantly, what sort of burden it imposes on security analysts due to the events generated.
To validate our procedure's ability to accurately measure communication embedded in DNS queries, we assessed what sort of estimates it produces for scenarios under which we fully control the DNS communication used for exfiltration. Table 2 summarizes the results, comparing the information vector used for exfiltration vs. the estimates of the volume of data present in the corresponding lookups, both in total and when restricted to just considering a single information vector. All values are percentages of the actual exfiltration size, so a value of 105 indicates an estimate that was 105% of the true size (i.e., the estimate was 5% too high). Naturally, estimators that focus on information vectors different from those used in a given exfiltration scenario can greatly underestimate the data volume if used in isolation, highlighting the need to combine such estimators into a final comprehensive sum.
Regarding the scenarios reflected in the table, to assess tunnels based on encoding information directly in query names, we recorded Iodine [10] queries while sending a 99,438-byte compressed file with scp. The 11 % difference (shown in the “Query name-content” row) between measured content and actual content is nearly all due to tunnel encapsulation overhead (SSH, TCP/IP headers, Iodine framing). As we are not aware of any available tunneling tools that leverage repeated (codebook-style) queries, timing, or varying query types, we wrote simple proof-of-principle implementations for testing purposes. The codebook-style implementation used 16 distinct names that each convey four data bits per query, while the timing-interval implementation used one name and 16 distinct time intervals spaced 10 ms apart. The query-type implementation used one name and 16 distinct query types. In addition, these tunnels used five distinct query names for command and control. We exfiltrated a 10,000-byte compressed file and found that the difference between the estimated exfiltration volume and the actual size ranged from 5–11 %.
Table 3: Number of domains flagged in each dataset, broken out by the type of activity that the use of the domain represents. The INDLAB, UCB and CHINA analyses cover all information vectors: LBL and NERSC incorporate query names and types, but not timing; SIE considers only query names; and SIEUNIQ only the contents of query names (not repetitions). SIE and SIEUNIQ analyses includes additional considerations discussed in the Appendix.
These results confirm that our procedure can readily detect information that is encoded into query names, timing, or query record types, and that it can provide meaningful upper bounds.
We now turn to evaluating our detection procedure as applied to the extensive datasets we gathered, comprising 230 billion lookups from the networks listed in Table 1.
A key question for whether our detector is operationally viable concerns the combination of (1) how many domains it flags for analysis, coupled with (2) how quickly an analyst can identify the common case of a flagged domain not in fact posing a threat.
The filtering steps in § 6 aim to address the first issue. Regarding the second issue, as we briefly discussed in § 6.6 we find that often analysts can rely on fate-sharing to quickly determine they needn't further investigate a candidate domain. For example, a site's analyst can reason that a detection of google.com
or mcafee.com
is safe to ignore, because if indeed an attacker has control over those domains' name servers, the site has (much) bigger problems than simply the presence of surreptitious communication to the sites.
Table 3 summarizes the findings across all of the datasets. For each dataset, the row in bold gives the total number of different domains flagged by our detector (many appear in more than one day), and the bottom row reflects the “steady state” burden on an analyst investigating detections for the given environment. We partition the datasets into two groups. The logs for INDLAB, LBL and NERSC include individual per-client lookups, and thus these sites represent the sort of environments for which we target our detection, using a threshold of 4 kB/day. The lookups recorded for UCB, CHINA and SIE, on the other hand, are primarily aggregated across many clients, and thus for these datasets we cannot perform per-client analysis. We do not aim to treat these datasets as operational environments for our detection procedure, but rather to assess what sort of surreptitious communication the procedure can detect in real traffic. For them, we use a higher threshold of 10 kB/day to limit our own analysis burden in assessing the resulting detections. Finally, the SIE dataset introduces some additional complexities, as discussed in Appendix B.
We classified the detections based on manual analysis to assign each to one of six general categories, as follows.
Confirmed DNS channel reflects domains for which we could amass strong evidence that indeed the detection represents surreptitious communication over DNS. For LBL, both flagged domains correspond to tunnels that staff members acknowledge having set up to obtain free Internet access in WiFi hotspots that allow out DNS traffic without requiring payment. One used DNStunnel [8], the other NSTX [13].
For SIE, we identified 3 types of tunnels. One type (responsible for 42 domains) corresponds to a product offered by Dynamic Internet Technology, a company that builds tools to evade censorship [9]. These tunnels encode most requests in two 31-character labels, using only alphanumerics, followed by an identifier that appears to identify the tunnel itself. Another 10 domains all have whois information leading to MMC Networks Limited (of Gibraltar), a company that provides a program offering “Free WiFi” using tunneling [28]. The tunneling technology used for these is a variant of Iodine, with the main difference being use of only alphanumeric characters for the encoding. We also found 5 domains that use Iodine, for reasons we have not been able to identify.
Finally, we examined an addition 150 billion DNS records captured in a separate 259 days of monitoring from SIE. Due to monitoring gaps, this expanded data is unsuitable for analyzing long-term analyst burden. But in it (using a somewhat higher detection threshold) we detected 42 new tunnel instances, including a new tunnel type belonging to vpnoverdns.com
.
Benign use encompasses a number of different scenarios that we believe would lead an analyst to fairly quickly decide that the corresponding activity does not appear problematic. These scenarios include flagging of: (1) a well-known site (e.g., google.com
), for which a name server breach would reflect a catastrophe, so very likely has not occurred (fate-sharing). (2) A sister site (e.g., a partner institute), where a similar argument holds. (3) ISPs, for which sometimes local systems look up many hostnames corresponding to end-user systems. For example, in LBL we observe queries for numerous names such as 201-11-50-242.mganm703.dsl.brasiltelecom.net.br
. (4) Directory-style services offered over DNS, including blocklists, user-generated content, and catalogs. (5) Software license servers. (6) Cloud-based antivirus services.
Malware indicates lookups associated with malware activity or sites flagged (for example, by McAfee's SiteAdvisor service) as malicious. For SIE these also include lookups such as p9b-8-na-5w-2z3-djmu-...-njx2es.info
, i.e., 62-character labels consisting of letters or numbers separated by dashes. We concluded that these lookups reflect malware activity because names following the same pattern appeared in a trace generated by a researcher running bots within a contained environment.
Misconfiguration generally reflect clients making large volumes of lookups due to configuration problems that lead to repeated failures. For example, in one LBL instance we observed more than 60,000 lookups of 33 different names within a single domain, such as _ldap._tcp.standardname-...isi.fhg.de
. Other problems we observed include lookups apparently based on email addresses, such as itunes@new-music.itunes.com
; subdomains appearing to be IP addresses; repeated failures of names with narrow, rigid structures; and domains in search paths that have lookups encapsulating a client's entire stream of queries sent to other domains.
IPv4 PTR and IPv6 PTR reflect lookups under the in addr.arpa
and ip6.arpa
zones, respectively. These zones provide a decentralized mapping from numeric IP addresses to domain names. As discussed in § 6.2, we do not flag PTR lookup suffixes that correspond to address ranges that are local to the organization, or that are reserved. As noted in § 6.3, for IPv4 PTR lookups we only flag suffixes corresponding to /16 or /24 netblocks, and for IPv6, /48 netblocks.
Unknown reflects domains for which we could not arrive via manual analysis at a confident determination regarding how to classify the activity. For example, one striking instance concerns a number of domains (primarily seen in CHINA traffic, but also SIE) that issue thousands of lookups such as:
Here, the domain (0ule365.net
) is associated with a Chinese gaming site. Other instances following the same pattern appear to be associated with phishing sites related to such gaming sites.
Domains flagged in first week and in typical week reflect the two extreme behaviors of our Inspected Domain List approach (§ 6.6). In the first week of operation our detector reports a peak number of domains; once the list is primed, it flags domains at a much lower rate. (We special-case the figure for CHINA because that entire dataset spans less than a week.)
Finally, the main conclusion we highlight regarding the Total row is the low number of events that analysts would have to inspect. (Even for SIE, the average load aggregated across the more than 100 participating sites comes to about 50 detections per day, given increased from 4 kB to 10 kB.)
As developed so far, our analysis procedure operates in an offline fashion, processing full days as a single unit. While this suffices to enable analysts to detect DNS exfiltration on a daily basis, real-time detection would enable immediate identification of such activity and thus much quicker response. In this section we explore the viability of adapting our scheme for such detection.
Our real-time variant uses gzip and bzip2 as the compression functions. We can adapt both the cached query filter and the “uninteresting query” filter to streaming operation, with the only consideration being that we modify the cached query filter to actively flush all cache entries as their TTLs expire to minimize statekeeping.
Adapting the fast filter and the compression-based filters takes more consideration, since they naturally process entire sets of activity as a unit. In addition, if we try to use a compressor in a stream fashion, we must deal with the compressor's destructive operation: if we add data to a stream and call flush()
to obtain the size of the compressed result, the flush()
operation changes the compressor's internal state—adding more data and calling flush()
again can produce a larger output than simply compressing all of the data at once.
Our approach combines the fast filter and the compression measurement for each (domain, client) pair as follows. Initially, for each pair we only track the uncompressed input. Upon receiving new input, we check whether the total message length plus maximum possible entropy contribution from the timing, and query, and query type could possibly lead to the pair generating an alert. If not, we simply append the new information to the list of previously seen queries.
If the total could cross our threshold, we allocate compressors, feed them all of the recorded input, and invoke flush()
. If the resulting entropy lies below the alert threshold, we simply update the uncompressed data threshold that could possibly generate an alert, discard the compressed data, and continue. Otherwise, we generate an alert, create new compressors, feed them all the previous data, and pass all subsequent data to them as it arrives. These new compressors allow us to compute a full 24-hour entropy total for the (domain, client) pair to aid the analyst. After 24 hours we generate a summary for each pair and discard the associated state.
For good performance we parallelized this approach, running the cached-query and uninteresting-query filters in a single process that dispatches each (suffix, client) pair to one of 15 distinct child processes. We verified that the implementation produces a consistent analysis by processing the same day of INDLAB data using both the original batch implementation (with only gzip and bzip2) and the real-time variant (70M DNS queries, 36M non-empty replies). They fully agreed, with the realtime implementation requiring 28 minutes and 4.5GB of RAM to process the day of traffic. The execution totaled 53 CPU-core-minutes on a dual processor Intel Xeon X5570 system. Given these results, we conclude that real-time operation is quite viable.
This paper demonstrates how we can comprehensively measure the information content of an outbound DNS query stream. Our lossless compression-based procedure measures all information that an attacker can effectively send via names, types, and timing, regardless of the actual encoding used. This procedure also has only two tuning parameters, the threshold of detection and the timing precision.
Some minor DNS features remain that we have not included in our analysis procedure. We have omitted these for simplicity, since in their usual (benign) use, they appear almost always to have a single value for a given client. These information vectors include requesting DNSSEC information (single bit) and the query's class (which for modern traffic is almost always type IN
, “Internet”). Similarly, future EDNS0 extensions could appear that recursive resolvers will forward intact, providing a new information vector. For all such features, we can simply employ an additional compressor optimized with the use of a very low-cost special case of using a single bit to indicate that for a given client, the feature never changes.
Attackers can tunnel information in DNS replies as well as in queries, and indeed existing tunnels do so. Since replies can include domain names (returned for example in CNAME
records) or unstructured byte strings (e.g., TXT
records), replies can potentially convey large volumes of data. (We remind the reader that in this work we have focused on analyzing DNS queries rather than responses since for the scenarios of particular interest—exfiltration or remote interactive access—the query streams will generally carry the bulk of the data.)
Attackers who can successfully mimic the appearance of benign data-rich query streams (such as block-list lookup services) can trick analysts into deeming their surreptitious communication as harmless. Similarly, an attacker who compromises a previously benign domain can encode their traffic using the same style of lookups as the domain originally used. These problems are orthogonal to the question of flagging the activity.
Attackers aware of our detection procedure can in addition design their tunnels to keep the information content below the 4 kB per day threshold. Given that we aggregate information content metrics per domain, a simple evasion strategy would be to spread the traffic across K > 1 domains, and then send 4 kB per day to each, but in aggregate communicate K times that volume. A possible detection approach we envision pursuing consists of analyzing each client's lookups in their entirety, rather than on a per-destination-domain basis. Coupled with an expanded Inspected Domain List (§ 6.6) to remove the major contributors to DNS traffic, we would aim with this approach to compute a bound on the total information content each client communicates via all of its external DNS queries.
Finally, attackers could spread their exfiltration across multiple compromised clients, so that each client's query stream remains below the detection threshold. Our experiences with external vantage points such as UCB indicates that we still might be able to find the activity of groups of clients, since that vantage point already aggregates multiple clients into a single apparent source. However, a combination of using multiple compromised clients and K external name servers might prove exceedingly difficult to detect for the sort of thresholds we have employed in this work.
Four areas of prior work have particular relevance to our study: covert communication; designing ways of tunneling communication over DNS traffic; detecting such tunneling; and establishing bounds on the volume of covert communication.
We adopt Moskowitz and Kang's classification of covert communication channels [19]. In particular, a storage channel is a covert channel where the output alphabet consists of different responses all taking the same time to be transmitted, and a timing channel is a covert channel where the output alphabet is made up of different time values corresponding to the same response. Accordingly, we treat covert communication via DNS query content (name, type and other attributes) as a storage channel, and covert communication via query timing as a timing channel.
Conventional DNS tunnels are similar in construction: they are bi-directional, directly embedding the outbound information flow in query names, and the inbound flow in server responses. In the absence of outbound data, the client sends low-frequency queries to poll the tunnel server for any pending data. The functionality of these tunnels ranges from a simple client-to-server virtual circuit to full IP-level connectivity. Examples are NSTX [13], dns2tcp [7], Iodine [10], OzymanDNS [15], tcp-over-dns [25], and Heyoka [14]. DNS exfiltration has also been a tool in the attacker's toolbox for a number of years (per [22] and the references therein).
Beyond query names, the DNS message format contains a variety of fields that could be used for embedding data (as we detail in § 5.1). In addition to the DNS-specific message fields, timing (e.g., the timing of queries) provides a rich vector for embedding data. This is not unique to DNS traffic, but present in all Internet traffic, allowing any message to be encoded in the inter-arrival times between packets. Gianvecchio et al. [12] showed how to automatically construct timing channels that mimic the statistical properties of legitimate network traffic to evade detection. Our detection technique avoids such complication by measuring information content rather than particular statistical properties.
One approach for detecting covert communication over DNS examines the statistical properties of DNS traffic streams. Karasaridis et al. propose DNS tunnel detection by computing hourly the Kullback-Leibler distance between baseline and observed DNS packet-size distributions [16]. To defeat such temporal statistical anomaly detectors, Butler et al. propose stealthy half-duplex and full-duplex DNS tunneling schemes [5]. They also propose the use of Jensen-Shannon divergence of per-host byte distributions of DNS payloads to detect tunneled traffic. Their detection technique only flags whether the aggregate traffic contains tunneled communication; it does not identify the potential tunneled domains. In addition, the detection rate depends to a large extent on the ratio of tunneled traffic to normal traffic. In [3], the authors show that domain names in legitimate DNS queries have 1-, 2-, and 3-gram fingerprints following Zipf distributions, which distinguishes them from the higher-entropy names used in DNS tunneling. The evaluations in these works do not particularly address practicality for operational use, however, since the authors validate their hypotheses on short, low-volume benign and synthetic tunneled traces collected using free DNS tunneling tools. As we discuss in § 5.2, large-scale DNS traffic often exhibits extensive diversity in multiple dimensions, which likely will exacerbate issues of false positives.
Our work overlaps with work on algorithmically-generated domain names by Yadav et al. [29]. The most salient difference is that their algorithm assumes a specific model of name construction (distributions of letters and bigrams). Instead of focusing on specific name patterns and missing communication that uses different encodings, we measure the aggregate information content of a query stream regardless of how encodings are generated for the query name, type or timing.
Detection of timing channels has been studied before, and we mention here only a few recent results. Cabuk et al. [6] observe that timing-based tunnels often introduce artificial regularity in packet inter-arrival times and present detection methods based on this characteristic. More generally, Gianvecchio and Wang [11] identify timing-based tunnels in general Internet traffic (not just DNS) by using conditional entropy measures to identify the subtle distortions introduced by the tunnel in packet inter-arrival time distributions. These works use time intervals of 20 msec or more; we use a more conservative 10 msec timing resolution, and do not assume the presence of detectable distortions.
While the general problem of surreptitious communication has received extensive examination in the literature of covert channels and steganography, more closely related to our work is previous research on bounding the volume of surreptitious communication in other protocols. Borders et al. studied this problem for HTTP, observing that covert communication is constrained to the user-generated part of an outgoing request [1, 2]. By removing fixed protocol data and data derived from inbound communication, the authors show how to determine a close approximation to the true volume of information flows in HTTP requests. An analogous approach for our problem domain would be to track the domain names a system receives from remote sources (such as web pages and incoming email), and to exclude lookups for these names as potentially conveying information. Such tracking, however, appears infeasible without requiring extensive per-system monitoring.
We have presented a comprehensive procedure to detect stealthy communication that an adversary transmits via DNS queries. We root our detection in establishing principled bounds on the information content of entire query streams. Our approach combines careful encoding and filtering stages with the use of lossless compression, which provides guarantees that we never underestimate information content regardless of the specific encoding(s) an attacker employs.
We demonstrated that our procedure detects conventional tunnels that encode information in query names, as well as previously unexplored tunnels that repeatedly query names from a fixed alphabet, vary query types, or embed information in query timing. We applied our detection procedure to 230 billion lookups from a range of production networks and addressed numerous challenges posed by anomalous-yet-benign DNS query traffic. In our assessment we found that for datasets with lookups by individual clients and a threshold of detecting 4 kB/day of exfiltrated data per client and domain, the procedure typically flags about 1–2 events per week for enterprise sites. For a bound of 10 kB, it typically flags 50 per day for extremely aggregated logs at the scale of a national ISP. In addition, buried within this vast number of lookups our procedure found 59 confirmed tunnels used for surreptitious communication.
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For completeness, Figure 7 lists the full names of various DNS lookups that in the main body of the text we elided portions for readability. Note that for some names we introduced minor changes for privacy considerations.
The SIE data's extreme volume and qualitatively different nature necessitated several changes to our analysis procedure. Our access to the data was via a Hadoop cluster, requiring coding of our algorithms in the Pig and Scala languages. These provide efficient support for only a subset of the functionality we employed when analyzing the other datasets. A significant difference in this regard was that we were confined to only using gzip for compression; bzip2 and ppmd were not available.
Another important difference concerns the definition of “client”. A single large American ISP dominates the SIE data, representing roughly 90% of the traffic. This ISP uses clusters of resolvers to process requests. Thus, a single abstract resolver manifests as multiple “client IP addresses”, which we determined come from the same /28 address prefix. Therefore we treat query source IP addresses equivalent in their top 28 bits as constituting a single source.
This extreme aggregation leads to significant increases in detections, as we are now measuring the information volume for queries aggregated across potentially hundreds of thousands of clients. One particular increase in benign alerts arises due to popular names with short TTLs (e.g., www.google.com
). With so many clients, every popular name becomes immediately refetched whenever its TTL expires, leading to a steady stream of closely-spaced lookups. This very high level of aggregation also generates such a large volume of detections for reverse lookups that we excluded them from the SIE analysis, which removes about 10% of the queries.
Figure 7: Full names of examples used in the main text. We line-break each name at 54/55 characters.
As previously discussed in § 4, we emphasize that the role of the SIE dataset for our evaluation is simply to give us a (huge) target environment in which to validate that we can find actual tunnels. We do not envision our procedure as operationally viable for this environment; nor does such an environment strike us as making sense in terms of conforming with our threat model, which focuses on tightly controlled enterprises, rather than wide-open ISPs.
Given this perspective, to keep our own manual analysis tractable, for SIE we used a detection threshold of 10 kB rather than the 4 kB value we use for the other datasets.
We also explored the effects of other analysis changes. First, we investigated conducting our analysis on the SIE queries reduced to distinct, sorted names. This transformation removes our opportunity of assessing query name-codebook information vectors, but preserves our ability to estimate data conveyed through the query name-content vector—the only type of encoding employed by known DNS tunneling tools. Table 2 shows this version of the SIE data as SIEUNIQ. The reduction in analyst load is quite significant, more than a factor of three.
1We assume that the attacker controls theattacker.com
DNS zone.2Heavily dominated by a single large U.S. ISP.3In addition, the specific query received after the given interval could also convey additional information using one of the previously described vectors.4Both of these are actual detections.
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Mobile telecommunication has become an important part of our daily lives. Yet, industry standards such as GSM often exclude scenarios with active attackers. Devices participating in communication are seen as trusted and non-malicious. By implementing our own baseband firmware based on OsmocomBB, we violate this trust and are able to evaluate the impact of a rogue device with regard to the usage of broadcast information. Through our analysis we show two new attacks based on the paging procedure used in cellular networks. We demonstrate that for at least GSM, it is feasible to hijack the transmission of mobile terminated services such as calls, perform targeted denial of service attacks against single subscribers and as well against large geographical regions within a metropolitan area.
While past research on Global System for Mobile Communications (GSM) mainly focused on theoretical research [17, 18], a very recent research direction challenged the fundamental GSM security assumptions with respect to the practical availability of open GSM equipment. The assumptions have been made on both sides of the radio part of the cellular network. One side of the radio link is the Base Station System (BSS) consisting of the Base Transceiver Station (BTS) and the Base Station Controller (BSC), while the other side of the radio part is the modem or the so-called baseband of a cellular phone. Traditionally, both radio stacks have been carefully kept out of reach for any kind of malicious activities.
But a booming market for used telecommunication equipment, cheap software defined radios, leakage of some hardware specifications, and a well-trained open source community finally broke up this closed cellular world. The overall community work culminated in three open source projects: OpenBSC, OpenBTS, and Osmo comBB [20, 25, 45]. These open source projects constitute the long sought and yet publicly available counterparts of the previously closed radio stacks. Although all of them are still constrained to 2G network handling, recent research provides open source software to tamper with certain 3G base stations [24]. Needless to say that those projects initiated a whole new class of so far unconsidered and practical security investigations within the cellular communication research, [28, 30, 34].
Despite the recent roll-out of 4G networks, GSM remains the dominant cellular standard in many countries. Moreover, as most new LTE devices are backwards compatible to GSM, this older standard will not vanish soon at all, but rather complement 3G and LTE connectivity in areas with pure GSM coverage. Several other reasons such as worse indoor coverage and the lower number of deployed UMTS and LTE base stations contribute to this. Additionally, telecommunication providers have already begun to reuse their existing GSM infrastructure within non-voice scenarios which require a much slower data communication than modern network technologies are capable of. This is especially the case for Machine to Machine (M2M) or so-called Internet of Things (IoT) communications over GSM. Corresponding applications will soon become parts of our daily life and will make us more dependent than ever on GSM, cf. [19, 35]. Given this pervasive GSM usage, it is very important to evaluate the security offered by a standard which is more than 20 years old and is based on assumptions, many of which no longer hold true.
This paper continues the challenge of the mobile security assumption that certain active attacks can be safely excluded from the threat model. Towards this goal we show novel attacks against mobile terminated services. While the root cause also exists in newer standards such as UMTS or LTE, we demonstrate the impact of it in commercially deployed GSM networks. To the best of our knowledge, the limitations of currently available hard- and software would make it very difficult to test these attacks in UMTS and LTE networks. Prior to publishing this research, we responsibly notified the respective standard organisations via a carrier of our research results.
Figure 1: Simplified GSM network infrastructure.
In summary, we make the following main contributions:
The remainder of the paper is structured as follows. Section 2 provides an overview of the 3GPP GSM network infrastructure, as well as details about logical channels and paging protocol procedures required to understand our attacks; Section 3 details our novel attack that exploits the paging procedure as used in GSM; Section 4 describes characteristics of location areas in a large metropolitan area and the respective requirements to perform a large-scale denial of service attack against these regions; Section 5 discusses two different countermeasures to address the attacks; Section 6 provides an overview of related research; Section 7 concludes our research.
This section briefly describes the GSM cellular network infrastructure. We continue to explain the important types and functions of logical channels. Furthermore, we depict the protocol details required to understand the basis of our attack.
Despite the complexity of a complete GSM mobile network architecture [3], only a few entities are relevant to this work. In the following paragraph, we provide the necessary background on the infrastructure components of relevance to this research. Figure 1 illustrates the architecture and connections between these components:
The available GSM frequencies are shared among a number of mobile carriers. Each of the GSM frequency bands is divided into multiple carrier frequencies by means of Frequency Division Multiple Access (FDMA). A BTS serves at least one associated carrier frequencies identified by the Absolute Radio-Frequency Channel Number (ARFCN). The ARFCN provides a dedicated pair of uplink and downlink frequencies for receiving and transmitting data over the Um interface [10]. Because the radio frequency is shared among a number of subscribers, GSM uses Time Division Multiple Access (TDMA) as channel access method and divides physical channels provided by the ARFCN into 8 time slots. A sequence of 8 consecutive time slots is called a TDMA frame. Multiple TDMA frames form a multiframe. It consists either of 51 or 21 TDMA frames (respectively control frames or traffic frames). Multiframes are further partitioned to provide logical channels.
The two categories of logical channels in GSM are control channels and traffic channels [5]. Control channels provide means for signaling between the network and the MS. Because our attack is solely based on signaling, we focus on the details of control channels. There are three categories of control channels:
For our attack, we are mainly interested in logical channels that are part of the CCCH and DCCH categories. These categories consist of several logical channels. The logical channels of interest are as follows:
It is important to note that both the BCH and CCCH channel types are point-to-multipoint channels. This implies that information on the logical downlink channels is broadcasted to all subscribers served by a specific BTS. Throughout this work we will see how this can be abused to model new attacks.
The GSM specifications differ between traffic originating or terminating at a mobile phone. This is referred to as Mobile Originated (MO) and Mobile Terminated (MT) traffic. As outlined previously, we aim to attack MT services, such as phone calls or SMS. Thus, in the following we concentrate on the underlying protocol procedures associated with MT services [4].
In order to deliver a service to a phone, the MSC needs to determine the location of the respective subscriber. This has to be done for two reasons. First, mobile phones will be idle most of the time to save battery power and so will not be in constant contact with the network. Thus, the operator does not always know the specific BTS that provides the best reception level to the MS. Therefore, it must broadcast this signal of an incoming service through at least the entire location area. Second, broadcasting this information through the whole operator network would impose a huge performance overhead and possibly overload the paging channel [42].
In a first step, the core network determines the responsible MSC/VLR for the target subscriber with the help of the HLR. Next, the MSC obtains the location information for the destination subscriber from the VLR and sends a paging message to all BSCs in the subscriber's location area. This message includes a list of cell identifiers/base stations serving the specific location area [13]. The message also contains the mobile identity of the subscriber, which is usually either a International Mobile Subscriber Identity (IMSI) or a Temporary Mobile Subscriber Identity (TMSI). We illustrate the remaining protocol logic using a successful MT phone call as depicted in Figure 2.
The GSM standard specifies [4] three types of paging requests – type 1, 2, and 3. The type stipulates the number of subscribers that can be addressed with the paging request. Type 1 can page one or two subscribers, type 2 two or three subscribers, and type 3 paging requests are directed towards four subscribers at once. A recent study [30] suggests that in real operator networks the vast majority of paging requests is of type 1. During our experiments, we verified that 98% of all paging requests that we observed are type 1 requests. Therefore, we ignore type 2 and type 3 paging requests in our study.
Figure 2: Mobile Terminated (MT) paging procedure.
In this section, we will provide the theoretical background of our attack, introduce our experimental setup and elaborate on the feasibility of such an attack.
Denial of Service Attacks. The first threat comprises an active attacker, interested in significantly disturbing mobile terminated services within a specific geographical area, e.g., a district or a part of a city. In certain situations it is desirable to ensure that a person or a device is not reachable via mobile telephony. For example a third-party may want to prevent a specific call from reaching the victim. The effect would be similar to the ability of selectively jamming incoming services for a set of subscribers. This includes individuals and groups of individuals. Such an attack would also have considerable business ramifications. While it would not compromise the general operation of the carrier, it would affect their revenue. The inability to receive a phone call will not only leave angry customers, it further impacts the generated billing as subscribers are charged when a call is connected. If any subscriber is able to place phone calls, but nobody is able to receive services, no profit is created. An exception here are short messages, as SMS operates in store-and-forward fashion and does not create billing on delivery of a message, but on its submission.
Mobile Terminated Impersonation. The second threat considers an attacker who aims to hijack a mobile terminated service. As a result, the service would be delivered to the attacker instead of the victim. This turns a passive adversary, who is able to observer air traffic, into an active attacker who can accept the mobile terminated service and impersonate the victim. For example an attacker could be interested in hijacking the delivery of an SMS message. Consequently, it is possible to read its content and at the same time prevent its submission to the victim. In practice this could, for example, allow an attacker to steal a mobile TAN (mTAN), which is often used as two-factor authentication for online banking, or any other valuable secret from the message. We also consider an attacker who wants to impersonate a victim that is being called. By hijacking the MT call setup, it is almost impossible for the calling person to verify the callee's identity by means other than the voice.
Our attack is inspired by two specific properties of GSM networks and its protocols.
Network State: GSM networks involve complex state machines [4] and face high amounts of traffic while operating on tight radio resource constraints. Consequently, it is desirable to keep states as short as possible.
Broadcast Information: the paging procedure is initiated on a broadcast medium, namely the PCH portion of the CCCH, and more importantly is performed before any authentication or cipher setup takes place. This implies that any subscriber, including an adversary phone, is able to observe paging requests for other subscribers, plus the inherent inability of the network to distinguish between a fake paging response and a genuine one.
As a net result, it is possible to exploit these aspects to send paging response messages on behalf of a victim being paged. The network stack can under no circumstances determine which of the replies is the legitimate paging response by the intended subscriber.
Denial of Service. The GSM documents do not specify the network behavior in such a situation. Therefore, the behavior of such a race condition is implementation dependent and may be exploitable. However, the state machine nature of GSM protocols suggest that if an attacker is able to answer a paging request faster than the intended subscriber, it will no longer be in a state in which it expects a paging response and thus will ignore the message of a victim. Consequently, the victim will receive a channel release message from the network. Next, the service setup will not succeed if the attacker does not provide the correct cryptographic keys required to complete authentication and cipher setup. Accordingly, the service setup cannot proceed and for example, a call will be dropped. The result is a novel and powerful denial of service attack against MT services that 1. does not rely on frequency jamming; 2. does not rely on resource exhaustion; and 3. is very hard to detect.
We verified that it is indeed possible to win the race for the fastest paging response time, as we will demonstrate. We were able to carry out such an attack in all major German operator networks including O2, Vodafone, T-Mobile, and E-Plus.
MT Session Hijacking. Exploiting the paging procedure does not only allow to disturb communication. It is important to note that in certain network configurations, this attack could be abused beyond performing denial of service attacks. Not all countries properly authenticate each service and use encryption. For example, only under 20% of the networks analyzed by the gsmmap project [41] authenticate mobile terminated phone calls 100% of the time. 50% of the tested networks only authenticate 10% of the services [28].
In such a network, an adversary can effectively takeover any MT service that is not authenticated and impersonate a victim. We assume a network without encryption and insufficient authentication as above. If the attacker is able to successfully exploit the race condition on the air interface, it is possible to directly hijack an MT service by following the protocol specifications. The paging response attack proceeds as in the DoS scenario. However, in this case, by winning the race, an attacker can accept, e.g., a victim's phone call or short message.
The victim of such an attack is thus faced with two consequences. For a mobile terminated call, it is not safe to assume that the called party is indeed the desired person. For short messages this implies that a message may not reach the victim, but additionally also that its contents cannot be considered secret.
Even if the network is configured to use encryption, an attacker is merely required to perform an additional step. In an encrypted network without proper authentication, the paging procedure is followed by the cipher setup. During this process to create an encrypted channel, the network sends a cipher mode command message to notify the MS of the encryption algorithm to be used. The cipher mode complete response from the MS indicates a completion of the cipher setup. In a network that uses encryption, this response has to be encrypted using the session key Kc as input to the A5 encryption algorithm. This session key is derived from a secret key Ki that is stored on the SIM card issued by the operator and a random challenge RAND sent from the network to the MS. Due to the lack of perpetual authentication, an attacker can fully impersonate the victim after cracking the session key Kc and sending the cipher mode complete message. The cracked session key then allows to decrypt the subsequent communication that follows the cipher setup.
In practice, essentially both commonly used GSM cipher algorithms, A5/2 and A5/1, have been broken and demonstrated to be cryptographically weak [17, 18, 23, 39]. The session key can be acquired before hijacking the service by sniffing air traffic and using the kraken tool [40]. Also, some networks are configured to still use A5/0 [26], which does not provide any encryption. This further simplifies such an attack in those commercially deployed networks. Furthermore, for the subsequent paging response attack, an attacker does not even require physical proximity to a victim, because, as explained earlier, the carrier network is paging throughout an entire location area. In order to exploit this, an attacker requires a mobile device that enables him to observe traffic on the air interface and send arbitrary messages to the network. Additionally, a practical attack requires the fake response to arrive prior to the victim's message. Therefore, the attack is significantly challenging in terms of timing.
We successfully implemented both, the MT service hijacking and the denial of service attack. For the sake of simplicity, we obtained the session key through the SIM browser in the engineering mode of a Blackberry phone. Nevertheless, as outlined before this step, it can be trivially obtained by a 3rd party by using a tool like kraken [40]. Cracking of Kc is merely a step that has to be performed prior to our attack, but is not part of the problem itself, which is the race condition. Given a known Kc, our code to take over an MT session, can hijack the transmission of a short message delivery in a real network.
It is important to note that the main reason for evaluating the paging race condition in GSM was the availability of freely modifiable hardware and software. However, modern telecommunication standards such as UMTS or LTE are making use of exactly the same paging procedure principles [11, 14, 15]. Insufficient cryptography and authentication further escalate the problem, but the root cause does not only pertain to GSM.
We will continue to examine the requirements, boundary conditions, and feasibility of mounting such an attack in practice.
Launching such an attack requires hardware and software to interact with GSM base stations. More precisely, the attack relies on a device which allows us to modify its baseband (BB) implementation in order to control its radio communication. Traditionally this has been very difficult due to the closed nature of the GSM industry (phone manufacturers, baseband vendors, infrastructure equipment suppliers). For many years there existed no freely modifiable radio communication hardware with GSM stack implementations. While the GSM specifications are publicly available (very comprehensive though, over 1000 PDF documents), there are very few manufacturers of GSM equipment who have released any public documentation.
However, this situation has changed in the last years with the availability of inexpensive hardware such as the Universal Software Radio Peripheral (USRP) [22] and various software implementations around the Osmocom [45] project. Additionally, in 2004 the source code of the Vitelcom TSM30 mobile phone was uploaded to a Sourceforge project [37] which allowed a broader audience to study a GSM phone stack for the first time.
Hardware Selection. There are basically three possible choices when it comes to the hardware selection of our desired radio device: USRP, Vitelcom TSM30, and certain TI Calypso chipset based phones. All of these devices can be utilized as GSM radio transceivers with software modifications. Yet some of these come with intrinsic disadvantages. First, for the USRP there is currently no GSM baseband implementation that allows the device to be used as a handset. While we could have implemented this, it would have been a very demanding task. Second, even though available, the TSM30 source code is a full-featured baseband implementation, which is too complex for our needs. Moreover, the availability of TSM30 devices is sparse and they are not easy to obtain.
Instead we used Motorola C123 and Motorola C118 phones, which are based on the TI Calypso chipset. These phones are inexpensive (around 20 Euros), easy to obtain in quantity, and more importantly can be used in combination with the Free Software baseband implementation OsmocomBB [47]. This enables us to receive over-the-air traffic and send arbitrary GSM frames.
Implementation. OsmocomBB implements a simplified version of the GSM stack. The GSM physical layer (L1) firmware runs on the phone, while the data-link layer (L2) and Layer 3 (L3) run on a computer as an application (layer23). L1 and layer23 communicate with each other via a UART serial connection. Layer 2 implements a modified version of the Link Access Protocol for the D channel (LAPD) used in ISDN, called Link Access Protocol on the Dm channel (LAPDm). Layer 3 comprises three sublayers: Radio Resource management, Mobility Management, and Connection Management. As our attack is based on paging, which is part of Layer 3, we required a modified version of the layer23 application.
Figure 3: Experimental setup: Motorola C1XX phones with custom firmware, GPS receivers, and a laptop for serial communication.
In practice our attack is particularly time critical, because we have to win a race condition on the air interface. It became evident that a layer23 implementation that runs on a computer is far too slow to win the race given the bottlenecks such as queueing between multiple layers, scheduling, and the use of UART serial communication. Consequently, we reimplemented a minimal version of LAPDm and Layer 3 directly in the L1 firmware to allow it to run solely on the phone. Specifically this includes the paging protocol, which is part of the radio resource sublayer.
Figure 3 shows our experimental setup consisting of a notebook and several OsmocomBB phones. The serial cables are required in order to flash the firmware. Using this implementation we can camp on specific ARFCNs, observe paging requests within a location area, and send arbitrary GSM layer2/layer3 messages in a timely manner. Additionally, we used OpenBTS [20] in combination with a USRP as a BTS to test our setup and perform various measurements as later described in Section 3.5.
Attacking individual persons requires our OsmocomBB phone to observe air traffic and respond to specific paging requests. In particular paging requests that contain the victims mobile identity. For privacy reasons, most network operators use TMSIs as mobile identities rather than the static IMSI. The TMSI is only valid within a location area and is subject to frequent changes [9]. Therefore, we need to determine the presence and the TMSI of a victim in a given location area.
For this we implemented the method proposed by Kune et al. to reveal the mapping between TMSI and subscriber [30]. We modified OsmocomBB's layer23 mobile application and introduced functionality that issues n (where n is 10-20) phone calls in a row. Next, the application terminates the connection before the target phone is ringing, but late enough so that the network generates a paging request. The victim phone does not ring during this early stage of the protocol flow, because it does not know yet what type of service is incoming. In our tests we empirically determined that, e.g., a time of 3.7 seconds after the CC-Establishment confirmed state has the desired effect in the O2 network. The exact timing may differ slightly, depending on the network that is used to initiate the call and the network in which the victim resides.
At the same time, a second phone is monitoring the PCH of any BTS within the target location area for paging requests. All TMSIs contained in the observed paging requests are logged together with a precise timestamp of the event. It makes sense to choose the ARFCN with the best signal reception to minimize errors and possible delays. By first limiting the resulting log to time ranges in which our calls were initiated, we can extract a number of candidate TMSIs. Further filtering the result set for TMSIs occurring in repeating patterns that reflect our call pattern yields to a very small set of candidate TMSIs or even single TMSIs. This process can be repeated to narrow down the set of candidate TMSIs to a manageable number. If the network uses IMSIs for identification, then an attacker could use the same process to determine the subscriber's identity. Alternatively, an attacker could use a Home Location Register query service to obtain the IMSI directly [1].
By default, the monitoring phone does not react to any paging request. After obtaining the victim TMSI, we transfer the TMSI via HDLC over the serial connection to the monitoring phone. This also changes the phone's role from a solely passive listener to an attacker. It starts to compare TMSIs contained in paging request with the supplied victim TMSI. On every match, the attacking phone promptly initiates the previously introduced paging protocol procedure to respond first. As a result, the paging response by the victim will be ignored and the call will be dropped unless we fully accept the service. At this point, it is not possible to reach the victim anymore. To block MT services over a longer period of time, the subscriber identification procedure needs to be reissued due to TMSI reallocations over time [4].
The success of such an exploit depends essentially on the response time of the attacker and victim devices. To achieve maximum impact, an attacker phone needs to respond faster than the “average” customer device. The response time of the phone depends on a number of factors that are difficult to measure. This includes signal quality, weather, network saturation, application processor operating system, GSM time slots, and others. Yet, most of these parameters only have very little impact on the overall response time.
Table 1: List of tested phones, baseband chipset, and baseband vendor.
As the baseband chipset and its GSM stack implementation handles all radio communication, including the upper layer GSM logic, we suspect it to be a key contributor to a fast response time. We validate this claim by measuring the timing of various phones with different baseband vendors. Referring to a market report [2], Qualcomm and Intel alone account for 60% of the baseband revenue in 2011. Yet, relevant baseband chips and stacks that are currently available in mobile phones on the market are Qualcomm, Intel (formerly Infineon), Texas Instruments, ST-Ericsson, Renesas (formerly Nokia), Marvell, and Mediatek. We tested timing behavior for different phones for each of these vendors. Additionally, we also tested the response time for the OsmocomBB layer23 application to back up our claim that this implementation is too slow to perform our attack. Table 1 lists the tested phone models, chipset names, and the corresponding baseband vendor.
Timing Measurements. It is not feasible to modify the tested devices itself for measurements, as we only have access to the operating system on the application processor, and not the baseband. Furthermore, the phone could only guess when its response hits the serving network. Thus, in order to estimate the paging response time, we operate our own test GSM BTS based on a USRP and OpenBTS [20]. OpenBTS implements a simplified GSM network stack running on commodity hardware while using the USRP device as a transceiver. We patched OpenBTS to obtain timing information for the different steps during the paging procedure. Specifically, we are interested in the time a phone needs to acquire a radio channel and to send the paging response. This includes two parts of the paging procedure, the time between the initial paging request and the channel request, and the time between the initial paging request and the reception of the paging response. We log both of these timestamps for the relevant baseband vendors in nanoseconds using clock_gettime(2). Additionally, we measure the same for an attack phone running our own lightweight, OsmocomBB-based baseband implementation. To trigger paging activity, we consecutively send 250 short messages, one after each channel teardown, to our test devices.
While we could have also used software like OpenBSC [25] in combination with a nanoBTS [27], we decided to utilize OpenBTS to be in full control over the transmission and reception. The nanoBTS is controlled over Ethernet, runs its own operating system, including scheduling algorithms, and cannot be modified. Thus, we used OpenBTS to minimize the deviation that may occur due to the nature of this BTS device.
Timing Observations. Figure 4 summarizes the results of our time measurements for each baseband vendor. It shows the elapsed time between the first paging request message sent to the phone, the arrival of the channel request message, and the occurrence of the paging response. Interestingly, the generation of the phone had little influence on the response timing. In our tests, a Nokia 3310, which is almost 10 years older than the tested Nokia N900, shows almost the same timing behavior. We do not have a definitive answer to explain this observation. However, a plausible explanation can be found in the age of GSM. GSM was developed in the 1980s and most of the mobile telephony stacks for GSM are of this era. As most baseband vendors nowadays concentrate their efforts on exploring the technical challenges of 3G and 4G telephony standards, we believe that GSM stacks have not been modified for a long time. We do not expect significant modifications of baseband stacks by the respective vendors nowadays. Thus, we assume that timing behavior across different phone platforms using the same baseband will show similar patterns.
Figure 4: Time difference between initial paging request and subsequent channel request or paging response for different baseband vendors. Confidence interval: 95%.
The most important observation from Figure 4 is that on average, with a confidence interval of 95%, our minimal OsmocomBB-based implementation is the fastest in transmitting the channel request and paging response. For our implementation, there is roughly a 180 milliseconds delay between the paging request and the arrival of the paging response. Thus, on average our attack implementation is able to transmit the final paging response prior to all other major basebands and can be conducted within the duration of a single multiframe (235.4 ms). This includes the OsmocomBB layer23 mobile application, which is significantly slower than our self-contained layer1 attack software and shows similar timing performance as conventional phones.
Therefore, with a very high likelihood, our software is able to win the race. It is also noteworthy that our lightweight stack can transmit the paging response almost immediately after the channel request (and reception of the Immediate Assignment). The test devices show a gap of at least 200ms before the transmission of the paging response. We expect that this is related to internal scheduling algorithms and queuing mechanisms between different layers of the baseband implementation.
Besides attacking individual subscribers, we show that it is also possible to leverage this attack to disrupt network service in large geographical regions. As explained in Section 2, the serving network does not always have the knowledge of the exact location a subscriber resides in. As a consequence, it also does not know which BTS is currently within a good reception of the mobile device. The phone announces a change of the location area by performing the Location Update [4] procedure. By monitoring System Information [4] messages on the Broadcast Control Channel (BCCH), a phone can keep track of location areas served by the BTSs within reception. The aforementioned lack of knowledge is compensated by the network by distributing paging requests throughout all base stations in the location area. This implies that an adversary is able to observe and respond to paging requests not only transmitted by a single a BTS, but within a larger geographical region formed by the location area.
We already showed in Section 3.5 that we win the race for the paging response with high probability. Given that an attacker is able to answer all paging requests that can be observed on the PCH, it is possible to perform a denial of service attack against all MT services within the location area. Depending on its size, the impact of this would be massive, e.g., breaking MT calls in areas as large as city districts or even bigger regions. However, in practice there are a few obstacles to consider.
Depending on the paging activity, it is unlikely that service in an entire geographical can be disrupted by a single attacker phone. In order to send the paging response, the MS has to tune to a dedicated channel. As a result, it would not be able to observe paging requests while being in dedicated mode. After sending the response, the attacker MS has to resynchronize with the BTS to observe CCCH/PCH traffic again. By logging timestamps for the various protocol steps, we measured the time for this procedure on the OsmocomBB side. On average we need 745 milliseconds to resynchronize in order to receive further paging requests after we sent the response. Furthermore, as shown in Figure 4, we need on average 180 milliseconds to transmit the paging response. This means that in ideal conditions, with a single phone, we are able to handle up to
Depending on the network activity, this may or may not be enough to answer all paging requests. Additionally, we need to examine the different paging activities that can be seen in real operator networks. If the paging activity is very large, then the attacker may need to use multiple phones to perform the attack.
Finally, to get an understanding of the impact of such an attack, we need to determine the size of the geographical region covered by a location area.
An attack against an entire location area, e.g., in a metropolitan area, requires an adversary to respond to all paging requests in that area. Consequently, the efficiency of a large-scale attack depends on the operator specific paging activities and the allocated resources on the attacker side.
For the purpose of estimating paging activity, we modified our OsmocomBB stack to log all TMSIs in combination with a time stamp of its appearance. Because the paging requests are broadcasted throughout a location area, camping on one operator BTS for that area is sufficient to observe all paging activity for that area on the CCCH/PCH. We recorded the TMSIs in paging requests for all major German operators in a metropolitan area over a time period of 24 hours. The logs were created at exactly the same location, at the same date and time. We observed that in some cases the network is not paging with the TMSI but with the IMSI. E.g., if the subscriber is marked as attached to the network but cannot be reached using the TMSI, the MSC starts paging using the IMSI. In this case, depending on the operator network configuration, paging may also be performed outside of the location area. However, this type of paging request is the minority and thus ignored in our measurements. Furthermore, assuming that a subscriber is present in the monitored location area, the network very likely already paged using the TMSI in this area. Obviously, it is simple to implement the attack in the case that network pages using IMSIs instead of TMSIs. In fact our code can also handle IMSIs.
Figure 5: Number of TMSIs per minute contained in paging requests of four major German operators over 24 hours.
Figure 5a summarizes the paging observations. The first observation to be made is that paging activity heavily varies throughout the time of the day. The observed pattern is not random, but rather reflects human activity during typical days. It is also interesting to note that the amount of paging requests heavily differs among the various tested operators. While for example E-Plus at peak times has a rate of roughly 415 TMSIs contained in paging requests per minute, Vodafone has almost 1200 in the same time period.
Such differences can be caused for example by the number of active subscribers in the network, or the size of the respective location area. During this measurement, we noticed several reoccurring TMSI patterns. Vodafone is actually always paging each TMSI at least two times. A second paging request is always issued two seconds after the initial paging request. This explains the massive amount of paging requests and we suspect this to be an attempt to improve the overall subscriber availability. Also, our logged data shows that some of these TMSIs are paged at regular intervals. We believe that these requests may partially be directed at M2M devices, e.g., for remote monitoring.
Figure 5b shows a filtered version of Figure 5a. Specifically, we filtered appearances of TMSIs contained in paging requests that we do not need to respond to. 3GPP TS 04.08 [4] specifies a timer, T3113, that is set on transmission of a paging request. If no paging response was received prior to the expiry of this timer, the network reissues the paging request by paging the mobile subscriber again. However, assuming that we are able to observe and respond to all paging requests, this retransmission would not occur during an attack. Therefore, these can be filtered from the result. By analyzing the logged TMSIs and the respective timestamps, we recorded the reappearance of each TMSI that was originally transmitted as part of a paging request. The vast majority of reappearances in time reach a common maximum which we assume is the timer value. A prevalent value seems to be five seconds. It is also reasonable that this is caused by a triggered timer. A normal call setup takes longer than five seconds [30] and short messages are queued at the SMS service center and likely transmitted over the same channel following one paging request.
As a result, the overall activity of relevance in practice is lower than the general amount of TMSIs contained in observed paging requests. The Vodafone measurements can be reduced by almost 22% during peak times and 33% during low activity times. However, due to the limited memory resources of the attacking phones, we cannot take this into account during an active attack.
The measured data in Section 4.1 suggests that even in location areas with low paging activity an attacker needs more than a single phone to respond to all paging requests. Thus, paging requests need to be distributed across multiple attacking phones. While serial communication could be used to coordinate these efforts, it also poses a significant slowdown. Consequently, using serial communication would lower the chance to win the race. We therefore decided to not make use of any actual communication between attacking devices, but to use a probabilistic approach instead.
Figure 6: Statistical distribution of each TMSI byte contained in paging requests for O2. Based on 437734 TMSIs.
For this, we analyzed the TMSI values to determine the statistical distribution of each individual TMSI byte as contained in respective paging requests. Namely, to prevent the collection of mobile subscriber identities and thus enable tracking, mobile phones are in most cases identified by their TMSI instead of their IMSI. To provide strong anonymity, a network should therefore sufficiently randomize those short term identities to provide unlinkability. A statistically uniform distribution would ease randomly distributing the paging load across multiple phones. However, an analysis of collected TMSIs made it clear that not all bits of the TMSI are sufficiently random or at least uniformly distributed. This may be, because some parts of the TMSI can be related to, e.g., the time of its allocation [8]. We also observed that certain bytes of the TMSI appear more frequently in specific ARFCNs. Thus, we further analyzed the distribution of each individual of the four TMSI bytes, for all tested operators. We use O2 as an example operator here even though nearly identical patterns can be seen for other carriers.
Figure 6 shows for each possible byte value how often a specific value was found in TMSIs contained in paging requests that we logged. As visible, all byte values are not uniformly distributed. However, 6a, 6b, and 6c show a significantly different pattern from 6d. Not every possible value of the least significant byte (LSB) of the TMSI is encountered with equal frequency on the air interface. For example the value 0xff
is not used at all. Some seem to be more likely than others. Nonetheless, 6d shows that value ranges are close to a uniform distribution. This becomes more plausible in Figure 7, which compares the cumulative distribution function for observed values of the LSB and the uniform distribution. We make use of this characteristic to delegate specific attack phones to dedicated TMSI LSB byte ranges. This way, we can distribute the immense amount of paging between several phones by simply using randomization and thus avoid coordination at all. Outliers for certain value ranges could be compensated by adding more phones to the specific range. To prevent recompilation of our OsmocomBB based firmware for distinct value range, we introduced a mechanism to configure the range at runtime. This mechanism is similar to the TMSI setting described in Section 3.4 and is based on a HDLC message over serial.
Figure 7: Cumulative distribution function for Byte 0 (LSB) of TMSIs contained in paging requests observed for O2.
A similar distribution could be achieved by hashing TMSI values and assigning individual phones to specific hash prefixes. However for simplicity and to reduce the response time as much as possible we decided not to do this.
When performing a large-scale attack against a geographic region, we have to determine the size covered by the location area. Specifically, this knowledge enables an adversary to precisely plan the affected zone of such an attack. An attacker carefully selects the target location areas for specific regions and operators.
Location areas are not organized to cover an equally large area. As pointed out in Section 4.1, this impacts the paging activity that can be observed in a specific location area. Their size differs among operators and specifics of the covered environment. In fact, because of its impact on mobility management, location area planning is an important aspect for mobile network operators. Its size manifests a trade-off between subscriber-induced and network-induced performance degradation. Small location areas can cause a significant signaling overhead in the core network due to frequent location updates. It has already been demonstrated, that this can lead to denial of service like conditions [36]. A large location area causes additional load due to the paging overhead.
The Location Area Code (LAC), which is part of the Location Area Identifier (LAI), is broadcasted by each BTS in regular intervals on the BCCH via a System Information Type 3 message. To map location areas, we use a slightly modified version of the cell_log application from the OsmocomBB tool-chain. cell_log scans all ARFCNs in the assigned GSM frequency spectrum for a carrier signal. It then attempts to sync to these frequencies and logs decoded system information messages as broadcasted on the BCCH. In combination with off-the-shelf GPS receivers, we determine the geographic location of the observed LAC.
By slowly driving through the city in a car, we collected a number of waypoints and the respective GSM cells in sight. To minimize the loss due to driving speed, the scan process was performed simultaneously on eight OsmocomBB devices. In order to estimate the surface covered by a location area, we calculated the convex hull of points within the same LAC. The size of location areas in a metropolitan area such as Berlin varies from 100km2 to 500km2. From our study, the average location area in Berlin covers around 200km2. Data from OpenCellID and Crowdflow [29, 31] indicate that outside of the city center location areas exist that cover over 1000km2. Figure 8 shows location areas that we mapped for one of the four major operators in Berlin.
Most location areas partially overlap with geographic regions that are part of a different area. These results provide a rough insight on dimensions of location areas in a metropolitan area. It also shows that a large-scale denial of service attack based on the paging procedure has a significant impact to a large number of subscribers.
The attack procedure as introduced in Section 3 does prevent MT services from being delivered to a subscriber. However, it does not provide a persistent way to cause denial of service conditions. Access to mobile services is denied as long as an adversary is running the attack. Accordingly, calls reissued by subscribers to reach a person, have to be attacked again, which may further raise the paging load. To prevent this, we make use of another attack that has been publicized before. Munaut discovered that the IMSI DETACH message is not authenticated in GSM and 3G networks [34]. As a result, an attacker can easily craft detach messages on behalf of a victim. This message acts as an indication to the network that a subscriber is no longer marked as available for the carrier. As a result, the network marks the mobile station as detached and will no longer page the subscriber until it reassociates with the network. Consequently, this stops the network from delivering MT services. During normal operation, this message is generated by the phone and sent to the network, e.g., when it is being switched off.
Figure 8: Location Areas of Vodafone Germany in Berlin.
The mobile identity contained in the detach indication message is not limited to IMSIs, but can also contain TMSIs. By combining the paging response attack with the IMSI detach attack, it is therefore possible to amplify its effect. After each paging response, our OsmocomBB implementation reuses the collected mobile identity to send a detach message. Accordingly, our attack ensures that an initial call to a subscriber will be terminated and that reissued services such as calls will not cause paging activity again. Thus, by doing so, we effectively reduce the paging load over time.
We continue to evaluate the feasibility of a large-scale attack using multiple phones against commercially deployed networks. The transmission of a large number of RACH bursts and SDCCH channel allocations may be limited due to radio resource bottlenecks. We therefore verify, whether or not a single cell provides enough resources, or an attack needs to be conducted in a distributed fashion.
Prerequisites. In the following, we denote the TMSI paging request activity as rrequest and the number of required phones to handle this respectively as nphones. As discussed in Section 4.2, the TMSI LSB value range is used to equally distribute the paging load across multiple attacking phones. Therefore, assigned phones need to wait for a range match. On average this requires tmatching = rrequest/nphones seconds. On a match, the phone sends a channel request on the RACH and a paging response on an SDCCH in tresponse seconds. It finally synchronizes back to the CCCH in tsync seconds to be prepared for the next run. The required time for an attack is therefore tattack = tmatching + tresponse + tsync seconds. Thus, for a successful attack, the minimum number of phones an adversary requires is nphones ≥ rrequest ·tattack.
RACH Resource Constraints. The available resources provided by a single cell depend on its configuration. The GSM specifications defines a number of valid channel configurations [7]. Thus, an adversary is limited by the number of available RACH slots and the number of SDCCHs that a cell provides. In practice cells in metropolitan areas use the BCCH+CCCH or FCCH+SCH+CCCH+BCCH channel configurations on the first time slot. These are not combined with DCCHs and therefore allow all 51 bursts on the uplink of a 235.4 ms 51-multiframe to be used to transmit channel requests on the RACH. Because the RACH is a shared medium, collisions with requests of other subscribers may occur. According to Traynor et al. [36], the maximum resulting throughput is 37%. As a result, an attacker can transmit up to rRACH = 51/0.2354 · 0.37 ≈ 80 channel requests per second in a single cell. Consequently, given that nphones ≤ nRACH = rRACH ·tattack is true, a single cell can fulfill the channel request requirements.
SDCCH Resource Constraints. Following the channel allocation, the adversary phone uses an SDCCH to send the paging response. Analogical to the RACH, SDCCHs in medium- or large-sized cells in a metropolitan area are provided on a separate time slot. A typical SDCCH/8+SACCH/8 channel configuration comprises of 8 SDCCHs per 51-multiframe, in theory offering: rSDCCH = 8/0.2354 = 34SDCCH/second. Clearly this may make the signaling channel the major bottleneck for this attack. Accordingly, the occupation time of these channels needs to be taken into account. For example according to Traynor et al., a rough estimation of the occupation time of the channel for an Insert Call Forwarding operation is 2.7 seconds [36]. Compared to this, our attack occupies the channel for a very short duration, as shown in Section 3.5.
Similar to the RACH requirements, the maximum number of attacking phones per cell is therefore bounded by nphones ≤ nSDCCH = rSDCCH ·tattack.
Example Computation. The following is an example, based on the peak values from our measurements gathered for the E-Plus network and as reflected in Table 2. Based on the previous equations, at least nphones ≈ 10.820 phones are required to attack a typical location of E-Plus. Given the costs of the Motorola devices, this is a reasonably small amount. Each paging response attack lasts tattack ≈ 1.564 seconds. This allows up to nRACH ≈ 125 phones without a saturation of the RACH. For the SDCCH, the above formula yields to a maximum of nSDCCH ≈ 53 phones. It is also important to note that the number of phones is proportional to the impact. This means that half of the attacking phones would still be able disrupt service for half of the subscribers of a location area.
Table 2: Example resource requirements for E-Plus.
A single cell therefore provides enough resources to attack a complete location area of a considerably small operator. In practice these resources are shared with legit MO and MT traffic. The exact traffic patterns and the number of cells per location is unknown. Furthermore, a combination with the IMSI detach attack prevents phones that reside in the location area to generate further MT activity. As we cannot estimate these activities, we do not include this in our calculation. Nevertheless, the results indicate the required resources for a large-attack do not extensively exhaust the resources provided by a cell. Additionally, there is no technical limitation of distributing attacking phones across small number of different cells.
In this section we present two countermeasures against the attacks we developed. Specifically, we propose different approaches to resolve both problems. A solution is required to not only fix the denial of service issue, but at the same time the MT service hijacking. Unlike the second prevention strategy, the first solution solves both issues at once, but requires a protocol change.
For the first solution, we propose a change to the paging protocol procedure [4]. To perform authentication, the network is sending a 128 bit random challenge (RAND) to the subscriber. Based on the secret key Ki that is only stored on the SIM card or in the authentication center of the network, the subscriber computes a 32 bit response value using the A3 algorithm. The so-called Signed Response (SRES) value is sent back to the network. In the same fashion, the operator network computes SRES based on Ki as stored in the authentication center. If both SRES values match, the subscriber successfully authenticated itself to the network. However, as mandated in the GSM specification, the authentication is performed after the paging response is processed. The same principle applies to UMTS [12]. Therefore, the paging response itself is not authenticated. By adapting the protocol to include the RAND value in the paging request and SRES in the paging response, this can be changed. This implies that all of the paging responses are authenticated, which eliminates session hijacking. At the same time a paging response that includes authentication information can be used by the network to validate the response before changing the state to not expect further paging responses. Thus, also solving the denial of service attack. It is important to note that this requires a fresh RAND for every authentication to prevent replay attacks. This is similar to the protocol change proposed by Arapinis et al. [16], which encrypts the paging request using a shared session key called unlikability key. While they use this key to prevent tracking of subscribers via IMSI paging, the same modification also prevents our described attacks. Unfortunately, partly due to the difficulty of updating devices in the field, the industry is reluctant to apply new protocol changes to commercially deployed networks.
The second solution involves no protocol change, but has to dismantle each problem individually. MT session hijacking issue can be addressed, by enforcing authentication for each service request. This would also overcome MO session hijacking. In order to eliminate the denial of service attack, the MSC/VLR state machine needs to be changed. Specifically, the MSC/VLR has to be able to map all incoming paging responses to the correct service as long as no fully authenticated session exists. Accordingly, this circumvents the denial of service attack.
In the last years, various attacks against cellular networks and their protocol stacks have been published. We separate related work into two parts. First, attacks that allow an adversary to impersonate a victim. Second, denial of service attacks in mobile networks that result in customers not being able to receive MT services.
Impersonation. In [28] Nohl and Melette demonstrated that it is possible to impersonate a subscriber for mobile originated services. By first sniffing a transaction over-the-air, cracking the session key Kc, and knowing a victims TMSI, they were able to place a phone call on behalf of a victim. The authors of [24] used a femtocell device under their control in order to impersonate a subscriber that is currently booked into the femtocell. By relaying authentication challenges to a victim, they were able to send SMS messages on behalf of the subscriber. Our work in this paper is different, as we do not attack MO services, but MT services. Thus, in our research, the considered victim is, e.g., the called party and not the caller. Contrary to attacking MO services, attacking MT services is time critical.
Denial of Service. We consider relevant types of denial of service attacks in mobile networks that affect MT services for subscribers. We determined three types of denial of service attacks that fulfill this requirement: attacks directly targeting the victim phone, attacks focusing on the network, and attacks affecting subscribers, but without direct communication.
The first type comprises DoS attacks that target mobile devices directly, most notably phones. These issues are usually baseband/phone specific and caused by implementation flaws. Several vulnerabilities have been discovered in mobile phones that can lead to code execution and denial of service conditions [33, 46]. Particularly, the Curse-of-Silence flaw enabled an adversary to disable the MT SMS functionality of specific Nokia devices [44]. In [38] Racic et al. demonstrate that it is possible to stealthily exhaust mobile phone batteries by repeatedly sending crafted MMS messages to a victim. Consequently, the phone battery will drain very fast, eventually the phone will switch off, and MT services can no longer be delivered to a victim. Our attack is inherently different from these kinds of attacks, because it is independent from the target device type and does not interact with the victim directly at all.
The second category consists of attacks that target the operator itself, and as a consequence also impact MT services for subscribers. These types are caused by design flaws. Spaar showed in [43] that it is feasible to exhaust channel resources of a base station by continuously requesting new channels on the RACH. Unlike our attack, this attack is limited to a single BTS and does not affect subscribers served by a different cell. Therefore, to attack a metropolitan area, an attacker needs to communicate with and attack every BTS in that area. Enck et al. [21] showed that it is practical to deny voice or SMS services within a specific geographical area, by sending a large number of short messages to subscribers in that area. Serror et al. [42] exhibit that similar conditions can be achieved in CDMA2000 networks by causing a significant paging load and delay of paging messages via Internet originating packets to phones. A comparable resource consumption attack for 3G/WiMax has been demonstrated by Lee et al. in [32]. As Traynor et al. outline [36], it is also possible to degrade the performance of large networks by utilizing a phone botnet and, e.g., repeatedly adding and deleting call forwarding settings. All of these attacks exhaust network resources mostly due to generated signaling load. As a result, services can no longer be reliably offered to mobile subscribers, effectively causing denial of service conditions. This includes MT and MO services. We exploit a race condition in the MT paging procedure and do not attack the core network itself. Our attack does not intend to generate excessive signaling traffic in the network. As a result, it is not prevented by proposed mitigations for these kind of issues from previous research.
Our attack fits into the last of the three types of attacks that result in DoS for MT services. Most network attacks aim to abuse generated signaling to decrease the overall performance of the operator network. Attacks against mobile devices merely use the network as a bearer to deliver a specific payload to the phone. The third category is stipulated by attacks that target the mobile device itself, but do not send any payload to it. The aforementioned IMSI detach attack discovered by Munaut [34] can effectively cause that a service such as a call, will not result in paging requests by the network anymore. As described in section 4.4, this design flaw even supports our attack. Contrary to this vulnerability, the paging response attack allows us to precisely control when and where a victim can be reached or not. After sending a detach indication, an attacker cannot control anymore for how long this state is kept.
Our approach can be used either to hijack a session or to perform a denial of service attacks. We do attack mobile stations but neither by exhausting network resources, nor by directly communicating to the target device. We can target specific geographical areas, specific subscribers or a group of subscribers without the need to build a hit list of phone numbers residing in that area. Depending on the target, the attack can be either distributed or performed from a single phone. Additionally, the involved costs for this attack are as cheap as acquiring the required number of Motorola C1XX phones.
The trust in the security of cellular networks and specifically the widely used GSM standard has been shattered several times. Yet, attacks against mobile terminated services are a minority. The undisturbed operation of telecommunication networks is traditionally based on trust. The inherent trust that each subscriber and participant in communication plays by the rules. Nonetheless, due to several available and modifiable software and hardware projects for telecommunication, this trust relationship has to be considered broken. In this paper we showed how to exploit the trust in paging procedures on a broadcast medium. We demonstrated that it is possible to leverage a race condition in the paging protocol to a novel denial of service attack and the possibility to hijack mobile terminated services in GSM. Moreover, we showed that this attack can not only disturb communication for single subscribers, but can also greatly affect telephony in a larger geographical region formed by location areas. A motivated attacker can interrupt communication on a large scale by merely utilizing a set of inexpensive consumer devices that are available on the market. This is considerably more efficient compared to traditional radio jamming due to the broad frequency range of mobile carrier networks and the size of location areas. In order to mitigate these attacks, we propose two different countermeasures of which one does not require a protocol change. We strongly encourage future standards to consider threats caused by active attackers that tamper with user equipment and protocol stacks.
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Dowser is a ‘guided’ fuzzer that combines taint tracking, program analysis and symbolic execution to find buffer overflow and underflow vulnerabilities buried deep in a program's logic. The key idea is that analysis of a program lets us pinpoint the right areas in the program code to probe and the appropriate inputs to do so.
Intuitively, for typical buffer overflows, we need consider only the code that accesses an array in a loop, rather than all possible instructions in the program. After finding all such candidate sets of instructions, we rank them according to an estimation of how likely they are to contain interesting vulnerabilities. We then subject the most promising sets to further testing. Specifically, we first use taint analysis to determine which input bytes influence the array index and then execute the program symbolically, making only this set of inputs symbolic. By constantly steering the symbolic execution along branch outcomes most likely to lead to overflows, we were able to detect deep bugs in real programs (like the nginx
webserver, the inspircd
IRC server, and the ffmpeg
videoplayer). Two of the bugs we found were previously undocumented buffer overflows in ffmpeg
and the poppler
PDF rendering library.
We discuss Dowser, a ‘guided’ fuzzer that combines taint tracking, program analysis and symbolic execution, to find buffer overflow bugs buried deep in the program's logic.
Buffer overflows are perennially in the top 3 most dangerous software errors [12] and recent studies suggest this will not change any time soon [41, 38]. There are two ways to handle them. Either we harden the software with memory protectors that terminate the program when an overflow occurs (at runtime), or we track down the vulnerabilities before releasing the software (e.g., in the testing phase).
Memory protectors include common solutions like shadow stacks and canaries [11], and more elaborate compiler extensions like WIT [3]. They are effective in preventing programs from being exploited, but they do not remove the overflow bugs themselves. Although it is better to crash than to allow exploitation, crashes are undesirable too!
Thus, vendors prefer to squash bugs beforehand and typically try to find as many as they can by means of fuzz testing. Fuzzers feed programs invalid, unexpected, or random data to see if they crash or exhibit unexpected behavior1. As an example, Microsoft made fuzzing mandatory for every untrusted interface for every product, and their fuzzing solution has been running 24/7 since 2008 for a total of over 400 machine years [18].
Unfortunately, the effectiveness of most fuzzers is poor and the results rarely extend beyond shallow bugs. Most fuzzers take a ‘blackbox’ approach that focuses on the input format and ignores the tested software target. Blackbox fuzzing is popular and fast, but misses many relevant code paths and thus many bugs. Blackbox fuzzing is a bit like shooting in the dark: you have to be lucky to hit anything interesting.
Whitebox fuzzing, as implemented in [18, 7, 10], is more principled. By means of symbolic execution, it exercises all possible execution paths through the program and thus uncovers all possible bugs – although it may take years to do. Since full symbolic execution is slow and does not scale to large programs, it is hard to use it to find complex bugs in large programs [7, 10]. In practice, the aim is therefore to first cover as much unique code as possible. As a result, bugs that require a program to execute the same code many times (like buffer overflows) are hard to trigger except in very simple cases.
Eventual completeness, as provided by symbolic execution, is both a strength and a weakness, and in this paper, we evaluate the exact opposite strategy. Rather than testing all possible execution paths, we perform spot checks on a small number of code areas that look likely candidates for buffer overflow bugs and test each in turn.
The drawback of our approach is that we execute a symbolic run for each candidate code area—in an iterative fashion. Moreover, we can discover buffer overflows only in the loops that we can exercise. On the other hand, by homing in on promising code areas directly, we speed up the search considerably, and manage to find complicated bugs in real programs that would be hard to find with most existing fuzzers.
Contributions The goal we set ourselves was to develop an efficient fuzzer that actively searches for buffer overflows directly. The key insight is that careful analysis of a program lets us pinpoint the right places to probe and the appropriate inputs to do so. The main contribution is that our fuzzer directly zooms in on these buffer overflow candidates and explores a novel ‘spot-check’ approach in symbolic execution.
To make the approach work, we need to address two main challenges. The first challenge is where to steer the execution of a program to increase the chances of finding a vulnerability. Whitebox fuzzers ‘blindly’ try to execute as much of the program as possible, in the hope of hitting a bug eventually. Instead, Dowser uses information about the target program to identify code that is most likely to be vulnerable to a buffer overflow.
For instance, buffer overflows occur (mostly) in code that accesses an array in a loop. Thus, we look for such code and ignore most of the remaining instructions in the program. Furthermore, Dowser performs static analysis of the program to rank such accesses. We will evaluate different ranking functions, but the best one so far ranks the array accesses according to complexity. The intuition is that code with convoluted pointer arithmetic and/or complex control flow is more prone to memory errors than straightforward array accesses. Moreover, by focusing on such code, Dowser prioritizes bugs that are complicated—typically, the kind of vulnerabilities that static analysis or random fuzzing cannot find. The aim is to reduce the time wasted on shallow bugs that could also have been found using existing methods. Still, other rankings are possible also, and Dowser is entirely agnostic to the ranking function used.
The second challenge we address is how to steer the execution of a program to these “interesting” code areas. As a baseline, we use concolic execution [43]: a combination of concrete and symbolic execution, where the concrete (fixed) input starts off the symbolic execution. In Dowser, we enhance concolic execution with two optimizations.
First, we propose a new path selection algorithm. As we saw earlier, traditional symbolic execution aims at code coverage—maximizing the fraction of individual branches executed [7, 18]. In contrast, we aim for pointer value coverage of selected code fragments. When Dowser examines an interesting pointer dereference, it steers the symbolic execution along branches that are likely to alter the value of the pointer.
Second, we reduce the amount of symbolic input as much as we can. Specifically, Dowser uses dynamic taint analysis to determine which input bytes influence the pointers used for array accesses. Later, it treats only these inputs as symbolic. While taint analysis itself is not new, we introduce novel optimizations to arrive at a set of symbolic inputs that is as accurate as possible (with neither too few, nor too many symbolic bytes).
In summary, Dowser is a new fuzzer targeted at vendors who want to test their code for buffer overflows and underflows. We implemented the analyses of Dowser as LLVM [23] passes, while the symbolic execution step employs S2E [10]. Finally, Dowser is a practical solution. Rather than aiming for all possible security bugs, it specifically targets the class of buffer overflows (one of the most, if not the most, important class of attack vectors for code injection). So far, Dowser found several real bugs in complex programs like nginx
, ffmpeg
, and inspircd
. Most of them are extremely difficult to find with existing symbolic execution tools.
Assumptions and outline Throughout this paper, we assume that we have a test suite that allows us to reach the array accesses. Instructions that we cannot reach, we cannot test. In the remainder, we start with a big picture and the running example (Section 2). Then, we discuss the three main components of Dowser in turn: the selection of interesting code fragments (Section 3), the use of dynamic taint analysis to determine which inputs influence the candidate instructions (Section 4), and our approach to nudge the program to trigger a bug during symbolic execution (Section 5). We evaluate the system in Section 6, discuss the related projects in Section 7. We conclude in Section 8.
The main goal of Dowser is to manipulate the pointers that instructions use to access an array in a loop, in the hope of forcing a buffer overrun or underrun.
Throughout the paper, we will use the function in Figure 1 to illustrate how Dowser works. The example is a simplified version of a buffer underrun vulnerability in the nginx-0.6.32
web server [1]. A specially crafted input tricks the program into setting the u
pointer to a location outside its buffer boundaries. When this pointer is later used to access memory, it allows attackers to overwrite a function pointer, and execute arbitrary programs on the system.
Fig. 1: A simplified version of a buffer underrun vulnerability in nginx
.
Figure 1 presents only an excerpt from the original function, which in reality spans approximately 400 lines of C code. It contains a number of additional options in the switch
statement, and a few nested conditional if
statements. This complexity severely impedes detecting the bug by both static analysis tools and symbolic execution engines. For instance, when we steered S2E [10] all the way down to the vulnerable function, and made solely the seven byte long uri path of the HTTP message symbolic, it took over 60 minutes to track down the problematic scenario. A more scalable solution is necessary in practice. Without these hints, S2E did not find the bug at all during an eight hour long execution.2 In contrast, Dowser finds it in less than 5 minutes.
The primary reason for the high cost of the analysis in S2E is the large number of conditional branches which depend on (symbolic) input. For each of the branches, symbolic execution first checks whether either the condition or its negation is satisfiable. When both branches are feasible, the default behavior is to examine both. This procedure results in an exponentially growing number of paths.
This real world example shows the need for (1) focusing the powerful yet expensive symbolic execution on the most interesting cases, (2) making informed branch choices, and (3) minimizing the amount of symbolic data.
Figure 2 illustrates the overall Dowser architecture.
First, it performs a data flow analysis of the target program, and ranks all instructions that access buffers in loops . While we can rank them in different ways and Dowser is agnostic as to the ranking function we use, our experience so far is that an estimation of complexity works best. Specifically, we rank calculations and conditions that are more complex higher than simple ones. In Figure 1, u
is involved in three different operations, i.e., u++
, u--
, and u-=4
, in multiple instructions inside a loop. As we shall see, these intricate computations place the dereferences of u
in the top 3% of the most complex pointer accesses across nginx
.
In the second step , Dowser repeatedly picks high-ranking accesses, and selects test inputs which exercise them. Then, it uses dynamic taint analysis to determine which input bytes influence pointers dereferenced in the candidate instructions. The idea is that, given the format of the input, Dowser fuzzes (i.e., treats as symbolic), only those fields that affect the potentially vulnerable memory accesses, and keeps the remaining ones unchanged. In Figure 1, we learn that it is sufficient to treat the uri path in the HTTP request as symbolic. Indeed, the computations inside the vulnerable function are independent of the remaining part of the input message.
Fig. 2: Dowser– high-level overview.
Next , for each candidate instruction and the input bytes involved in calculating the array pointer, Dowser uses symbolic execution to try to nudge the program toward overflowing the buffer. Specifically, we execute symbolically the loop that contains the candidate instructions (and thus should be tested for buffer overflows)—treating only the relevant bytes as symbolic. As we shall see, a new path selection algorithm helps to guide execution to a possible overflow quickly.
Finally, we detect any overflow that may occur. Just like in whitebox fuzzers, we can use any technique to do so (e.g., Purify, Valgrind [30], or BinArmor [37]). In our work, we use Google's AddressSanitizer [34] . It instruments the protected program to ensure that memory access instructions never read or write so called, “poisoned” red zones. Red zones are small regions of memory inserted inbetween any two stack, heap or global objects. Since they should never be addressed by the program, an access to them indicates an illegal behavior. This policy detects sequential buffer over- and underflows, and some of the more sophisticated pointer corruption bugs. This technique is beneficial when searching for new bugs since it will also trigger on silent failures, not just application crashes. In the case of nginx
, AddressSanitizer detects the underflow when the u
pointer reads memory outside its buffer boundaries (line 33).
We explain step (static analysis) in Section 3, step (taint analysis) in Section 4, and step (guided execution) in Section 5.
Previous research has shown that software complexity metrics collected from software artifacts are helpful in finding vulnerable code components [16, 44, 35, 32]. However, even though complexity metrics serve as useful indicators, they also suffer from low precision or recall values. Moreover, most of the current approaches operate at the granularity of modules or files, which is too coarse for the directed symbolic execution in Dowser.
As observed by Zimmermann et al. [44], we need metrics that exploit the unique characteristics of vulnerabilities, e.g., buffer overflows or integer overruns. In principle, Dowser can work with any metric capable of ranking groups of instructions that access buffers in a loop. So, the question is how to design a good metric for complexity that satisfies this criterion? In the remainder of this section, we introduce one such metric: a heuristics-based approach that we specifically designed for the detection of potential buffer overflow vulnerabilities.
We leverage a primary pragmatic reason behind complex buffer overflows: convoluted pointer computations are hard to follow by a programmer. Thus, we focus on ‘complex’ array accesses realized inside loops. Further, we limit the analysis to pointers which evolve together with loop induction variables, i.e., are repeatedly updated to access (various) elements of an array.
Using this metric, Dowser ranks buffer accesses by evaluating the complexity of data- and control-flows involved with the array index (pointer) calculations. For each loop in the program, it first statically determines (1) the set of all instructions involved in modifying an array pointer (we will call this a pointer's analysis group), and (2) the conditions that guard this analysis group, e.g., the condition of an if
or while
statement containing the array index calculations. Next, it labels all such sets with scores reflecting their complexity. We explain these steps in detail in Sections 3.1, 3.2, and 3.3.
Fig. 3: Data flow graph and analysis group associated with the pointer u
from Figure 1. For the sake of clarity, the figure presents pointer arithmetic instructions in pseudo code. The PHI nodes represent locations where data is merged from different control-flows. The numbers in the boxes represent points assigned by Dowser.
Suppose a pointer p
is involved in an “interesting” array access instruction accp
in a loop. The analysis group associated with accp
, AG(accp)
, collects all instructions that influence the value of the dereferenced pointer during the execution of the loop.
To determine AG(accp)
, we compute an intraprocedural data flow graph representing operations in the loop that compute the value of p
dereferenced in accp
. Then, we check if the graph contains cycles. A cycle indicates that the value of p
in a previous loop iteration affects its value in the current one, so p
depends on the loop induction variable.
As mentioned before, this part of our work is built on top of the LLVM [23] compiler infrastructure. The static single assignment (SSA) form provided by LLVM translates directly to data flow graphs. Figure 3 shows an example. Observe that, since all dereferences of pointer u
share their data flow graph, they also form a single analysis group. Thus, when Dowser later tries to find an illegal array access within this analysis group, it tests all the dereferences at the same time—there is no need to consider them separately.
It may happen that the data flow associated with an array pointer is simple, but the value of the pointer is hard to follow due to some complex control changes. For this reason, Dowser ranks also control flows: the conditions that influence an analysis group.
Say that an instruction manipulating the array pointer p
is guarded by a condition on a variable var
, e.g., if(var10)
{*p++=0;
}. If the value of var
is difficult to keep track of, so is the value of p
. To assess the complexity of var
, Dowser analyzes its data flow, and determines the analysis group, AG(var)
(as discussed in Section 3.1). Moreover, we recursively analyze the analysis groups of other variables influencing var
and p
inside the loop. Thus, we obtain a number of analysis groups which we rank in the next step (Section 3.3).
For each array access realized in a loop, Dowser assesses the complexity of the analysis groups constructed in Sections 3.1 and 3.2. For each analysis group, it considers all instructions, and assigns them points. The more points an AG cumulatively scores, the more complex it is. The overall rank of the array access is determined by the maximum of the scores. Intuitively, it reflects the most complex component.
The scoring algorithm should provide roughly the same results for semantically identical code. For this reason, we enforce the optimizations present in the LLVM compiler (e.g., to eliminate common subexpressions). This way, we minimize the differences in (the amount of) instructions arising from the compiler options. Moreover, we analyzed the LLVM code generation strategies, and defined a powerful set of equivalence rules, which minimize the variation in the scores assigned to syntactically different but semantically equivalent code. We highlight them below.
Table 1 introduces all types of instructions, and discusses their impact on the final score. In principle, all common instructions involved in array index calculations are of the order of 10 points, except for the two instructions that we consider risky: pointer casts and functions that return non-pointer values used in pointer calculation.
The absolute penalty for each type of instruction is not very important. However, we ensure that the points reflect the difference in complexity between various code fragments, instead of giving all array accesses the same score. That is, instructions that complicate the array index contribute to the score, and instructions that complicate the index a lot also score very high, relative to other instructions. In Section 6, we compare our complexity ranking to alternatives.
Once Dowser has ranked array accesses in loops in order of complexity, we examine them in turn. Typically, only a small segment of the input affects the execution of a particular analysis group, so we want to search for a bug by modifying solely this part of the input, while keeping the rest constant (refer to Section 5). In the current section, we explain how Dowser identifies the link between the components of the program input and the different analysis groups. Observe that this result also benefits other bug finding tools based on fuzzing, not just Dowser and concolic execution.
Table 1: Overview of the instructions involved in pointer arithmetic operations, and their penalty points.
We focus our discussion on an analysis group AG(accp)
associated with an array pointer dereference accp
. We assume that we can obtain a test input I
that exercises the potentially vulnerable analysis group. While this may not always be true, we believe it is a reasonable assumption. Most vendors have test suites to test their software and they often contain at least one input which exercises each complex loop.
As a basic approach, Dowser performs dynamic taint analysis (DTA) [31] on the input I
(tainting each input byte with a unique color, and propagating the colors on data movement and arithmetic operations). Then, it logs all colors and input bytes involved in the instructions in AG(accp)
. Given the format of the input, Dowser maps these bytes to individual fields. In Figure 1, Dowser finds out that it is sufficient to treat uri
as symbolic.
The problem with DTA, as sketched above, is that it misses implicit flows (also called control dependencies) entirely [14, 21]. Such flows have no direct assignment of a tainted value to a variable—which would be propagated by DTA. Instead, the value of a variable is completely determined by the value of a tainted variable in a condition. In Figure 1, even though the value of u
in line 12 is dependent on the tainted character ch
in line 11, the taint does not flow directly to u
, so DTA would not report the dependency. Implicit flows are notoriously hard to track [36, 9], but ignoring them completely reduces our accuracy. Dowser therefore employs a solution that builds on the work by Bao et al. [6], but with a novel optimization to increase the accuracy of the analysis (Section 4.2).
Like Bao et al. [6], Dowser implements strict control dependencies. Intuitively, we propagate colors only on the most informative (or, information preserving) dependencies. Specifically, we require a direct comparison between a tainted variable and a compile time constant. For example, in Figure 1, we propagate the color of ch
in line 11 to the variables state
and u
in line 12. However, we would keep state
and u
untainted if the condition in line 11 for instance had been either “if(ch!=′/′)”
or “if(ch′/′)”
. As implicit flows are not the focus of this paper we refer interested readers to [6] for details.
Improving on the handling of strict control dependencies by Bao et al. [6], described above, Dowser adds a novel technique to prevent overtainting due to false dependencies. The problems arise when the order of fields in an input format is not fixed, e.g., as in HTTP, SMTP (and the commandline for most programs). The approach from [6] may falsely suggest that a field is dependent on all fields that were extracted so far.
Fig. 4: The figure shows how Dowser shuffles an input to determine which fields really influence an analysis group. Suppose a parser extracts fields of the input one by one, and the analysis group depends on the fields B and D (with colors B and D, respectively). Colors in handlers show on which fields the subsequent handlers are strictly dependent [6], and the shaded rectangle indicates the colors propagated to the analysis group. Excluded colors are left out of our analysis.
For instance, lighttpd
reads new header fields in a loop and compares them to various options, roughly as follows:
As the parser tests for equivalence, the implicit flow will propagate from one field to the next one, even if there is no real dependency at all! Eventually, the last field appears to depend on the whole header.
Dowser determines which options really matter for the instructions in an analysis group by shifting the fields whose order is not fixed. Refer to Figure 4, and suppose we have run the program with options A, B, C, D, and E, and our analysis group really depends on B and D. Once the message gets processed, we see that the AG does not depend on E, so E can be excluded from further analysis. Since the last observed color, D, has a direct influence on the AG, it is a true dependence. By performing a circular shift and re-trying with the order D, A, B, C, E, Dowser finds only the colors corresponding to A, B, D. Thus, we can leave C out of our analysis. After the next circular shift, Dowser reduces the colors to B and D only.
The optimization is based on two observations: (1) the last field propagated to the AG has a direct influence on the AG, so it needs to be kept, (2) all fields beyond this one are guaranteed to have no impact on the AG. By performing circular shifts, and running DTA on the updated input, Dowser drops the undue dependencies.
Even though this optimization requires some minimal knowledge of the input, we do not need full understanding of the input grammar, like the contents or effects of fields. It is sufficient to identify the fields whose order is not fixed. Fortunately, such information is available for many applications—especially when vendors test their own code.
Once we have learnt which part of the program input influences the analysis group AG(accp)
, we fuzz this part, and we try to nudge the program toward using the pointer p
in an illegal way. More technically, we treat the interesting component of the input as symbolic, the remaining part as fixed (concrete), and we execute the loop associated with AG(accp)
symbolically.
However, since in principle the cost of a complete loop traversal is exponential, loops present one of the hardest problems for symbolic execution [19]. Therefore, when analyzing a loop, we try to select those paths that are most promising in our context. Specifically, Dowser prioritizes paths that show a potential for knotty pointer arithmetic. As we show in Section 6, our technique significantly optimizes the search for an overflow.
Dowser's loop exploration procedure has two main phases: learning, and bug finding. In the learning phase, Dowser assigns each branch in the loop a weight approximating the probability that a path following this direction contains new pointer dereferences. The weights are based on statistics on the variety of pointer values observed during an execution of a short symbolic input.
Next, in the bug finding phase, Dowser uses the weights determined in the first step to filter our uninteresting parts of the loop, and prioritize the important paths. Whenever the weight associated with a certain branch is 0, Dowser does not even try to explore it further. In the vulnerable nginx
parsing loop from which Figure 1 shows an excerpt, only 19 out of 60 branches scored a non-zero value, so were considered for the execution. In this phase, the symbolic input represents a real world scenario, so it is relatively long. Therefore, it would be prohibitively expensive to be analyzed using a popular symbolic execution tool.
In Section 5.1, we briefly review the general concept of concolic execution, and then we discuss the two phases in Sections 5.2 and 5.3, respectively.
Like DART and SAGE [17, 18], Dowser generates new test inputs by combining concrete and symbolic execution. This technique is known as concolic execution [33]. It runs the program on a concrete input, while gathering symbolic constraints from conditional statements encountered along the way. To test alternative paths, it systematically negates the collected constraints, and checks whether the new set is satisfiable. If so, it yields a new input. To bootstrap the procedure, Dowser takes a test input which exercises the analysis group AG(accp)
.
As mentioned already, a challenge in applying this approach is how to select the paths to explore first. The classic solution is to use depth first exploration of the paths by backtracking [22]. However, since doing so results in an exponentially growing number of paths to be tested, the research community has proposed various heuristics to steer the execution toward unexplored regions. We discuss these techniques in Section 7.
The aim of the learning phase is to rate the true
and false
directions of all conditional branches that depend on the symbolic input in the loop L
. For each branch, we evaluate the likelihood that a particular outcome will lead to unique pointer dereferences (i.e., dereferences that we do not expect to find in the alternative outcome). Thus, we answer the question of how much we expect to gain when we follow this path, rather than the alternative. We encode this information into weights.
Specifically, the weights represent the likelihood of unique access patterns. An access pattern of the pointer p
is the sequence of all values of p
dereferenced during the execution of the loop. In Figure 1, when we denote the initial value of u
by u0
, then the input “//../”
triggers the following access pattern of the pointer u
: (u0, u0+1, u0+
2, u0-2,. . .)
.
To compute the weights, we learn about the effects of individual branches. In principle, each of them may (a) directly affect the value of a pointer, (b) be a precondition for another important branch, or (c) be irrelevant from the computation's standpoint. To distinguish between these cases, Dowser analyzes all possible executions of a short symbolic input. By comparing the sets of p
's access patterns observed for both outcomes of a branch, it discovers which branches do not influence the diversity of pointer dereferences (i.e., are irrelevant).
Symbolic input In Section 4, we identified which part of the test input I
we need to make symbolic. We denote this by IS
. In the learning phase, Dowser executes the loop L
exhaustively. For performance reasons, we therefore further limit the amount of symbolic data and make only a short fragment of IS
symbolic. For instance, for Figure 1, the learning phase makes only the first 4 bytes of uri
symbolic (not enough to trigger the bug), while scaling up to 50 symbolic bytes in the bug finding phase.
Algorithm Dowser exhaustively executes L
on a short symbolic input, and records how the decisions taken at conditional branch statements influence pointer dereference instructions. For each branch b
along the execution path, we retain the access pattern of p
realized during this execution, AP(p)
. We informally interpret it as “if you choose the true
(respectively, false
) direction of the branch b
, expect access pattern AP(p)
(respectively, AP′(p))”
. This procedure results in two sets of access patterns for each branch statement, for the taken and non-taken branch, respectively. The final weight of each direction is the fraction of the access patterns that were unique for the direction in question, i.e., were not observed when the opposite one was taken.
The above description explains the intuition behind the learning mechanism, but the full algorithm is more complicated. The problem is that a conditional branch b
might be exercised multiple times in an execution path, and it is possible that all the instances of b
influence the access pattern observed.
Intuitively, to allow for it, we do not associate access patterns with just a single decision taken on b
(true
or false
). Rather, each time b
is exercised, we also retain which directions were previously chosen for b
. Thus, we still collect “expected” access patterns if the true
(respectively, false
) direction of b
is followed, but we augment them with a precondition. This way, when we compare the true
and false
sets to determine the weights for b
, we base the scores on a deeper understanding of how an access pattern was reached.
Discussion It is important for our algorithm to avoid false negatives: we should not incorrectly flag a branch as irrelevant—it would preclude it from being explored in the bug finding phase. Say that instr
is an instruction that dereferences the pointer p
. To learn that a branch directly influences instr
, it suffices to execute it. Similarly, since branches retain full access patterns of p
, the information about instr
being executed is also “propagated” to all its preconditions. Thus, to completely avoid false negatives, the algorithm would require full coverage of the instructions in an analysis group. We stress that we need to exercise all instructions, and not all paths in a loop. As observed by [7], exhaustive executions of even short symbolic inputs provide excellent instruction coverage in practice.
While false positives are undesirable as well, they only cause Dowser to execute more paths in the second phase than absolutely necessary. Due to the limited path coverage, there are corner cases, when false positives can happen. Even so, in nginx
, only 19 out of 60 branches scored a non-zero value, which let us execute the complex loop with a 50-byte-long symbolic input.
In this step, Dowser executes symbolically a real-world sized input in the hope of finding a value that triggers a bug. Dowser uses the feedback from the learning phase (Section 5.2) to steer its symbolic execution toward new and interesting pointer dereferences. The goal of our heuristic is to avoid execution paths that do not bring any new pointer manipulation instructions. Thus, Dowser shifts the target of symbolic execution from traditional code coverage to pointer value coverage.
Dowser's strategy is explicitly dictated by the weights. As a baseline, the execution follows a depth-first exploration, and when Dowser is about to select the direction of a branch b
that depends on the symbolic input, it adheres to the following rules:
true
and false
directions of b
have weight 0, we do not expect b
to influence the variety of access patterns. Thus, Dowser chooses the direction randomly, and does not intend to examine the other direction.b
's directions have non-zero weights, both the true
and false
options may bring unique access patterns. Dowser examines both directions, and schedules them in order of their weights.Intuitively, Dowser's symbolic execution tries to select paths that are more likely to lead to overflows.
Guided fuzzing This concludes our description of Dowser's architecture. To summarize, Dowser helps fuzzing by: (1) finding “interesting” array accesses, (2)identifying the inputs that influence the accesses, and (3)fuzzing intelligently to cover the array. Moreover, the targeted selection procedure based on pointer value coverage and the small number of symbolic input values allow Dowser to find bugs quickly and scale to larger applications. In addition, the ranking of array accesses permits us to zoom in on more complicated array accesses.
In this section, we first zoom in on the running example of nginx
from Figure 1 to evaluate individual components of the system in detail (Section 6.1). In Section 6.2, we consider seven real-world applications. Based on their vulnerabilities, we evaluate our dowsing mechanism. Finally, we present an overview of the attacks detected by Dowser.
Since Dowser uses a ‘spot-check’ rather than ‘code coverage’ approach to bug detection, it must analyze each complex analysis group separately, starting with the highest ranking one, followed by the second one, and so on. Each of them runs until it finds a bug or gets terminated. The question is when we should terminate a symbolic execution run. Since symbolic execution of a single loop is highly optimized in Dowser, we found each bug in less than 11 minutes, so we execute each symbolic run for a maximum of 15 minutes.
Fig. 5: Scores of the analysis groups in nginx
.
Our test platform is a Linux 3.1 system with an Intel(R) Core(TM) i7 CPU clocked at 2.7GHz with 4096KB L2 cache. The system has 8GB of memory. For our experiments we used an OpenSUSE 12.1 install. We ran each test multiple times and present the median.
In this section, we evaluate each of the main steps of our fuzzer by looking at our case study of nginx
in detail.
We measure how well Dowser highlights potentially faulty code and filters out the uninteresting fragments.
Our first question is whether we can filter out all the simple loops and focus on the more interesting ones. This turns out to be simple. Given the complexity scoring function from Section 3, we find that across all applications all analysis groups with a score less than 26 use just a single constant and at most two instructions modifying the offset of an array. Thus, in the remainder of our evaluation, we set our cut-off threshold to 26 points.
As shown in Table 2, nginx
has 517 outermost loops, and only 140 analysis groups that access arrays. Thus, we throw out over 70% of the loops immediately3. Figure 5 presents the sorted weights of all the analysis groups in nginx
. The distribution shows a quick drop after a few highly complex analysis groups. The long tail represents the numerous simple loops omnipresent in any code. 55.7% of the analysis groups score too low to be of interest. This means that Dowser needs to examine only the remaining 44.3%, i.e., 62 out of 140 analysis groups, or at most 12% of all loops. Out of these, the buffer overflow in Figure 1 ranks 4th.
In Section 4 we mentioned that ‘traditional’ dynamic taint analysis misses implicit flows, i.e., flows that have no direct assignment of a tainted value to a variable. The problem turns out to be particularly serious for nginx
. It receives input in text format, and transforms it to extract numerical values or various flags. As such code employs conditional statements, DTA misses the dependencies between the input and analysis groups.
Next, we evaluate the usefulness of field shifting. First, we implement the taint propagation exactly as proposed by Bao et al. [6], without any further restrictions. In that case, an index variable in the nginx
parser becomes tainted, and we mark all HTTP fields succeeding the uri
field as tainted as well. As a result, we introduce more symbolic data than necessary. Next, we apply field shifting (Section 4.2) which effectively limits taint propagation to just the uri
field. In general, the field shifting optimization improves the accuracy of taint propagation in all applications that take multiple input fields whose order does not matter. On the other hand, it will not help if the order is fixed.
We now use the nginx
example to assess the importance of guiding symbolic execution to a vulnerability condition. For nginx
, the input message is a generic HTTP request. Since it exercises the vulnerable loop for this analysis group, its uri
starts with ”//”. Taint analysis allows us to detect that only the uri
field is important, so we mark only this field as symbolic. As we shall see, without guidance, symbolic execution does not scale beyond very short uri
fields (5-6 byte long). In contrast, Dowser successfully executes 50-byte-long symbolic uri
s.
When S2E [10] executes a loop, it can follow one of the two search strategies: depth-first search, or maximizing code coverage (as proposed in SAGE [18]). The first one aims at complete path coverage, and the second at executing basic blocks that were not seen before. However, none can be applied in practice to examine the complex loop in nginx
. The search is so costly that we measured the runtime for only 5-6 byte long symbolic uri
fields. The DFS strategy handled the 5-byte-long input in 139 seconds, the 6-byte-long in 824 seconds. A 7-byte input requires more than 1 hour to finish. Likewise, the code coverage strategy required 159, and 882 seconds, respectively. The code coverage heuristic does not speed up the search for buffer overflows either, since besides executing specific instructions from the loop, memory corruptions require a very particular execution context. Even if 100% code coverage is reached, they may stay undetected.
As we explained in Section 5, the strategy employed by Dowser does not aim at full coverage. Instead, it actively searches for paths which involve new pointer dereferences. The learning phase uses a 4-byte-long symbolic input to observe access patterns in the loop. It follows a simple depth first search strategy. As the bug clearly cannot be triggered with this input size, the search continues in the second, hunting bugs, phase. The result of the learning phase disables 66% of the conditional branches significantly reducing the exponentially of the subsequent symbolic execution. Because of this heuristic, Dowser easily scales up to 50 symbolic bytes and finds the bug after just a few minutes. A 5-byte-long symbolic input is handled in 20 seconds, 10 bytes in 42 seconds, 20 bytes in 63 seconds, 30 in 146 seconds, 40 in 174 seconds and 50 in 253 seconds. These numbers maintain an exponential growth of 1.1 for each added character. Even though Dowser still exhibits the exponential behavior, the growth rate is fairly low. Even in the presence of 50 symbolic bytes, Dowser quickly finds the complex bug.
In practice, symbolic execution has problems dealing with real world applications and input sizes. The number of execution paths quickly overwhelms these systems. Since triggering buffer overflows not only requires a vulnerable basic block, but also a special context, traditional symbolic execution tools are ill suited. Dowser, instead, requires the application to be executed symbolically for only a very short input, and then it deals with real-world input sizes instead of being limited to a few input bytes. Combined with the ability to extract the relevant parts of the original input, this enables searching for bugs in applications like web servers where input sizes were considered until now to be well beyond the scalability of symbolic execution tools.
In this section, we consider several applications. First, we evaluate the dowsing mechanism, and we show that it successfully highlights vulnerable code fragments. Then, we summarize the memory corruptions detected by Dowser. They come from six real world applications of several tens of thousands LoC, including the ffmpeg
videoplayer of 300K LoC. The bug in ffmpeg
, and one of the bugs in poppler
were not documented before.
We now examine several aspects of the dowsing mechanism. First, we show that there is a correlation between Dowser's scoring function and the existence of memory corruption vulnerabilities. Then, we discuss how our focus on complex loops limits the search space, i.e., the amount of analysis groups to be tested. We start with a description of our data set.
Data set To evaluate the effectiveness of Dowser, we chose six real world programs: nginx
, ffmpeg
, inspircd
, libexif
, poppler
, and snort
. Additionally, we consider the vulnerabilities in sendmail
tested by Zitser et al. [45]. For these applications, we analyzed all buffer overflows reported in CVE [26] since 2009. For ffmpeg
, rather than include all possible codecs, we just picked the ones for which we had test cases. Out of 27 CVE reports, we took 17 for the evaluation. The remaining ten vulnerabilities are out of the scope of this paper – nine of them are related to an erroneous usage of a correct function, e.g., strcpy
, and one was not in a loop. In this section, we consider the analysis groups from all the applications together, giving us over 3000 samples, 17 of which are known to be vulnerable4.
Table 2: Applications tested with Dowser. The Dowsing section presents the results of Dowser's ranking scheme. AG score is the complexity of the vulnerable analysis group - its position among other analysis groups; X/Y denotes all analysis groups that are ”complex enough” to be potentially analyzed/all analysis groups which access arrays; and the number of points it scores. Loops counts outermost loops in the whole program, and LoC - the lines of code according to sloccount
. Symbolic input specifies how many and which parts of the input were determined to be marked as symbolic by the first two components of Dowser. The last section shows symbolic execution times until revealing the bug. Almost all applications proved to be too complex for the vanilla version of S2E (V-S2E). Magic S2E (M-S2E) is the time S2E takes to find the bug when we feed it with an input with only a minimal symbolic part (as identified in Symbolic input). Finally, the last column is the execution time of fully-fledged Dowser.
When evaluating Dowser's scoring mechanism, we also compare it to a straightforward scoring function that treats all instructions uniformly. For each array access, it considers exactly the same AGs as Dowser. However, instead of the scoring algorithm (Table 1), each instruction gets 10 points. We will refer to this metric as count
.
Correlation For both Dowser's and the count
scoring functions, we computed the correlation between the number of points assigned to an analysis group and the existence of a memory corruption vulnerability. We used the Spearman rank correlation [2], since it is a reliable measure that is appropriate even when we do not know the probability distribution of the variables, or when the association between the variables is non-linear.
The positive correlation for Dowser is statistically significant at p 0.0001, for count
— at p 0.005. The correlation for Dowser is stronger.
Dowsing The Dowsing columns of Table 2 shows that our focus on complex loops limits the search space from thousands of LoC to hundreds of loops, and finally to a small number of “interesting” analysis groups. Observe that ffmpeg
has more analysis groups than loops. That is correct. If a loop accesses multiple arrays, it contains multiple analysis groups.
By limiting the analysis to complex cases, we focus on a smaller fraction of all AGs in the program, e.g., we consider 36.9% of all the analysis groups in inspircd
, and 34.5% in snort
. ffmpeg
, on the other hand, contains lots of complex loops that decode videos, so we also observe many “complex” analysis groups.
In practice, symbolic execution, guided or not is expensive, and we can hardly afford a thorough analysis of more than just a small fraction of the target AGs of an application, say 20%-30%. For this reason, Dowser uses a scoring function, and tests the analysis groups in order of decreasing score. Specifically, Dowser looks at complexity. However, alternative heuristics are also possible. For instance, one may count the instructions that influence array accesses in an AG. To evaluate whether Dowser's heuristics are useful, we compare how many bugs we discover if we examine increasing fractions of all AGs, in descending order of the score. So, we determine how many of the bugs we find if we explore the top 10% of all AGs, how many bugs we find when we explore the top 20%, and so on. In our evaluation, we are comparing the following ranking functions: (1) Dowser's complexity metric, (2) counting instructions as described above, and (3) random.
Fig. 6: A comparison of random testing and two scoring functions: Dowser's and count
. It illustrates how many bugs we detect if we test a particular fraction of the analysis groups.
Figure 6 illustrates the results. The random ranking serves as a baseline—clearly both count
and Dowser perform better. In order to detect all 17 bugs, Dowser has to analyze 92.2% of all the analysis groups. However, even with just 15% of the targets, we find almost 80% (13/17) of all the bugs. At that same fraction of targets, count
finds a little over 40% of the bugs (7/17). Overall, Dowser outperforms count
beyond the 10% in the ranking. It also reaches the 100% bug score earlier than the alternatives, although the difference is minimal.
The reason why Dowser still requires 92% of the AGs to find all bugs, is that some of the bugs were very simple. The “simplest” cases include a trivial buffer overflow in poppler
(worth 16 points), and two vulnerabilities in sendmail
from 1999 (worth 20 points each). Since Dowser is designed to prioritize complex array accesses, these buffer overflows end up in the low scoring group. (The “simple” analysis groups – with less than 26 points – start at 47.9%). Clearly, both heuristics provide much better results than random sampling. Except for the tail, they find the bugs significantly quicker, which proves their usefulness.
To summarize, we have shown that a testing strategy based on Dowser's scoring function is effective. It lets us find vulnerabilities quicker than random testing or a scoring function based on the length of an analysis group.
Table 2 presents attacks detected by Dowser. The last section shows how long it takes before symbolic execution detects the bug. Since the vanilla version of S2E cannot handle these applications with the whole input marked as symbolic, we also run the experiments with minimal symbolic inputs (“Magic S2E”). It represents the best-case scenario when an all-knowing oracle tells the execution engine exactly which bytes it should make symbolic. Finally, we present Dowser's execution times.
We run S2E for as short a time as possible, e.g., a single request/response in nginx
and transcoding a single frame in ffmpeg
. Still, in most applications, vanilla S2E fails to find bugs in a reasonable amount of time. inspircd
is an exception, but in this case we explicitly tested the vulnerable DNS resolver only. In the case of libexif
, we can see no difference between “Magic S2E” and Dowser, so Dowser's guidance did not influence the results. The reason is that our test suite here was simple, and the execution paths reached the vulnerability condition quickly. In contrast, more complex applications process the inputs intensively, moving symbolic execution away from the code of interest. In all these cases, Dowser finds bugs significantly faster. Even if we take the 15 minute tests of higher-ranking analysis groups into account, Dowser provides a considerable improvement over existing systems.
Dowser is a ’guided’ fuzzer which draws on knowledge from multiple domains. In this section, we place our system in the context of existing approaches. We start with the scoring function and selection of code fragments. Next, we discuss traditional fuzzing. We then review previous work on dynamic taint analysis in fuzzing, and finally, discuss existing work on whitebox fuzzing and symbolic execution.
Software complexity metrics Many studies have shown that software complexity metrics are positively correlated with defect density or security vulnerabilities [29, 35, 16, 44, 35, 32]. However, Nagappan et al. [29] argued that no single set of metrics fits all projects, while Zimmermann et al. [44] emphasize a need for metrics that exploit the unique characteristics of vulnerabilities, e.g., buffer overflows or integer overruns. All these approaches consider the broad class of post-release defects or security vulnerabilities, and consider a very generic set of measurements, e.g., the number of basic blocks in a function's control flow graph, the number of global or local variables read or written, the maximum nesting level of if
or while
statements and so on. Dowser is very different in this respect, and to the best of our knowledge, the first of its kind. We focus on a narrow group of security vulnerabilities, i.e., buffer overflows, so our scoring function is tailored to reflect the complexity of pointer manipulation instructions.
Traditional fuzzing Software fuzzing started in earnest in the 90s when Miller et al. [25] described how they fed random inputs to (UNIX) utilities, and managed to crash 25-33% of the target programs. More advanced fuzzers along the same lines, like Spike [39], and SNOOZE [5], deliberately generate malformed inputs, while later fuzzers that aim for deeper bugs are often based on the input grammar (e.g., Kaksonen [20] and [40]). DeMott [13] offers a survey of fuzz testing tools. As observed by Godefroid et al. [18], traditional fuzzers are useful, but typically find only shallow bugs.
Application of DTA to fuzzing BuzzFuzz [15] uses DTA to locate regions of seed input files that influence values used at library calls. They specifically select library calls, as they are often developed by different people than the author of the calling program and often lack a perfect description of the API. Buzzfuzz does not use symbolic execution at all, but uses DTA only to ensure that they preserve the right input format. Unlike Dowser, it ignores implicit flows completely, so it could never find bugs such as the one in nginx (Figure 1). In addition, Dowser is more selective in the application of DTA. It's difficult to assess which library calls are important and require a closer inspection, while Dowser explicitly selects complex code fragments.
TaintScope [42] is similar in that it also uses DTA to select fields of the input seed which influence security-sensitive points (e.g., system/library calls). In addition, TaintScope is capable of identifying and bypassing checksum checks. Like Buzzfuzz, it differs from Dowser in that it ignores implicit flows and assumes only that library calls are the interesting points. Unlike BuzzFuzz, TaintScope operates at the binary level, rather than the source.
Symbolic-execution-based fuzzing Recently, there has been much interest in whitebox fuzzing, symbolic execution, concolic execution, and constraint solving. Examples include EXE [8], KLEE [7], CUTE [33], DART [17], SAGE [18], and the work by Moser et al. [28]. Microsoft's SAGE, for instance, starts with a well-formed input and symbolically executes the program under test in attempt to sweep through all feasible execution paths of the program. While doing so, it checks security properties using AppVerifier. All of these systems substitute (some of the) program inputs with symbolic values, gather input constraints on a program trace, and generate new input that exercises different paths in the program. They are very powerful, and can analyze programs in detail, but it is difficult to make them scale (especially if you want to explore many loop-based array accesses). The problem is that the number of paths grows very quickly.
Zesti [24] takes a different approach and executes existing regression tests symbolically. Intuitively, it checks whether they can trigger a vulnerable condition by slightly modifying the test input. This technique scales better and is useful for finding bugs in paths in the neighborhood of existing test suites. It is not suitable for bugs that are far from these paths. As an example, a generic input which exercises the vulnerable loop in Figure 1 has the uri
of the form ”//
{arbitrary characters}”, and the shortest input triggering the bug is ”//../
”. When fed with ”//abc
”, [24] does not find the bug—because it was not designed for this scenario. Instead, it requires an input which is much closer to the vulnerability condition, e.g., ”//..
{an arbitrary character}”. For Dowser, the generic input is sufficient.
SmartFuzz [27] focuses on integer bugs. It uses symbolic execution to construct test cases that trigger arithmetic overflows, non-value-preserving width conversions, or dangerous signed/unsigned conversions. In contrast, Dowser targets the more common (and harder to find) case of buffer overflows. Finally, Babić et al. [4] guide symbolic execution to potentially vulnerable program points detected with static analysis. However, the interprocedural context- and flow-sensitive static analysis proposed does not scale well to real world programs and the experimental results contain only short traces.
Dowser is a guided fuzzer that combines static analysis, dynamic taint analysis, and symbolic execution to find buffer overflow vulnerabilities deep in a program's logic. It starts by determining ‘interesting’ array accesses, i.e., accesses that are most likely to harbor buffer overflows. It ranks these accesses in order of complexity—allowing security experts to focus on complex bugs, if so desired. Next, it uses taint analysis to determine which inputs influence these array accesses and fuzzes only these bytes. Specifically, it makes (only) these bytes symbolic in the subsequent symbolic execution. Where possible Dowser's symbolic execution engine selects paths that are most likely to lead to overflows. Each three of the steps contain novel contributions in and of themselves (e.g., the ranking of array accesses, the implicit flow handling in taint analysis, and the symbolic execution based on pointer value coverage), but the overall contribution is a new, practical and complete fuzzing approach that scales to real applications and complex bugs that would be hard or impossible to find with existing techniques. Moreover, Dowser proposes a novel ‘spot-check’ approach to finding buffer overflows in real software.
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A script-based attack framework is a new type of cyber-attack tool written in scripting languages. It carries various attack scripts targeting vulnerabilities across different systems. It also supports fast development of new attack scripts that can even exploit zero-day vulnerabilities. Such mechanisms pose a big challenge to the defense side since traditional malware analysis cannot catch up with the emerging speed of new attack scripts. In this paper, we propose MetaSymploit, the first system of fast attack script analysis and automatic signature generation for a network Intrusion Detection System (IDS). As soon as a new attack script is developed and distributed, MetaSymploit uses security-enhanced symbolic execution to quickly analyze the script and automatically generate specific IDS signatures to defend against all possible attacks launched by this new script from Day One. We implement a prototype of MetaSymploit targeting Metasploit, the most popular penetration framework. In the experiments on 45 real attack scripts, MetaSymploit automatically generates Snort IDS rules as signatures that effectively detect the attacks launched by the 45 scripts. Furthermore, the results show that MetaSymploit substantially complements and improves existing Snort rules that are manually written by the official Snort team.
Over the years, with rapid evolution of attacking techniques, script-based attack frameworks have emerged and become a new threat [2, 3, 6, 39]. A script-based attack framework is an attack-launching platform written in scripting languages, such as Ruby and Python. Such framework carries various attack scripts, each of which exploits one or more vulnerabilities of a specific application across multiple versions. With the high productivity of using scripting languages, attackers can easily develop new attack scripts to exploit new vulnerabilities.
To launch an attack, an attacker runs an attack script on the framework remotely. By probing a vulnerable target over the network, the attack script dynamically composes an attack payload, and sends the payload to the target to exploit the vulnerability. The attack framework also provides many built-in components with APIs of various attack functionalities to support rapid development of new attack scripts. Once a zero-day vulnerability is found, a new attack script can be quickly developed and distributed in hacking communities, where other attackers even script kiddies can directly download the new script to launch attacks exploiting the zero-day vulnerability.
A well-known example of the script-based attack frameworks is Metasploit [3], the most popular Ruby-based penetration framework. It has more than 700 attack scripts targeting various vulnerable applications on different operating systems (OSes). It also provides built-in components for creating new attack scripts. Metasploit was originally developed for penetration testing using proof-of-concept scripts. But with years of improvements, it has become a full-fledged attack framework. Unfortunately, as an open source project, Metasploit can be easily obtained and used by attackers for illegal purposes. For example, it was reported that the well-known worm “Conficker” used a payload generated by Metasploit to spread [5]. A Metasploit attack script was immediately distributed after a zero-day vulnerability was found in Java 7 [32]. A four-year empirical study shows real malicious network traffic related to Metasploit on a worldwide scale. Moreover, the study shows that many Metasploit attack scripts are used by attackers almost immediately after the scripts are distributed in hacking communities [33].
When a new attack script is distributed and captured by security vendors, the traditional approach to defend against it is to first set up a controlled environment with a vulnerable application installed. Then security analysts repeatedly run the script to exploit the environment over a monitored network, collecting a large number of attack payload samples, and finally extract common patterns from the samples to generate IDS signatures.
However, with the attack framework, new attack scripts can be quickly developed and distributed to exploit the latest vulnerabilities. This poses a great challenge that the traditional approach can hardly catch up with the release speed of new attacks, due to the time-consuming process of setting up test environments and analyzing attack payload samples. In our evaluation (Section 5), we observe that even the latest Snort IDS rules written by security analysts cannot detect many Metasploit-based attacks.
In this paper, we propose MetaSymploit, the first system of fast attack script analysis and automatic IDS signature generation. As soon as a new attack script is distributed, MetaSymploit quickly analyzes the attack script and automatically generates IDS signatures of its attack payloads, thereby providing defense against new attacks launched by this script from Day One. Particularly, MetaSymploit gives the first aid to zero-day vulnerabilities whose security patches are not available while the attack scripts that exploit them are already distributed.
Specifically, MetaSymploit leverages symbolic execution while enhancing it with several security features designed for attack script analysis and signature generation. By treating environment-dependent values as symbolic values, MetaSymploit symbolically executes attack scripts without interacting with actual environments or vulnerable applications, thus substantially reducing the time and cost of the analysis. With path exploration of symbolic execution, MetaSymploit also explores different execution paths in an attack script, exposing different attack behaviors and payloads that the script produces under different attack conditions.
To generate signatures of attack payloads, instead of analyzing large volumes of payload samples, MetaSymploit keeps track of the payload composing process in the attack script during symbolic execution. MetaSymploit uses symbolic values to represent variant contents in a payload (e.g., random paddings), in order to distinguish constant contents (e.g., vulnerability-trigger bytes) from variant ones. When the script sends a composed payload to launch an attack, MetaSymploit captures the payload's entire contents, extracts constant contents as patterns and generates a signature specific to this payload.
In a case study, we implement a security-enhanced symbolic execution engine for Ruby, develop MetaSymploit as a practical tool targeting Metasploit, and generate Snort rules as IDS signatures. Particularly, instead of heavily modifying the script interpreters, we design a lightweight symbolic execution engine running on unmodified interpreters. This lightweight design can keep pace with the continuous upgrades of the language syntax and interpreter (e.g., Ruby 1.8/1.9/2.0). Therefore, our design supports analyzing attack scripts written in different versions of the scripting language.
We evaluate MetaSymploit using real-world attack scripts. We assess our automatically generated Snort rules by launching attacks using 45 real-world Metasploit attack scripts from exploit-db.com
, including one that exploits a zero-day vulnerability in Java 7. Our rules successfully detect the attack payloads launched by the 45 scripts. Furthermore, we also compare our rules with the official Snort rule set written by security analysts, and have three findings: (1) the official rule set is incomplete and 23 of the 45 attack scripts are not covered by the official rule set; (2) for the scripts covered by the official rules, our rules share similar but more specific patterns with the official ones; (3) our studies also expose 3 deficient official rules that fail to detect Metasploit attacks. Therefore, MetaSymploit is a helpful complement to improve the completeness and accuracy of existing IDS signatures to defend against attack scripts.
In summary, we make three major contributions:
We first give the background of how an attack script works. Generally, when an attack script runs on top of an attack framework, the script performs four major steps to launch an attack. (1) The script probes the version and runtime environment of the vulnerable target over the network. (2) Based on the probing result and the script's own hard-coded knowledge base, the script identifies the specific vulnerability existing in this target. The knowledge base is usually a list containing the information (e.g., vulnerable return addresses) of all targets that this script can attack. (3) Then the script dynamically composes an attack payload customized for this target. (4) Finally, the script sends the payload to the target to exploit the vulnerability.
Listing 1: The code snippet from a real Metasploit attack script type77.rb [4] (slightly modified for better presentation)
Depending on the attack strategy and vulnerability type, different scripts may have different attack behaviors when performing these steps. For example, a brute-force attack may keep composing and sending payloads with guessed values until the target is compromised, while a stealthy attack may carefully clean up the trace in the target's log after sending the payload.
Among these steps, composing and sending an attack payload are the key steps of launching an attack. An attack payload is typically a string of bytes composed with four elements: (a) special and fixed bytes that can exploit a specific vulnerability; (b) an arbitrary shellcode that attackers choose to execute after the vulnerability is exploited. The shellcode content is usually variant, especially when obfuscated; (c) random or special paddings (e.g., NOP 0x90) that make the payload more robust; (d) other format bytes required by network protocols.
With the help of the rich libraries of scripting languages and the built-in components provided by the attack framework, an attack script can call APIs of related libraries or components to help it perform each step, especially composing an attack payload.
As an example, Listing 1 shows a Ruby code snippet extracted from a real Metasploit attack script exploiting a vulnerable application called Arkeia. In the example, the script defines two methods. exploit
is the main method that performs the major steps to launch the attack. prep_ark5
is one of the payload composing methods. When the script runs on Metasploit, it first connects to the target over the network (Line 2), and then probes the target's version (Line 4). Here both connect
and probe_ver
are API methods of a built-in network protocol component. Based on the version, it calls the corresponding method to start composing the attack payload specific to the target (Lines 5-9).
Listing 2: One Snort rule signature generated for the attack payload composed by prep_ark5
.
When prep_ark5
is called, the payload is first assigned by the shellcode component, which returns a configured shellcode (Line 18). Note that the shellcode can be freely chosen and obfuscated. The shellcode component offers several different shellcodes for different purposes. Then the payload is appended () with several contents (Lines 19-23). rand_alpha
generates random alphabet padding to not only extend the payload to the required size of the network protocol, but also introduce more randomness for evasion. The concrete bytes represent some assembly code that will jump to the shellcode (e.g., “\xeb\xf9” and “\xe9” are two JMP instructions). pack("V")
converts the integer to bytes as the offset of one JMP. get_target_ret
is another attack framework API that queries the script's knowledge base (omitted here due to space limit, please refer to [4]) to retrieve the exploitable return address based on the target version, which can hijack the control flow1 (Line 22). After the payload is composed, the script first sends a preamble packet to the target, followed by the attack payload packet to exploit the vulnerability (Lines 11-13).
Popular attack frameworks provide plenty of built-in components covering various network protocols, OSes, and offering different shellcodes and NOP paddings, which enable attackers to quickly develop new attack scripts to exploit different targets. Furthermore, advanced attackers can create even sophisticated attack scripts, which have multiple execution paths performing different attack behaviors and payloads. Some of them may be triggered only under certain attack conditions.
Therefore, the traditional approach that requires both controlled environments and vulnerable applications is not scalable for analyzing attack scripts. Since different attack scripts target different applications and OSes, it is costly and time-consuming to obtain every application (let alone the expensive commercial ones) and set up environments for every OS. It is even harder to create different attack conditions to expose different attack behaviors and payloads in sophisticated attack scripts.
In this section, we first state the problem and assumptions we focus on, and then give an overview of MetaSymploit, followed by the detailed techniques in its two core parts.
Problem Statement. We focus on the problem caused by script-based attack frameworks and their attack scripts: how to provide an automated mechanism that can analyze and defend against newly distributed attack scripts. Particularly, the mechanism should be time-efficient in order to address the security issues caused by two major features of attack scripts: a large number of scripts with wide-ranging targets, and fast development and distribution of new scripts that can be directly used to exploit zero-day vulnerabilities.
Assumptions. We assume that both script-based attack frameworks and attack scripts are available from either public or underground hacking communities. As soon as a new attack script is distributed, it can be immediately captured and analyzed. We also assume that the scripting languages used by attack frameworks are general-purpose object-oriented scripting languages, such as Ruby and Python. In reality, sectools.org
lists 11 most popular attack tools [6] in the public community. 8 of them are Ruby/Python-based attack frameworks. Most of them are actively maintained with frequent updates of new attack scripts.
Given an attack script, the goal of MetaSymploit is to quickly analyze fine-grained attack behaviors that the script can perform, and automatically generate specific IDS signatures for every attack payload that the script can compose, providing a fast and effective defense against attacks launched by this script. To achieve this goal, MetaSymploit leverages symbolic execution and enhances it with a number of security features designed for attack scripts analysis and signature generation.
Symbolic execution2 is a program analysis technique that executes programs with symbolic rather than concrete values. When executing branches related to symbolic values, it maintains a path constraint set and forks to explore different execution paths. By using symbolic execution, MetaSymploit has three advantages to achieve fast analysis and defense against attack scripts: (1) analyzing scripts without requiring actual environments or vulnerable targets, (2) exploring different execution paths to expose different attack behaviors, (3) using symbolic values to represent variant contents in attack payloads to ease the extraction of constant patterns.
Figure 1: MetaSymploit consists of two major parts drawn in grey. (The arrows show the workflow of an attack script analysis.)
Figure 1 shows the architecture of MetaSymploit, which consists of two major parts, the symbolic execution layer (SymExeLayer) and the signature generator (SigGen). Given an attack framework, SymExeLayer is built upon the framework. It reuses the framework's execution facility while extending the framework interface to support symbolic execution of attack scripts. When a script is symbolically executed, SymExeLayer captures all attack behaviors and payloads that the script can perform and compose. After the symbolic execution is done, SigGen takes the captured results as inputs. It extracts constant patterns by parsing the contents of the attack payloads. It also analyzes the attack behaviors to derive the semantic contexts that describe the extracted patterns. Finally, SigGen combines the patterns and the contexts to generate IDS signatures for this attack script.
More specifically, three key techniques are developed to realize the functionalities of SymExeLayer and SigGen, respectively. As shown in Figure 1, SymExeLayer consists of (1) Symbolic API Extension. It extends the APIs of both the attack framework and the scripting language to support symbolic values and operations. Notably, it extends the APIs related to environments/targets and variant payload contents to return symbolic values. (2) Behavioral API & Attack Constraint Logging. It records critical API calls that represent attack behaviors. It also logs path constraints of symbolic values related to environments and targets. Both logs will be used for deriving pattern context (described later). (3) Output API Hooking. It hooks various output APIs that are used to send attack payloads, in order to capture complete payload contents for extracting constant patterns.
SigGen consists of (1) Constant Pattern Extracting. By parsing the payload contents, it extracts constant patterns that can represent the payload. Constant patterns include fixed contents, fixed lengths of contents, and fixed offsets of the contents in the format. (2) Pattern Refining and Consolidating. It refines patterns by distinguishing critical patterns from common benign bytes and trivial patterns. It also avoids generating duplicated signatures by examining repeated patterns. (3) Pattern Context Deriving. In order to describe what the extracted pattern represents, it analyzes the logs of behaviors and constraints to derive the semantic context of the pattern.
To illustrate the workflow of MetaSymploit, we revisit the script in Listing 1. First, SymExeLayer takes the script as input and symbolically executes it. The script calls a number of symbolic-extended APIs, including probe_ver, shellcode
and rand_alpha
. Instead of returning a concrete number, probe_ver
assigns version
a symbolic integer representing the target version. shellcode
and rand_alpha
return symbolic strings to represent all possible shellcodes and random paddings, respectively. Meanwhile, probe_ver
indicates the probing behavior. SymExeLayer logs it as one attack behavior. SymExeLayer also logs the path constraint version==5
since it indicates that the Line 6 branch is taken only under the attack condition that the target version is 5. In contrast, when symbolic execution forks to explore Line 8, SymExeLayer logs the negated constraint version!=5
.
When executing prep_ark5
, SymExeLayer logs shellcode
, rand_alpha
, and get_target_ret
, since these APIs indicate a typical attack behavior of composing a stack overflow payload. Note that because get_target_ret
is a call with a concrete argument, SymExeLayer uses the underlying framework to execute it normally to get the concrete return address value. On the other hand, SymExeLayer symbolically extends the
SigGen then analyzes the payload contents and the behavior & constraint logs to generate signatures. Listing 2 shows one Snort rule generated by SigGen. The content
is the byte pattern extracted from the constant bytes in the payload composed in Lines 20-22. The first 8 bytes are two JMP instructions and the last 4 bytes are the return address. The pcre
is a regular expression matching the entire payload packet, including constant bytes and random paddings. content
provides general fast matching, while pcre
provides more precise matching. The msg
shows the pattern context. The target version is derived from the version==5
constraint. The behavior and the meaning of the patterns are derived from the logged behavioral API calls. The msg
gives more insights that guide security analysts to use the signature to protect vulnerable application of specific version.
This section explains more details about the three techniques of SymExeLayer that extend the attack framework to perform symbolic execution and attack logging.
The key point of performing symbolic execution on attack scripts is to treat all variant values involved in the attack launching process as symbolic values, so that all possible attack variations can be covered. Since attack scripts use APIs to operate variant values, we extend the variant-related APIs of both the scripting language and the attack framework with symbolic support.
The variant-related APIs can be further divided into two categories: direct and indirect. Direct-variant-related APIs always return variant values. There are two major types in this category, (1) the APIs probing external environments/targets, (2) the APIs generating random payload contents. In both cases, we replace the original APIs with our symbolic-extended ones, which directly return symbolic values when called. As a result, the first type of APIs skips probing the actual environment/target, such as probe_ver
in the example. Such skipping makes MetaSymploit scalable and efficient, since there is no need to prepare different environments or applications when analyzing different scripts. For the second type, as the payload content is a string of bytes, the APIs use symbolic values to represent any variant bytes, such as shellcode
and rand_alpha
. Hence, we can clearly distinguish concrete contents from symbolic contents in one payload. In addition, every symbolic value is assigned with a label showing what it represents based on its related API, such as sym_ver
, sym_shellcode
, and sym_rand_alpha
. Note that SymExeLayer uses these labels to keep the semantics of the values, rather than relying on variable names, which can be freely decided by attackers.
Indirect-variant-related APIs return variant values only when their arguments are variant values. Such case typically happens in the operations of some primitive classes such as String, Integer, and some payload composing operations. In SymExeLayer, we extend such APIs by adding the logic of handling symbolic arguments. If the arguments are concrete, the APIs execute the original logic and return concrete values as normal. If the arguments are symbolic, the APIs switch to the symbolic handling logic, which propagates the symbolic argument in accord with the API functionality, and returns a symbolic expression. In Listing 1, for a concrete string argument, the symbolic-extended Since symbolic execution is a general program analysis technique, in order to provide additional security analysis of attack scripts, for every execution path, we keep a log recording both critical API calls that reflect attack behaviors and path constraints that represent the attack condition when exploring each execution path. Behavioral API Logging. As mentioned in Section 2, attack scripts use APIs provided by the language library and the attack framework to launch attacks. In the analysis, it is critical to capture the API calls that perform the detailed attack behaviors during the launching process. There are two major types of behavioral APIs, network protocol APIs and payload-related APIs. By logging the first type, we are able to capture all the interactions between the attack script and the target. By logging the second type, we know exactly how a payload is composed and keep track of its detailed format and contents. In practice, given an attack framework, we build a knowledge base collecting the APIs from the libraries and components that provide network protocols and payload-related operations. During execution, SymExeLayer identifies behavioral APIs and logs them while keeping the API call sequence in the execution path. Note that we also log the arguments and return values of the APIs, especially for payload-related APIs, whose return values may be a part of the payload contents. Attack Constraint Logging. In symbolic execution, path constraints are the set of branch conditions involving symbolic values in one execution path. When encountering a new symbolic branch condition, symbolic execution consults a constraint solver to decide which branch(es) is feasible to take, and adds the new branch constraint into the path constraint set. If both branches are feasible to take, the execution path In attack scripts, we focus on the constraints related to environments and targets. We regard these constraints as attack constraints because different symbolic conditions that they represent typically indicate different attack conditions reflecting the probing results of environments or targets, therefore leading to different execution paths that compose different payloads in consequence. In the example, Recall that the APIs that probe external environments and targets are symbolic-extended. The symbolic return values of these APIs carry the labels showing what external source they represent. When executing a symbolic branch condition, we check if any symbolic value with external-source label is involved. If so, we log the corresponding constraint. In the example, when In summary, this behavior & constraint logging provides a fine-grained analysis report that saves the time-consuming work for security analysts. More importantly, the behaviors and constraints logged in each execution path can be further parsed to derive the semantic context for the extracted patterns (discussed in Section 3.4.3). After an attack script finishes composing an attack payload, the script sends the payload as a network packet to the target to exploit the vulnerability. This payload sending step is the exact point of launching an attack. In order to capture the complete content of the attack payload for pattern extraction, we hook the output APIs that are used by attack scripts for sending payload. Starting from the network layer to the application layer in the OSI model, we keep a list of the output APIs and their corresponding network protocols from both the scripting language's own network library and the built-in components of the attack framework. We symbolically extend the output APIs by overriding their functionality from sending real network packets to dumping the entire packets locally. By doing so, the entire network flow sent from the attack script can be dumped throughout the execution. To keep the semantic context of each dumped packet, we associate them with the behavior & constraint log of that execution path, so that later the payload packets can be identified and the extracted patterns can be correlated with the context derived from the log. In the example script, the hooked Note that as a part of the network protocol APIs, the output APIs are also behavioral APIs that need to be logged. In addition, we also include the corresponding network protocols in the log. Later during signature generation, the log gives a clear view of which network protocol is used, and therefore SigGen can apply the correct packet format when parsing the packet contents.3.3.2 Behavioral API & Attack Constraint Logging
forks
into two paths to explore both branches [25].version==5 ? prep_ark5 : prep_ark4
.version==5
is executed, we find that sym_ver
is an external source, and thus log the constraint.3.3.3 Output API Hooking
sock.put
dumps two packets. With the associated log, we identify the payload packet for pattern extraction.Listing 3: The symbolic string form showing the content of
payload
when prep_ark5
is executed. Sym_Int
is a symbolic integer representing the size of the shellcode.
Given the dumped payload packets and the logs as inputs, SigGen includes three techniques to generate signatures.
In order to generate a signature that can detect a payload packet, it is necessary to extract a set of constant patterns that always stay the same across different variations of the payload. Specifically, there are three constant patterns that can be extracted: fixed-content pattern, fixed-length pattern and fixed-offset pattern. For ease of explanation, we first present the formal form of a dumped symbolic attack payload.
Recall that an attack payload is a string of bytes containing both concrete contents (e.g., fixed vulnerable return address) and variant contents (e.g., arbitrary shellcode, random padding). When a payload is being composed during the symbolic execution of the attack script, we use symbolic strings to represent variant contents and use extended APIs to perform symbolic string operations, while keeping concrete values and operations as normal. Thus the dumped payload packet is a big symbolic string composed of a sequence of substrings, where each substring is either a concrete byte string or a symbolic string by itself. Formally, Ssym = (s1s2 . . .si . . .sn), where si {Scon} {Ssym}. In addition, we also embed sym_label, length > in Ssym to keep the semantics and the possible length of the string, where the length is either a concrete or symbolic integer. As an example, Listing 3 shows the contents of the payload when being composed in Lines 18-23 of the example script. The final dumped payload is the same as the one in Line 23.
Fixed-content pattern. This pattern has two types, either a simple byte string or a regular expression (regex). When parsing the payload, for each concrete substring, we extract it as a byte string pattern, such as the 12-byte string in the payload of Line 23. For each symbolic substring, if it can be matched by a regex, we extract the regex as a fixed pattern. If no regex is found, we move on to the next substring. In practice, we keep a mapping between regex-matchable symbolic labels and the regexes. Currently, we mainly focus on using regexes on payload paddings to achieve precise matching. For instance, we map the symbolic label sym_rand_alpha
to a regex pattern [a-zA-Z]
.
Fixed-length pattern. In some cases, although the contents may vary, their lengths stay the same. Such case typically happens when using padding to meet the size requirement. To achieve precise matching, SymExeLayer keeps track of the payload length during the composition. When parsing the payload, we identify the symbolic substrings with fixed lengths and extract them as patterns. When executing the example script in SymExeLayer, we keep updating the payload length. Later when parsing sym_rand_alpha, 2917
> in the dumped payload, we produce a length-quantified regex [a-zA-Z]{2917}
as shown in Listing 2.
Fixed-offset pattern. Due to the format of some network protocols, some payloads can be located only after certain offsets of the packets. For instance, some FTP based attack packets have regular FTP commands, followed with overlong paths as payloads to launch overflow attacks. In such cases, since the network protocol of the output API is logged, by applying the packet format of the protocol, we extract the offset of the payload, which is a pattern for precise matching of the payload location.
As MetaSymploit automatically generates signatures in a large scale, there are two requirements for the quality of the signatures. First, we should avoid generating signatures only having patterns of common benign bytes or patterns of trivial bytes/regexes, which may otherwise cause false positive. Second, we should avoid generating duplicated signatures with the same pattern set, which may cause useless redundancy and confuse the IDS.
First requirement. When a payload is finally sent through the output API, common benign bytes are introduced by network protocols as concrete substrings in the payload packet, including default protocol bytes (e.g., “Content-Type:text/html”) and delimiter bytes (e.g., “\r\n”). To identify them, for each protocol, we keep a list of benign bytes. Based on the packet format, we examine the concrete substrings to search for the occurrences of benign bytes. If found, we strip the benign part and focus on the rest bytes for pattern extraction.
In addition, it is also important to avoid generating signatures only using trivial patterns such as too short byte string or too general regex patterns. Thus, we set a threshold of minimum byte string length (e.g., >= 10) and a list of critical regexes (e.g., NOP regex [\x90]*). Given a set of extracted patterns, we generate signatures only if we can find at least one pattern whose length is above the threshold or whose regex is critical. Note that both the threshold and the critical regex list are adjustable. Security analysts can also define different thresholds and lists for different network protocols.
Second Requirement. Recall that SymExeLayer explores different execution paths in an attack script and dumps payloads in each path. Sometimes, two paths may differ only in a branch that is irrelevant to the payload content, thus finally composing the same payloads. Furthermore, two attack scripts may also share the same patterns. To consolidate the same patterns from different payloads into one signature, we keep a key-value hash map where each key is a pattern set and each value is a set of different payloads with the same pattern set. When a new payload is parsed, if its pattern set already exists in the hash map, we add this new payload, particularly its behavior & constraint log into the corresponding value set. The payloads and the logs in one set are analyzed together to generate only one signature.
Apart from pattern extraction, it is equally important to provide the context of the patterns. The pattern context shows the insight into the attack script, such as what attack behavior and attack payload the patterns represent. It also gives security analysts the guidance on how to use the patterns, such as which target version and what OS environment the patterns can be used to protect.
Therefore, we analyze the behavior & constraint log to derive the pattern context. Since attack behaviors are captured as behavioral APIs in the log, we derive the context by translating the behavioral APIs into human-readable phrases. Some APIs have straightforward names, which can be simply translated into the description phrase (or even directly used), such as probe_ver => Version Probing
. Others may not be intuitive. Particularly, certain behavior cannot be shown from a single API but a series of API calls. In such case, we group these API calls together as one behavioral pattern. When such pattern is found in the log, we translate it into the matched behavior name, such as shellcode + get_target_ret => Stack Overflow
.
Sometimes, sophisticated attack scripts may have unprecedented behaviors whose APIs do not match any patterns. In such cases, we keep the derivable context while highlighting underived behavioral APIs in the log to help security analysts discover new attack behaviors. In fact, we use this technique in our prototype to collect patterns.
In regard to attack constraints, since the involved symbolic values represent attack conditions of each execution path, we retrieve the external source names in the symbolic labels and bind them with the conditions derived from the constraints (e.g., Target Version: 5).
Finally, when both the extracted pattern set and the derived context are ready, SigGen combines two together and generates a signature, which can be used to detect the payloads associated with this specific pattern set.
We implement a prototype of MetaSymploit as a practical analysis tool targeting the Ruby-based attack framework Metasploit. Given a Metasploit attack script, our tool quickly analyzes it and automatically generates Snort rules as signatures that can defend against this specific script. Particularly, we developed a lightweight Ruby symbolic execution engine designed for attack script analysis. Powered by the engine, we build SymExeLayer on top of the launching platform of Metasploit. In this section, we first describe how the engine is designed and then explain how to adapt the engine for Metasploit.
Traditionally, developing a symbolic execution engine requires heavy modification of the interpreter, which causes great engineering effort since Ruby has multiple active versions and interpreters (e.g., 1.8/1.9/2.0). However, we discover a new way to design a lightweight engine without modifying the interpreter. The engine is developed purely in Ruby (9.3K SLOC) as a loadable package compatible with multiple versions of Ruby. Thus it supports analyzing attack scripts written in different versions. Specifically, our engine has two modules: (1) a symbolic library that introduces rich symbolic support into Ruby; (2) a symbolic execution tracer that performs symbolic execution based on the actual script execution.
The symbolic library realizes the functionality of Symbolic API Extension. The library introduces symbolic classes to hold symbolic values (e.g., SymbolicString, SymbolicInteger
). To be transparent to attack scripts, we develop the same APIs in the symbolic classes as their concrete counterparts. On the other hand, we also extend indirect-variant-related APIs in the concrete classes to support handling symbolic arguments, so that concrete and symbolic objects can operate with each other.
Notably, SymbolicString
class plays the key role in representing attack payloads. To hold the contents, SymbolicString
has an internal ordered array, where each item is either a concrete substring, or a symbolic substring with the sym_label, length
> embedded. When a SymbolicString
API is called, it first checks whether the original concrete operation is still applicable to the concrete substrings. If so, the API uses the original logic in String
to operate the concrete substrings. Otherwise, the API treats the contents as symbolic substrings, and processes the internal string array as symbolic expressions. When a symbolic-extended String
API is called with symbolic arguments, it handles concrete and symbolic substrings in the same way as above and returns a SymbolicString
object.
Later when SymExeLayer is integrated with Metasploit, we further include the symbolic-extended APIs of Metasploit into the symbolic library.
The symbolic execution tracer transforms normal script execution into symbolic execution. It also realizes the functionality of Behavior & Constraint logging. To this end, we develop three techniques based on three advanced language features in Ruby (& Python3).
(1) Fine-grained execution tracing. This technique traces the symbolic execution line-by-line in an attack script. It keeps track of every method call. It also explores different paths when executing branches. We develop it by enhancing a language feature called Debug tracing function with Control Flow Graph (CFG).
Debug tracing function is a step-by-step execution tracing facility used for debugging such as Ruby's set_trace_func
(Python's sys.settrace
). It captures three major events, line, call, return. The line event shows the number of the current executing line. The call/return event shows the name of the method being called/returned. Every time an event happens, Debug tracing function suspends the execution and calls a registered callback function for further event analysis.
We develop our callback function using the CFG of the attack script. Since the CFG holds both the source code and the control flows, it offers rich semantics for analyzing the execution details when parsing every event. When a line event happens, we locate the current line's source code in the CFG. Then we retrieve all call sites in the current line, which will be matched with the following call/return events happening in this line. Particularly, this tracing mechanism can log behavioral API calls when they are found in the call sites.
Our callback function also handles branches to explore different paths. When the line event reaches a symbolic branch, we evaluate the branch source code and consult a constraint solver for both true and false branch constraints. If a solution exists, we concretize the symbolic branch condition to guide the interpreter to the desired branch (explained next). If both branches can be satisfied, we fork
the script execution process into two processes to trace both branches. Otherwise, if no solution is returned, we terminate the execution process. Particularly, if attack constraints are found, the callback function would perform constraint logging.
(2)Runtime symbolic variable manipulation. This technique leverages the Runtime context binding language feature to manipulate the runtime values of symbolic variables. In particular, it inspects the values of attack payloads during composing. It also concretizes symbolic branch conditions to guide branch execution.
Runtime context binding can inspect and modify the runtime states of the script, such as Ruby's Binding
and Python's inspect
. It provides a context object that binds the runtime scope of the current traced code. The callback function can use this object to access all variables and methods in the scope of the traced code.
The first use of context is to inspect the runtime value of an attack payload when it is being composed. When a variable is detected to be assigned by payload composing APIs, the callback uses context to keep track of its value. The callback then logs the inspected values together with the payload composing APIs in the behavior log.
The second use of context is to guide symbolic branch execution. Since the interpreter cannot move forward with a symbolic condition, when the constraint solver returns a solution, for each symbolic variable in the condition, we use context to temporarily replace the symbolic value with the solved concrete value to guide the interpreter to the desired branch. Later when the line event shows that the branch is taken, we recover them back to their symbolic form. Recall the version==5
in Listing 1. Since version
is symbolic value, we temporarily replace its value with 5 to explore one branch, and uses a non-5 value for the other branch.
(3)Dynamic symbolic method wrapping. In some cases, the symbolic return values of method calls are not associated with any variables, thus cannot be manipulated using the second technique. To handle this, we leverage the Dynamic method overriding language feature to dynamically wrap the traced method, associate its return value with a temporary variable for manipulation.
Dynamic method overriding is a common feature in Ruby and Python that methods can be runtimely overridden and take effect immediately. Using this language feature, we dynamically create a wrapper method and override the original method right before the call event. Meanwhile, we also preserve the original method, and recover it right after the return event.
A more important use of the wrapping technique is to concretize symbolic methods in branch conditions. If no variable holds the symbolic return value of a method call in a branch condition, to guide symbolic branch execution, we override the symbolic method with the wrapper to return a solved concrete value. In practice some constraint solvers require the symbolic method calls to be associated with variables to enable the solving.
To analyze Metasploit attack scripts, we adapt the engine and the six techniques in both SymExeLayer and SigGen to work with the APIs provided by Metasploit and its built-in components.
The current prototype is based on Metasploit version 4.4 (released in Aug 2012). We select the top 10 most popular built-in components in Metasploit: Tcp
, Udp
, Ftp
, Http
, Imap
, Exe
, Seh
, Omelet
, Egghunter
, Brute
. The first 5 are popular network protocol components. The next 4 are used to attack Windows systems. Exe
can generate exe file payloads. Seh
can create SEH-based attacks. Both Omelet
and Egghunter
can compose staged payloads. The last Brute
can create bruteforce attacks. These components cover 548 real attack scripts carried in Metasploit. By examining the APIs provided by the launching platform and these components of Metasploit, we perform three steps to adapt the engine for SymExeLayer and SigGen.
First, in the symbolic library, we apply symbolic API extension to the environment-related APIs such as tcp.get
, ftp.login
, http.read_response
, and variant-payload-content-related APIs such as rand_text
, make_nops
, gen_shellcode
4. The library also replaces the output APIs such as ftp.send_cmd
, http.send_request
with our local-dumping APIs. When the script calls these APIs during symbolic execution, SymExeLayer redirects the calls to the symbolic-extended APIs.
Second, to equip the symbolic execution tracer with behavior & constraint logging ability, we build a knowledge base collecting behavioral APIs such as http.fingerprint, gen_egghunter
and keep a mapping between APIs and their behavior meaning for pattern context deriving. We also keep a list of symbolic labels for identifying attack constraints.
Third, based on the standards of the protocols and the implementation of the built-in components, we add the packet formats and common benign bytes of the five network protocols into the knowledge base. For instance, we develop specific parsers to parse payloads embedded in HTTP headers and FTP commands.
Note that both the API extension and the knowledge base are one-time system configuration. Since Metasploit components and their APIs are relatively stable for compatibility with various attack scripts, once they are collected and supported by MetaSymploit, newly distributed attack scripts that rely on these components can be directly supported and automatically analyzed.
We conduct our evaluation on an Intel Core i7 Quad 2.4GHz, 8GB memory, Ubuntu 12.10 machine. We run MetaSymploit based on Metasploit 4.4, using the official Ruby 1.9.3 interpreter. We evaluate our approach from three perspectives: (1) the percentage of real-world attack scripts that can be analyzed by MetaSymploit's symbolic execution; (2) the effectiveness of our automatically generated signatures to defend against real-world attacks; (3) the difference between our automatically generated rules and official Snort rules.
We first evaluate whether MetaSymploit can symbolically execute various attack scripts. We use MetaSymploit to analyze all 548 real attack scripts created with the top 10 popular Metasploit components. As the result shown in Table 1, 509 scripts (92.88%) are automatically executed by MetaSymploit in the symbolic mode without any manual modification of the scripts. Different attack conditions in the scripts are explored. The attack payloads are captured and Snort rules are generated.
In terms of analysis cost, since MetaSymploit reuses the launching platform of Metasploit on the official Ruby interpreter, the symbolic execution has almost the same speed as that Metasploit executes attack scripts normally (less than one minute on average). In fact, since the environment-related APIs are symbolic-extended, the time for real network communication is saved. Furthermore, signatures are generated in less than 10 seconds.
Among the remaining 39 scripts that MetaSymploit cannot automatically deal with, we encounter five main situations that deserve more discussion.
Loop with Symbolic Condition. We find that 9 scripts have conditional loops whose symbolic conditions cannot be solved by constraint solvers, which may cause infinite looping. As a common problem in classical symbolic execution, some previous approaches proposed using random concrete values to replace symbolic conditions to execute loops [20]. However, in our case, doing so may affect the precision of the payload contents. Other approaches such as LESE [35] specifically handle loops, which we plan to explore in future work.
Table 1: The distribution of different situations in the symbolic execution of the 548 Metasploit attack scripts.
Currently, after manual analysis, we find that there are two cases of using the loops: byte-by-byte modifying a symbolic string whose length is a symbolic integer, and performing repeated attack steps in a bruteforce attack. In the first case, since the string length is not concrete, the looping rounds cannot be decided. However, we find no matter how many rounds are, the looping result is still a symbolic string. Therefore, we replace the loop code that operates the symbolic string with a new symbolic string to represent the looping result (10 LOC per script on average), while propagating the symbolic label and logging the loop information for further investigation.
In the second case, the Brute
component provides an API that checks whether the target is compromised or not. It is typically used as a while loop condition. The loop keeps attacking the target until the API returns that the target is compromised. Since in our case the API returns a symbolic value as the target status, to avoid infinite looping, we set a counter with an upper bound in the extended version of this API, to control the looping rounds. If there are payloads and logs captured inside the loop, the differences between each round are analyzed to identify the constant patterns.
Non-Symbolic-Extended API Call. Due to the time limitations, other than the top 10 components, we have not symbolically extended other APIs in Metasploit. We detect 12 scripts that call the non-extended APIs related to assembly translating and encoding the payloads. Since very few APIs are involved, we decide to modify each of them individually at this time, and extend the entire components in future work. To handle these API calls, since SymbolicString
supports payload content processing, when applicable to the concrete substrings, we allow the APIs to operate on the concrete parts, while preventing them from using the symbolic substrings, which may otherwise cause runtime errors. When the API operates on a pure symbolic string with no concrete substrings, we replace the API calls by creating new symbolic strings to represent the results of the API calls (3 LOC per script on average).
Obfuscation & Encryption. There are 13 cases with complicated obfuscation and encryption on the payload, where payload content processing is not feasible. Since the output of these operations is completely random, there is no constant pattern that can be extracted from the obfuscated or encrypted payload. Defending against obfuscation and encryption is an open question, which is beyond the scope of signature-based defense.
Multi-threading. Handling multi-threading is an advanced topic in symbolic execution. Existing research [37] explored the possibility by extending symbolic execution to handle multi-threaded programs. Currently, due to only 3 cases related to this situation, we plan to address this issue in future work.
Bug in Scripts. Interestingly, during the testing, we also discover 2 scripts with bugs that hang the execution when the script is generating a specific assembly code that jumps to the shellcode. From this result, we see that our approach is also useful for the purpose of finding bugs in attack scripts.
In summary, the percentage of scripts that are automatically handled is 92.88%. If the manually modified scripts are included, the percentage reaches 96.90%.
To evaluate whether the automatically generated Snort rules can effectively detect real attacks, we use Metasploit attack scripts to attack 45 real-world vulnerable applications. These applications are acquired from exploit-db.com
, a popular hacking website collecting attack scripts and free vulnerable applications. In all, there are 45 free vulnerable applications available in the website, with 45 corresponding Metasploit scripts. They include Java 7, Adobe Flash Player 10, Apache servers 2.0, Firefox 3.6, RealPlayer 11, multiple FTP servers such as Dream FTP, ProFTPD, VLC player 1.1, IRC servers and some less popular web-based programs.
We first use MetaSymploit to analyze the 45 attack scripts and automatically generate Snort rules. Then we set up two virtual machines, with one running Metasploit to simulate the attacker and the other running the vulnerable application as the vulnerable target. For each script, we choose two different shellcodes to launch two real attacks. To expose the entire attack flow, we allow the attack to compromise the target, and use Snort IDS 2.9.2 with our generated rules to detect attack payloads. Note that due to the limited available versions of the applications, we focus on the rules of the attack payloads that target the application versions that we are able to obtain.
The initial results show that except the HTTP-based ones, all attack payload packets with both two types of shellcodes are correctly detected. Recall that our rules are based on the constant patterns of the payload, variant parts such as shellcodes do not affect the detection. But for Apache server attacks and Firefox attacks, our rules fail to catch the attack packets because the order of each HTTP header field is different from the one in our rules. Since the order of the HTTP header fields is not enforced by RFC definition, the extracted patterns from the HTTP header cannot be simply put into the signature in sequence. Therefore, we further improve our HTTP parser to handle each header field separately, to enable order-insensitive pattern matching. In the second round of testing, the HTTP-based attacks are also correctly detected.
Another interesting case is the Java 7 attack. In late Aug 2012, two days after a zero-day vulnerability in Java 7 was disclosed (CVE 2012-4681), a Metasploit attack script was distributed targeting this vulnerability [32]. At that time, we immediately used MetaSymploit to analyze this attack script and automatically generate a Snort rule based on the malicious jar payload composed by this script, and tested it in our environment. Our rule successfully detected the jar payload. Admittedly, there might be other ways different from the distributed Metasploit script to exploit the vulnerability. Nevertheless, our rule provides the first aid to the vulnerability without available security patch, to defend against attackers who directly use this widely-distributed script to launch attacks.
Apart from the effectiveness evaluation, we also use our rules generated from the 45 attack scripts to monitor normal network traffic, to investigate whether our rules would raise false positives on benign packets. We run the Snort with our rules in promiscuous mode to monitor the traffic of two Windows machines (Vista & 7) and a Ubuntu 12.04 machine. These machines are everyday-use machines in the CS department (no personal data is recorded). The monitoring is online for two months. No false positive is raised on benign packets. Such result is expected since our rules contain multiple specific patterns that matches only the Metasploit attack payloads. Appendix A shows a rule example for one of the 45 scripts.
To further assess the quality of the generated rules, we compare the MetaSymploit rules (MRs) of the 45 attack scripts with the recent Official Snort rules (ORs), released in Nov 20125. We use CVE number carried in both attack scripts and ORs to match each other. The result is surprising that only 22 attack scripts have corresponding ORs. The rest 23 are not even covered by ORs. This reveals a serious issue that existing defense is still quite insufficient compared to the fast spreading of public attack resources.
Figure 2: Pattern comparison between 53 MetaSymploit generated rules and 50 official Snort rules for 22 Metasploit attack scripts.
For the 22 officially covered scripts, there are 53 MRs and 50 ORs. In MetaSymploit, one script may have multiple rules detecting different payloads for different target versions. Whereas in the official rule set, one vulnerability may also have multiple rules detecting different ways that exploit it. By comparing the patterns in both rule sets, we summarize the result in Figure 2. We find that 44 MRs share patterns with 21 ORs. Specifically, 6 MRs and 6 ORs share the same content
byte patterns. 4 MRs and 4 ORs share the same pcre
regex patterns. Notably, 35 MRs have specific content
that are matched with 11 ORs' general pcre
. This is because the pcre
regexes are generalized by security analysts based on large volumes of samples, while the content
bytes (usually including vulnerable return addresses) are generated based on every attack payload of the scripts. An example is shown in Appendix A. Although in this case, the MR set is a subset of the OR one, we argue that as our goal is to defend against specific attack scripts, MRs give more insight of the attack payloads with more precise matching. Meanwhile, there are 5 MRs and 26 ORs with no pattern shared. This is because some vulnerabilities can be exploited in different ways, and the ORs have more patterns defined by analysts, while Metasploit scripts usually choose one way to exploit one vulnerability. Nevertheless, we still find that 2 scripts have 5 MRs whose patterns are not seen in ORs, which complement the OR set.
Besides, we also load the 50 ORs into Snort to test whether they can detect attacks launched by the 22 attack scripts. Interestingly, the result shows that only 17 scripts' attack payloads are detected, while no alert is raised for the other 5 scripts. 2 scripts6 are missed due to the lack of OR patterns as we mentioned above. The other 3 scripts, which have 3 MRs, are supposed to be detected by 3 corresponding ORs. After comparing these rules, we find the 3 ORs have some deficiencies that cause this inconsistent detection results. We list the detailed information of the 3 scripts and the deficiencies of the 3 ORs in Table 2. Note that some deficiencies are actually caused by inaccurate use of Snort rule flags such as the http_uri, flow
. We find them by comparing these flags with the pattern context (e.g., Behaviors) in our rules. We have reported these discoveries to the official Snort team.
In sum, these results show that even the official Snort rules written by security analysts are incomplete and tend to be error-prone. MetaSymploit serves as a useful tool to complement and augment the existing IDS signatures by improving the completeness and the accuracy.
Scenarios of using MetaSymploit signatures. As shown in the comparison (35 MRs vs 11 ORs), due to different pattern extracting mechanisms, ORs have less rules with more general patterns, while MRs have more rules with more specific patterns. It is possible that as the number of attack scripts is increasing, more and more signatures will be generated. If all signatures are loaded into the IDS, this may slow down the matching speed.
However, we argue that unlike ORs are used for general detection, MetaSymploit signatures should be used in two typical scenarios, which do not require loading all MRs in an IDS. First, as the goal of MetaSymploit is to provide quick defense against newly distributed attack scripts, the typical way of using our signatures is to give first aid to the vulnerable application without available patches to prevent attackers especially script kiddies using the new scripts to launch attacks (e.g., the Java 7 case). When the vulnerability is patched or the application is upgraded, our signatures can be removed from the IDS. Second, as the pattern contexts are embedded with the signatures, security analysts only need to deploy the signatures whose contexts are related to the protected environment or the protected target version, to avoid loading irrelevant signatures which may slow down the matching speed of the IDS.
Limitations. MetaSymploit inherits the limitations of classical symbolic execution. As we mentioned in Section 5.1, our current prototype requires manual analysis on handling complex symbolic loops. Recent approaches propose to use bounded iteration [21], search-guiding heuristics [40] and loop summary [22, 35] to address the loop issue. In MetaSymploit, different loop cases of attack scripts may require different techniques. For example, bounded iteration can be applied to handle loops of bruteforce attacks. Loop summaries can summarize the post-loop effect on symbolic payload contents. Search-guiding heuristics can help target payload-related loops to avoid getting stuck in irrelevant loops.
Apart from loops, path explosion is a more general issue related to performance and scalability. Too many paths in an attack script may prolong the analysis and delay the defense. In addition, it is possible that different paths in a script finally lead to the same attack payload output. Exploring these paths incurs extra efforts of pruning redundant payloads. Several techniques such as equivalent state tracking [9], state merging [26] and path partitioning [31] have been proposed to mitigate the path explosion issue. We plan to incorporate these techniques into MetaSymploit to avoid exploring paths that would compose redundant payload contents.
The limitations of constraint solvers may also affect the effectiveness of path exploration. Currently, we use Gecode/R [1] for solving integer/boolean constraints and HAMPI [23] for solving string constraints. In case when encountering complicated constraints (e.g., a non-linear constraint), the solvers cannot decide which branch to take. For the sake of completeness, we conservatively explore both branches, while marking the path constraints as uncertain in the log, which require more investigation by security analysts. Due to this fact, we regard our prototype as an assistant tool to reduce the workload of analysts, so that they only need to focus on complicated ones when facing large numbers of new attack scripts.
We envision possible attacks directly against MetaSymploit's defense mechanism. As MetaSymploit rules stick to the patterns in the distributed attack scripts, it is possible that experienced attackers may modify the distributed one to create new script variants without releasing them, which may evade the detection of MetaSymploit rules. Besides, experienced attackers may also try to exploit the limitation of symbolic execution when developing new scripts, such as introducing complex loops, non-linear constraints or even obfuscating the script code. However, both cases are non-trivial. They require advanced attack developing techniques, which are usually time-consuming and slow down the speed of developing and launching new attacks. In other words, with MetaSymploit, we raise the bar of the skill level and the time cost for developing and launching new attacks.
Signature Generation. There has been a lot of work on automatic signature generation for malware defense. From the perspective of attacks, Autograph [24], Polygraph [29] and Hamsa [27] automatically generate worm signatures by extracting invariant contents from the network traffic of worms. Particularly, these approaches are based on the observation that even polymorphic worms have invariant contents that can be used as signature patterns. In MetaSymploit, we have the same observation when analyzing constant and variant payload contents composed by attack scripts. On the other hand, these approaches require collecting large amounts of malicious network traffic to identify invariant contents. However, this process is usually time-consuming and cannot provide quick defense against new attacks. In contrast, MetaSymploit does not need to collect any network traffic but only attack scripts, thus largely reducing the time of performing analysis and providing defense.
Table 2: The list of three Metasploit attack scripts which evade the detection from 3 Official Snort Rules
From the perspective of vulnerabilities, Vigilante [18], ShieldGen [19] and Bouncer [17] analyze vulnerable applications and their execution traces to generate signatures to block exploit inputs that can trigger the vulnerability. Brumley et al. [10, 11] also provide the formal definition of vulnerability-based signatures and propose constraint-solving-based techniques to generate such signatures. Elcano [13] and MACE [16] further use protocol-level concolic exploration to generate vulnerability-based signatures. Notably, program analysis techniques such as symbolic execution play an important role in these approaches as well as in MetaSymploit. But unlike these approaches, MetaSymploit only analyzes attack scripts without requiring the presence of vulnerable applications, thus avoiding the cost of obtaining various vulnerable applications or preparing various testing environments.
Symbolic Execution. Symbolic execution has been actively applied for security purposes [36]. BitBlaze [38] is a binary analysis platform based on symbolic execution. SAGE [21] uses dynamic symbolic execution to detect vulnerabilities in x86 binaries. EXE [14] and AEG [8] generate malicious inputs and exploits by symbolically executing vulnerable applications. Moser et al. [28] explore multiple execution paths for malware analysis. Since our analysis target, attack script is quite different from host-based binary level malware, the techniques proposed in these approaches such as memory inspection, system call analysis are not adaptable in our case.
Symbolic execution for scripting languages is still at early stage, due to the diversity of different kinds of scripting languages and various purposes of applications. Most work focuses on the web-based scripting languages, such as JavaScript [34], PHP [7, 41], and Ruby on Rails [15] web frameworks. Since these approaches are specifically designed for testing web applications (e.g., finding XSS and SQL Injection vulnerability), they are not applicable for analyzing general attack scripts and attack frameworks that target various vulnerable applications on different OS environments.
In particular, little work has been done for the symbolic execution of general-purpose scripting languages, such as Ruby and Python. PyStick [30] is an automated testing tool with input generation and invariant detection for Python. It is different from our purpose of using symbolic execution for security analysis. Bruni et al. [12] propose a library-based approach to develop symbolic execution. However, it uses only the dynamic dispatching feature, which limits symbolic execution only in primitive types. This limited functionality is insufficient for practical use.
Script-based attack frameworks have become an increasing threat to computer security. In this paper, we have presented MetaSymploit, the first system of automatic attack script analysis and IDS signature generation. MetaSymploit leverages security-enhanced symbolic execution to analyze attack scripts. We have implemented a prototype targeting the popular attack framework Metasploit. The results have shown the effectiveness of MetaSymploit in real-world attacks, and also the practical use in improving current IDS signatures.
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Listing 4: The code snippet from a Metasploit attack script apache_mod_rewrite_ldap.rb
Listing 5: One MetaSymploit Rule (MR) for an attack payload of apache_mod_rewrite_ldap.rb
.
Listing 6: One Official Snort Rule (OR) related to the Metasploit attack script in Listing 4.
In Appendix A, we give a simple example to illustrate the comparison between an official Snort rule containing general patterns with a MetaSymploit rule containing specific patterns.
Listing 4 shows the code snippet of the exploit
method in the Metasploit attack script apache_mod_rewrite_ldap.rb
. The script launches the attack by sending an HTTP GET request packet that contains a special URI byte string to trigger the vulnerability. Here send_request_raw
is a Metasploit HTTP output API method that is symbolically extended by MetaSymploit to dump the entire payload packet.
Listing 5 is a MetaSymploit Rule (MR) based on the attack payload composed by the script. It contains the constant byte string patterns, especially the vulnerability triggering string that can identify the specific payload packet. Listing 6 is the corresponding Official Rule (OR) based on CVE matching. It contains a regular expression (regex) pattern generalized by security analysts based on large amounts of samples.
According to the Snort rule manual, a rule can have multiple content
byte string patterns. By default, given a packet, Snort searches these content
patterns in order. A rule can also have one pcre
regex pattern. Snort searches the entire packet for the pcre
pattern.
In the example rules, the first content
in both rules share the same pattern “GET
”. The second content
of the MR captures the triggering string, which includes the second content
of the OR “ldap|3A|
” as a substring. Furthermore, the second content
of the MR is also matched by the general pcre
regex of the OR. In addition, there is another content
in the MR that captures the HTTP protocol version of the packet.
Although both rules can detect the attack payload of this script, the MR has multiple specific patterns that can precisely pinpoint the attacks launched by this script, thus having very low false-positive rate compared to the general OR. In practice, the MRs can help identify what attack scripts are used by attackers, providing a way for the defense side to profile and obtain more knowledge of the attacker side.
1In [4], the exploitable return address actually points to a POP/POP/RET instruction sequence, which is a typical SEH-based attack to hijack control flow in Windows.2For more background of symbolic execution, please refer to [25]3The techniques can also build an engine to analyze Python-based attack scripts, since Ruby and Python share many language features.4The listed API names are abbreviated due to space limits. Note that Metasploit usespayload
to represent shellcode. We use shellcode as a more general term to avoid confusion with attack payloads.5snortrules-snapshot-2922.tar.gz on www.snort.org/snort-rules/6adobe_flash_sps.rb
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Software lineage refers to the evolutionary relationship among a collection of software. The goal of software lineage inference is to recover the lineage given a set of program binaries. Software lineage can provide extremely useful information in many security scenarios such as malware triage and software vulnerability tracking.
In this paper, we systematically study software lineage inference by exploring four fundamental questions not addressed by prior work. First, how do we automatically infer software lineage from program binaries? Second, how do we measure the quality of lineage inference algorithms? Third, how useful are existing approaches to binary similarity analysis for inferring lineage in reality, and how about in an idealized setting? Fourth, what are the limitations that any software lineage inference algorithm must cope with?
Towards these goals we build ILINE, a system for automatic software lineage inference of program binaries, and also IEVAL, a system for scientific assessment of lineage quality. We evaluated ILINE on two types of lineage—straight line and directed acyclic graph—with large-scale real-world programs: 1,777 goodware spanning over a combined 110 years of development history and 114 malware with known lineage collected by the DARPA Cyber Genome program. We used IEVAL to study seven metrics to assess the diverse properties of lineage. Our results reveal that partial order mismatches and graph arc edit distance often yield the most meaningful comparisons in our experiments. Even without assuming any prior information about the data sets, ILINE proved to be effective in lineage inference—it achieves a mean accuracy of over 84% for goodware and over 72% for malware in our data sets.
Software evolves to adapt to changing needs, bug fixes, and feature additions [28]. As such, software lineage—the evolutionary relationship among a set of software—can be a rich source of information for a number of security questions. Indeed, the literature is replete with analyses of known or manually recovered software lineages. For example, software engineering researchers have analyzed the histories of open source projects and the Linux kernel to understand software evolution [14, 45] as well as its effect on vulnerabilities in Firefox [33]. The security community has also studied malware evolution based upon the observation that the majority of newly detected malware are tweaked variants of well-known malware [2, 18, 20]. With over 1.1 million malware appearing daily [43], researchers have exploited such evolutionary relationships to identify new malware families [23, 31], create models of provenance and lineage [9], and generate phylogeny models based upon the notion of code similarity [22].
The wealth of existing research demonstrating the utility of software lineage immediately raises the question— “Can we infer software lineage automatically?” We foresee a large number of security-related applications once this becomes feasible. In forensics, lineage can help determine software provenance. For example, if we know that a closed-source program pA is written by author X and another program pB is derived from pA, then we may deduce that the author of pB is likely to be related to X. In malware triage [2, 18, 20], lineage can help malware analysts understand trends over time and make informed decisions about which malware to analyze first. This is particularly important since the order in which the variants of a malware are captured does not necessarily mirror its evolution. In software security, lineage can help track vulnerabilities in software of which we do not have source code. For example, if we know a vulnerability exists in an earlier version of an application, then it may also exist in applications that are derived from it. Such logic has been fruitfully applied at the source level in our previous work [19]. Indeed, these and related applications are important enough that the US Defense Advanced Research Projects Agency (DARPA) is funding a $43-million Cyber Genome program [6] to study them.
Having established that automatically and accurately infer software lineage is an important open problem, let us look at how to formalize it. Software lineage inference is the task of inferring a temporal ordering and ancestor/descendant relationships among programs. We model software lineage by a lineage graph:
Definition 1.1. A lineage graph G = (N, A) is a directed acyclic graph (DAG) comprising a set of nodes N and a set of arcs A. A node n N represents a program, and an arc (x,y) A denotes that program y is a derivative of program x. We say that x is a parent of y and y is a child of x.
Figure 1: Design space in software lineage inference (S/D represents static/dynamic analysis-based features.)
A root is a node that has no incoming arc and a leaf is a node that has no outgoing arc. The set of ancestors of a node n is the set of nodes that can reach n. Note that n is an ancestor of itself. The set of common ancestors of x and y is the intersection of the two sets of ancestors. The set of lowest common ancestors (LCAs) of x and y is the set of common ancestors of x and y that are not ancestors of other common ancestors of x and y [4]. Notice that in a tree each pair of nodes must have a unique LCA, but in a DAG some pair of nodes can have multiple LCAs.
In this paper, we ask four basic research questions:
1. Can we automatically infer software lineage? Existing research focused on studying known software history and lineage [14, 33, 45], not creating lineage. Creating lineage is different from building a dendrogram based upon similarity [22, 23, 31]. A dendrogram can be used to identify families; however it does not provide any information about a temporal ordering, e.g., root identification.
In order to infer a temporal ordering and evolutionary relationships among programs, we develop new algorithms to automatically infer lineage of programs for two types of lineage: straight line lineage (§4.1) and directed acyclic graph (DAG) lineage (§4.2). In addition, we extend our approach for straight line lineage to k-straight line lineage (§4.1.4). We build ILINE to systematically evaluate the effectiveness of our lineage inference algorithms using twelve software feature sets (§2), five distance measures between feature sets (§3), two policies on the root identification (§4.1.1), and three policies on the use of timestamps (§4.2.2).
Without any prior information about data sets, for straight line linage, the mean accuracies of ILINE are 95.8% for goodware and 97.8% for malware. For DAG lineage, the mean accuracies are 84.0% for goodware and 72.0% for malware.
2. What are good metrics? Existing research focused on building a phylogenetic tree of malware [22, 23], but did not provide quantitative metrics to scientifically measure the quality of their output. Good metrics are necessary to quantify how good our approach is with respect to the ground truth. Good metrics also allow us to compare different approaches. To this end, we build IEVAL to assess our lineage inference algorithms using multiple metrics, each of which represents a different perspective of lineage.
IEVAL uses two metrics for straight line lineage (§5.1). Given an inferred lineage graph G and the ground truth G*, the number of inversions measures how often we make a mistake when answering the question “which one of programs pi and pj comes first”. The edit distance to monotonicity asks “how many nodes do we need to remove in G so that the remaining nodes are in the sorted order (and thus respect G*)”.
IEVAL also utilizes five metrics to measure the accuracy of DAG lineage (§5.2). An LCA mismatch is a generalized version of an inversion because the LCA of two nodes in a straight line is the earlier node. We also measure the average pairwise distance between true LCA(s) and derived LCA(s) in G*. The partial order mismatches in a DAG asks the same question as inversions in a straight line. The graph arc edit distance for (labeled) graphs measures “what is the minimum number of arcs we need to delete from G and G* to make both graphs equivalent”. A k-Cone mismatch asks “how many nodes have the correct set of descendants counting up to depth k”.
Among the above seven metrics, we recommend two metrics—partial order mismatches and graph arc edit distance. In §5.3, we discuss how the metrics are related, which metric is useful to measure which aspect of a lineage graph, which metric is efficient to compute, and which metric is deducible from other metrics.
3. How well are we doing now? We would like to understand the limits of our techniques even in ideal cases, meaning we have (i) control over variables affecting the compilation of programs, (ii) reliable feature extraction techniques to abstract program binaries accurately and precisely, and (iii) the ground truth with which we can compare our results to measure accuracy and to spot error cases. We discuss the effectiveness of different feature sets and distance measures on lineage inference in §8.
We argue that it is necessary to also systematically validate a lineage inference technique with “goodware”, e.g., open source projects. Since malware is often surreptitiously developed by adversaries, it is typically hard or even impossible to obtain the ground truth. More fundamentally, we simply cannot hope to understand the evolution of adversarial programs unless we first understand the limits of our approach in our idealized setting.
We systematically evaluated ILINE with both goodware and malware that we have the ground truth on: 1,777 goodware spanning over a combined 110 years of development history and 114 malware collected by the DARPA Cyber Genome program.
4. What are the limitations? We investigate error cases in G constructed by ILINE and highlight some of the difficult cases where ILINE failed to recover the correct evolutionary relationships. Since some of our experiments are conducted on goodware with access to source code, we are able to pinpoint challenging issues that must be addressed before we can improve the accuracy in software lineage inference. We discuss such challenging issues including reverting/refactoring, root identification, clustering, and feature extraction in §9. This is important because we may not be able to understand malware evolution without understanding limits of our approach with goodware.
In this study, we use three program analysis methods: syntax-based analysis, static analysis, and dynamic analysis. Given a set of program binaries P, various features fi are extracted from each pi P to evaluate different abstractions of program binaries. Source code or metadata such as comments, commit messages or debugging information is not used as we are interested in results in security scenarios where source code is typically not available, e.g., forensics, proprietary software, and malware.
Previous work analyzed software release histories to understand a software evolution process. It has been often observed that program size and complexity tend to increase as new revisions are released [14, 28, 45]. This observation also carries over to security scenarios, e.g., the complexity of malware is likely to grow as new variants appear [8]. We measured code section size, file size, and code complexity to assess how useful these features are in inferring lineage of program binaries.
• Section size: ILINE first identifies executable sections in binary code, e.g., .text
section, which contain executable program code, and calculates the size.
• File size: Besides the section size, ILINE also calculates the file size, including code and data.
Figure 2: Example of feature extraction
• Cyclomatic complexity: Cyclomatic complexity [34] is a common metric that indicates code complexity by measuring the number of linearly independent paths. From the control flow graph (CFG) of a program, the complexity M is defined as M = E − N + 2P where E is the number of edges, N is the number of nodes, and P is the number of connected components of the CFG.
While syntax-based analysis may lack semantic understanding of a program, previous work has shown its effectiveness on classifying unpacked programs. Indeed, n-gram analysis is widely adopted in software similarity detection, e.g., [20, 22, 26, 40]. The benefit of syntax-based analysis is that it is fast because it does not require disassembling.
• n-grams: An n-gram is a consecutive subsequence of length n in a sequence. From the identified executable sections, ILINE extracts program code into a hexadecimal sequence. Then, n-grams are obtained by sliding a window of n bytes over it. For example, Figure 2b shows 4-grams extracted from Figure 2a.
Existing work utilized semantically richer features by first disassembling a binary. After reconstructing a control flow graph for each function, each basic block can be considered as a feature [12]. In order to maximize the probability of identifying similar programs, previous work also normalized disassembly outputs by considering instruction mnemonics without operands [23, 46] or instruction mnemonics with only the types of each operand (such as memory, a register or an immediate value) [39].
In our experiments, we introduce an additional normalization step of normalizing the instruction mnemonics themselves. This was motivated by our observations when we analyzed the error cases in the lineages constructed using the above techniques. Our results indicate that this normalization notably improves lineage inference quality.
We also evaluate binary abstraction methods in an idealized setting in which we can deploy reliable feature extraction techniques. The limitation with static analysis comes from the difficulty of getting precise disassembly outputs from program binaries [27, 30]. In order to exclude the errors introduced at the feature extraction step and focus on evaluating the performance of software lineage inference algorithms, we also leverage assembly generated using gcc -S
(not source code itself) to obtain basic blocks more accurately. Note that we use this to simulate what the results would be with ideal disassembling, which is in line with our goal of understanding the limits of the selected approaches.
• Basic blocks comprising disassembly instructions: ILINE disassembles a binary and identifies its basic blocks. Each feature is a sequence of instructions in a basic block. For example, in Figure 2c, each line is a series of instructions in a basic block; and each line is considered as an individual feature. This feature set is semantically richer than n-grams.
• Basic blocks comprising instruction mnemonics: For each disassembled instruction, ILINE retains only its mnemonic and the types of its operands (immediate, register, and memory). For example, add $0x2c
, %esp
is transformed into add imm
, reg
in Figure 2d. By normalizing the operands, this feature set helps us mitigate errors from syntactical differences, e.g., changes in offsets and jump target addresses, and register renaming.
• Basic blocks comprising normalized mnemonics: ILINE also normalizes mnemonics. First, mnemonics for all conditional jumps, e.g., je
, jne
and jg
, are normalized into jcc
because the same branching condition can be represented by flipped conditional jumps. For example, program p1 uses cmp eax
, 1; jz addr1
while program p2 has cmp eax
, 1; jnz addr2
. Second, ILINE removes the nop
instruction.
Modern malware is often found in a packed binary format [15, 21, 32, 38] and it is often not easy to analyze such packed/obfuscated programs with static analysis tools. In order to mitigate such difficulties, dynamic analysis has been proposed to monitor program executions and changes made to a system at run time [1, 2, 13, 35]. The idea of dynamic analysis is to run a program to make it disclose its “behaviors”. Dynamic analysis on malware is typically performed in controlled environments such as virtual machines and isolated networks to prevent infections spreading to other machines [37].
• Instructions executed at run time: For malware specifically, ILINE traces an execution using a binary instrumentation tool and collects a set of instruction traces. Similar to static features, ILINE also generates additional sets of features by normalizing operands and mnemonics.
Besides considering each feature set individually, ILINE utilizes multiple feature sets to benefit from normalized and specific features. Specifically, ILINE first uses the most normalized feature set to detect similar programs and gradually employs less-normalized feature sets to distinguish highly similar programs. This ensures that less similar programs (e.g., major version changes) will be connected only after more similar programs (e.g., only changes of constant values) have been connected.
To measure the distance between two programs p1 and p2, ILINE uses the symmetric difference between their feature sets, which captures both additions and deletions made between p1 and p2. Let f1 and f2 denote the two feature sets extracted from p1 and p2, respectively. The symmetric distance between f1 and f2 is defined to be
which denotes the cardinality of the set of features that are in f1 or f2 but not both. The symmetric distance basically measures the number of unique features in p1 and p2.
Distance metrics other than symmetric distance may be used for lineage inference as well. For example, the Dice coefficient distance DC(f1, f2) = 1 − , the Jaccard distance JD(f1, f2) = 1 − , and the Jaccard containment distance JC(f1, f2) = 1 − can all be used to calculate the dissimilarity between two sets.
Besides the above four distance measures, which are all symmetric, i.e., distance
(f1, f2) = distance
(f2, f1), we have also evaluated an asymmetric distance measure to determine the direction of derivation between p1 and p2. We call it the weighted symmetric distance, denoted WSD(f1, f2) = |f1\f2| ×; Cdel
+ |f2\f1| × Cadd
where Cdel
and Cadd
denote the cost for each deletion and each addition, respectively. Note that WSD(f1, f2) = SD(f1, f2) when Cdel
= Cadd
= 1.
Our hypothesis is that additions and deletions should have different costs in a software evolution process, and we should be able to infer the derivative direction between two programs more accurately using the weighted symmetric distance. For example, in many open source projects and malware, code size usually grows over time [8, 45]. In other words, addition of new code is preferred to deletion of existing code. Differentiating Cdel
and Cadd
can help us to decide a direction of derivation. In this paper, we set Cdel = 2
and Cadd = 1
. (We leave it as future work to investigate the effect of these values.) Suppose program pi has feature set fi = {m1, m2, m3}, and program pj contains feature set fj = {m1, m2, m4, m5}. By introducing asymmetry, evolving from pi to pj has a distance of 4 (deletion of m3 and addition of m4 and m5), while the opposite direction has a distance of 5 (deletion of m4 and m5 and addition of m3). Since pi pj has a smaller distance, we conclude that it is the more plausible scenario.
For the rest of our paper, we use SD as a representative distance metric when we explain our lineage inference algorithms. We evaluated the effectiveness of all five distance measures on inferring lineage using SD as a baseline (see §8). Regarding metric-based features, e.g., section size, we measure the distance between two samples as the difference of their metric values.
Our goal is to automatically infer software lineage of program binaries. We build ILINE to systematically explore the design space illustrated in Figure 1 to understand advantages and disadvantages of our algorithms for inferring software lineage. We applied our algorithms to two types of lineage: straight line lineage (§4.1) and directed acyclic graph (DAG) lineage (§4.2). In particular, this is motivated by the observation that there are two common development models: serial/mainline development and parallel development. In serial development, every developer makes a series of check-ins on a single branch; and this forms straight line lineage. In parallel development, several branches are created for different tasks and are merged when needed, which results in DAG lineage.
The first scenario that we have investigated is 1-straight line lineage, i.e., a program source tree that has no branching/merging history. This is a common development history for smaller programs. We have also extended our technique to handle multiple straight line lineages (§4.1.4).
Software lineage inference in this setting is a problem of determining a temporal ordering. Given N unlabeled revisions of program p, the goal is to output label “1” for the 1st revision, “2” for the 2nd revision, and so on. For example, if we are given 100 revisions of program p and we have no timestamp of the revisions (or 100 revisions are randomly permuted), we want to rearrange them in the correct order starting from the 1st revision p1 to the 100th revision p100.
In order to identify the root/first revision that has no parent in lineage, we explore two different choices: (i) inferring the root/earliest revision, and (ii) using the real root revision from the ground truth.
ILINE picks the root revision based upon Lehman's observation [28]. The revision that has the minimum code complexity (the 2nd software evolution law) and the minimum size (the 6th software evolution law) is selected as the root revision. The hypothesis is that developers are likely to add more code to previous revisions rather than delete other developers' code, which can increase code complexity and/or code size. This is also reflected in security scenarios, e.g., malware authors are also likely to add more modules to make it look different to bypass anti-virus detection, which leads to high code complexity [8]. In addition, provenance information such as first seen date [10] and tool-chain components [36] can be leveraged to infer the root.
We also evaluate ILINE with the real root revision given from the ground truth in case the inferred root revision was not correct. By comparing the accuracy of the lineage with the real root revision to the accuracy of the lineage with the inferred root revision, we can assess the importance of identifying the correct root revision.
From the selected root revision, ILINE greedily picks the closest revision in terms of the symmetric distance as the next revision. Suppose we have three contiguous revisions: p1, p2, and p3. One hypothesis is SD(p1, p2) SD(p1, p3), i.e., the symmetric distance between two adjacent revisions would be smaller. This hypothesis follows logically from Lehman's software evolution laws.
There may be cases where the symmetric distance between two different pairs are the same, i.e., a tie. Suppose SD(p1, p2) = SD(p1, p3). Then both p2 and p3 become candidates for the next revision of p1. Using normalized features can cause more ties than using specific features because of the information loss.
ILINE utilizes more specific features in order to break ties more correctly (see §2.5). For example, if the symmetric distances using normalized mnemonics are the same, then the symmetric distances using instruction mnemonics are used to break ties. ILINE gradually reduces normalization strength to break ties.
As an optional step, ILINE handles outliers in our recovered ordering, if any. Since ILINE constructs lineage in a greedy way, if one revision is not selected mistakenly, the revision may not be selected until the very last round. To see this, suppose we have 5 revisions p1, p2, p3, p4, and p5. If ILINE falsely selects p3 as the next revision of p1 (p1 p3) and SD(p3, p4) SD(p3, p2), then p4 will be chosen as the next revision (p1 p3 p4). It is likely that SD(p4, p5) SD(p4, p2) holds because p4 and p5 are neighboring revisions, and then p5 will be selected (p1 p3 p4 p5). The probability of selecting p2 is getting lower and lower if we have more revisions. At last p2 is added as the last revision (p1 p3 p4 p5 p2) and becomes an outlier.
In order to handle such outliers, ILINE monitors the symmetric distance between every adjacent pair in the constructed lineage G. Since the symmetric distance at an outlier is the accumulation of changes from multiple revisions, it would be much larger than the difference between two contiguous revisions. (See Figure 10 for a real life example.) ILINE detects outliers by detecting peaks among the symmetric distances between consecutive pairs by means of a user-configurable threshold.
Once an outlier r has been identified, ILINE eliminates it in two steps. First, ILINE locates the revision y that has the minimum distance with r. Then, ILINE places r immediately next to y, favoring the side with a gap that has a larger symmetric distance. In our example, suppose p3 is the closest revision to p2. ILINE will compare SD(p1, p3) (before) with SD(p3, p4) (after) and then insert p2 into the bigger of the two gaps. Therefore, in the case when SD(p1, p3) is larger than SD(p3, p4), we will recover the correct lineage, i.e., p1 p2 p3 p4 p5.
We consider k-straight line lineage where we have a mixed data set of k different programs instead of a single program, and each program has straight line lineage.
For k-straight line lineage, ILINE first performs clustering on a given data set P to group the same (similar) programs into the same cluster Pk ⊆ P. Programs are similar if D(pi, pj) t where D(·) means a distance measurement between two programs and t is a distance threshold to be considered as a group. After we isolate distinct program groups between each other, ILINE identifies the earliest revision p1k and infers straight line lineage for each program group Pk using the straight line lineage method. We denote the r-th revision of the program k as prk. One caveat with the use of clustering as a preprocessing step is that more precise clustering may require reliable “components” extraction from program binaries, which is out of our scope.
Given a collection of programs and revisions, previous work shows that clustering can effectively separate them [5, 18, 20, 46]. ILINE uses hierarchical clustering because the number of variants k is not determined in advance. Other clustering methods like k-means clustering require that k is set at the beginning. ILINE groups two programs if JD(f1, f2) t where t is a distance threshold (0 t 1). In order to decide an appropriate distance threshold t, we explore entire range of t and find the value where the resulting number of clusters becomes stable (see Figure 7 for an example).
The second scenario we studied is directed acyclic graph (DAG) lineage. This generalizes straight line lineage to include branching and merging histories. Branching and merging are common in large scale software development because branches allow developers to modify and test code without affecting others.
In a lineage graph G, branching is represented by a node with more than one outgoing arcs, i.e., a revision with multiple children. Merging is denoted by a node with more than one incoming arcs, i.e., a revision with multiple parents.
In order to identify the root revision in lineage, we explore two different choices: (i) inferring the root/earliest revision and (ii) using the real root revision from the ground truth as discussed in §4.1.1.
ILINE builds (directed) spanning tree lineage by greedy selection. This step is similar to, but different from the ordering recovery step of the straight line lineage method. In order to recover an ordering, ILINE only allows the last revision in the recovered lineage G to have an outgoing arc so that the lineage graph becomes a straight line. For DAG lineage, however, ILINE allows all revisions in the recovered lineage G to have an outgoing arc so that a revision can have multiple children.
For example, given three revisions p1, p2, and p3, if p1 is selected as a root and SD(p1, p2) SD(p1, p3), then ILINE connects p1 and p2 (p1 p2). If SD(p1, p3) SD(p2, p3) holds, p1 will have another child p3 and a lineage graph looks like the following:
We evaluate three different policies on the use of a timestamp in DAG lineage: no timestamp, the pseudo timestamp from the recovered straight line lineage, and the real timestamp from the ground truth. Without a timestamp, the revision pj to be added to G is determined by the minimum symmetric distance min
{SD(pi, pj) : pi , pj c} where ⊆ N represents a set of nodes already inserted into G and c denotes a complement of ; and an arc (pi, pj) is added. However, with the use of a timestamp, the revision pj c to be inserted is determined by the earliest timestamp and an arc is drawn based upon the minimum symmetric distance. In other words, we insert nodes in the order of timestamps.
While building (directed) spanning tree lineage, ILINE identifies branching points by allowing the revisions pi to have more than one outgoing arcs—revisions with multiple children. In order to pinpoint merging points, ILINE adds non-tree arcs also known as cross arcs to spanning tree lineage.
For every non-root node pi, ILINE identifies a unique feature set ui that does not come from its parent pj, i.e., ui = {x : x fi and x fj}. Then ILINE identifies possible parents pk N as follows:
become possible parents. Among the identified possible parents pk, if ui and fk extracted from pk have common features, then ILINE adds a non-tree arc from pk to pi. Consequently, pi becomes a merging point of pj and pk and a lineage graph looks like the following:
After adding non-tree arcs, ILINE outputs DAG lineage showing both branching and merging.
We build IEVAL to scientifically measure the quality of our constructed lineage with respect to the ground truth.
We use dates of commit histories and version numbers as the ground truth of ordering G* = (N,A*), and compare the recovered ordering by ILINE G = (N, A) with the ground truth to measure how close G is to G*.
IEVAL measures the accuracy of the constructed lineage graph G using two metrics: number of inversions and edit distance to monotonicity (EDTM). An inversion happens if ILINE gives a wrong ordering for a chosen pair of revisions. The total number of inversions is the number of wrong ordering for all () pairs. The EDTM is the minimum number of revisions that need to be removed to make the remaining nodes in the lineage graph G in the correct order. The longest increasing subsequence (LIS) can be computed in G, which is the longest (not necessarily contiguous) subsequence in the sorted order. Then the EDTM is calculated by |N| − |LIS|, which depicts how many nodes are out-of-place in G.
Figure 3: Inversions and edit distance to monotonicity
For example, we have 5 revisions of a program and ILINE outputs lineage 1 in Figure 3a and lineage 2 in Figure 3b. Lineage 1 has 1 inversion (a pair of p3 – p2) and 1 EDTM (delete p2). Lineage 2 has 3 inversions (p3 – p2, p4 – p2, and p5 – p2) and 1 EDTM (delete p2). As shown in both cases, the number of inversions can be different even when the EDTM is the same.
We evaluate the practical use of five metrics for measuring the accuracy of the constructed DAG lineage: number of LCA mismatches, average pairwise distance to true LCA, partial order mismatches, graph arc edit distance, and k-Cone mismatches.
Figure 4: Lowest common ancestors
We define SLCA(x, y) to be the set of LCAs of x and y because there can be multiple LCAs. For example, in Figure 4, SLCA(p4, p5) = {p2, p3}, while SLCA(p6, p7) = {p4}. Given SLCA(x, y) in G and the true SLCA* (x, y) in G*, we can evaluate the correct LCA score of (x, y) L(SLCA(x, y), SLCA* (x, y)) in the following four ways.
Then the number of LCA mismatches is
The 1st policy is sound and complete, i.e., we only consider an exact match of SLCA. However, even small errors can lead to a large number of LCA mismatches. The 2nd policy is sound, i.e., every node in SLCA is indeed a true LCA (no false positive). Nonetheless, including any extra node will result in a mismatch. The 3rd policy is complete, i.e., SLCA must contain all true LCAs (no false negative). However, missing any true LCA will result in a mismatch. The 4th policy uses the Jaccard distance to measure dissimilarity between SLCA and SLCA*. In our evaluation, ILINE followed the 4th policy since it allows us to attain a more fine-grained measure.
We also measure the distance between the true LCA(s) and reported LCA(s). For example, if ILINE falsely reports p5 as an LCA of p6 and p7 in Figure 4, then the pairwise distance to the true LCA is 2 (=distance between p4 and p5). Formally, let D(u, v) represent the distance between nodes u and v in the ground truth G*. Given SLCA(x, y) and SLCA*(x, y), we define the pairwise distance to true LCA T(SLCA(x, y), SLCA*(x, y)) to be
Table 1: Relationships among metrics
and the average pairwise distance to true LCA to be
A partial order (PO) of x and y is to identify which one of x and y comes first: either x or y, or incomparable if they are not each other's ancestors. For example, in Figure 4, the PO of p3 and p7 is p3, while the PO of p6 and p7 is incomparable. The total number of PO mismatches is the number of wrong ordering for all () pairs.
A graph arc edit distance (GAED) measures how many arcs need to be deleted from G and G* to make both G and G* identical. For every node x, we calculate E(x) = SD(Adj
(x), Adj
*(x)) where Adj
(x) and Adj
*(x) denotes the adjacency list of x in G and G* respectively. Then GAED becomes ΣxN E(x).
We define k-CONE(x) to be the set of descendants within depth k from node x. For example, in Figure 4, 2-CONE of p1 is {p2, p3, p4, p5}. Then the given k-CONE(x) in G and the true k-CONE*(x) in G*, we can evaluate the correct k-CONE score of x R(k-CONE(x)) using four different ways of set comparisons: an exact match, a subset match, a superset match, or the Jaccard index. In our evaluation, ILINE used the Jaccard index for a more fine-grained measure. Then the number of k-CONE mismatches is |N| – ΣxN R(k-CONE(x)). With smaller k, we can measure the accuracy of nearest descendants.
Table 1 shows the relationships among different metrics and a property measured by each metric. A PO mismatch is a special case of an LCA mismatch because when x and y are in different branches, an LCA mismatch measures the accuracy of SLCA while a PO mismatch just says two nodes are incomparable. An inversion is also a special case of an LCA mismatch because querying the LCA of x and y in a straight line is the same as asking which one of x and y comes first. Essentially, a PO mismatch in a DAG is equal to an inversion in a straight line.
EDTM is a special case of GAED and an upper bound of GAED in a straight line is GAED ≤ EDTM×6. One out-of-place node can cause up to six arcs errors. For example, p1 p2 p4 p3 p5 has 1 EDTM (delete p3 or p4) and 6 GAED (delete p2 p4, p4 p3, and p3 p5 in G and p2 p3, p3 p4, and p4 p5 in G*).
A k-Cone mismatch is a local metric to assess the correctness of nearest descendants of nodes while the other six metrics are global metrics to evaluate the correctness of the order of nodes and to count out-of-place nodes/arcs.
What are good metrics? Among the seven metrics, we recommend two metrics—partial order mismatches and graph arc edit distance. PO mismatches and GAED are both desirable because they evaluate different properties of lineage and are not deducible from each other.
To see this, observe that PO mismatches and SLCA mismatches measure the same property of lineage and have similar accuracy results in our evaluation. However, PO mismatches are more efficient to compute than SLCA mismatches; moreover, PO gives an answer for a more intuitive question, “which one of these two programs comes first”. Thus, PO mismatches are preferred. Average distance to true LCA is supplementary to SLCA mismatches and so this metric is not necessary if we exclude SLCA mismatches. The number of inversions and edit distance to monotonicity can be respectively seen as special cases of PO mismatches and GAED in the case of straight line lineages. k-Cone mismatches can be extremely useful to an analyst during manual analysis, but it can be difficult to pick the right value of k automatically.
ILINE is implemented using C (2.5 KLoC) and IDAPython plugin (100 LoC). We use the IDA Pro disassembler1 to disassemble program binaries and to identify basic blocks. As discussed in §2.3, gcc -S
output is used to compensate the errors introduced at the disassembling step. We utilize Cuckoo Sandbox2 to monitor native functions, API calls and network activities of malware. On top of Cuckoo Sandbox, we use malwasm3 with pintool4, which allows us to obtain more fine-grained instruction level of traces. Since some kinds of malicious activities require “live” connections, we also employ INetSim5 to simulate various network services, e.g., web, email, DIS, FTP, IRC, and so on. For example, Blaster-Worm in our data set sent exploit packets and propagated itself via TFTP only when there were (simulated) live vulnerable hosts.
Figure 5: Software lineage inference overview
For the scalability reason, we use the feature hashing technique [20, 44] to encode extracted features into bit-vectors. For example, let bv1 and bv2 denote two bit-vectors generated from f1 and f2 using feature hashing. Then the symmetric distance in Equation 1 can be calculated by:
where denotes bitwise-XOR and S(·) means the number of bits set to one.
As depicted in Figure 5, we systematically evaluated our lineage inference algorithms using (i) ILINE to explore all the design spaces described in Figure 1 with a variety of data sets and (ii) IEVAL to measure the accuracy of our outputs with respect to the ground truth.
For straight line lineage experiments, we have collected three different kinds of goodware data sets, e.g., contiguous revisions, released versions, and actual release binaries, and malware data sets.
i) Contiguous Revisions: Using a commit history from a version control system, e.g., subversion and git, we downloaded contiguous revisions of a program. The time gap between two adjacent commits varies a lot, from 10 minutes to more than a month. We excluded some revisions that changed only comments because they did not affect the resulting program binaries.
Table 2: Data sets of contiguous revisions
In order to set up idealized experiment environments, we compiled every revision with the same compiler and the same compiling options. We excluded variations that can come from the use of different compilers.
ii) Released Versions: We downloaded only released versions of a program meant to be distributed to end users. For example, subversion maintains them under the tags
folder. The difference with contiguous revisions is that contiguous revisions may have program bugs (committed before testing) or experimental functionalities that would be excluded in released versions. In other words, released versions are more controlled data sets. We compiled source code with the same compiler and the same compiling options for ideal settings.
Table 3: Data sets of released versions
iii) Actual Release Binaries: We collected binaries (not source code) of released versions from rpm
or deb
package files.
Table 4: Data sets of actual release binaries
The difference is that we did not have any control over the compiling process of the program, i.e., different programs may be compiled with different versions of compilers and/or optimization options. This data set is a representative of real-world scenarios where we do not have any information about development environments.
iv) Malware: We used 84 samples with known lineage collected by the Cyber Genome program. The data set includes bots, worms, and Trojan horses and contains 7 clusters.
Table 5: Data sets of malware
Figure 6: File size and complexity for contiguous revisions
What selection of features provides the best lineage graph with respect to the ground truth? We evaluated different feature sets on diverse data sets.
i) Contiguous Revisions: In order to identify the first revision of each program, code complexity and code size of every revision were measured. As shown in Figure 6, both file size and cyclomatic complexity generally increased as new revisions were released. For these three data sets, the first revisions were correctly identified by selecting the revision that had the minimum file size and cyclomatic complexity.
A lineage for each program was constructed as described in §4.1. Although section/file size achieved high accuracies, e.g., 95.5%−99.5%, they are not reliable features because many ties can decrease/increase the accuracies depending on random guesses. n-grams over byte sequences generally achieved better accuracies; however, 2-grams (small size of n) were relatively unreliable features, e.g., 6.3% inversion error in redis
. In our experiments, n=4 bytes worked reasonably well for these three data sets. The use of disassembly instructions had up to 5% inversion error in redislite
. Most errors came from syntactical differences, e.g., changes in offsets and jump target addresses. After normalizing operands, instruction mnemonics with operands types decreased the errors substantially, e.g., from 5% to 0.4%. With additional normalization, normalized instruction mnemonics with operands types achieved the same or better accuracies. Note that more normalized features can result in better or worse accuracies because there may be more ties where random guesses are involved.
In order to break ties, more specific features were used in multi-resolution features. For example, all 10 tie cases in memcached
were correctly resolved by using more specific features. This demonstrated the effectiveness of using multi-resolution features for breaking ties.
ii) Released Versions: The first/root revisions were also correctly identified by selecting the revision that had the minimum code size. In some cases, simple feature sets, e.g., section/file size, could achieve higher accuracies than semantically rich feature sets (requiring more expensive process), e.g., instruction sequences. For example, ILINE with section size yielded 88.3% accuracy, while ILINE with instructions achieved 77.8% accuracy in grep
. This, however, was improved to 100% with normalization. Like the experiments on contiguous revisions, 2-grams performed worse in the experiments on released versions, e.g., 18.9% accuracy in sendmail
. Among various feature sets, multi-resolution features outperformed the other feature sets, e.g., 99.3%–100%.
iii) Actual Release Binaries: The first/root revisions for nano
and openssh
were correctly identified by selecting the revision that had the minimum code size. For the other five data sets, we performed the experiments both with the wrong inferred root and with the correct root given from the ground truth.
Overall accuracy of the constructed lineage was fairly high across all the data sets even though we did not control the variables of the compiling process, e.g., 83.3%–99.8% accuracy with the correct root. One possible explanation is that closer revisions (developed around the same time) might be compiled with the same version of compiler (available around the same time), which can make neighboring revisions look related to each other at the binary code level.
It was confirmed that lineage inference can be improved with the knowledge of the correct root. For example, ILINE picked a wrong revision as the first revision in FileZilla
, which resulted in 51.6% accuracy; in contrast, the accuracy increased to 99.8% with the correct root revision.
iv) Malware: The first/root samples for all seven clusters were correctly identified by selecting the sample that had the minimum code size. Section size achieved high accuracies, e.g., 93.3–100%, which showed new variants were likely to add more code to previous malware. File size was not a good feature to infer a lineage of MC2
because all samples in MC2
had the same file size. The multi-resolution feature yielded 94.9–100% accuracy.
Dynamic instrumentations at the instruction level enabled us to catch minor updates between two adjacent variants. For example, subsequent BlasterWorm samples add more checks for virtual environments to hide its malicious activities if it is being monitored, e.g., examining user names (sandbox, vmware, honey), running processes (VBoxService.exe, joeboxserver.exe), and current file names (C:\sample.exe). Dynamic feature sets yielded worse accuracy in MC1
, MC2
, MC3
, MC5
, and MC6
while achieving the same accuracy in MC4
and better accuracy in MC7
. One main reason of the differences in accuracy is that dynamic analysis followed a specific execution path depending on the context. For example, in MC2
, some variants exited immediately when they detected a VirtualBox service process, and produced limited execution traces.
Figure 7: Clustering mixed data set of 2 and 3 programs
v) k-Straight Line Lineage: We evaluated ILINE on mixed data sets including k different programs. For 2-straight line lineage, we mixed memcached
and redislite
in that both programs have the same functionality and similar code section sizes. Figure 7 shows the resulting number of clusters with various distance threshold values. From 0.2 to 0.5 distance threshold, the resulting number of clusters was 2. This means ILINE can first perform clustering to divide the data set into two groups, then build a straight line lineage for each group. The resulting number of clusters of the mixed data set of 3 programs including memcached
, redislite
, and redis
became stabilized to 3 from 0.2 to 0.5 distance threshold, which means they were successfully clustered for the subsequent straight line lineage building process. We have also evaluated ILINE on three mixed malware data sets, each of which is a combination of different clusters in Table 5: {MC2+MC5
}, {MC4+MC6
}, and {MC2+MC3+MC7
}. For each mixed data set, ILINE also clustered malware samples correctly for the subsequent straight line lineage inference. We discuss inferring lineage on incorrect clusters in §9.
For DAG lineage experiments, we also evaluated ILINE on both goodware and malware.
i) Goodware: We have collected 10 data sets for directed acyclic graph lineage experiments from github6. We used github because we know when a project is forked from a network graph showing the development history as a graph including branching and merging.
We downloaded DAG revisions that had multiple times of branching and merging histories, and compiled with the same compilers and optimization options.
Table 6: Goodware data sets for DAG lineage
ii) Malware: We used two malware families with known DAG lineage collected by the Cyber Genome program. They contain 30 samples in total.
Table 7: Malware data sets for DAG lineage
We set two policies for DAG lineage experiments: the use of timestamp (none/pseudo/real) and the use of the real root (none/real). The real timestamp implies the real root so that we explored 3 × 2 – 1 = 5 different setups. We used multi-resolution feature sets for DAG lineage experiments because multi-resolution feature sets attained the best accuracy in constructing straight line lineage.
i) Goodware: Without having any prior knowledge, ILINE achieved 71.5%–94.1% PO accuracies. By using the real root revision, the accuracies increased to 71.5%–96.1%. For example, in case of tig
, ILINE gained about 20% increase in the accuracy.
With pseudo timestamps, accuracies were worse even with the real root revisions for most of data sets, e.g., 64.0%–90.9% (see §8). By using the real timestamps, ILINE achieved higher accuracies of 84.1%–96.7%. This means that the recovered DAG lineages were very close to the true DAG lineages.
ii) Malware: ILINE achieved 68.6%–75.0% accuracies without any prior knowledge. Using the correct timestamps, the accuracies increased notably to 86.2%–91.7%. While we obtained the real timestamps from the ground truth in our experiments, we can also leverage first seen date of malware, e.g., Symantec's Worldwide Intelligence Network Environment [10].
With dynamic features, ILINE achieved 59.0%–75.0% accuracies without any prior knowledge, and 68.6%–80.6% accuracies with real timestamps, which is a bit lower than the accuracies based upon static features.
Given N binaries with their features already extracted, the complexity of constructing lineage is O(N2) due to the computation of the () pairwise distances. To give concrete values, we measured the time to construct lineage with multi-resolution features, SD, and 32 KB of bit-vectors on a Linux 3.2.0 machine with a 3.40 GHz i7 CPU utilizing a single core. Depending on the size of the data sets, it took 0.002–1.431s for straight line lineage and 0.005–0.385s for DAG lineage with the help of feature hashing. On average, this translates to 146 samples/s and 180 samples/s for straight line lineage and DAG lineage, respectively. As a comparison, our BitShred malware clustering system [20], which represents the state of the art at the time of its publication in 2011, can process 257 samples per second using a single core on the same machine. Since the running times of malware clustering and lineage inference are both dominated by distance comparisons, and since ILINE needs to resolve ties using multi-resolution features whereas BitShred needs not, we conclude that our current implementation of ILINE is competitive in terms of performance.
Features. File/section size features yielded 94.6–95.5% mean accuracy in straight line lineage on goodware. Such high accuracy supports Lehman's laws of software evolution, e.g., continuing growth. However, size is not a reliable feature to infer malware lineage where malware authors can obfuscate a feature, e.g., samples with the same file size in MC2
. As simple syntactic features, 4/8/16-grams achieved 95.3–96.3% mean accuracy in straight line lineage on goodware, whereas 2-grams achieved only 82.4% mean accuracy. This is because 2-grams are not distinctive enough to differentiate between samples and cause too many ties. Basic blocks as semantic features achieved 94.0–95.6% mean accuracy in straight line lineage on goodware. This slightly lower accuracy when compared to n-grams was due to ties. Multi-resolution features performed best, e.g., it achieved 95.8–98.4% mean accuracy in straight line lineage on goodware. This is due to its use of both syntactic and semantic features.
Distance Metrics. Our evaluation indicates that our lineage inference algorithms perform similarly regardless of the distance metrics except for the Jaccard containment (JC) distance. JC turns out to be inappropriate for lineage inference because it cannot capture evolutionary changes effectively. Suppose there are three contiguous revisions p1, p2, and p3; and p2 adds 10 lines of code to p1 and p3 adds 10 lines of code to p2. Then, JC(p1, p2) = JC(p1, p3) = JC(p2, p3) = 0 because one revision is a subset of another revision. Such ties result in low accuracy. For example, JC yielded 74.5% mean accuracy, whereas SD yielded 84.0% mean accuracy in DAG lineage on goodware.
Figure 8: Error caused by pseudo timestamps in uzbl
Figure 9: Development history of nano
Pseudo Timestamp. ILINE computes pseudo timestamps by first building a straight line lineage and then use the recovered ordering as timestamps. Since ILINE achieved fairly high accuracy in straight line lineage, at first we expected this approach to do well in DAG lineage. To our initial surprise, ILINE with pseudo timestamps actually performed worse. In retrospect, we observed that since each branch had been developed separately, it is challenging to determine the precise ordering between samples from different branches. For example, Figure 8 shows the partial ground truth and the constructed lineage by ILINE for uzbl
with pseudo timestamps. Although ILINE without pseudo timestamps successfully recovered the ground truth lineage, the use of pseudo timestamps resulted in poor performance. The recovered ordering, i.e., pseudo timestamps were p22, p40, p41, p42, p43, p23, p29, p30, p35, p36. Due to the imprecise timestamps, the derivative relationships in the constructed lineage were not accurate.
Revision History vs. Release Date. Correct software lineage inference on a revision history may not correspond with software release date lineage. For example, Figure 9 shows the accumulated symmetric distance between two neighboring releases where a development branch of nano-1.3
and a stable branch of nano-1.2
are developed in parallel. ILINE infers software lineage consistent with a revision history.
Figure 10: An outlier in memcached
Threats to Validity. Our malware experiments were performed on a relatively small data set because of difficulties in obtaining the ground truth. Although it is hard to indicate a representative of modern malware due to its surreptitious nature, we evaluated our methods on common malware categories such as bots, worms, and Trojan horses. To the best of our knowledge, we are the first to take a systematic approach towards software lineage inference to provide scientific evidence instead of speculative remarks.
Reverting/Refactoring. Regression of code is a challenging problem in software lineage inference. A revision adding new functionalities is sometimes followed by stabilizing phases including bug fixes. Bug fixes might be done by reverting to the previous revision, i.e., undoing the modifications of the code.
Some revisions can become outliers because of ILINE's greedy construction and reverting/refactoring issues. In §4.1.3, we propose a technique to detect and process outliers by looking for peaks of the distance between two contiguous revisions. For example, ILINE had 70 inversions and 1 EDTM for the contiguous revisions of memcached
. The error came from the 53rd revision that was incorrectly located at the end of the lineage. Figure 10 shows the symmetric distance between two adjacent revisions in the recovered lineage before we process outliers. The outlier caused an exceptional peak of the symmetric distance at the rightmost of the Figure 10. ILINE identified such possible outliers by looking for peaks, then generated the perfect lineage of memcached
after handling the outlier.
There can also be false positives among detected outliers, i.e., a peak is identified even revisions are in the correct order. For example, a peak can be identified between two contiguous revisions when there is a huge update like major version changes. However, such false positives do not affect overall accuracy of ILINE because the original (correct) position will be chosen again when minimizing the overall distance.
Although our technique improves lineage inference, it may not be able to resolve every case. Unless we design a precise model describing the developers' reverting/refactoring activity, no reasonable algorithm may be able to recover the same lineage as the ground truth. Rather, the constructed lineage can be considered as a more practical/pragmatic representation of the truth.
Figure 11: Recovered ordering of mixed data set
Root Identification. It is a challenging problem to identify the correct roots of data sets where we do not have any knowledge about the compilation process. ILINE successfully identified the correct roots based upon code size and complexity in all data sets except for some data sets of actual release binaries. This shows that the Lehman's laws of software evolution are generally applicable to root identification, but with a caveat. For example, with actual release binaries data sets, ILINE achieved 77.8% mean accuracy with the inferred roots. The accuracy increased to 91.8% with the knowledge of the correct first revision.
In order to improve lineage inference, we can leverage “first seen” date of malware, e.g., Symantec's Worldwide Intelligence Network Environment [10] or tool-chain provenance such as compilers and compilation options [36].
Clustering. Clustering may not be able to group program accurately due to noise or algorithmic limitations. In order to simulate cases where clustering failed, we mixed binaries from seven programs including memcached
, redis
, redislite
, grep
, nano
, sendmail
, and openssh
into one set and ran our lineage inference algorithm on it. As shown in Figure 11, revisions from each program group located next to each other in the recovered order (each program is marked in a different color). This shows ILINE can identify close relationships within the same program group even with high noise in a data set. There are multiple intra-program gaps and inter-program gaps. Relatively big intra-program gaps corresponded to major version changes of a program where the Jaccard distances were 0.28–0.66. The Jaccard distances at the inter-program gaps were much higher, e.g., 0.9–0.95. This means we can separate the mixed data set into different program groups based on the inter-program gaps.
Feature Extraction. Although ILINE achieved an overall 95.8% mean accuracy in straight line lineage of good-ware, ILINE achieved only 77.8% mean accuracy with actual released binaries. In order to improve lineage inference, future work may choose to leverage better features. For example, we may use recovered high-level abstraction of program binaries [41], or we may detect similar code that was compiled with different compilers and optimization options [24].
While previous research focuses on studying known software lineage or development history, our focus is on designing algorithms to create lineage and evaluating metrics to assess the quality of constructed lineage.
Belady and Lehman studied software evolution of IBM OS/360 [3], and Lehman and Ramil formulated eight laws describing software evolution process [28]. Xie et al. analyzed histories of open source projects in order to verify Lehman's laws of software evolution [45], and Godfrey and Tu investigated the Linux kernel to understand a software evolution process in open source development systems [14]. Shihab et al. evaluated the effects of branching in software development on software quality with Windows Vista and Windows 7 [42]. Kim et al. studied the history of code clones to evaluate the effectiveness of refactoring on software improvement with respect to clones [25].
Massacci et al. studied the effect of software evolution, e.g., patching and releasing new versions, on vulnerabilities in Firefox [33], and Jang et al. proposed a method to track known vulnerabilities in modern OS distributions [19]. Edwards and Chen statistically verified that an increase of security issues identified by a source code analyzer in a new release may indicate an increase of exploitable bugs in a release [11]. Davies et al. proposed a signature-based matching of a binary against a known library repository to identify library version information, which can be potentially used for security vulnerabilities scans [7].
Gupta et al. studied malware metadata collected by an anti-virus vendor to describe evolutionary relationships among malware [16]. Dumitras and Neamtiu studied malware evolution to find new variants of well-known malware [9]. Karim et al. generated phylogeny models based upon code similarity to understand how new malware related to previously seen malware [22]. Khoo and Lio investigated FakeAV-DO and Skyhoo malware families using phylogenetic methods to understand statistical relationships and to identify families [23]. Ma et al. studied diversity of exploits used by notorious worms and constructed dendrograms to identify families and found non-trivial code sharing among different families [31]. Lindorfer et al. investigated the malware evolution process by comparing subsequent versions of malware samples that were collected by exploiting embedded auto-update functionality [29]. Hayes et al. pointed out the necessity of systematic evaluation in malware phylogeny systems and proposed two models to artificially generate reference sets of samples: mutation-based model and feature accretion-based model [17].
In this paper, we proposed new algorithms to infer software lineage of program binaries for two types of lineage: straight line lineage and directed acyclic graph (DAG) lineage. We built ILINE to systematically explore the entire design space depicted in Figure 1 for software lineage inference and performed over 2,000 different experiments on large scale real-world programs—1,777 good-ware spanning over a combined 110 years of development history and 114 malware with known lineage. We also built IEVAL to scientifically measure lineage quality with respect to the ground truth. Using IEVAL, we evaluated seven different metrics to assess diverse properties of lineage, and recommended two metrics—partial order mismatches and graph arc edit distance. We showed ILINE effectively extracted evolutionary relationships among program binaries with over 84% mean accuracy for goodware and over 72% for malware.
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Web and smartphone applications commonly embed third-party user interfaces like advertisements and social media widgets. However, this capability comes with security implications, both for the embedded interfaces and the host page or application. While browsers have evolved over time to address many of these issues, mobile systems like Android—which do not yet support true cross-application interface embedding — present an opportunity to redesign support for secure embedded user interfaces from scratch. In this paper, we explore the requirements for a system to support secure embedded user interfaces by systematically analyzing existing systems like browsers, smartphones, and research systems. We describe our experience modifying Android to support secure interface embedding and evaluate our implementation using case studies that rely on embedded interfaces, such as advertisement libraries, Facebook social plugins (e.g., the “Like” button), and access control gadgets. We provide concrete techniques and reflect on lessons learned for secure embedded user interfaces.
Modern Web and smartphone applications commonly embed third-party content within their own interfaces. Websites embed iframes containing advertisements, social media widgets (e.g., Facebook's “Like” or Twitter's “tweet” button), Google search results, or maps. Smartphone applications include third-party libraries that display advertisements or provide billing functionality.
Including third-party content comes with potential security implications, both for the embedded content and the host application. For example, a malicious host may attempt to eavesdrop on input intended for embedded content or forge a user's intent to interact with it, either by tricking the user (e.g., by clickjacking) or by programmatically issuing input events. On the other hand, a malicious embedded principal may, for example, attempt to take over a larger display area than expected.
The Web security model has evolved over time to address these and other threats. For example, the same-origin policy prevents embedded content from directly accessing or manipulating the parent page, and vice versa. As recently as 2010, browsers have added the sandbox
attribute for iframes [1], allowing websites to prevent embedded content from running scripts or redirecting the top-level page. However, other attacks — like clickjacking—remain a serious concern. Malicious websites frequently mount “likejacking” attacks [24] on the Facebook “Like” button, in which they trick users into sharing the host page on their Facebook profiles. If Facebook suspects a button of being part of such an attack, it asks the user to confirm any action in an additional popup dialog [7] — in other words, Facebook falls back on a non-embedded interface to compensate for the insecurity of embedded interfaces.
While numerous research efforts have attempted to close the remaining security gaps with respect to interface embedding on the Web [11, 25, 29], they struggle with maintaining backwards compatibility and are burdened with the complexity of the existing Web model. We argue that Android, which to date offers no cross-application embedding, offers a compelling opportunity to redesign secure embedded interfaces from scratch.
Today, applications on Android and other mobile operating systems cannot embed interfaces from another principal; rather, they include third-party libraries that run in the host application's context and provide custom user interface elements (such as advertisements). On the one hand, these libraries can thus abuse the permissions of or otherwise take advantage of their host applications. On the other hand, interface elements provided by these libraries are vulnerable to manipulation by the host application. For example, Android applications can programmatically click on embedded ads in an attempt to increase their advertising revenue [18]. This lack of security also precludes desirable functionality from the Android ecosystem. For example, the social plugins that Facebook provides on the Web (e.g., the “Like” button or comments widget) are not available on Android.
Previous research efforts for Android [17, 23] have focused only on one interface embedding scenario: advertising. As a result, these systems, while valuable, do not provide complete or generalizable solutions for interface embedding. For example, to our knowledge, no existing Android-based solution prevents a host application from eavesdropping on input to an embedded interface.
In this paper, we explore what it takes to support secure embedded UIs on Android. We systematically analyze existing systems, including browsers, with respect to whether and how they provide a set of security properties. We view this analysis and the framework we use for it as a contribution in its own right. Informed by this analysis, we describe our experiences modifying the Android framework to support cross-principal interface embedding in a way that meets our security goals. We evaluate our implementation using case studies that rely on embedded interfaces, including: (1) advertisement libraries that run in a separate process from the embedding application, (2) Facebook social plugins, to date available only on the Web, and (3) access control gadgets [19] that allow applications to access sensitive resources (like geolocation) only in response to real user input.
Through our implementation experience, we consolidate and evaluate approaches from prior work. We find that some techniques can be simplified in practice — such as an approach for maintaining invariants in the UI layout tree [18]—but that we face additional practical challenges, like propagating layout changes across processes. We discover that an embedded element's size is an important factor in preventing clickjacking, as well as that we can apply prior work on access control gadgets [19] in novel ways to improve interaction flexibility beyond the browser model. We discuss these and other challenges and lessons in more detail in Section 8, which benefits from the context of the preceding sections.
Today's system developers wishing to support secure embedded user interfaces have no systematic set of techniques or criteria upon which they can draw. Short of simply adopting the Web model by directly extending an existing browser—which may be undesirable for many reasons, including the need to maintain backwards compatibility with the existing Web ecosystem and programming model—system developers must (1) reverse-engineer existing techniques used by browsers, and (2) evaluate and integrate research solutions that address remaining issues. In addition to presenting the first secure interface embedding solution for Android, this paper provides a concrete, comprehensive, and system-independent set of criteria and techniques for supporting secure embedded user interfaces.
To motivate the need for secure embedded user interfaces, we describe (1) the functionality enabled by embedded applications and interfaces, and (2) the security concerns associated with this embedding. We argue that interface embedding often increases the usability of a particular interaction — embedded content is shown in context, and users can interact with multiple principals in one view—but that security concerns associated with cross-principal UI embedding lead to designs that are more disruptive to the user experience (e.g., prompts).
Third-Party Applications. Web and smartphone applications often embed or redirect to user interfaces from other sources. Common use cases include third-party advertisements and social sharing widgets (e.g., Facebook's “Like” button or comment feed, Google's “+1” button, or a Twitter feed). Other examples of embeddable content include search boxes and maps.
On the Web, content embedding is done using HTML tags like iframe
or object
. On smartphone operating systems like iOS and Android, however, applications cannot directly embed UI from other applications but rather do one of two things: (1) launch another application's full-screen view (via an Android Intent or an iOS RemoteViewController [2]) or (2) include a library that provides embeddable UI elements in the application's own process. The former is generally used for sharing actions (e.g., sending an email) and the latter is generally used for embedded advertisements and billing.
System UI. Security-sensitive actions often elicit system interfaces, usually in the form of prompts. For example, Windows users are shown a User Account Control dialog [14] when an application requires elevation to administrative privileges, and iOS and browser users must respond to a permission dialog when an application attempts to access a sensitive resource (e.g., geolocation).
Because prompts result in a disruptive user experience, the research community has explored using embedded system interfaces to improve the usability of security-sensitive interactions like resource access. In particular, a recent paper [19] describes access control gadgets (ACGs), embeddable UI elements that — with user interaction — grant applications access to various system resources, including the camera, the clipboard, the GPS, etc. For example, an application might embed a location ACG, which is provided by the system and displays a recognizable location icon; when the user clicks the ACG, the embedding application receives the current GPS coordinates. As we describe below, ACGs cannot be introduced into most of today's systems without significant changes to those systems.
We consider user interfaces composed of elements from different, potentially mutually distrusting principals (e.g., a host application and an embedded advertisement or an embedded ACG). Host principals may attempt to manipulate interface elements embedded from another principal, and embedded principals may attempt to manipulate those of their host. We assume that the system itself is trustworthy and uncompromised.
We observe that while Web and smartphone applications rely heavily on third-party content and services, the associated third-party user interface is not always actually embedded inside of the client application. For example, websites redirect users to PayPal's full-screen page, OAuth authorization dialogs appear in pop-up or redirect windows, and Web users who click on a Facebook “Like” button that is suspected of being part of a clickjacking attack will see an additional pop-up confirmation dialog. We observe two main security-related reasons for the choice not to embed or not to be embedded.
One reason is concern about phishing. If users become accustomed to seeing embedded third-party login or payment forms, they may become desensitized to their existence. Further, because users cannot easily determine the origin (or presence) of embedded content, malicious applications may try to trick users into entering sensitive information into spoofed embedded forms (a form of phishing). Thus, legitimate security-sensitive forms are often shown in their own tab or window.
Our goal in this paper is not to address such phishing attacks, but rather to evaluate and implement methods for securely embedding one legitimate (i.e., not spoofed) application within another. (While extensions of existing approaches, such as SiteKeys, may help mitigate embedded phishing attacks, these approaches do have limitations [21] and are orthogonal to the goals of this paper.1)
More importantly — and the subject of this paper— even legitimate embedded interfaces may be subject to a wide range of attacks, or may present a threat to the application or page that embeds them. In particular, drawing in part on [18], embedded interfaces or their parents may be subject to:
Display forgery attacks, in which the parent application modifies the child element (e.g., to display a false payment value), or vice versa.
Size manipulation attacks, in which the parent application violates the child element's size requirements or expectations (e.g., to secretly take photos by hiding the camera preview [26]), or the child element sets it own size inappropriately (e.g., to display a full-screen ad).
Input forgery attacks, in which the parent application delivers forged user input to a child element (e.g., to programmatically click on an advertisement to increase ad revenue), or vice versa.
Clickjacking attacks, in which the parent application forces or tricks the user into clicking on an embedded element [11] using visual tricks (partially obscuring the child element or making it transparent) or via timing-based attacks (popping up the child element just as the user is about to click in a predictable place).
Focus stealing attacks, in which the parent application steals the input focus from an embedded element, capturing input intended for it, or vice versa.
Ancestor redirection attacks, in which a child element redirects an ancestor (e.g., the top-level) application or page to a target of its choice, without user consent.
Denial-of-service attacks, in which the parent application prevents user input from reaching a child element (e.g., to prevent a user from clicking “Cancel” on an authorization dialog), or vice versa.
Data privacy attacks, in which the parent or child extract content displayed in the other.
Eavesdropping attacks, in which the parent application eavesdrops on user input intended for a child element (e.g., a sensitive search query), or vice versa.
Motivated by the above challenges and building on recent work [18], we now describe the security goals that we apply in our analysis and implementation. Where noted, we describe additional goals not discussed by prior work.
These properties assume that principals can be reliably distinguished and isolated, either by process separation, run-time validation (e.g., of the same-origin policy), or compile-time validation (e.g., using static analysis).
While Section 2 considered UI embedding in general, we now specifically make the case for secure embedded UIs in Android. The fact that an Android application cannot embed another application's interface results in a fundamental trust assumption built into the Android UI toolkit. In particular, every UI element trusts its parent and its children, who each have unrestricted access to the element's APIs. Vulnerabilities arise when this trust assumption is violated, e.g., because an embedded element is provided by a third-party library.
We now introduce several case studies illustrating that embedded user interface scenarios in stock Android are often either insecure or impossible. We will return to these case studies in Section 6 and reevaluate them in the context of our implementation.
Advertising. In stock Android, applications wishing to embed third-party advertisements must include an ad library, such as AdMob or Mobclix, which runs in the embedding application's process. These libraries provide a custom UI element (an AdView) that the embedding application instantiates and embeds. As has been discussed extensively in prior work [17, 23], the library model for third-party advertisements comes with a number of security and privacy concerns. For example, the host application must trust the advertising library not to abuse the host's permissions or otherwise exploit a buggy host application. Additionally, ad libraries ask their host applications to request permissions (such as location and Internet access) on their behalf; applications that request permissions not clearly relevant to their stated purpose can desensitize users to permission warnings [8].
Prior work [18] has also identified and experimentally demonstrated threats to the AdView. Parent applications can mount a programmatic clickfraud attack in which they programmatically click on embedded ads to increase their advertising revenue. Similarly, parent applications can mount clickjacking attacks by, for example, covering the AdView with another UI element that does not accept (and thus lets pass through) input events.
WebViews. One of the built-in UI elements provided by Android is the WebView, which can load local HTML content or an arbitrary URL from the Internet. Though WebViews appear conceptually similar to iframes, they do not provide many of the same security properties. In particular, WebViews — and more importantly, the contained webpage — can be completely manipulated by the containing application, which can mount attacks including programmatic clicking, clickjacking, and input eavesdropping [13]. Thus, for example, if an Android application embeds a WebView that loads a login page, that application can eavesdrop on the user's password as he or she enters it into the WebView.
Facebook Social Plugins. On the Web, Facebook provides a set of social plugins [6] to third-party web developers. These plugins include the “Like” button, a comments widget, and a feed of friends' activities on the embedding page (e.g., which articles they liked or shared). These social plugins are generally implemented as iframes and thus isolated from the embedding page.
While Facebook also supplies an SDK for smartphones (iOS and Android), this library—like all libraries, it runs in the host application's process — does not provide embeddable plugins like those found on the Web. A possible reason for this omission is that Facebook's SDK for Android cannot prevent, for example, applications from programmatically clicking on an embedded “Like” button or extracting private information from a recommendations plugin. Although developers can manually implement a social plugin using a WebView, this implementation suffers from the security concerns described above. Thus, though embeddable social plugins on mobile may be desirable to Facebook, they cannot be achieved securely on stock Android.
Access Control Gadgets. Finally, recent work [19] has proposed access control gadgets (ACGs), secure embedded UI elements that are used to capture a user's permission-granting intent (e.g., to grant an application access to the user's current location). Authentically capturing a user's intent relies on a set of UI-level security properties including clickjacking protection, display isolation, and user intent protection. As we describe in this paper, fundamental modifications to Android are required to enable secure embedded elements like ACGs.
To assess the spectrum of solutions and to inform our implementation choices, we now step back and analyze prior Web and Android based solutions for cross-application embedded interfaces with respect to the set of security properties described in Section 2.3. This analysis is summarized in Figure 1.
Browsers support third-party embedding by allowing web pages to include iframes from different domains. Like all pages, iframes are isolated from their parent pages based on the same-origin policy [27], and browsers do not allow pages from different origins to capture or generate input for each other.
However, an iframe's parent has full control of its size, layout, and style, including the ability to make it transparent or overlay it with other content. These capabilities enable clickjacking attacks. While there are various “framebusting” techniques that allow a sensitive page to prevent itself from being framed in an attempt to prevent such attacks, these techniques are not foolproof [20]. More importantly, framebusting is a technique to prevent embedding, not one that supports secure embedding.
Additionally, while an iframe cannot read the URL(s) of its ancestor(s), it can change the top-level URL, redirecting the page without user consent. Newer version of some browsers allow parent pages to protect themselves by using the sandbox
attribute for iframes; thus, we've indicated that the Web prevents such attacks in Figure 1. However, we observe that it may be desirable to allow user actions to override such a restriction, and we describe how to achieve such a policy in later sections.
Figure 1: Analysis of Existing Systems. This table summarizes, to the best of our knowledge, the UI-level security properties (first defined in prior work [18] and expanded here) achieved by existing systems. Figure 2 similarly analyzes our implementation. * Checkmarks annotated with an asterisk require static analysis or hypothetical (not prototyped) changes to the Android framework.
Research browsers and browser operating systems (e.g., Gazelle [29] and IBOS [25]) provide similar embedded UI security properties as traditional browsers, and thus we omit them from Figure 1. Gazelle partially addresses clickjacking by allowing only opaque cross-origin overlays, but this policy is not backwards compatible. Furthermore, malicious parent pages can still obscure embedded content by partially overlaying additional content on top of sensitive iframes. We discuss additional work considering clickjacking in Section 9.
Two recent research efforts [17, 23] propose privilege separation to address security concerns with Android's advertising model (under which third-party ad libraries run in the context of the host application). AdDroid's approach [17] introduces a system advertising service that returns advertisements to the AdDroid userspace library, which displays them in a new user interface element called an AdView. While this approach successfully removes untrusted ad libraries from applications, it does not provide any additional UI-level security properties for the embedded AdView beyond what is provided by stock Android (see Figure 1). For example, it does not prevent the host application from engaging in clickfraud by programmatically clicking on ads.
AdSplit [23], on the other hand, fully separates advertisements into distinct Android applications (one for each host application). AdSplit achieves the visual embedding of the ad's UI into the application's UI by overlaying the host application, with a transparent region for the ad, on top of the ad application. It prevents programmatic clickfraud attacks by authenticating user input using Quire [3]. As summarized in Figure 1, AdSplit meets the majority of security requirements for embedded UIs. Indeed, the requirements it meets are sufficient for embedded advertisements. Because it does not meet all of the requirements, however — most importantly, it does not prevent input eavesdropping — AdSplit would not be well-suited as a generalized solution for embedded UIs.
Finally, the prototype implementation described in [18] to meet that work's goals (upon which we build) also contains weaknesses. In particular, the isolation and identification of different principals (“trust groups” in the terminology of that paper) is insecure, undermining all of the security properties. Rather than truly supporting one Android application embedding UI from another application, it merely separates interfaces defined in the main application from those defined in included libraries. This separation relies on Java package names, static code analysis, and hypothetical changes to the Android framework (e.g., changing Android's Java classloader to enable package sealing) that have not been implemented or verified in practice.
We now explore what it takes to support secure embedded UIs, under the definitions from Section 2.3, in the Android framework. As no existing Android-based solutions meet these goals, we view this implementation as an opportunity to consider secure embedding from scratch. While we adapt techniques from prior work, we find that previously published guidelines are not always directly applicable. For example, we found that we could simplify a prior approach [18] when overlaying cross-application content, but that we faced additional practical challenges, such as the need to propagate layout changes and handle multiple levels of nesting. We further discuss these and other challenges and lessons in Section 8.
Figure 2: Techniques for Secure Embedded UI. This table summarizes how LayerCake (our modified version of Android 4.2) achieves each of the desired security properties for embedded user interface elements.
We thus created LayerCake, a modified version of the Android framework that supports cross-application embedding via changes to the ActivityManager, the WindowManager, and input dispatching. We added or modified 2400 lines of source code across 50 files in Android 4.2 (Jelly Bean). Figure 2 summarizes the implementation choices that achieve our desired security properties.
Android user interfaces are focused around Activities, which present the user with a particular view (or screen) of an application. An application generally consists of multiple Activities (e.g., settings, comments, and news-feed Activities), each of which defines an interface consisting of built-in or custom UI elements (called Views).
Android's ActivityManager keeps only one Activity in the foreground at a time. An application cannot embed an Activity from another application, and two applications cannot run side-by-side. While Android does provide support for ActivityGroups (deprecated in favor of Fragments) to improve UI code reuse within an application, these mechanisms do not provide true Activity embedding and are not applicable across application and process boundaries. The goal of our exploration is to allow one application to embed an Activity from another application (running in that other application's process).
Each running Android application is associated with one or more windows, each of which serves as the root of an interface layout tree consisting of application-specified Views. Android's WindowManager isolates these windows from each other — e.g., an application cannot access the status bar's window (shown at the top of the screen) — and appropriately dispatches user input. Our implementation relies on these isolation properties.
While only one Activity can be in the foreground, multiple applications/processes may have visible windows. For example, the status bar runs in the system process, and the window of one application may be visible below the (partially) transparent window of another. As an example of the latter, AdSplit [23] achieves visual embedding by taking advantage of an application's ability to make portions of its UI transparent. However, recall from Section 4 and Figure 1 that this approach is insufficient for generalized embedded UI security.
Figure 3: Sample Application. This restaurant review application embeds two third-party Activities, an advertisement and a map. The map Activity further embeds an access control gadget (ACG) for location access.
LayerCake introduces a new View into Android's user interface toolkit (Java package android.view
) called EmbeddedActivityView
. It allows an application developer to embed another application's Activity within her application's interface by specifying in the parameters of the EmbeddedActivityView the package and class names of the desired embedded Activity. Figure 3 shows a sample application that embeds several Activities.
Figure 4: Window Management. This figure shows the Window/View tree for the Activities in Figure 3. Embedded Activities are not embedded in the View tree (circles) of their parent, but rather within a separate window. The WindowManager keeps track of a window (grey squares) for each Activity and visually overlays an embedded window on top of the corresponding EmbeddedActivityView in the parent Activity.
We extended Android's ActivityManager (Java) to support embedded Activities, which are launched when an EmbeddedActivityView is created and displayed. Unlike ordinary Activities, embedded Activities are not part of the ActivityManager's task stack or history list, but rather share the fate of their parent Activity. Crucially, this means that an embedded Activity's lifecycle is linked to that of its parent: when the parent is paused, resumed, or destroyed, so are all of its embedded children.
An Activity may embed multiple other Activities, which themselves may embed one or more Activities (multiple nesting). Each embedded Activity is started as a new instance, so multiple copies of the same Activity are independent (although they run in the same application, allowing changes to the application's global state to persist across different Activity instances).
Properly displaying embedded Activities required modifications to the Android WindowManager (Java). One option for achieving embedded UI layouts is to literally nest them—that is, to add the embedded Activity's Views (UI elements) as children in the parent Activity's UI tree. However, this design would allow the parent Activity to mount input eavesdropping and denial-of-service attacks on the child Activity. Thus, following the interface layout tree invariants described in prior work [18], we do not literally nest the interface elements of embedded Activities inside the parent Activity. Instead, an embedded Activity is displayed in a new window, overlaid on top of the window to which it is attached (i.e., the window of the parent Activity). This overlay achieves the same visual effect as literal embedding but prevents input manipulation attacks. Figure 4 shows an example of the interface layout trees associated with the Activities in the sample application in Figure 3. We note that we were able to simplify the proposed approach [18], which we found to be overly general (see Section 8).
Figure 5: Panning for Software Keyboard. The restaurant review application (from Figure 3), including its overlaid embedded windows, must be panned upward to make room for the software keyboard underneath the in-focus text box.
By placing embedded Activities into their own windows instead of into the parent's window, we also inherit the security properties provided by the isolation already enforced by the WindowManager. In particular, this isolation prevents a parent Activity from modifying or accessing the display of its child Activity (or vice versa).
The relative position and size of an overlaid window are specified by the embedding application in the layout parameters of the EmbeddedActivityView and are honored by the WindowManager. (Note that the specified size may violate size bounds requested by the embedded Activity, as we discuss in Section 5.6.)
The layout parameters of an embedded Activity's window must remain consistent with those of the associated EmbeddedActivityView, a practical challenge not described in prior work. For example, when the user reorients the phone into landscape mode, the parent Activity will adjust its UI. Similarly, when the soft keyboard is shown, Android may pan the Activity's UI upwards in order to avoid covering the in-focus text box with the keyboard (Figure 5). In both cases, the embedded Activity's windows must be relocated appropriately. To support these dynamic layout changes, the EmbeddedActivityView reports its layout changes to the WindowManager, which applies them to the associated window.
Finally, since LayerCake supports multiple levels of embedding, it must appropriately display windows multiple levels down (e.g., grandchildren of the top-level Activity). For example, suppose ActivityA embeds ActivityB which embeds ActivityC. If the EmbeddedActivityView (inside ActivityB) that corresponds to ActivityC is not fully visible—e.g., because it is scrolled halfway out of ActivityB's visible area—then the window corresponding to ActivityC must be cropped accordingly (Figure 6). This cropping is necessary because ActivityC is not literally nested within ActivityB, but rather overlaid on top of it, as discussed above.
Figure 6: Cropping Further Nested Activities. If a grandchild (ActivityC) of the top-level Activity (ActivityA) is placed or scrolled partly out of the visible area of its immediate parent (ActivityB), it must be cropped accordingly.
Both the parent and any embedded Activities must properly receive user input. While touch events are dispatched correctly even in the presence of visually overlapping windows, stock Android grants focus for key events only to the top-level window. As a result, only the window with the highest Z-order in an application with embedded Activities will ever receive key events. We thus modified Android to switch focus between windows belonging to the parent or any embedded Activities within an application, regardless of Z-order.
In particular, we changed the input dispatcher (C++) to deliver touch events to the WindowManager in advance of delivering them to the resolved target. When the user touches an unfocused window belonging to or embedded by the active application, the WindowManager redirects focus. Windows that might receive the redirected focus include that of the parent Activity, the window of any embedded Activity, or an attached window from the same process (e.g., the settings context menu, which Android displays in a new window). Switching focus only in response to user input (rather than an application's request) prevents a parent or child window from stealing focus to eavesdrop on input intended for another principal.
To support desired functionality, embedded UI elements and their parents must communicate. For example, an application embedding an ad may wish to communicate keywords to the ad provider, or a system-defined location button (ACG) may wish to pass the current location to the parent application in response to a user click. To enable flexible communication between embedded Activities and their parents, we leverage the Android Interface Definition Language (AIDL), which lets Android applications define interfaces for interprocess communication. We thus define the following programming model.
Figure 7: Size Conflict Notification. If the AdMobWrapper application specifies a minimum size that the RestaurantReviewActivity does not honor when it embeds the advertisement, a system notification is displayed to the user. Clicking on the notification displays a full-screen advertisement Activity.
Each embeddable Activity defines two AIDL interfaces, one that it (the child) will implement, and one that the parent application must implement. For example, the advertisement (child) may implement a setKeywords()
method, and the ad's parent application may be asked to implement an onAdLoaded()
method to be notified that an ad has been successfully loaded. When an application wishes to embed a third-party Activity, it must keep copies of the relevant interface files in its own source files (as is standard with AIDL), and it must implement registerChildBinder()
. This function allows the child Activity, once started, to make a cross-process call registering itself with the parent.
We note that this connection is set up automatically only between parents and immediate children, as doing so for siblings or farther removed ancestors may leak information about the UIs embedded by another principal.
Recall from Section 5.3 that the WindowManager honors the parent application's size specification for an EmbeddedActivityView. This policy prevents a child element from taking over the display (a threat discussed further in the context of ancestor redirection below). However, we also wish to prevent size manipulation by the parent.
We observe that it is only of concern if an embedded Activity is given a smaller size than requested, since it need not scale its contents to fill its (possibly too large) containing window. Thus, we modified the Activity descriptors to include only an optional minimum height and width (specified in density-independent pixels).
Prior work [18] describes different size conflict policies based on whether the embedded element is trusted or untrusted by the system. If it is trusted (e.g., a system-defined ACG), its own size request should be honored; if it is untrusted (e.g., an ad that requests a size filling the entire screen), the parent's size specification is honored. However, we observe that a malicious parent can mimic the effect of making a child element too small using other techniques, such as scrolling it almost entirely off-screen—and that doing so maliciously is indistinguishable from legitimate possible scroll placements. We thus further consider the failure to meet minimum size requirements in the context of clickjacking (Section 5.7).
Thus, since enforcing a minimum size for trusted embedded elements does provide additional security properties in practice, we use the same policy no matter whether mis-sized elements are trusted or untrusted by the system. That is, the WindowManager honors the size specifications of the parent Activity. If these values are smaller than the embedded Activity's request, a status bar notification is shown to the user (Figure 7). Similar to a browser's popup blocker, the user can click this notification to open a full-screen (non-embedded) version of the Activity whose minimum size was not met.
In a clickjacking attack [11], a malicious application forces or tricks a user into interacting with an interface, generally by hiding important contextual information from the user. For instance, a malicious application might make a sensitive UI element transparent or very small, obscure it with another element that allows input to pass through it, or scroll important context off-screen (e.g., the preview associated with a camera button).
To prevent such attacks, an interface may wish to discard user input if the target is not fully visible. Since it may leak information about the embedding application to let an element query its own visibility, LayerCake allows embedded Activities to request that the Android framework simply not deliver user input events if the Activity is:
setFilterTouchesWhenObscured()
.Note that an embedded Activity need not be concerned about a malicious parent making it transparent, because stock Android already does not deliver input to invisible windows. Similarly, an Activity need not be concerned about malicious visibility changes to UI elements within its own window, since process separation ensures that the parent cannot manipulate these elements. To prevent timing-based attacks, these criteria should be met for some minimum duration [11] before input is delivered, a check that we leave to future work.
We emphasize that embedded iframes on the Web today can neither discover if all of these criteria are met—due to the same-origin policy, they cannot know if the parent page has styled them to be invisible or covered them with other content—nor request that the browser discard input under these conditions.
Android applications use Intents to launch Activities either in their own execution context (e.g., to switch to a Settings Activity) or in another application (e.g., to launch a browser pointed at a specified URL). In response to a startActivity(intent)
system call, Android launches a new top-level full-screen Activity. Recall that allowing an embedded element to redirect the ancestor UI without user consent is a security concern.
We thus make two changes to the Android framework. First, we introduce an additional flag for Intents that starts the resulting Activity inside the window of the embedded Activity that started it. Thus, for example, if an embedded music player wishes to switch from its MusicSelection Activity to its NowPlaying Activity without breaking out of its embedded window, it can do so by specifying Intent.FLAG_ACTIVITY_EMBEDDED
. (If the music player is not embedded, this flag is simply ignored.)
Second, we introduce a prompt shown to users when an embedded Activity attempts to launch another Activity full-screen (i.e., not using the flag described above). This may happen either because it is a legacy application unaware of the flag, or for legitimate reasons (e.g., a user's click on an embedded advertisement opens a new browser window). However, studies have shown that prompting users is disruptive and ineffective [16]; in Section 6.2 we discuss an access control gadget (ACG) that allows embedded applications to launch full-screen Intents in response to user clicks without requiring that the system prompt the user.
We now return to the case studies introduced in Section 3 and describe how LayerCake supports these and other scenarios. Figure 8 shows that implementation complexity is low, especially for parent applications.
To support user-driven access for geolocation, we implemented a geolocation access control gadget (ACG) in the spirit of prior work [19]. We added a LocationAcg
Activity to Android's SystemUI (which runs in the system process and provides the status bar, the recent applications list, and more). This Activity, which other applications can embed, simply displays a location button (see Figure 3).
Figure 8: Implementation Complexity. Lines of code for (1) the embedded Activity and (2) the parent's implementation of the AIDL interface. We omit legacy applications because they required no modifications and expose no parent interfaces. Implementation complexity is low, especially for embedders.
Following a user click, the SystemUI application, not the parent application, accesses Android's location APIs. To then receive the current location, the parent application must implement the locationAvailable()
method defined in the parent AIDL interface provided by the LocationAcg's developers (us).
Security Discussion. LayerCake provides the security properties required to enable ACGs. In particular, the parent application of a LocationAcg cannot trick the user into clicking on the gadget, manipulate the gadget's look, or programmatically click on it.
We emphasize again that this ACG provides location information to the parent application only when the user wishes to share that information; a well-behaving parent application will not need location permissions. In a system like Android, where applications can request location permissions in their manifest, it is an open question how to incentivize developers to use the corresponding ACG instead of requesting that permission. Prior work [19] has suggested incentives including increased scrutiny at app store review time of applications requesting sensitive permissions.
In Section 5.8, we introduced a system prompt when an embedded Activity attempts to start a full-screen Activity. However, prompts are known to be disruptive and often ignored, especially following a user action intended to cause the effect about which the prompt warns [31]. For example, a user who clicks on an embedded ad in stock Android today expects it to open the ad's target in a new (non-embedded) browser window. Following the philosophy of user-driven access control [19], we thus allow embedded Activities to start top-level Activities without a prompt if startActivity()
is called in response to a user's click.
To verify that the user has actually issued the click, we take advantage of our system's support for ACGs and implement an ACG for top-level redirection. This RedirectAcg
Activity again belongs to Android's SystemUI application. It consists primarily of an ImageView that may be filled with an arbitrary Bitmap, allowing the embedder to completely specify its look. An embedded Activity that embeds such an ACG (two levels of embedding) thus uses the cross-process API provided by the RedirectAcg to (1) provide a Bitmap specifying the look, and (2) specify an Intent to be supplied to the startActivity()
system call when the user clicks on the RedirectAcg (i.e., the ImageView's onClick()
method is fired).
Security Discussion. The UI-level security properties provided by LayerCake ensure that the RedirectAcg's onClick()
method is fired only in response to real user clicks. In other words, the embedding application cannot circumvent the user intent requirement for launching a top-level Activity by programmatically clicking on the RedirectAcg or by tricking the user into clicking on it.
Unlike the LocationAcg, however, the embedding application is permitted to fully control the look of the RedirectAcg. This design retains backwards compatibility with the stock Android experience and relies on the assumption that a user's click on anything within an embedded Activity indicates the user's intent to interact with that application. However, alternate designs might choose to restrict the degree to which the redirecting application can customize the RedirectAcg's interface. For example, the system could place a visual “full-screen” or “redirect” indicator on top of the application-provided Bitmap, or it could simply support a stand-alone “full-screen” ACG that applications wishing to open a new top-level view must display without customization.
Note that developers are incentivized to use the RedirectAcg because otherwise attempts to launch top-level Activities will result in a disruptive prompt (Section 5.8).
We implemented a SecureWebView that addresses security concerns surrounding Android WebViews [12, 13]. The SecureWebView is an Activity in a new built-in application (WebViewApp) that consists solely of an ordinary WebView (inside a FrameLayout) that fills the Activity's whole UI. Thus, when another Activity embeds a SecureWebView, the internal WebView takes on the dimensions of the associated EmbeddedActivityView.
The SecureWebView Activity exposes a safe subset (see below) of the underlying WebView's APIs to its embedding process. The current version of LayerCake exposes only a subset of these APIs for demonstration purposes. A complete implementation will need to properly (de)serialize all complex data structures (e.g., SslCertificate
) across process boundaries.
Security Discussion. Separating out the Android WebView into another process — that of the WebViewApp — provides important missing security properties. It is no longer possible to eavesdrop on input to the embedded webpage, to extract content or programmatically issue input, or to manipulate the size, location, or transparency of the WebView to mount clickjacking attacks.
While the SecureWebView wraps the existing WebView APIs, it should avoid exposing certain sensitive APIs, such as those that mimic user input (e.g., scrolling via pageUp()
) or that directly extract content from the WebView (e.g., screenshot via capturePicture()
). Note, however, that APIs which redirect the SecureWebView to another URL are permitted, as the parent application could simply open a new SecureWebView instead.
Ideally, Android would replace the WebView with the SecureWebView, but this change would not be backwards compatible and may conflict with the goals of some developers in using WebViews. Thus, we observe that using a SecureWebView also benefits the embedding application: if it exposes an API to the webpage via an ordinary WebView (using addJavascriptInterface()
), a malicious page could use this to manipulate the host application. Process separation protects the host application from such an attack, and since the WebViewApp has only the INTERNET
permission, the attack's effect is limited. Additionally, WebView cookies are not shared across processes; the SecureWebView allows applications to reuse (but not access) existing cookies, possibly providing a smoother user experience.
Recall that stock Android applications embedding third-party advertisements include an ad library that runs in the host application's process and provides an AdView element. Our modifications separate the AdView out into its own process (see the advertisement in Figure 3). To do this, we create a wrapper application for the AdMob advertising library [10]. The wrapper application exposes an embeddable Activity (called EmbeddedAd
) that instantiates an AdMob AdView with the specified parameters. This Activity exposes all of AdMob's own APIs across the process boundary, allowing the embedding application to specify parameters for the ad.
Security Discussion. Moving ads into their own process (one process per ad library) addresses a number of the concerns raised in Section 3. In particular, an ad library can no longer abuse a parent application's permissions or exploit a buggy parent application. Furthermore, the permissions needed by an ad library, such as Internet and location permissions, must no longer be requested by the parent application (unless it needs these permissions for other purposes).
Note that all ads from a given ad library — even if embedded by different applications — run in the same process, allowing that ad application to leverage input from different embedders. For example, if one application provides the user's age and another provides the user's gender, the ad application can better target ads in all parent applications, without revealing additional information to applications that did not already have it. (However, we note that some users may prefer that ad applications not aggregate this information.)
LayerCake goes beyond process separation, providing UI-level security absent in most prior systems (except AdSplit [23]). Most importantly, the parent can no longer mount programmatic click fraud attacks.
We can now support embedded Facebook social widgets in a secure manner. We achieve this by creating a Facebook wrapper application that exposes Activities for various Facebook social widgets (e.g., a Comments Activity and a Like Activity — see Figure 9). Each Activity displays a WebView populated with locally-generated HTML that references the Facebook JavaScript SDK to generate the appropriate plugin (as done ordinarily by web pages and as specified by Facebook [6]).
Security Discussion. LayerCake supports functionality that is impossible to achieve securely in stock Android and may be desirable to Facebook. This functionality was previously available only on the Web, due to the relative security of embedded iframes (though clickjacking, or “likejacking”, remains a problem on the Web). Our implementation protects the social widgets both by separating them into a different process (preventing data extraction, among others), and by enforcing other UI-level security properties (preventing clickjacking and programmatic clicking).
We observe that a malicious application might attempt to mimic the FacebookWrapper application by populating a local WebView with the HTML for a social plugin. To prevent this attack, we recommend that the FacebookWrapper application include a secret token in the HTML it generates (and that Facebook's backend verify it), similar in approach to CSRF protections on the Web.
The applications discussed so far needed wrapper applications because the wrapped functionality was not previously available in a stand-alone fashion. However, this need is not fundamental — any legacy Android application (i.e., one that targets older versions of the Android SDK) can be embedded using the same techniques.
To demonstrate this, we created an application that embeds both the existing Pandora application and the existing Amazon application. To do so, we needed to discover the names of the corresponding Activities in the existing applications. This information is easy to discover from Android's standard log, which prints information about Intent targets when they are launched. Figure 10 shows a screenshot of the resulting application.
Figure 9: Facebook Social Plugins. This example blog application embeds both a Facebook “Like” button and a comments feed, both running in our FacebookWrapper application.
Security Discussion. As in previous case studies, the embedded Activities are isolated from the parent. Thus, they cannot access sensitive information in or manipulate the UI or APIs in the parent application, or vice versa.
Legacy applications naturally do not use the new FLAG_ACTIVITY_EMBEDDED
flag when launching internal Activities. While updated versions of Pandora and Amazon could use this flag to redirect within an embedded window, the experience with unmodified legacy applications is likely to be disruptive. Thus, a possible policy (perhaps subject to a user preference setting) for such applications is to internally modify all Activity launches to use the new flag, never allowing these applications to break out of their embedded windows.
Embedding arbitrary applications that were not intended by their developers to be embedded also raises the question of embedding permissions. Some Activities may wish never to be embedded, or to be embedded only by authorized parents. Future modifications to LayerCake should support such permissions.
We evaluate the performance impact of our changes to Android by measuring the time it takes to start an application, i.e., the delay between a startActivity()
system call and the onCreate()
call for the last embedded Activity (or the parent Activity, if none are embedded). As shown in the top of Figure 11, applications with embedded Activities take longer to fully start. The reason for this is that the parent Activity's layout must be created (in its onCreate()
) before child Activities can be identified. Thus, an application with multiple nested Activities (e.g., RestaurantReviewer) requires linearly more time than an application with only one level of nesting (e.g., FacebookDemo or Listen&Shop). We note that the parent Activity's own load time is unaffected by the presence of embedded content (e.g., the FacebookDemo Activity starts in 160 ms, even though the embedded Facebook components require 300 ms). Prior work [15] has argued that the time to display first content is more important than full load time.
Figure 10: Embedded Pandora and Amazon Apps. Legacy applications can also be embedded, raising policy questions regarding top-level intents and embedding permissions.
We also measure input event dispatch time (e.g., the time it takes for Android to deliver a touch event to an application). Specifically, we evaluate the impact of dispatching input events first to the WindowManager, allowing it to redirect focus if appropriate (Section 5.4). The bottom of Figure 11 shows that involving the WindowManager in dispatch has a negligible performance impact over stock Android; changing focus has a greater impact, but it is not noticeable by the user, and focus change events are likely rare.
We can also report anecdotally that the effect of embedding on the performance of our case study applications was unnoticeable, except that the panning of embedded windows (for the software keyboard) appears to lag slightly. This case could likely be optimized by batching cross-process relayout messages.
Finally, supporting embedded Activities may result in more applications running on a device at once, potentially impacting memory usage and battery life. The practical impact of this issue depends on the embedding behavior of real applications — for example, perhaps most applications will include ads from a small set of ad libraries, limiting the number of applications run in practice.
Whereas existing systems — particularly browsers — have evolved security measures for embedded user interfaces over time, this paper has taken a principled approach to defining a set of necessary security properties and building a system with full-fledged support for embedding interfaces based on these properties.
Figure 11: Performance. The top table shows the time it takes for the onCreate()
method of all included Activities to be called. We note that the time to load the parent Activity remains the same whether or not it uses embedding, so the time for the parent to begin displaying native content is unaffected. The bottom table shows that the effect of intercepting input events in the WindowManager for possible focus changes is minor.
From this process, we provide a set of techniques for systems that wish to support secure cross-application UI embedding. Figure 2 outlines the security properties provided by LayerCake and summarizes the implementation techniques used to achieve each property. While prior works [18, 19] have stated the need for many (though not all) of these properties, they have not provided detailed guidelines for implementation. We hope this work, in which we bring techniques from prior work together into a practical implementation, will serve that purpose.
Our implementation experience challenges several previous assumptions or choices. These lessons include:
User-driven ancestor redirection. Embedded applications should not be able to redirect an ancestor application/page without user consent. We argue that a reasonable tradeoff between security and usability is to prompt users only if the redirection attempt does not follow a user click (indicating the user's intent to interact with the embedded content). While newer browsers prevent embedded iframes from redirecting the top-level page programmatically, they do not allow user actions (e.g., clicking on a link with target _top
) or other mechanisms to override this restriction. In our case studies, we saw that this type of click-enabled redirection can be useful and expected (e.g., when a user clicks on an embedded ad, he or she likely expects to see full-screen content about the advertised product or service). In our system, we were able to apply ACGs in a novel way to capture a user's redirection intent (Section 6.2).
Size manipulation as a subset of clickjacking. We initially considered size manipulation (by the parent of an embedded interface element) to be a stand-alone threat. A solution that we considered is to treat elements that are trusted or untrusted by the system differently (e.g., an access control gadget is trusted while an advertisement is not), letting the system enforce the minimum requested size for trusted elements. However, this solution provides no additional security, since a malicious parent can use other techniques to obscure the sensitive element (e.g., partially covering it or scrolling it partly off-screen). Thus, we consider size manipulation as a subset of clickjacking. We suggest that sufficient size be considered an additional criterion (in addition to traditional clickjacking prevention criteria like complete visibility [11, 19]) for the enabling of a sensitive UI element.
Simplification of secure UI layout tree. Prior work [18] proposes invariants for the interface layout tree that ensure a trusted path to every node and describes how to transform an invalid layout tree into a valid one. Our implementation experience shows this solution to be overly general. Embedded elements need not be attached to the layout tree in arbitrary locations; rather, they can always attach to the (system-controlled) root node and overlaid appropriately by the WindowManager (or equivalent). That is, the layout trees of separate principals need never be interleaved, but rather visually overlaid on top of each other, requiring no complex tree manipulations. Simplifying this approach is likely to make it easier and less error-prone for system developers to support secure embedded UI.
We step back and consider the capabilities enabled by our implementation. In particular, the following scenarios were fundamentally impossible to support before our modifications to Android; LayerCake provides additional security properties and capabilities even beyond the Web, as we detail here.
Isolated Embedded UI. Most fundamentally, LayerCake allows Android applications to securely embed UI running in another process. Conceptually, this aligns the Android application model with the Web model, in which embedded cross-principal content is common. Especially as Android expands to larger devices like tablets, users and application developers will benefit from the ability to securely view and show content from multiple sources in one view.
Secure WebViews. It is particularly important that WebViews containing sensitive content run in their own process. While an Android WebView seems at first glance to be similar to an iframe, it does not provide the security properties to which developers are accustomed on the Web (as discussed in this paper and identified in prior work [12, 13]). LayerCake matches and indeed exceeds the security of iframes — in particular, a SecureWebView can request that the system not deliver user input to it when it is not fully visible or sufficiently large, thereby preventing clickjacking attacks that persist on the Web.
Access Control Gadgets. Prior work [19] introduced ACGs for user-driven access control of sensitive resources like the camera or location, but that work does not provide concrete guidelines for how the necessary UI-level security properties should be implemented. This paper provides these details, and we hope that they will guide system developers to include ACGs in their systems. We particularly recommend that browser vendors consider ACGs in their discussions of how to allow users to grant websites access to sensitive resources [28].
Finally, we discuss several issues unaddressed by LayerCake that must be considered in future work.
First is the issue of application dependencies, that is, how to handle the case when an application embeds an Activity from another application that is not installed. Possibilities include automatically bundling and installing dependencies (as also proposed by the authors of AdSplit [23]), giving the user the option of installing the missing application, or simply failing silently. This issue led the authors of AdDroid [17] to decide against running ads in their own process, but we argue that the security concerns of not doing so outweigh this issue. The concern that users might uninstall or replace ad applications to avoid seeing ads could be addressed by giving parent applications feedback when a requested embedded Activity cannot be displayed; applications relying on ads could then display an error message if the required ad library is not available. Updates and differences in library versions required by apps could be handled by Android by supporting multiple installed versions or simply by the ad libraries themselves.
Second is the issue of principal identification: a user cannot easily determine the source of an embedded interface (or even whether anything is embedded). This concern mirrors the Web today, where an iframe's presence or source cannot be easily determined, and we consider this to be an important orthogonal problem.
Finally, we consider additional related work not discussed inline.
In Section 4 and Figure 1, we explored existing implementations of embedded cross-application user interfaces [5, 17, 18, 23]. These systems have differing goals and employ a variety of techniques, but none fully meets the security requirements defined in [18] and expanded here. In particular, none of these approaches can, without modification, support security-sensitive embedded user interfaces like ACGs [19]. The original ACG implementation built on interface-level security properties provided by the Gazelle browser operating system [29].
Others have explored the problem of clickjacking in more depth. One study [20] found that most framebusting techniques are circumventable, making them ineffective for preventing clickjacking. Other work [11] provides a comprehensive study of clickjacking attacks and defenses, presenting a solution (InContext) that relies on the browser to verify the visual context of sensitive UI elements. LayerCake could be extended to support InContext for additional clickjacking protection.
Our implementation relies on security properties provided by the Android WindowManager. Window system security has been explored previously by projects such as Trusted X [4] (an implementation of the X Window System [9] based on the Compartmented Mode Workstation requirements [30]) and the EROS Trusted Window System [22]. We extend this work by leveraging a secure window system to support secure cross-application UI embedding.
We have systematically considered the security requirements for embedded user interfaces, analyzing existing systems — including browsers, smartphones, and research systems — with respect to these requirements. While browsers have evolved to address many (though not all) of these requirements over time, Android-based implementations have not supported secure embedded interfaces. We thus created LayerCake, a modified version of the Android framework that supports cross-principal embedded interfaces in a way that meets our security goals. The resulting capabilities enable several important scenarios, including advertisement libraries, Facebook social plugins, and access control gadgets. Based on our exploration and implementation experience, we provide a concrete set of criteria and techniques that has to date been missing for system developers wishing to support secure interface embedding.
This paper, along with any updates, will be available at https://layercake.cs.washington.edu/
.
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Mobile app development best practices suggest that developers obtain opt-in consent from users prior to accessing potentially sensitive information on the phone. We study challenges that mobile application developers have with meeting such requirements, and highlight the promise of using new automated, static analysis-based solutions that identify and insert missing prompts in order to guard otherwise unprotected resource accesses. We find evidence that third-party libraries, incorporated by developers across the mobile industry, may access privacy-sensitive resources without seeking consent or even against the user's choice. Based on insights from real examples, we develop the theoretical underpinning of the problem of mediating resource accesses in mobile applications. We design and implement a graph-theoretic algorithm to place mediation prompts that protect every resource access, while avoiding repetitive prompting and prompting in background tasks or third-party libraries.
We demonstrate the viability of our approach by analyzing 100 apps, averaging 7.3 MB in size and consisting of dozens of DLLs. Our approach scales well: once an app is represented in the form of a graph, the remaining static analysis takes under a second on average. Overall, our strategy succeeds in about 95% of all unique cases.
Privacy on smartphones is far from being a theoretical issue: a popular iOS application, Path, had been found to upload the entire address book of an iPhone user by default; similarly, a number of high-profile incidents [1–3] show negative consequences for mobile applications that surreptitiously collected privacy-sensitive information about users without explicit consent. Furthermore, a recent survey of 714 cell phone users shows that 30% of the respondents had uninstalled an application because they discovered that the application in question was collecting personal information they did not wish to share [20].
Runtime consent dialogs (sometimes called runtime permission prompts) are commonly used by mobile applications to obtain a user's explicit consent prior to accessing privacy-sensitive data. However, mobile operating systems differ in terms of their approach to raising these consent dialogs. iOS implements OS-level consent dialogs which are raised when accessing GPS location, contacts stored on the phone, as well as a few other key resources. These dialog boxes are far from being “no-ops” for the user: A recent study of hundreds of iPhone users shows that 85% of them exercised this control to deny at least one application from accessing location data [13]. However, in the absence of OS-level support, application developers can individually implement opt-in consent dialogs for enhancing the overall privacy for end-users.
This paper focuses on a number of technical challenges that arise when mobile application developers determine the right place to insert runtime prompts within an application. First, minimizing the runtime frequency of consent dialogs is important, as repetitive prompts tend to habituate users to blindly accept the terms [7]. However, to protect user privacy, every single attempt to access sensitive information should be guarded with a prompt. Second, apps should provide just-in-time prompts in order for it to make sense to the user within the application context. If prompts are placed early, e.g., at install time, users may forget about granted permissions, leading to unpleasant surprises because of data access performed by the app, especially when it runs in the background [21].
The aim of this paper is to formalize the problem of placing runtime consent dialogs within a mobile application, and to propose a solution for automatic and correct prompt placement. We try to both 1) find missing prompts and 2) propose a valid prompt placement when prompts are missing.
While it is possible to use dynamic analysis to observe missing prompts at runtime, this approach is fraught with significant challenges. The traditional challenge is low path coverage, which can be alleviated with path exploration techniques such as symbolic execution, but never completely fixed. Other, more technical, challenges related to running UI-based mobile apps automatically also remain.
Because we aim to provide a technique that would err on the side of safety, we do not believe runtime analysis is suitable. To this end, we propose a new scalable static analysis algorithm to automatically find places for inserting prompts if they are missing. Our solution scales well with application size and does not require any changes to the underlying operating system.
Given the inherent nature of static analysis techniques and the complexity of both the applications and the execution environment, our tool may produce false positives. However, at the worst, these false positives will result in double-prompts that occur at most once per application. We believe this to be a considerable improvement over the current error-prone practice of manual prompt placement. Our approach in this paper may not be fully sound due to issues such as reflection (see Section 4); however, our goal is be as sound as possible. Our evaluation in Section 6 does not reveal any false negatives.
Finally, note that our target is benign, but potentially buggy non-obfuscated apps. If the app writer tries to either obfuscate their code or take advantage of features that are not treated conservatively (such as reflection) to hide control flow, the precision and soundness of our analysis will suffer. Luckily, the presence of obfuscation is relatively easy to detect [22].
Our contributions are three-fold:
Our analysis reveals that some application developers fail to show the proper set of prompts, showing the difficulty and ineffectiveness of manual placement. Frequently, the issue that exacerbates this situation is that resource access takes place within third-party libraries shipped as bytecode, making them more difficult to reason about largely placing them outside developer's control.
The rest of this paper is organized as follows. We discuss case studies of real applications and challenges associated with proper prompt placement in Section 2. We then formulate the problem and provide much of the insight for our proposed solution in Section 3. We discuss the implementation of the algorithms in Section 4. Results from an experimental study are described in Section 5 and further discussed in Section 6. We summarize related work in Section 7 and conclude in Section 8.
We first provide three motivating case studies in Section 2.1 and then provide intuition for the complexity of the problem in Section 2.2.
We begin by discussing several interesting real-world examples, which illustrate how existing WP apps mediate access to location data. One of the ways in which the WP SDK exposes location access API to applications is through the GeoCoordinateWatcher
class in the System.Device.Location
namespace. Prompts are created with a call to MessageBox.Show
, with the text of the prompt provided by the developer.
Figure 1 shows screen-shots of three applications — AroundMe, Burger King (inoffiziell), LumiaClock — immediately before these applications invoke location access API. We picked these three apps from the WP Store, filtering for apps that use GPS location data. Each application consists of a set of DLLs and resources. We have disassembled the applications and inspected the code to find instances of location API invocations. Figure 2 shows (1) the number of location access points observed in each of the three applications; (2) which location API is used; and (3) which libraries call the location API.
Figure 1: Screen-shots of three examined applications. The first two applications display a location prompt prior to invoking location APIs. The third application never shows a location prompt; the screen-shot was captured when we detected the first time that a location API was invoked by the application.
Figure 2: Location accesses found in three apps.
As shown in Figure 2, location access happens both in application code and in third-party libraries. For instance, GART.dll
is a library that provides augmented reality features and SOMAWP7.dll
is a library that provides advertising to WP applications. Not surprisingly, the use of location data by third-party libraries complicates access mediation, as third-party libraries often come as a black box to application developers. The following in-depth analysis illustrates the issue.
Case 1 (proper protection): Location accesses are contained only in the application code and properly mediated by a runtime consent dialog. The code snippet in Figure 3(a) is from the AroundMe
application. As shown in the code below, this application invokes GetCurrentCoordinates()
only after the user clicks the OK
button as shown in Figure 1.
Figure 3: Illustrative cases for Section 2.1.
Case 2 (partial protection): Location accesses are spread across application and third-party code and only accesses by application code are protected by runtime consent dialog. The code snippet in Figure 3(b) is from the BurgerKing application. The consent dialog shown in Figure 1 only affects AppSettings.Current.UserLocationService
and leaves GART.Controls.ARDisplay.StartLocation()
unprotected. Using network packet inspection, we confirmed that the application accesses and transmits location using the GART
component even when the Cancel
button is clicked.
Figure 4: Resource access in a loop.
Case 3 (no protection): Location accesses are only present in third-party code and the application provides no consent dialogs. The following code snippet is from the LumiaClock application. The application has no location features. Although the third-party code SomaAd
exposes a flag to protect location access, the application appears unaware of it. Moreover, the SomaAd
component enables the flag, _locationUseOK
by default, as shown in Figure 3(c).
Summary: In summary, the case studies above demonstrate that properly protecting location access is challenging because multiple components, including third-party libraries, are involved in accessing sensitive resources. The current practice often fails in providing adequate privacy protection, as some applications do not honor the user's choice (as shown in case 2) or do not obtain the user's consent prior to acquiring privacy-sensitive information.
Next, we dive into the properties that we want to ensure, while deciding where to place missing prompts via static analysis. Naïvely, one might suspect that prompt placement is a fairly trivial task, reducing to (1) finding resource access points and (2) inserting prompts right in front of them. In reality, situation is considerably more complex. In this section, we systematically investigate the challenges we need to overcome in order to provide a satisfactory solution.
1) Avoiding double-prompts: We need to avoid prompting the user for access to resource R more than once on a given execution path. This is a harder problem that it might initially seem; indeed, consider the following code:
There are two location access points and two ways to avoid duplicate prompts. One is to introduce a boolean flag to keep track of whether we have prompted for the location already:
The disadvantage of this approach is that it requires introducing extra runtime instrumentation to perform this sort of bookkeeping. A fully static approach involves rewriting the original code by “folding” the second prompt into the if
:
This approach has the advantage of not having to introduce extra bookkeeping code. The disadvantage is replication of the existing code across the branches of the if
, which leads to extra code growth.
The problem of double-prompts can be exacerbated. Figure 4a illustrates the challenge of placing a prompt within a loop. Placing the prompt before the loop as in Figure 4b is not valid if the loop never executes. Placing the prompt within the loop body will lead to execution on every iteration. However, a simple dynamic check will ensure that the location prompt is not shown more than once (Figure 4c).
2) Sticky prompts: Applications frequently make user-granted permissions persistent and avoid duplicate prompts, by saving the prompt status to the app's isolated storage, as illustrated in Figure 5. Here the challenge comes in both recognizing existing “sticky” prompts in app code and in making inserted prompts sticky, as discussed in Section 4.3.
3) Avoiding weaker prompts: Suppose there are two resources r1, r2 such that r2 is less sensitive than r1. If an app has already prompted the user for access to r1, it should avoid prompting the user for access to resource r2. For instance, if an app already has requested access to fine-grained location, there is no need to prompt for access to coarse-grained location. Note that in the current version of the WP operating system, there is no difference in capabilities between fine- and coarse-grained locations; both require the ID_CAP_LOCATION
capability in the app manifest. However, in the future more fine-grained capabilities subsuming one another may evolve, as they have on Android. Moreover, it is still possible and perhaps even desirable to distinguish between fine- and coarse-grained locations when prompting at runtime, even though they are treated the same at installation time.
4) Avoiding prompts in background tasks: WP apps provide non-interactive background tasks. These are often used for polling remote servers and other tasks that do not require access to the user's screen beyond, perhaps, a live tile of the app. We cannot raise dialog boxes within background tasks. To properly determine where the prompts should be located, we should compute the call graph and determine what foreground code precedes the code within background tasks.
5) Avoiding prompts in libraries: Given that libraries are often shipped in the form of bytecode and are updated separately from the rest of the applications, we choose to avoid placing prompts in library code. This approach allows developers to examine prompt placement within their own code, and to alleviate the need to keep custom-modified versions of third-party libraries such as SOMAWP7.dll
, which can make error reporting, debugging, and sharing libraries across apps a challenge.
Figure 5: Sticky location prompt.
A recent spate of research efforts is centered around detecting undesirable information flows, i.e. sensitive data like contacts leaving the phone, usually via the network (e.g., [9, 10]). Reasoning about these kinds of leaks involves understanding inter-procedural data flow within the app and perhaps even across different apps. Data flow analysis of this kind is a known difficult problem which, despite a great deal of work on both the static and runtime sides has not yet found widespread practical deployment [24].
In the context of mobile apps, there is another aspect further complicating this problem. Even if there is in fact a perfect mechanism for precisely and efficiently tracking inter-procedural data flow, a viable policy is hard to come by. Indeed, how does a tool automatically distinguish between a Yelp app that shares GPS location information with a back-end server to obtain restaurant listings from (a potentially malicious) flashlight app that obtains the same GPS information and shares it with an ad server? Constructing a robust policy is not trivial. Our paper rather focuses on providing a method for assisting application developers in checking their apps against the currently accepted practice of obtaining consent prior to accessing potentially sensitive user data on the phone and in fixing problems before submitting apps to a marketplace. Note that our work in this paper is in the control flow, not data flow space; we want to reason about whether the acquisition points for sensitive content are well-protected. In this section we first formulate the problem of prompt placement and then discuss some approaches for computing a valid placement.
As is typical in static analysis, it is helpful to represent the program in the form of a graph, to abstract away many unnecessary features of the original source or bytecode representation.
Since our goal is to reason about prompts “guarding” resource access points, we choose a representation similar to a control-flow graph. Because both prompts and resource accesses take the form of method calls, we find it convenient to augment the traditional notion of basic blocks to treat call sites specially. We use the term enhanced basic block to emphasize the difference in construction. An enhanced basic block is different from a basic block in that only the first and last of its instructions can be (method) calls. Consequently, call instructions exist in a block of their own. (First and last instructions can also be jumps, just as in the case of regular basic blocks.)
Our representations also need to be inter-procedural: we need to be able to handle prompts that are located outside of the method in which the resource access takes place. This is especially necessary given that WP apps are written in .NET, where methods generally tend to be small. We therefore augment the control glow graph with call and return edges denoted as C below.
Definition 1 A resource access prompt placement problem is defined as follows. Let = N, A, B, E, C, be a tuple with the following components:
Intuitively, this representation is an expanded inter-procedural control flow graph G = N, E C.
Based on the challenges described in Section 2.2, we proceed to formulate what it means to have a valid placement of resource access prompts.
Definition 2 We say that placement P ⊂ N is a valid placement for a prompt placement problem = N, A, B, E, C, if the following conditions hold for every runtime execution of the app:
get
(r) or an exception occurs2.Figure 6: Analysis steps.
We provide intuition for our solution in the remaining sections; Section 4 gives the actual algorithms. Figure 6 shows the overall flow of our analysis. Given a graph with well-identified resource access points, a safe placement is relatively easy to come up with. The main obstacle is the fact that we cannot always put prompts right before accesses, because sometimes accesses are within background tasks or, more frequently, in libraries (violating the visible requirement).
Intuitively, we can start with resource access points A and move the prompts up until we are outside of background tasks. The downside of this approach is a possibility of moving these prompts too far (to the beginning of the app in the most extreme case), which would violate the frugal requirement. This gives rise to a notion of a prompt being needed at a particular point, for which we use the term anticipating, common in compiler literature [4]. By way of example, for the code snippet in Figure 7, location access is anticipating before line 3, but it is not anticipating before the if
on line 2, because of the else
branch. So placing the prompt on line 1 leads to unnecessary prompting, violating the requirement of being frugal.
Figure 7: Conditional location access.
Figure 8: Graph (left) and its dominator tree (right). Node 5 is a resource access node within a library.
Definition 3 We say that basic block B N is r-anticipating if every path from B to Nexit passes through a resource access of type r.
Intuitively, placing prompts for resource accesses of type r at r-anticipating nodes is necessary because these nodes are guaranteed to require them eventually; in other words, these placements will be frugal.
Finally, the discussion so far has not considered the case of prompts granting permissions of different “strength”, resulting in potentially unnecessary prompts. This suggests that the notion of being anticipating should be defined not globally, but with respect to a particular kind of resource, taking into account the lattice of resource access permissions.
Dominator-based Approach: Using the notion of dominators in the graph [4] we can abstract away unnecessary details. Recall that we say that node d N dominates node n N if every path from Nentry n passes through d. Dominator relationships induce a dominator tree over the set of nodes N. An example of such a dominator tree for a graph in Figure 8a is shown in Figure 8b.
By this definition, dominator-based placement is an easy way to “block” access to a particular resource access. The most immediate approach is to place prompts on the nodes dominating the resource access node.
Of course, since we want a placement as close as possible to the access point, we will prefer the immediate dominator of the resource access node. By definition, we will have a safe placement, because ∀ a A, every path from Nentry a must pass through idom(a), the immediate dominator of a. This simple approach suffers from two problems:
if(P)
node. However, this node is not location-anticipating, because the else
branch is not accessing the location.A viable approach is therefore to start at the resource access node and walk up the dominator tree until we encounter a node that is not in the background or a library. We are guaranteed to encounter such a node eventually, because sooner or later we will encounter Nentry, which is a foreground non-library node by Definition 1.
For the graph in Figure 8, node 5 is a library node. Nodes 1 and Nentry are in the cover for node 5. Node 1 is the immediate cover of 5. Our approach, therefore, will choose node 1 for a prompt protecting node 5, but, unfortunately, this placement will violate the frugality condition.
Backward Placement: Sometimes dominator-based placement will backtrack “too far” in the graph to become unnecessary — in other words, not frugal. In these cases, we propose an alternative strategy called backward placement, which often avoids this problem. Backward placement explores the predecessors of the resource access node and find an individual separate place for a prompt for each of them. For node 5 in Figure 8, both predecessors 2 and 4 present valid placement opportunities, which are also frugal. Frequently, the backward placement approach will yield a valid placement. The concern with this strategy is two-fold:
Unlike dominator-based placement, there is a possibility of passing through prompt placement nodes multiple times at runtime. To see this, consider adding a backward edge from 3 1 in Figure 8. This edge does not affect the dominator tree or dominator-based placement. If we place prompts at nodes 2 and 4 for resource access at node 5, there is a possibility of encountering the prompt at node 2 multiple times as we go through the loop 1 2 3. This kind of double-prompting violates the not-repetitive condition in Definition 2. A simple way to address this is to record user consent in app's isolated storage for both the current runtime session and future app invocations, as shown in Section 4.3.
Figure 9: Insertion of resource access prompts. G is the graph; a is the access node; ant : N 2R is the anticipating lookup map computed as specified in Figure 10, and, finally, idom is the immediate dominator relation.
Figure 10: Dataflow analysis formulation for computing anticipating nodes: ∀n N, we compute the set of resource types that node n is anticipating.
In our evaluation section, we will examine the tradeoffs between the dominator-based and backward placement strategies. To summarize, this is an outline of our placement approach:
Anticipating values can be calculated using a simple data-flow computation, in the style of the Dragon book [4]. A formulation of this analysis is shown in Figure 10 in the form of a table traditional for succinctly representing data-flow problems. The advantage of such a formulation is that it runs in linear time, given a lattice of finite height (and size), and that most compiler frameworks already provide a data-flow framework into which this kind of analysis can be “dropped”.
There is some flexibility when it comes to the last step. Indeed, we can choose to use a dominator-based, or a backward placement strategy, or some combination. In our implementation, we try the dominator strategy first to see if it yields a valid placement and, failing that, resort to the backward strategy. This hybrid approach is shown in the function INSERTPROMPT in Figure 9. Note that if placement is successful, the outcome is stored in the Placement ⊂ N set.
INSERTPROMPT-B has an occurs-check on line 32 to avoid the possibility of infinite recursion for graphs with loops, which are encountered in the process of backward exploration. If the current node is not reachable from non-library code as indicated by IsReachable, we return true. We discuss the challenges of fast backward computation in Section 4.2.
Figure 11: Checking for resource access prompts. G is the graph; r is the resource type; a is the access node.
Note that before we choose to insert prompts we need to make sure they are in fact missing as shown on line 2 of Figure 9. Doing so requires a backward search, as shown in Figure 11. Note that in practice, HASPROMPTS frequently returns false, failing quickly without exploring the entire set of predecessors. Section 4.2 demonstrates how this search can be made faster.
Figure 12: Putting it all together: creating an overall prompt placement for graph G.
The algorithm that pulls everything together to create a placement is shown in Figure 12. We first check that whether there is indeed a valid placement for all resource accesses. Once this is ensured, we proceed to modify the underlying graph by inserting prompts at appropriate places. Note that prompt insertion is only attempted if they are in fact missing, as ensured by the check on line 2 of Figure 9. The details of runtime instrumentation are given in Section 4.3. The structure of the algorithm allows us to reason about the resulting placement.
Theorem 1 The placement of prompts above is in fact valid if the placement routine CREATEPLACEMENT returns true.
Proof sketch: It is easier to consider each correctness property in turn. We will refer to code lines in Figure 9 unless indicated otherwise.
Safe: We need to ensure that every access a to resource r is preceded by a prompt check for r. The call to INSERTPROMPT must have returned true for resource access a. This is because either the dominator-based or backward strategy was successful. If the dominator-based strategy succeeded, there was a non-background, non-library node dominating a which is also anticipating for a.Type. The check on line 18 maintains this invariant. If the dominator-based strategy failed and the backward strategy succeeded, this is because every path from a to Nentry has encountered a placement point which satisfied the check on line 33, providing adequate protection for the access at a.
Visible: No prompt is placed within a background task or library code. This is true by construction because of checks on lines 19 and 34.
Frugal: Placement only occurs at anticipating nodes because of checks on lines 18 and 33.
Not-repetitive: Prompt for r2 R is never invoked if permissions for r1 have already been granted and r2 r1. This property is maintained by a combination of three steps: (1) merging in Step 2 on the overall algorithm, (2) check on line 52 and (3) the runtime “sticky” treatment of prompts that avoids double-prompting for the same resource type further explained in Section 4.3.
Our current implementation of the static analysis described in this paper involves dealing with a variety of practical details, some of which are fairly common in bytecode-based static analysis tools, whereas others are quite specific to our setting of WP apps written in .NET.
A significant part of the implementation involves building a graph on which to perform our analysis. Intra-procedurally, we parse the .NET bytecode to construct basic blocks; we terminate them at method calls to simplify analysis. For call graph construction, we use a simple class hierarchy analysis (CHA) to resolve virtual calls within the program. We also construct a dominator tree as part of graph construction, as we need it later. In many cases, the resulting graphs have enough precision for our analysis.
WP applications are distributed as XAP files, which are archives consisting of code in the form of bytecode DLLs, resources such as images and XAML, and the app manifest, which specifies requested capabilities, etc. Unsurprisingly, various reflective constructs found in WP apps create challenges for our analysis. While we outline some of the details of our solutions below, constructing precise static call graphs for mobile apps remains an ongoing challenge, and require further research.
Analysis imprecision usually does not stem from the underlying call graph construction approach, which could be alleviated through pointer analysis, which generally provides sufficient precision for call graph construction, but in challenges specific to complex WP apps, as discussed below.
Event handlers: The code below illustrates some complications posed by event handlers.
By default, method OnProcessExit
does not have any predecessors in the call graph. At runtime, it may in fact be called from a variety of places, which is not easy to model as part of call graph construction. However, it may not be called before the event handler is registered in method Main
. Our solution is to augment the call graph construction code to create a special invocation edge from the registration site to OnProcessExit
. The analysis will then be able to place the prompt right before the registration in method Main
, which makes a significant difference in our ability to find successful placements.
Actions and asynchronous wrappers: Another similar form of delayed execution in WP apps is actions (System.Action
) and its asynchronous cousin System.AsyncCallback
, which are effectively wrappers around delegates registered for later execution. We deal with actions in a way that is similar to event handlers.
XAML: A particular difficulty for analysis stems from the use of declarative UIs specified in XAML, an XML-like language that combines an easy-to-read UI specification with “hooks” into code. XAML is compiled into special resources that are embedded into an app's DLLs. When the method InitializeComponent()
is called on the class specified in XAML, it proceeds to register events that are specified declaratively, as shown in a XAML snippet below:
Event handler SettingsClick
should be properly registered so that it can later be invoked.
Alas, some aspects of declarative app specification defy static analysis. A typical example is navigation between an app's pages.
Statically, we do not know which page will be navigated to, and, consequently, which OnNavigatedTo
event handler will be called. To avoid polluting the call graph, we only link up page navigation when the destination is a string constant. Unfortunately, this approach is unsound. A more robust technique would be to integrate a string analysis [8, 19, 33] into our implementation.
Summary: Reflective coding constructs are the Achilles heel of static analysis. While this is true as it applies to applications written in .NET and Java, this is especially so given the declarative programming style often used in WP apps, where code is “glued together” with declarative specification. Several approaches to handling reflection have been proposed and used in the literature [6, 18, 26, 28, 35]. Alas, all of them require a certain degree of customization to the problem and APIs at hand. Additionally, reflection analysis tends to be intertwined with a heavyweight analysis such as a points-to. We instead opt for a lightweight analysis that pattern-matches for the easily-to-resolve case, potentially introducing unsoundness. We evaluate the effects of this treatment in Section 6.
Figure 13: A backward exploration tree of depth 20. Method names and signatures are abbreviated for brevity.bg
andfg
stands for background/library vs. foreground/non-library methods, respectively.
Recall from Section 3 that our approach resorts to a search for both checking if a resource access is already protected with a prompt and for inserting prompts if the dominator-based strategy fails. In implementing backward search, we need to be concerned with preventing infinite recursion (the occurs-check from Section 3). There is also the possibility of exponential path explosion, which is quite real given that we we are dealing with graphs that typically have tens of thousands of nodes. It is therefore imperative to design an efficient exploration strategy.
Our approach for both checking for prompts and inserting them relies on first building a spanning tree rooted at the access node, computed using a depth-first search. Figure 13 gives an example of such a tree. The tree allows us to classify underlying graph edges as ether forward, backward, or cross edges. Further analysis is performed on the tree as a series of downward passes, implemented as recursive procedures, starting at the resource access and exploring the predecessors3. In summary, we perform three recursive passes over the spanning tree. Each pass computes a boolean value for each of the visited nodes to represent the checking or placement status; values are maintained across the passes in a map called v.
The advantage of this multi-pass approach is its simplicity and guaranteed runtime complexity. We start with all spanning tree nodes as unvisited and then perform three recursive traversals of the tree, as shown in Figure 14 and described below. In our implementation, we reuse the same spanning tree for the prompt checking and placement analysis stages. This approach is linear in the size of the graph, and is generally quite fast, even when there are hundreds of nodes reachable from a resource access.
The final result is computed by running all three steps in order and examining the result at the root of the spanning tree.
While much of the focus of this paper is on statically locating placement points, choosing the right kind of runtime instrumentation presents some interesting challenges. We need to ensure that we are not going to induce double-prompting, as discussed in Section 3. To do so, we maintain a “sticky” app-global setting value in the app's isolated storage, as illustrated by the following example for the fine-grained GPS location resource type:
Figure 14: Three-stage backward placement algorithm explained in Section 4.2.
Because the prompt remains sticky application-wide and persists across application invocations, even if we conservatively insert an extra prompt, we will only show it at most once per app.
We have analyzed 100 WP 7 apps from the WP Store to collect our results. To make the analysis more meaningful, we have selected only apps with LOCATION
and NETWORKING
capabilities. Such apps constitute about a fifth of a larger set of about 2,000, from which we drew our 100 app sample. The goal of our evaluation is to understand how frequently prompts are omitted and to attempt to insert prompts in a fully automatic manner.
Characterizing the input: We first present some aggregate statistics of the analysis results in Figure 15. WP applications are quite substantial in size, constituting about 3,528 methods on average. This is in part because they rely (and therefore recursively include within their call graph) large libraries, some of which are part of the operating system SDK, and others are included .NET libraries. The average size for our apps is 7.3 MB; many consist of dozens of DLLs.
We discovered that the libraries shown in the inlined figure are included most frequently. These libraries provide advertising functionality, and many request location data. About 7% of all methods are contained in background tasks or libraries, which presents a significant challenge for prompt placement. Out of these, most are in fact in third-party libraries. Recall that we do not want to place prompts in libraries. To recognize third-party libraries in our experiments, we used a list of 100 common advertising libraries, identified by the DLL in which they are contained; these include Microsoft.Advertising.Mobile.dll
, AdRotator.dll
, MobFox.Ads.LocationAware.dll
, FlurryWP7SDK.dll, Inneractive.Nokia.Ad.dll
, MoAds.dll
, adMob7.dll
, Photobucket.Ads.dll
and many others. Our analysis is parameterized with respect to this list. Frameworks such as these may access GPS location deep within library code, making prompt placement analysis particularly difficult.
Our analysis represents each application as 13,330 nodes on average. Out of these, about 12% are considered to be anticipating by our analysis. In other words, about 88% of nodes are not eligible prompt placement points.
The last section of Figure 15 describes the resource accesses found in these 100 applications. Across all apps, there are 227 resource accesses we analyze. Overall, apps have an average of 2.27 resource accesses, with a maximum of 9 for one of the apps. The figure shown inline in this paragraph shows how frequent individual resource types are. We find that the majority of sensitive resource accesses are to GPS location data, with occasional accesses to user contacts and calendar.
Figure 15: Apps analyzed: summary of input statistics.
Figure 16: Prompt placement: summary of results of applying analysis to 100 apps.
Inserting prompts: Figure 16 provides statistics describing the prompt placement process. Overall, our two-prong strategy of dominator-based and backward placement succeeds in about 91% of all cases. However, it is important to observe that many cases, including challenging resource accesses deep in library code, are shared by many applications. To avoid double-counting, we show the number of unique placement attempts that have succeeded and failed. Considering these numbers of unique accesses, we are able to successfully place prompts in 95% of cases (143 out of 150), a higher success percentage. Several other lessons can be drawn from the rest of the table:
Figure 17: Timing, in ms. All measurements are per app, unless stated otherwise.
Timing: Figure 17 provides a summary of timing information for our analysis. For each measurement, we provide the average timing across 100 apps, the maximum observed time and the number of observations. Each measurement in given in ms. Overall, the most time goes into initial processing of the application, which involves reading it from disk, constructing a representation of the app's assemblies in memory (1.7 seconds on average), traversing it to create a call graph and control flow graphs (CFGs) (18 seconds on average), dominator calculation, and reachability calculation, resulting in a graph suitable for analysis. Computing anticipating nodes only takes 158 ms on average.
Finding missing prompts takes about 123 ms on average, in part because many instructions need to be examined in search of existing prompts. Prompt insertion, on average, is fast, only about .9 seconds per application. Dominance-based placement is virtually instantaneous. Backward placement is slower, at 1.3 seconds per resource access, raising the average. Based on these performance numbers, we are optimistic that prompt insertion can be done entirely automatically over a large number of applications.
We have selected static analysis as a method of choice to avoid code coverage issues inherent with runtime analysis and for analysis speed (end-to-end processing is several minutes per app). In this section we discuss some of the limitations of our current static analysis approach. There are two potential sources of errors in our analysis. Our analysis may classify a resource access as unprotected whereas it is properly protected with runtime prompts; we call these cases false positives. By the same token, our analysis may classify a resource access as protected whereas in fact at runtime there are no preceding prompts that protect the resource access; we call these cases false negatives.
Manual inspection: We examined a subset of applications to manually check for these errors. The verification process includes running these applications in the emulator to collect network packets and to collect API calls invoked by each application at runtime. We manually exercise as much functionality of each application as possible. If the application presented a runtime prompt, we inspected the text of the message and clicked through each “allow” (to use my location) and “don't allow” button to determine how the choice affects application behavior.
Once the runtime inspection was complete, we examined network packets and invoked API lists, correlating them with the app's disassembled code to verify the observed behavior. Although this verification process is thorough, it requires significant manual efforts, thus limiting the number of cases that can be examined. Next, we discuss findings from 10 applications. These apps contain 27 resource access points, among which 21 are classified as unprotected by our analysis.
Our manual analysis found no false negatives. On a close examination of each of the 27 resource accesses, we find 10 accesses that are not protected. Our analysis correctly identifies all of these accesses as unprotected and finds proper placements.
These unprotected accesses are found in third-party libraries included across 5 apps. Interestingly, in an effort to maximize revenue, one app embeds two advertising related third-party libraries (SOMAWP7.dll
and AdRotatorXNA.dll
) and both contain unprotected location accesses. Two placements are made via dominator-based placement; the other eight through backward placement. Backward placements result in 40 inserted prompts in application code, which upon casual examination appear to be correct. We find these results promising, as users express increasing concern about data sharing with third parties [21], and our analysis properly detects and fixes such unprotected accesses.
Eleven out of 21 accesses flagged as unprotected turn out to be properly protected. Although the number of false positives is somewhat high, with manual inspection, we found the following reasons for them:
Sticky location prompt: Seven false positives are due to our analysis's inability to analyze sticky location prompts, as shown in Figure 5. Three cases are similar to the example in Figure 18(a). The rest are caused by one application that uses the location flag to enable or disable the button that allows the user to navigate to the page (that invokes location access) as shown in Figure 18(b). WP apps can use several different storage mechanisms; we are looking into ways to detect them statically.
Figure 18: Sticky prompt examples.
Consent dialog implementation: Two false positives are due to the limitation of identifying existing prompts. Both result from a single app that implements a custom consent dialog page instead of MessageBox()
, as shown in Figure 19. We are looking into ways to parse a blocking page with buttons to detect such custom-made consent dialog pages, although this is obviously a difficult problem. However, such cases are not common and we find that five out of six applications that show prompts employ MessageBox()
, as expected.
Async calls and XAML
files: Two false positives are due to limitations of call graph construction. Figure 20(a) shows an expanded example of the case discussed in Section 4.1. Applications may use multiple types of EventHandler
s to be called asynchronously. In our current implementation, we parse EventHandler
s and add links when handlers are registered. However, the current implementation fails when multiple delegates and EventHandler
s are used in a tricky way, as shown in Figure 20(b). We are investigating ways to extend our call graph construction to support these cases.
Figure 19: False positive due to a custom prompt: A prompt is customized as a separate WP UI page.
Like most practical static analysis tools, our analysis is potentially vulnerable to false positives, primarily because of program representation challenges. Unlike most static analysis tools for bug detection, our analysis is two-phase: if it detects that a resource access is not adequately protected, it tries to propose a placement of prompts that would protect it. Our analysis errs on the safe side, introducing false positives and not false negatives.
False positives, however, may lead to double-prompting, since our analysis will inject a prompt to protect already protected resource accesses. Because our inserted prompts are sticky, our approach introduces at most one extra runtime prompt per app during the entire app's lifecycle, which we believe will not lead to prompt fatigue. Nonetheless, double-prompting can trigger confusion in end-users and therefore should be minimized. Our experience with the ten test applications shows that in all cases, resource accesses get triggered quickly, with several clicks, so runtime checking of this kind is unlikely to require excessive effort. If desired, runtime testing by the developer or App Store maintainers can accompany our analysis to detect and eliminate potential double-prompting.
The requirement of protecting privacy-sensitive resource accesses with runtime prompts or consent dialogs has only recently been introduced to mobile applications. To our knowledge, no previous work has investigated static analysis approaches to detect unprotected resource accesses in mobile application binaries. This section discusses previous research in three related areas: automatic hook placement, graph-based analysis for information security, and user studies of consent dialogs.
Figure 20: Complex CFG cases.
Automatic hook placement: A number of previous studies examine the issues of protecting security-sensitive operations with authorization hooks (e.g., checking permissions for file operations). Ganapathy et al. [14] use a static program analysis over the Linux kernel source code to identify previously unspecified sensitive operations and find the right set of hooks that need to protect them. AutoISES by Tan et al. [34] is designed for the similar goal as [14] but the ways that AutoISES infers access to sensitive data structure are different from [14]. Muthukumaran et al. [27] focus on server code such as the X server and postgresql and use their insight concerning object access patterns in order to identify sensitive operations that require authorization.
In comparison to these efforts, our work begins with a set of known APIs that access sensitive resources. Such a set is easy to mine from developer documentation for most mobile operating systems. In particular, our work focuses on algorithms to find placements that meet the four important conditions specific to user prompts on mobile devices, whereas the previous work concentrates of placement being safe [14, 34] or safe and not-repetitive [27].
Graph-based analysis: Program dependence graphs are used for analyzing information security of programs in several projects [16, 17, 32]. Program dependence graphs include both data dependencies and control dependencies whereas the dataflow graphs that we use in this work typically contain just data dependencies. Hammer et al. [15] consider the enforcement of declassification [30] using program dependence graphs. Recent efforts focus on automating security-critical decisions for application developers [31, 36]. The use of a security type system for enforcing correctness is another case of cooperating with the developer to achieve better code quality and correctness guarantees [29]. Livshits and Chong [25] address the problem of sanitizer placement through static analysis and partially inspire our work on consent dialog placement. In our work, we use a backwards traversal to find the closest valid node to insert a missing prompt. Au et al. [5] use a similar backward reachability analysis over a call graph constructed from the Android framework. However, their goal is to create a mapping between API calls and permission checks and therefore their analysis need not consider the four conditions.
Mobile user privacy and consent dialogs: Several recent studies have investigated the effectiveness of existing consent dialogs used on mobile devices at informing users about which privacy-sensitive data can be accessed by apps. Felt et al. [12] show that only 17% of study participants paid attention to the permissions when installing Android applications. This finding may indicate that placing consent dialogs at install time (far removed from when the data is actually being accessed) renders these dialogs ineffective. On the contrary, a study by Fisher et al. focus on iPhone users' responses to runtime consent dialogs to location access and shows that 85% of study participants actually denied location requests for at least one app on their phone [13].
Although orthogonal to our work, previous studies have explored ways to improve the presentation of consent dialogs in mobile devices. Lin et al. measure users' “expectations” of apps' access to phone resources [23]. By highlighting unexpected behaviors in the Android permissions interface, the authors show that the new permission interface is more easily understood and efficient than the existing one. Felt et al. propose a framework for requesting permissions on smartphones [11]. Findings of these studies can inform a better usable privacy design of a consent dialog, which our analysis can automatically insert in mobile apps.
In this paper, we have explored the problem of missing prompts that should guard sensitive resource accesses. Our core contribution is a graph-theoretic algorithm for placing such prompts automatically. The approach balances the execution speed and few prompts inserted via dominator-based placement with a comprehensive nature of a more exhaustive backward analysis.
Overall, our two-prong strategy of dominator-based and backward placement succeeds in about 95% of all unique cases. Our approach is highly scalable; once the application has been represented in the form of a graph, analysis usually takes under a second on average.
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1We assume that in the general case it is possible for permissions to subsume one another, like in the case of fine- and coarse-grained GPS locations, giving rise to a partial order, although we currently do not strictly need this kind of support in our implementation.2Note that this notion of frugality is optimized for runtime savings, not necessarily savings in terms of code size.3To avoid stack overflow issues stemming from deep trees, once the tree has been constructed, we make sure that the size is below a fixed threshold (set to 250 for our experiments).4Note that to maximize backward placement opportunities, for all unreachable nodes, we set v[n] to true, as shown in Figure 9. This is because the presence of dead code should not prevent prompt placement.
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In this paper we tackle the challenge of providing a generic security architecture for the Android OS that can serve as a flexible and effective ecosystem to instantiate different security solutions. In contrast to prior work our security architecture, termed FlaskDroid, provides mandatory access control simultaneously on both Android's middleware and kernel layers. The alignment of policy enforcement on these two layers is non-trivial due to their completely different semantics. We present an efficient policy language (inspired by SELinux) tailored to the specifics of Android's middleware semantics. We show the flexibility of our architecture by policy-driven instantiations of selected security models such as the existing work Saint as well as a new privacy-protecting, user-defined and fine-grained per-app access control model. Other possible instantiations include phone booth mode, or dual persona phone. Finally we evaluate our implementation on SE Android 4.0.4 illustrating its efficiency and effectiveness.
Mobile devices such as smartphones and tablets have become very convenient companions in our daily lives and, not surprisingly, also appealing to be used for working purposes. On the down side, the increased complexity of these devices as well as the increasing amount of sensitive information (private or corporate) stored and processed on them, from user's location data to credentials for online banking and enterprise VPN, raise many security and privacy concerns. Today the most popular and widespread smartphone operating system is Google's Android [4].
Android's vulnerabilities. Android has been shown to be vulnerable to a number of different attacks such as malicious apps and libraries that misuse their privileges [57, 40, 25] or even utilize root-exploits [55, 40] to extract security and privacy sensitive information; taking advantage of unprotected interfaces [14, 12, 53, 32] and files [49]; confused deputy attacks [16]; and collusion attacks [46, 34].
Solutions. On the other hand, Android's open-source nature has made it very appealing to academic and industrial security research. Various extensions to Android's access control framework have been proposed to address particular problem sets such as protection of the users' privacy [19, 28, 15, 52, 7, 30]; application centric security such as Saint enabling developers to protect their application interfaces [39]; establishing isolated domains (usage of the phone in private and corporate context) [9]; mitigation of collusion attacks [8], and extending Android's Linux kernel with Mandatory Access Control [48].
Observations. Analyzing the large body of literature on Android security and privacy one can make the following observations: First, almost all proposals for security extensions to Android constitute mandatory access control (MAC) mechanisms that are tailored to the specific semantics of the addressed problem, for instance, establishing a fine-grained access control to user's private data or protecting the platform integrity. Moreover, these solutions fall short with regards to an important aspect, namely, that protection mechanisms operate only at a specific system abstraction layer, i.e., either at the middleware (and/or application) layer, or at the kernel-layer. Thus, they omit the peculiarity of the Android OS design that each of its two software layers (middleware and kernel) is important within its respective semantics for the desired overall security and privacy. Only few solutions consider both layers [8, 9], but they support only a very static policy and lack the required flexibility to instantiate different security and privacy models.
The second observation concerns the distinguishing characteristic of application development for mobile platforms such as Android: The underlying operating systems provide app developers with clearly defined programming interfaces (APIs) to system resources and functionality – from network access over personal data like SMS/contacts to the onboard sensors. This clear API-oriented system design and convergence of functionality into designated service providers [54, 36] is well-suited for realizing a security architecture that enables fine-grained access control to the resources exposed by the API. As such, mobile systems in general and Android in particular provide better opportunities to more efficiently establish a higher security standard than possible on current commodity PC platforms [31].
Challenges and Our Goal. Based on the observations mentioned above, we aim to address the following challenges in this paper: 1) Can we design a generic and practical mandatory access control architecture for Android-based mobile devices, that operates on both kernel and middleware layer, and is flexible enough to instantiate various security and privacy protecting models just by configuring security policies? More concretely, we want to create a generic security architecture which supports the instantiation of already existing proposals such as Saint [39] or privacy-enhanced system components [58], or even new use-cases such as a phone booth mode. 2) To what extent would the API-oriented design of Android allow us to minimize the complexity of the desired policy? Note that policy complexity is an often criticized drawback of generic MAC solutions like SELinux [33] on desktop systems [54].
Our Contribution. In this paper, we present the design and implementation of a security architecture for the Android OS that addresses the above mentioned challenges. Our design is inspired by the concepts of the Flask architecture [50]: a modular design that decouples policy enforcement from the security policy itself, and thus provides a generic architecture where multiple and dynamic security policies can be supported by the system. In particular, our contributions are:
1. System-wide security framework. We present an Android security framework that operates on both the middleware and kernel layer. It addresses many problems of the stock Android permission framework and of related solutions which target either the middleware or the kernel layer. We base our implementation on SE Android [48], which has already been partially merged into the official Android source-code by Google1.
2. Security policy and type enforcement at middleware layer. We extended Android's middleware layer with type enforcement and present our policy language, which is specifically designed for the rich semantics at this layer. The alignment of middleware and kernel layer policies in a system-wide security framework is non-trivial, particularly due to the different semantics of both layers.
3. Use-cases. We show how our security framework can instantiate selected use-cases. The first one is an attack-specific related work, the well-known application centric security solution Saint [39]. The second one is a privacy protecting solution that uses fine-grained and user-defined access control to personal data. We also mention other useful security models that can be instantiated with FlaskDroid.
4. Efficiency and effectiveness. We successfully evaluate the efficiency and effectiveness of our solution by testing it against a testbed of known attacks and by deriving a basic system policy which allows for the instantiation of further use-cases.
In this section, we first present a short overview of the standard Android software stack, focusing on the relevant security and access control mechanisms in place. Afterwards, we elaborate on the SE Android Mandatory Access Control (MAC) implementation.
Android is an open-source software stack tailored to mobile devices, such as smartphones and tablets. It is based on a modified Linux kernel responsible for basic operating system services (e.g. memory management, file system support and network access).
Furthermore, Android consists of an application framework implementing (most of) the Android API. System Services and libraries, such as the radio interface layer, are implemented in C/C++. Higher-level services, such as System settings, the Location- and Audiomanager, are implemented in Java. Together, these components comprise the middleware layer.
Android applications (apps) are implemented in Java and may contain native code. They are positioned at the top of the software stack (application layer) and use kernel and middleware Services. Android ships with standard apps completing the implementation of the Android API, such as a Contacts (database) Provider. The user can install additional apps from, for example, the Google Play store.
Android apps consist of certain components: Activities (user interfaces), Services (non user-interactive tasks), ContentProviders (SQL-like databases), and Broadcast Receivers (mailboxes for broadcast messages). Apps can communicate with each other on multiple layers: 1) Standard Linux Inter-Process Communication (IPC) using, e.g., domain sockets; 2) Internet sockets; 3) Inter-Component Communication (ICC) [21], a term abstractly describing a lightweight IPC mechanism between app components, called Binder. Furthermore, predefined actions (e.g., starting an Activity) can be triggered using an Intent, a unicast or broadcast message sent by an application and delivered using the Android ICC mechanism.
Sandboxing. Android uses the Linux discretionary access control (DAC) mechanism for application sandboxing by assigning each app a unique user identifier (UID) during installation2. Every process belonging to the app is executed in the context of this UID, which determines access to low level resources (e.g. app-private files). Low-level IPC (e.g. using domain sockets) is also controlled using Linux DAC.
Permissions. Access control is applied to ICC using Permissions [21]: Labels assigned to apps at install-time after being presented to and accepted by the user. These labels are checked by reference monitors at middleware- and application level when security-critical APIs are accessed. In addition to Android's default permissions, app developers can define their own permissions to protect their applications' interfaces. However, it should be noted that the permission model is not mandatory access control (MAC), since callees must discretely deploy or define the required permission check and, moreover, permissions can be freely delegated (e.g., URI permissions).
Permissions are also used to restrict access to some low level resources, such as the world read-/writeable external storage area (e.g. a MicroSD card) or network access. These permissions are mapped to Linux group identifiers (GIDs) assigned to an app's UID during installation and checked by reference monitors in the Linux kernel at runtime.
Security Enhanced Linux (SELinux) [33] is an instantiation of the Flask security architecture [50] and implements a policy-driven mandatory access control (MAC) framework for the Linux kernel. In SELinux, policy decision making is decoupled from the policy enforcement logic. Various access control enforcement points for low-level resources, such as files, IPC, or memory protection enforce policy decisions requested from a security server in the kernel. This security server manages the policy rules and contains the access decision logic. To maintain the security server (e.g., reload the policy), SELinux provides a number of userspace tools.
Access Control Model. SELinux supports different access control models such as Role-Based Access Control and Multilevel Security. However, Type Enforcement is the primary mechanism: each object (e.g., files, IPC) and subject (i.e., processes) is labeled with a security context containing a type attribute that determines the access rights of the object/subject. By default, all access is denied and must be explicitly granted through policy rules—allow rules in SELinux terminology. Using the notation introduced in [26], each rule is of the form
where TSub is a set of subject types, TObj is a set of object types, CObj is a set of object classes, and OC is a set of operations. The object classes determine which kind of objects this rule relates to and the operations contain specific functions supported by the object classes. If a subject whose type is in TSub wants to perform an operation that is in OC on an object whose class is in CObj and whose type is in TObj, this action is allowed. Otherwise, if no such rule exists, access is denied.
Dynamic policies. SELinux supports to some extent dynamic policies based on boolean flags which affect conditional policy decisions at runtime. These booleans and conditions have to be defined prior to policy deployment and new booleans/conditions can not be added after the policy has been loaded without recompiling and reloading the entire policy. The simplest example for such dynamic policies are booleans to switch between “enforcing mode” (i.e., access denials are enforced) and “permissive mode” (i.e., access denials are not enforced).
Userspace Object Managers. A powerful feature of SELinux is that its access control architecture can be extended to security-relevant userspace daemons and services, which manage data (objects) independently from the kernel. Thus, such daemons and services are referred to as Userspace Object Managers (USOMs). They are responsible for assigning security contexts to the objects they manage, querying the SELinux security server for access control decisions, and enforcing these decisions. A prominent example for such USOMs on Linux systems is GConf [13].
SE Android [48] prototypes SELinux for Android's Linux kernel and aims to demonstrate the value of SELinux in defending against various root exploits and application vulnerabilities. Specifically, it confines system Services and apps in different kernelspace security domains even isolating apps from one another by the use of the Multi-Level Security (MLS) feature of SELinux. To this end, the SE Android developers started writing an Android-specific policy from scratch. In addition, SE Android provides a few key security extensions tailored for the Android OS. For instance, it labels application processes with SELinux-specific security contexts which are later used in type enforcement. Moreover, since (in the majority of cases) it is a priori unknown during policy writing which apps will be installed on the system later, SE Android employs a mechanism to derive the security context of an app at install-time. Based on criteria, such as the requested permissions, apps are assigned a security type. This mapping from application meta-information to security types is defined in the SE Android policy.
Additionally, SE Android provides limited support for MAC policy enforcement at the Android middleware layer (MMAC) and we explain these particular features in Section 7.2 and provide a comparison to our FlaskDroid architecture.
We consider a strong adversary with the goal to get access to sensitive data as well as to compromise system or third-party apps. Thus, we consider an adversary that is able to launch software attacks on different layers of the Android software stack.
Recently, different attacks operating at Android's middleware layer have been reported:
Overprivileged 3rd party apps and libraries threatening user privacy by adopting questionable privacy practices (e.g. WhatsApp [6] or Path [23]). Moreover, advertisement libraries, frequently included in 3rd party apps have been shown to exploit the permissions of their host app to collect information about the user [25].
Malicious 3rd party apps [22] leverage dangerous permissions to cause financial harm to the user (e.g., sending premium SMS) and exfiltrate user-private information [57, 40].
Confused deputy attacks concern malicious apps, which leverage unprotected interfaces of benign system [20, 41] and 3rd party [16, 56] apps (denoted deputies) to escalate their privileges.
Collusion attacks concern malicious apps that collude using covert or overt channels [8, 34] in order to gain a permission set which has not been approved by the user (e.g. the Soundcomber attack [46]).
Sensory malware leverages the information from onboard sensors, like accelerometer data, to derive privacy sensitive information, like user input [53, 12].
Besides attacks at Android's middleware layer, various privilege escalation attacks on lower layers of the Android software stack have been reported [55, 40] which grant the attacker root (i.e., administrative) privileges and can be used to bypass the Android permission framework. For instance, he can bypass the ContactsProvider permission checks by accessing the contacts database file directly. Moreover, processes on Android executing with root privileges inherit all available permissions at middleware layer.
It should be noted that attacks targeting vulnerabilities of the Linux kernel are out of scope of this paper, since SE Android is a building block in our architecture (see Section 4) and as part of the kernel it is susceptible to kernel exploits.
Based on our adversary model we derive the necessary requirements for an efficient and flexible access control architecture for mobile devices, focusing on the Android OS.
Access Control on Multiple Layers. Mandatory access control solutions at kernel level, such as SE Android [48] or Tomoyo [27], help to defend against or to constrain privilege escalation attacks on the lower-levels of the OS [48]. However, kernel level MAC provides insufficient protection against security flaws in the middleware and application layers, and lacks the necessary high-level semantics to enable a fine-grained filtering at those layers [48, 47]. Access control solutions at middleware level [28, 15, 39, 9, 8] are able to address these shortcomings of kernel level MAC, but are, on the other hand, susceptible to low-level privilege escalation attacks.
Thus, a first requirement is to provide simultaneous MAC defenses at the two layers. Ideally, these two layers can be dynamically synchronized at run-time over mutual interfaces. At least, the kernel MAC is able to preserve security invariants, i.e., it enforces that any access to sensitive resources/functionality is always first mediated by the middleware MAC.
Multiple stakeholders policies. Mobile systems involve multiple stakeholders, such as the end-user, the device manufacturer, app developers, or other 3rd parties (e.g., the end-user's employer). These stakeholders also store sensitive data on the device. Related work [39, 9] has proposed special purpose solutions to address the security requirements and specific problems of these parties. Naturally, the assets of different stakeholders are subject to different security requirements, which are not always aligned and might conflict. Thus, one objective for a generic MAC framework that requires handling policies of multiple stakeholders is to support (basic) policy reconciliation mechanisms [43, 35].
Context-awareness. The security requirements of different stakeholders may depend on the current context of the device. Thus, our architecture shall provide support for context-aware security policies.
Support for different Use-Cases. Our architecture shall serve as a basis for different security solutions applicable in a variety of use cases. For instance, by modifying the underlying policy our solution should be able to support different use cases (as shown in Section 5), such as the selective and fine-grained protection of app interfaces [39] or privacy-enhanced system Services and ContentProviders.
In this section, we provide an overview of our FlaskDroid architecture, elaborate in more detail on particular design decisions, and present the policy language employed in our system. Due to space constraints, we focus on the most important aspects and refer to our technical report [11] for more detailed information.
Figure 1: FlaskDroid Architecture
The high-level idea of FlaskDroid is inspired by the Flask security architecture [50], where various Object Managers at middleware and kernel-level are responsible for assigning security contexts to their objects. Objects can be, for instance, kernel resources such as Files or IPC and middleware resources such as Service interfaces, Intents, or ContentProvider data. On access to these objects by subjects (i.e., apps) to perform a particular operation, the managers enforce an access control decision that they request from a security server at their respective layer. Thus, our approach implements a userspace security server. Access control in FlaskDroid is implemented, as in SE Android (cf. Section 2), as type enforcement. However, in contrast to SE Android we extend our policy language with new features that are tailored to the Android middleware semantics (cf. Section 4.3). Moreover, to enable more dynamic policies, the policy checks in FlaskDroid depend also on the System State, which determines the actual security context of the objects and subjects at runtime.
Each security server is also responsible for the policy management for multiple stakeholders such as app developers, end-user, or 3rd parties. A particular feature is that the policies on the two layers are synchronized at runtime, e.g., a change in enforcement in the middleware, must be supported/reflected at kernel-level. Thus, by decoupling the policy management and decision making from the enforcement points and consolidating the both layers, the goal of FlaskDroid's design is to provide fine-grained and highly flexible access control over operations on both middleware and kernel-level.
Figure 1 provides an overview of our architecture. In the following, we will explain the individual components that comprise the FlaskDroid architecture.
At the kernel-level, we employ stock SE Android [48] as a building block primarily for the following purposes: First, it is essential for hardening the Linux kernel [48] thereby preventing malicious apps from (easily) escalating their privileges by exploiting vulnerabilities in privileged (system) services. Even when an attack, usually with the intent of gaining root user privileges, is successful, SE Android can constrain the file-system privileges of the app by restricting the privileges of the root account itself. Second, it complements the policy enforcement at the middleware level by preventing apps from bypassing the middleware enforcement points (in Flask terminology defined as Userspace Object Managers (USOMs)), for example, accessing the contacts database file directly instead of going through the ContactsProvider app.
Dynamic policies. Using the dynamic policy support of SELinux (cf. Section 2.3) it is possible to reconfigure the access control rules at runtime depending on the current system state. Our Userspace Security Server (cf. Section 4.2.2) is hereby the trusted user space agent that controls the SELinux dynamic policies and can map system states and contexts to SELinux boolean variables (cf. Section 4.3). To this end, SE Android provides user space support (in particular android.os.SELinux).
In our architecture, the Userspace Security Server is the central policy decision point for all userspace access control decisions, while the SE Android kernelspace security server is responsible for all kernelspace policy decisions. This approach provides a clear separation of security issues between the userspace and the kernelspace components. Furthermore, it enables at middleware level the use of a more dynamic policy schema (different from the more static SELinux policy language) which takes advantage of the rich semantics (e.g., contextual information) at that layer. Access control is implemented as type enforcement based on (1) the subject type (usually the type associated with the calling app), (2) the object type (e.g., contacts_email or the type associated with the callee app UID), (3) the object class (e.g., contacts_data or Intent), and (4) the operation on the object (e.g. query). The Userspace Security Server (USSS) is implemented as part of the Android system server (com.android.server) and comprises 3741 lines of Java code. It exposes an interface to the USOMs for requesting access control decisions over ICC (cf. Figure 1).
In FlaskDroid, middleware services and apps act as Userspace Object Managers (USOMs) for their respective objects. These services and apps can be distinguished into system components and 3rd party components. The former, i.e., pre-installed services and apps, inevitably have to be USOMs to achieve the desired system security and privacy, while the latter can use interfaces provided by the Userspace Security Server to optionally act as USOMs.
Table 4 in Appendix B provides an overview of exemplary system USOMs in FlaskDroid and shows some typical operations each object manager controls. Currently, the USOMs implemented in FlaskDroid comprise 136 policy enforcement points. In the following, we explain how we instrumented selected components as Userspace Object Managers.
PackageManagerService is responsible for (un)installation of application packages. Furthermore, it is responsible for finding a preferred component for doing a task at runtime. For instance, if an app sends an Intent to display a PDF, the PackageManagerService looks for a preferred Activity able to perform the task.
As a Userspace Object Manager, we extend the PackageManagerService to assign consolidated middleware- and kernel-level app types to all apps during installation using criteria defined in the policy (cf. Section 4.3). This is motivated by the fact that at the time a policy is written, one cannot predict which 3rd party apps will be installed in the future. Pre-installed apps are labeled during the phone's boot cycle based on the same criteria. More explicitly, we assign app types to the (shared) UIDs of apps, since (shared) UIDs are the smallest identifiable unit for application sandboxes. In addition, pre-defined UIDs in the system are reserved for particular system components3 and we map these UIDs to pre-defined types (e.g., aid_root_t
or aid_audio_t
). Furthermore, we extend the logic for finding a preferred component to only consider apps which are allowed by the policy to perform the requested task.
ActivityManagerService is responsible for managing the stack of Activities of different apps, Activity life-cycle management, as well as providing the Intent broadcast system. As a USOM, the ActivityManagerService is responsible for labeling Activity and Intent objects and enforcing access control on them. Activities are labeled according to the apps they belong to, i.e., the UID of the application process that created the Activity. Subsequently, access control on the Activity objects is enforced in the ActivityStack subsystem of the ActivityManagerService. During operations that manipulate Activities, such as moving Activities to the foreground/background or destroying them, the ActivityStack queries the USSS in order to verify that the particular operations are permitted to proceed depending on the subject type (i.e., the calling app) and object type (i.e., the app owning the Activity being modified).
Similar to apps, Intents are labeled based on available meta-information, such as the action and category string or the sender app (cf. Section 4.3.1). To apply access control to Broadcast Intents, we followed a design pattern as proposed in [39, 9]. We modified the ActivityManagerService to filter out receivers which are not allowed to receive Intents of the previously assigned type (e.g., to prevent apps of lower security clearance from receiving Broadcasts by an app of a higher security clearance).
Content Providers are the primary means for apps to share data. This data can be accessed over a well-defined, SQL-like interface. As Userspace Object Managers, ContentProviders are responsible for assigning labels to the data entries they manage during insertion/creation of data and for performing access control on update, query, or deletion of entries. Two approaches for access control are supported: 1) at the API level by controlling access to the provider as a whole or 2) integrating it into the storage back-end (e.g., SQLite database) for more fine-grained per-data access control.
For approach 2), we implemented a design pattern for SQLite-based ContentProviders. Upon insertion or update of entries, we verify that the subject type of the calling app is permitted to perform this operation on the particular object type. To filter queries to the database we create one SQL View for each subject type and redirect the query of each calling app to the respective View for its type. Each View implements a filtering of data based on an access control table managed by the USSS which represents the access control matrix for subject/object types. This approach is well-suited for any SQLite-based ContentProvider and scales well to multiple stakeholders by using nested Views.
Service components of an app provide a particular functionality to other (possibly remote) components, which access the Service interface via ICC. To instantiate a Service as a Userspace Object Manager, we add access control checks when a (remote) component connects to the Service and on each call to Service functions exposed by the Service API. The developer of the Service can set the types of the service and its functions by adding type-tags to their definitions.
Service interfaces are exposed as Binder IPC objects that are generated based on an interface specification described in the Android Interface Definition Language (AIDL). We extended the lexer and parser of Android's AIDL tool to recognize (developer-defined) type tags on Service interfaces and function declarations. The AIDL code generator was extended to automatically insert policy checks for these types in the auto-generated Service code. Since the AIDL tool is used during build of the system as well as part of the SDK for app development, this solution applies to both system Services and 3rd party app Services in the same way.
A context is an abstract term that represents the current security requirements of the device. It can be derived from different criteria, such as physical criteria (e.g., the location of the device) or the state of apps and the system (e.g., the app being currently shown on the screen). To allow for flexible control of contexts and their definitions, our design employs Context Providers. These providers come in form of plugins to our Userspace Security Server (see Figure 1) and can be arbitrarily complex (e.g., use machine learning) and leverage available information such as the network state or geolocation of the device to determine which contexts apply. Context Providers register Listener threads in the system to detect context changes similar to the approach taken in [15]. Each Context Provider is responsible for a distinct set of contexts, which it activates/deactivates in the USSS. Decoupling the context monitoring and definition from our policy provides that context definitions do not affect our policy language except for very simple declarations (as we will show in Section 4.3.1).
Moreover, the USSS provides feedback to Context Providers about the performed access control decisions. This is particularly useful when instantiating security models like [8, 15] in which access control decisions depend on previous decisions.
We extend SELinux's policy semantics for type enforcement (cf. Section 2.3) with new default classes and constructs for expressing policies on both middleware and kernel-level. A recapitulation of the SELinux policy language is out of scope of this paper and we focus here on our extensions.
Listing 1: Assigning types to apps and Intents
New default classes. Similar to classes at the kernel-level, like file or socket, we introduce new default classes and their corresponding operations to represent common objects at middleware level, such as Activity, Service, ContentProvider, and Intent. Operations for these classes are, for example, query a ContentProvider or receive an Intent.
Application and Intent Types. A further extension is the possibility to define criteria by which applications and Intents are labeled with a security type (cf. Listing 1). The criteria for apps can be, for instance, the application package name, the requested permissions or the developer signature. Criteria for assigning a type to Intent objects can be the Intent action string, category or receiving component. If no criteria matched, a default type is assigned to apps (line 1) and Intents (line 2), respectively.
Context definitions and awareness. We extend the policy language with an option to declare contexts to enable context-aware policies. Each declared context can be either activated or deactivated by a dedicated Context Provider (cf. Section 4.2).
To actually enable context-aware policies, we introduce in our policy language switchBoolean statements which map contexts to booleans, which in turn provide dynamic policies. Listing 2 presents the definition of booleans and switchBoolean statements. For instance, the switchBoolean statement in lines 4-9 defines that as soon as the context phoneBooth_con is active, the boolean phoneBooth_b has to be set to true. As soon as the phoneBooth_con context is deactivated, the phoneBooth_b boolean should be reset to its initial value (line 6). To map contexts to the kernel-level, we introduce kbool definitions (line 2), which point to a boolean at kernel level instead of adding a new boolean at middleware level. Changes to such kernel-mapped boolean values by switchBoolean statements trigger a call to the SELinux kernel module to update the corresponding SELinux boolean.
Listing 2: Linking booleans with contexts
A particular requirement for the design of FlaskDroid is the protection of interests of different stakeholders. This requires that policy decisions consider the policies of all involved stakeholders. These policies can be pre-installed (i.e., system policy), delivered with apps (i.e., app developer policies), or configured by the user (e.g., User Policy App in Figure 1).
In FlaskDroid, 3rd party app developers may optionally ship app-specific policies with their application packages and additionally choose to instrument their app components as Userspace Object Managers for their own data objects. FlaskDroid provides the necessary interfaces to query the Userspace Security Server for policy decisions as part of the SDK. These decisions are based on the app-specific 3rd party policy, which defines custom appType statements to label subjects (e.g., other apps) and declares app-specific object types. To register app-specific policies, the PackageManagerService is instrumented such that it extracts policy files during app installation and injects them into the USSS.
A particular challenge when supporting multiple stakeholders is the reconciliation of the various stakeholders' policies. Different strategies for reconciliation are possible [43, 35] and generally supported by our architecture, based on namespaces and global/local type definitions. For instance, as discussed in [43], all-allow (i.e., all stakeholder policies must allow access), any-allow (i.e., only one stakeholder policy must allow access), priority (i.e., higher ranked stakeholder policies override lower ranked ones), or consensus (i.e., at least one stakeholder policy allows and none denies or vice versa). However, choosing the right strategy strongly depends on the use-case. For example, on a pure business smartphone without a user-private domain, the system (i.e., company) policy always has the highest priority, while on a private device a consensus strategy may be preferable.
We opted for a consensus approach, in which the system policy check is mandatory and must always consent for an operation to succeed.
In the following we will show how FlaskDroid can instantiate certain privacy and security protecting use-cases. More use-cases and concrete examples are provided in our technical report [11].
System Services and ContentProviders are an integral part of the Android application framework. Prominent Services are, for instance, the LocationManager or the Audio Services and prominent ContentProviders are the contacts app and SMS/MMS app. By default, Android enforces permission checks on access to the interfaces of these Services and Providers.
Problem description: The default permissions are non-revocable and too coarse-grained and protect access only to the entire Service/Provider but not to specific functions or data. Thus, the user cannot control in a fine-grained fashion which sensitive data can be accessed how, when and by whom. Apps such as Facebook and WhatsApp have access to the entire contacts database although only a subset of the data (i.e., email addresses, phone numbers and names) is required for their correct functioning. On the other hand, recent attacks demonstrated how even presumably privacy-unrelated and thus unprotected data (e.g. accelerometer readings) can be misused against user's security and privacy [53, 12].
Solution: Our modified AIDL tool automatically generates policy checks for each Service interface and function in the system. We tagged selected query functions of the system AudioService, LocationManager, and SensorManager with specific security contexts (e.g., fineGrainedLocation_t as object_type, locationService_c as object_class, and getLastKnownLocation as operation) to achieve fine-grained access control on this information. Our policy states that calling functions of this object type is prohibited while the phone is in a security sensitive state. Thus, retrieving accelerometer information or recording audio is not possible when, e.g., the virtual keyboard/PIN pad is in the foreground or a phone call is in progress.
In Section 4.2.3 we explained how ContentProviders (e.g. the ContactsProvider) can act as Userspace Object Managers. As an example, users can refine the system policy to further restrict access to their contacts' data. A user can, for instance, grant the Facebook app read access to their “friends” and “family” contacts' email addresses and names, while prohibiting it from reading their postal addresses and any data of other groups such as “work”.
Ongtang et al. present in [39] an access control framework, called Saint, that allows app developers to ship their apps with policies that regulate access to their apps' components.
Problem description: The concrete example used to illustrate this mechanism consists of a shopping app whose developer wants to restrict the interaction with other 3rd party apps to only specific payment, password vault, or service apps. For instance, the developer specifies that that the password vault app must be at least version 1.2 or that a personal ledger app must not hold the Internet permission.
The policy rules for the runtime enforcement of Saint on Inter-Component communication (ICC) are defined as the tuple (Source, Destination, Conditions, State). Source defines the source app component of the ICC and optional parameters for an Intent object (e.g., action string). Destination describes similarly the destination app component of the ICC. Conditions are optional conjunctional conditions (e.g., permissions or signature key of the destination app) and State describes the system state (e.g., geolocation or bluetooth adapter state).
Solution: Instantiating Saint's runtime access control on FlaskDroid is achieved by mapping Saint's parameters to the type enforcement implemented by FlaskDroid. Thus, Source, Destination, and Conditions are combined into security types for the subject (i.e., source app) and object (i.e., destination app or Intent object). For instance, a specific type is assigned to an app with a particular signature and permission. If this app is source in the Saint policy, it is used as subject type in FlaskDroid policy rules; and if it is used as destination, it is used as object type. The object class and operation are directly derived from the destination app. The system state can be directly expressed by booleans and switchBoolean statements in the policy and an according Context Provider. Appendix A provides a concrete policy example for the instantiation of the above shopping app example.
In this section we evaluate and discuss our architecture in terms of policy design, effectiveness, and performance overhead.
To evaluate our FlaskDroid architecture, we derived a basic policy that covers the pre-installed system USOMs that we introduced in Section 4.2.3.
Policy Assessment. For FlaskDroid we are for now foremost interested in generating a basic policy to estimate the access control complexity that is inherent to our design, i.e., the number of new types, classes, and rules required for the system Userspace Object Managers. This basic policy is intended to lay the foundation for the development of a good policy, i.e., a policy that covers safety, completeness, and effectiveness properties. However, the development of a security policy that fulfills these properties is a highly complex process. For instance, on SELinux enabled systems the policies were incrementally developed and improved after the SELinux module had been introduced, even inducing research on verification of these properties [24]. A similar development can be currently observed for the SE Android policies which are written from scratch [48] and we envision inducing a similar research on development and verification of FlaskDroid policies.
Basic Policy Generation. To generate our basic policy, we opted for an approach that follows the concepts of TOMOYO Linux' learning phase4 and other semi-automatic methods [42]. The underlying idea is to derive policy rules directly from observed application behavior. To generate a log of system application behavior, we leveraged FlaskDroid's audit mode, where policy checks are logged but not enforced. Under the assumption, that the system contained in this auditing phase only trusted apps, this trace can be used to derive policy rules.
To achieve a high coverage of app functionality and thus log all required access rights, we opted for testing with human user trials for the following reasons: First, automated testing has been shown to exhibit a potentially very low code coverage [24] and, second, Android's extremely event-driven and concurrent execution model complicates static analysis of the Android system [56, 24]. However, in the future, static analysis based (or aided) generation of access control rules is more preferable in order to cover also corner-cases of applications' control-flows.
The users' task was to thoroughly use the pre-installed system apps by performing various everyday tasks (e.g., maintaining contacts, writing SMS, browsing the Internet, or using location-based services). To analyze interaction between apps, a particular focus of the user tasks was to leverage inter-app functionality like sharing data (e.g., copying notes from a website into an SMS). For testing, the users were handed out Galaxy Nexus devices running FlaskDroid with a No-allow-rule policy. This is a manually crafted policy containing only the required subject/object types, classes and operations for the USOMs in our architecture, but no allow rules. The devices were also pre-configured with test accounts (e.g., EMail) and test data (e.g., fake contacts).
Using the logged access control checks from these trials, we derived 109 access control rules required for the correct operation of the system components (as observed during testing), which we learned to be partially operationally dependent on each other. Our pre-installed middleware policy contained 111 types and 18 classes for a fine-granular access control to the major system Services and ContentProviders (e.g., ContactsProvider, LocationManager, PackageManagerService, or SensorManager). These rules (together with the above stated type and object definitions) constitute our basic policy. Although SELinux policies cannot be directly compared to our policy, since they target desktop operating systems, the difference in policy complexity (which is in the order of several magnitudes [11]) underlines that the design of mobile operating systems facilitates a clearer mandatory access control architecture (e.g., separation of duties). This profits an easier policy design (as supported by the experiences from [54, 36]).
3rd Party Policies. The derived basic policy can act as the basis on top of which additional user, 3rd party, and use-case specific policies can be deployed (cf. Section 5). In particular, we are currently working on extending the basic policy with types, classes and allow rules for popular apps, such as WhatsApp or Facebook, which we further evaluated w.r.t. user's privacy protection (cf. Section 6.2). A particular challenge is to derive policies which on the one hand protect the user's privacy but on the other hand preserve the intended functionality of the apps. Since the user privacy protection strongly depends on the subjective security objectives of the user, this approach requires further investigation on how the user can be involved in the policy configuration [58].
However, as discussed in Sections 3 and 4.2.2, multiple policies by different stakeholders with potentially conflicting security objectives require a reconciliation strategy. Devising a general strategy applicable to all use-cases and satisfying all stakeholders is very difficult, but use-case specific strategies are feasible [44, 29]. In our implementation, we opted for a consensus approach, which we successfully applied during implementation of our use-cases (cf. Section 5). We explained further strategies in Section 4.3.2.
Table 1: List of attacks considered in our testbed
We decided to evaluate the effectiveness of FlaskDroid based on empirical testing using the security models presented in Section 5 as well as a testbed of known malware retrieved from [55, 3] and synthetic attacks (cf. Table 1). Alternative approaches like static analysis [18] would benefit our evaluation but are out of scope of this paper and will be addressed separately in future work.
Root exploits. SE Android successfully mitigates the effect of the mempodroid attack. While the exploit still succeeds in elevating its process to root privileges, the process is still constrained by the underlying SE Android policy to the limited privileges granted to the root user [48].
Malicious apps executed by root. While SE Android constrains the file-system privileges of an app process executed with root UID, this process still inherits all Permissions at middleware level. In FlaskDroid, the privileges of apps running with this omnipotent UID are restricted to the ones granted by the system policy to root (cf. aid_root_t
in Section 4.2.3). During our user tests, we had to define only one allow rule for the aid_root_t
type on the middleware layer, which is not surprising, since usually Android system or third-party apps are not executed by the root user. Thus, a malicious app gaining root privileges despite SE Android, e.g., using the mempodroid exploit [48], is in FlaskDroid restricted at both kernel and middleware level.
Over-privileged and information stealing apps. We verified the effectiveness of FlaskDroid against over-privileged apps using a) a synthetic test app which uses its permissions to access the ContactsProvider, the LocationManager and the SensorManager as 3rd party apps would do; b) malware such as Android.Loozfon [2] and Android.Enesoluty [1] which steal user private information; and c) unmodified apps from Google Play, including the popular WhatsApp messenger and Facebook apps. In all cases, a corresponding policy on FlaskDroid successfully and gracefully prevented the apps and malware from accessing privacy critical information from sources such as the ContactsProvider or LocationManager.
Sensory malware. To mitigate sensory malware like TapLogger [53] and TouchLogger [12], we deployed a context-aware FlaskDroid policy which causes the SensorManager USOM to filter acceleration sensor information delivered to registered SensorListeners while the on-screen keyboard is active. Similarly, a second policy prevents the SoundComber attack [46] by denying any access to the audio record functionality implemented in the MediaRecorderClient USOM while a call is in progress.
Confused deputy and collusion attacks. Attacks targeting confused deputies in system components (e.g. SettingsAppWidgetProvider
[41]) are addressed by fine-grained access control rules on ICC. Our policy restricts which app types may send (broadcast) Intents reserved for system apps.
Collusion attacks are in general more challenging to handle, especially when covert channels are used for communication. Similar to the mitigation of confused deputies, a FlaskDroid policy was used to prohibit ICC between colluding apps based on specifically assigned app types. However, to address collusion attacks efficiently, more flexible policies are required. We already discussed in Section 4.2.4 a possible approach to instantiate XManDroid [8] based on our Context Providers and we elaborate in the subsequent Section 6.3 on particular challenges for improving the mitigation of collusion attacks.
Information flows within apps. Like any other access control system, e.g., SELinux, exceptions for which enforcement falls short concern attacks which are licit within the policy rules. Such shortcomings may lead to unwanted information leakage. A particular challenge for addressing this problem and controlling access and separation (non-interference) of security relevant information are information flows within apps. Access control frameworks like FlaskDroid usually operate at the granularity of application inputs/outputs but do not cover the information flow within apps. For Android security, this control can be crucial when considering attacks such as collusion attacks and confused deputy attacks. Specifically for Android, taint tracking based approaches [19, 28, 45] and extensions to Android's IPC mechanism [17] have been proposed. To which extend these approaches could augment the coverage and hence effectiveness of FlaskDroid has to be explored in future work.
User-centric and scalable policies. While FlaskDroid is a sophisticated access control framework for enforcing security policies and is already now valuable in specific scenarios with fixed policies like business phones or locked-down devices [11], a particular challenge of the forthcoming policy engineering are user-centric and scalable policies for off-the-shelf end-user devices. Although expert-knowledge can be used to engineer policies for the static components of the system, similar to common SELinux-enabled distributions like Fedora, an orthogonal, open research problem is how to efficiently determine the individual end-users' security and privacy requirements and how to map these requirements scalable to FlaskDroid policy rules w.r.t. the plethora of different apps available. To this end, we started exploring approaches to provide the end-user with tools that abstract the underlying policies [10]. Furthermore, the policy-based classification of apps at install-time applied in FlaskDroid could in the future be augmented by different or novel techniques from related fields, e.g., role-mining for RBAC systems [51], to assist the end-user in his decision processes.
Trusted Computing Base. Moreover, while SE Android as part of the kernel is susceptible to kernel-exploits, our middleware extensions might be compromised by attacks against the process in which they execute. Currently our SecurityServer executes within the scope of the rather large Android system server process. Separating the SecurityServer as a distinct system process with a smaller attack surface (smaller TCB) can be efficiently accomplished, since there is no strong functional inter-dependency between the system server and FlaskDroid's SecurityServer.
Middleware layer. We evaluated the performance overhead of our architecture based on the No-allow-rule policy and the basic policy presented in Section 6.1 using a Samsung Galaxy Nexus device running FlaskDroid. Table 2 presents the mean execution time μ and standard deviation σ for performing a policy check at the middleware layer in both policy configurations (measured in μs) as well as the average memory consumption (measured in MB) of the process in which our Userspace Security Server executes (i.e., the system server). Mean execution time and standard deviation are the amortized values for both cached and non-cached policy decisions.
In comparison to permission checks on a vanilla Android 4.0.4 both the imposed runtime and memory overhead are acceptable. The high standard deviation is explained by varying system loads, however, Figure 2 presents the cumulative frequency distribution for our policy checks. The shaded area represents the 99.33% confidence interval for our basic policy with a maximum overhead of 2ms.
Table 2: Runtime and memory overhead
Table 3: Performance comparison to related works
In comparison to closest related work [8, 9] (cf. Section 7), FlaskDroid achieves a very similar performance. Table 3 provides an overview of the average performance overhead of the different solutions. TrustDroid [9] profits from the very static policies it enforces, while FlaskDroid slightly outperforms XManDroid [8]. However, it is hard to provide a completely fair comparison, since both TrustDroid and XManDroid are based on Android 2.2 and thus have a different baseline measurement. Both [8, 9] report a baseline of approximately 0.18ms for the default permission check, which differs from the 0.33ms we observed in Android 4.0.4 (cf. Table 2).
Kernel layer. The impact of SE Android on Android system performance has been evaluated previously by its developers [48]. Since we only minimally add/modify the default SE Android policy to cater for our use-cases (e.g., new booleans), the negligible performance overhead presented in [48] still applies to our current implementation.
The most prominent MAC solution is SELinux [33] and we elaborated on it in detail in our Background and Requirements Sections 2 and 3. Specifically for mobile platforms, related work [54, 36] has investigated the placement of SELinux enforcement hooks in the operating system and user-space services on OpenMoko [36] and the LiMo (Linux Mobile) platform [54]. Our approach follows along these ideas but for the Android middleware.
Figure 2: CDF of the performance overhead. Shaded area represents the 99.33 confidence interval for checks with Basic policy.
Also TOMOYO Linux [27], a path-based MAC framework, has been leveraged in Android security extensions [8][9]. Although TOMOYO supports more easily policy updates at runtime and does not require extended file system attributes, SELinux is more sophisticated, supports richer policies, and covers more object classes [5].
However, as we state in Section 3, low-level MAC alone is insufficient. In this paper we show how to extend the SE Android security architecture into the Android middleware layer for policy enforcement.
The SE Android project was recently extended by different mechanisms for mandatory access control at Android's middleware layer [47], denoted as MMAC: Permission revocation is a simple mechanism to dynamically revoke permissions by augmenting the default Android permission check with a policy driven check. When necessary, this additional check overrules and negates the result of the default check.
However, this permission revocation is in almost all cases unexpected for app developers, which rely on the fact that if their app has been installed, it has been granted all requested permissions. Thus, developers very often omit error handling code for permission denials and hence unexpectedly revoking permissions easily leads to application crashes.
In FlaskDroid, policy enforcement also effectively revokes permissions. However, we use USOMs which integrate the policy enforcement into the components which manage the security and privacy sensitive data. Thus, our USOMs apply enforcement mechanisms that are graceful, i.e., they do not cause unexpected behavior that can cause application crashes. Related work (cf. Section 7.3) introduced some of these graceful enforcement mechanisms, e.g., filtering table rows and columns from ContentProvider responses [58, 15, 28, 8, 9].
Intent MAC protects with a white-listing enforcement the delivery of Intents to Activities, Broadcast Receivers, and Services. Technically, this approach is similar to prior work like [58, 8, 9]. The white-listing is based on attributes of the Intent objects (e.g., the value of the action string) and the security type assigned to the Intent sender and receiver apps.
In FlaskDroid, we apply a very similar mechanism by assigning Intent objects a security type, which we use for type enforcement on Intents. While we acknowledge, that access control on Intents is important for the overall coverage of the access control, Intent MAC alone is insufficient for policy enforcement on inter-app communications. A complete system has to consider also other middleware communications channels, such as Remote Procedure Calls (RPC) to Service components and to ContentProviders. By instrumenting these components as USOMs and by extending the AIDL compiler (cf. Section 4.2) to insert policy enforcement points, we address these channels in FlaskDroid and provide a non-trivial complementary access control to Intent MAC.
Install-time MAC performs, similar to Kirin [20], an install-time check of new apps and denies installation when an app requests a defined combination of permissions. The adverse permission combinations are defined in the SE Android policy.
While FlaskDroid does not provide an install-time MAC, we consider this mechanism orthogonal to the access control that FlaskDroid already provides and further argue that it could be easily integrated into existing mechanisms of FlaskDroid (e.g., by extending the install-time labeling of new apps with a blacklist-based rejection of prohibited app types).
In the recent years, a number of security extensions to the Android OS have been proposed.
Different approaches [38, 37, 15, 39] add mandatory access control mechanisms to Android, tailored for specific problem sets such as providing a DRM mechanism (Porscha [38]), providing the user with the means to selectively choose the permissions and runtime constraints each app has (APEX [37] and CRePE [15]), or fine-grained, context-aware access control to enable developers to install policies to protect the interfaces of their apps (Saint [39]). Essentially all these solutions extend Android with MAC at the middleware layer. The explicit design goal of our architecture was to provide an ecosystem that is flexible enough to instantiate those related works based on policies (as demonstrated in Section 5 at the example of Saint) and additionally providing the benefit of a consolidated kernel-level MAC.
The pioneering framework TaintDroid [19] introduced the tracking of tainted data from sensible sources on Android and successfully detected unauthorized information leakage. The subsequent AppFence architecture [28] extended TaintDroid with checks that not only detect but also prevent such unauthorized leakage. However, both TaintDroid and AppFence do not provide a generic access control framework. Nevertheless, future work could investigate their applicability in our architecture, e.g., propagating the security context of data objects. The general feasibility of such “context propagation” has been shown in the MOSES [45] architecture.
Inlined Reference Monitors (IRM) [52, 7, 30] place policy enforcement code for access control directly in 3rd party apps instead of relying on a system centric solution. An unsolved problem of inlined monitoring in contrast to a system-centric solution is that the reference monitor and the potentially malicious code share the same sandbox and that the monitor is not more privileged than the malicious code and thus prone to compromise.
The closest related work to FlaskDroid with respect to a two layer access control are the XManDroid [8] and TrustDroid [9] architectures. Both leverage TOMOYO Linux as kernel-level MAC to establish a separate security domain for business apps [9], or to mitigate collusion attacks via kernel-level resources [8]. Although they cover MAC enforcement at both middleware and kernel level, both systems support only a very static policy tailored to their specific purposes and do not support the instantiation of different use-cases. In contrast, FlaskDroid can instantiate the XManDroid and TrustDroid security models by adjusting policies. For instance, different security types for business and private apps could be assigned at installation time, and boolean flags can be used to dynamically prevent two apps from communicating if this would form a collusion attack.
In this paper, we present the design and implementation of FlaskDroid, a policy-driven generic two-layer MAC framework on Android-based platforms. We introduce our efficient policy language that is tailored for Android's middleware semantics. We show the flexibility of our architecture by policy-driven instantiations of selected security models, including related work (Saint) and privacy-enhanced system components. We demonstrate the applicability of our design by prototyping it on Android 4.0.4. Our evaluation shows that the clear API-oriented design of Android benefits the effective and efficient implementation of a generic mandatory access control framework like FlaskDroid.
The source code for FlaskDroid is available online at http://www.flaskdroid.org
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Listing 3 shows an instantiation of the developer policy in [39] on FlaskDroid. This policy is deployed by the shopping app and thus self_t
refers to the shopping app. We define types app_trustedPayApp_t
, app_trustedPayApp_t
, app_noInternetPerm_t
(lines 1-3 and lines 8-16) for the specific apps the shopping app is allowed to interact with and describe some of the allowed interactions by means of Intent types intent_actionPay_t
and intent_recordExpense_t
(lines 5-6 and lines 18-24). Afterwards, we declare access control rules that reflect the policy described in [39] (lines 26-28). For instance, the rule in line 26 defines that the shopping app is allowed to send an Intent with action string ACTION_PAY
only to an app with type app_trustedPayApp_t
(line 20), which in turn is only assigned to apps with the developer signature 308201...
(line 9).
Listing 3: Policy deployed by the shopping app, showing an instantiation of the Saint [39] runtime policy example.
Table 4: Exemplary System USOMs
*Author was affiliated with Technische Universität Darmstadt/CASED at the time this work was conducted.1http://www.osnews.com/story/26477/Android_4_2_alpha_contains_SELinux
2Developers may use the same UID (Shared UID, SUID) for their own apps. These apps will share the same sandbox.3These pre-defined UIDs on Android 4.0.4 are found in system/core/include/private/android_filesystem_config.h4http://tomoyo.sourceforge.jp/2.2/learning.html.en
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Among anonymity systems, DC-nets have long held attraction for their resistance to traffic analysis attacks, but practical implementations remain vulnerable to internal disruption or “jamming” attacks, which require time-consuming detection procedures to resolve. We present Verdict, the first practical anonymous group communication system built using proactively verifiable DC-nets: participants use public-key cryptography to construct DC-net ciphertexts, and use zero-knowledge proofs of knowledge to detect and exclude misbehavior before disruption. We compare three alternative constructions for verifiable DC-nets: one using bilinear maps and two based on simpler ElGamal encryption. While verifiable DC-nets incur higher computational overheads due to the public-key cryptography involved, our experiments suggest that Verdict is practical for anonymous group messaging or microblogging applications, supporting groups of 100 clients at 1 second per round or 1000 clients at 10 seconds per round. Furthermore, we show how existing symmetric-key DC-nets can “fall back” to a verifiable DC-net to quickly identify misbehavior, speeding up previous detections schemes by two orders of magnitude.
A right to anonymity is fundamental to democratic culture, freedom of speech [3, 46], peaceful resistance to repression [39], and protecting minority rights [45]. Anonymizing relay tools, such as Tor [18], offer practical and scalable anonymous communication but are vulnerable to traffic analysis attacks [4, 34, 38] feasible for powerful adversaries, such as ISPs in authoritarian states.
Dining cryptographers networks [13] (DC-nets) promise security even against traffic analysis attacks, and recent systems such as Herbivore [24, 44] and Dissent [14, 52] have improved the scalability of DC-net-style systems. However, these systems are still vulnerable to internal disruption attacks in which a misbehaving member anonymously “jams” communication, either completely or selectively. Dissent includes a retrospective blame procedure that can eventually exclude disruptors, but at high cost: tracing a disruptor in a 1,000 member group takes over 60 minutes [52], and the protocol makes no communication progress until it restarts “from scratch.” An adversary who infiltrates such a group with f colluding members can “sacrifice” them one at a time to disrupt all communication for f contiguous hours at any time—long enough time to cause a communications blackout before or during an important mass protest, for example.
Verdict, a novel but practical group anonymity system, thwarts such disruptions while maintaining DC-nets' resistance to traffic analysis. At Verdict's core lies a verifiable DC-net primitive, derived from theoretical work proposed and formalized by Golle and Juels [25], which requires participating nodes to prove proactively the well-formedness of messages they send. The first working system we are aware of to implement verifiable DC-nets, Verdict supports three alternative schemes for comparison: a pairing scheme using bilinear maps similar to the Golle-Juels approach, and two schemes based on ElGamal encryption in conventional integer or elliptic curve groups. Verdict incorporates this verifiable core into a client/server architecture like Dissent's [52], to achieve scalability and robustness to client churn. As in Dissent, Verdict maintains security as long as at least one of the participating servers is honest, and participants need not know or guess which servers are honest.
Due to their reliance on public-key cryptography, verifiable DC-nets incur higher computation overheads than traditional DC-nets, which primarily use symmetric-key cryptography (e.g., AES). We expect this CPU cost to be acceptable in applications where messages are usually short (e.g., chat or microblogging), where costs are dominated by network delays, or in groups with relatively open or antagonistic membership where disruption risks may be high. Under realistic conditions, we find that Verdict can support groups of 100 users while maintaining 1-second messaging latencies, or 1000-user groups with 10-second latencies. In a trace-driven evaluation of full-system performance for a microblogging application, Verdict is able to keep up with symmetric-key DC-nets in groups of up to 250 active users.
In contrast with the above “purist” approach, which uses expensive public-key cryptography to construct all DC-net ciphertexts, Verdict also implements and evaluates a hybrid approach that uses symmetric-key DC-nets for data communication when not under disruption attack, but leverages verifiable DC-nets to enable the system to respond much more quickly and inexpensively to disruption attacks. Dissent uses a verifiable shuffle [36] to broadcast an accusation anonymously; this shuffle dominates the cost of identifying disruptors. By replacing this verifiable shuffle with a verifiable DC-nets round, Verdict preserves the disruption-free performance of symmetric-key DC-nets, but reduces the time to identify a disruptor in a 1000-node group by two orders of magnitude, from 20 minutes to 26 seconds.
This paper's primary contributions are:
Section 2 introduces DC-nets and the disruption problem. Section 3 outlines Verdict's architecture and adversary model, and Sections 4 and 5 describe its messaging protocol and cryptographic schemes. Section 6 presents application scenarios and evaluation results, Section 7 describes related work, and Section 8 concludes.
This section first introduces the basic DC-nets concept and known generalizations, then motivates the need for proactive accountability.
To make the need for traffic-analysis-resistant anonymity systems more concrete, consider a political journalist who obtains some important secret government documents (e.g., the Pentagon Papers) from a confidential source. If the journalist publishes these documents under her own name, the journalist might risk prosecution or interrogation, and she might be pressured to reveal the source of the documents.
Figure 1: The basic DC-nets algorithm
To reduce such risks, a number of political journalists could form a Verdict communication group. Any participating journalist may then anonymously broadcast the documents to the entire group of journalists, such that no member of the group can determine which journalist sent the documents. With Verdict, even if a government agency plants agents within the group of journalists and observes all network traffic during a protocol run, the agency remains unable to learn the source of the leak.
Existing systems such as Tor, which are practical and scalable but vulnerable to known traffic analysis attacks [16, 18, 32], cannot guarantee security in this context. For example, if a US journalist posts a leak to a US website, via a Tor connection whose entry and exit relays are in Europe, then an eavesdropper capable of monitoring transatlantic links [31] can de-anonymize the user via traffic analysis [18, 35]. Prior anonymity systems attempting to offer resistance to traffic analysis, discussed in Section 7, suffer from poor performance or vulnerability to active denial-of-service attacks.
DC-nets [13] provide anonymous broadcast within a group of participants, who communicate lock-step in a series of rounds. In a given round, each group member contributes an equal length ciphertext that, when combined with all other members' ciphertexts, reveals one or more cleartext messages. All group members know that each message was sent by some group member—but do not know which member sent each message.
In its simplest form, illustrated in Figure 1, we assume one group member wishes to broadcast a 1-bit message anonymously. To do so, every pair of members flips a coin, secretly agreeing on the random outcome of that coin flip. An N-member group thus flips N(N – 1)/2 coins in total, of which each member observes the outcome of N – 1 coins. Each member then XORs together the values of the N – 1 coins she observes, additionally the member who wishes to broadcast the 1-bit message XORs in the value of that message, to produce that member's DC-nets ciphertext. Each group member then broadcasts her 1-bit ciphertext to the other members. Finally, each member collects and XORs all N members' ciphertexts together. Since the value of each shared coin is XORed into exactly two members' ciphertexts, all the coins cancel out, leaving only the anonymous message, while provably revealing no information about which group member sent the message.
As a standard generalization of DC-nets to communicate L-bit messages, all members in principle simply run L instances of the protocol in parallel. Each pair of members flips and agrees upon L shared coins, and each member XORs together the L-bit strings she observes with her optional L-bit anonymous message to produce L-bit ciphertexts, which XOR together to reveal the L-bit message. For efficiency, in practice each pair of group members forms a cryptographic shared secret—via Diffie-Hellman key agreement, for example—then group members use a cryptographic pseudo-random number generator (PRNG) to produce the L-bit strings.
As a complementary generalization, we can use any finite alphabet or group in place of coins or bits, as long as we have: (a) a suitable combining operator analogous to XOR, (b) a way to encode messages in the chosen alphabet, and (c) a way to generate complementary pairs of one-time pads in the alphabet that cancel under the chosen combining operator. For example, the alphabet might be 8-bit bytes, the combining operator might be addition modulo 256, and from each pairwise shared secret, one member of the pair generates bytes B1,. . .,Bk from a PRNG, while the other member generates corresponding two's complement bytes −B1,. . .,−Bk.
A key weakness of DC-nets is that a single malicious insider can easily block all communication. An attacker who transmits arbitrary bits—instead of the XORed ciphertext that the protocol prescribes—unilaterally and anonymously jams all DC-net communication.
In many online venues such as blogs, chat rooms, and social networks, some users may have legitimate needs for strong anonymity—protest organizers residing in an authoritarian state, for example—while other antagonistic users (e.g., secret police infiltrators) may attempt to block communication if they cannot de-anonymize “unapproved” senders. Even in a system like Dissent that can eventually trace and exclude disruptors, an adversary with multiple colluding dishonest group members may still be able to slow or halt communication for long enough to ruin the service's usability for honest participants. Further, if the group's membership is open enough to allow new disruptive members to join more quickly than the tracing process operates, then these infiltrators may be able to shut down communication permanently.
Verifiable DC-nets [25] leverage algebraic groups, such as elliptic curve groups, as the DC-nets alphabet. Using such groups allows for disruption resistance, by enabling members to prove the correctness of their ciphertexts' construction without compromising the secrecy of the shared pseudo-random seeds. Using a hybrid approach that combines a traditional DC-net with a verifiable DC-net, Verdict can achieve the messaging latency of a traditional XOR-based DC-net while providing the strong disruption-resistance of verifiable DC-nets.
In this section, we describe the individual components of Verdict and how they combine to form the overall anonymous communication system.
Verdict builds on Dissent [51, 52] and uses the multi-provider cloud model illustrated in Figure 2 (a) to achieve scalability and resilience to ordinary node and link failures. In this model, a communication group consists of mostly unreliable clients, and a few servers we assume to be highly available and well-provisioned. Servers in a group should be administered independently—each furnished by a different anonymity provider, for example—to limit risk of all servers being compromised and colluding against the clients. The servers may be geographically or topologically close, however—possibly even hosted in the same data center, in locked cages physically and administratively accessible only to separate, independent authorities.
Clients directly communicate, at a minimum, with a single upstream server, while each server communicates with all other servers. This topology, shown in Figure 2 (b), reduces the communication and computation burden on the clients, and enables the system to make progress regardless of client churn. In particular, clients need not know which other clients are online at the time they submit their DC-net ciphertexts to their upstream server; clients only assume that all servers are online.
To ensure anonymity, clients need not assume that any particular server is trustworthy—a client need not even trust its immediately upstream server. Instead, clients trust only that there exists at least one one honest server, an assumption previously dubbed anytrust [51, 52], as a trust analog to anycast communication.
Verdict, like Dissent, achieves security under the anytrust assumption through the DC-nets key-sharing model shown in Figure 2 (c). Each client shares a secret with every server, rendering client ciphertexts indecipherable without the cooperation of all servers, and hence protecting a client's anonymity even if its immediately upstream server is malicious. Each client ultimately obtains an anonymity set consisting of the set of all honest clients, provided that the anytrust assumption holds, and provided the message contents themselves do not in some way reveal the sender's identity.
Figure 2: Verdict/Dissent deployment model, physical communication topology, and DC-nets secret sharing
A malicious server might refuse to service honest clients, but such refusal does not compromise clients' anonymity—victims can simply switch to a different server. Although not yet supported in our Verdict prototype, Section 4.6 discusses how one might use threshold secret sharing to tolerate server failures, at the cost of requiring that we assume multiple servers are honest.
Verdict's goal is to offer anonymity and disruption resistance in the face of a strong adversary who can potentially monitor all network links, modify packets as they traverse the network, and compromise a potentially large fraction of a group's participating members. We say that a participant is honest if it follows the protocol exactly and does not collude with or leak secret information to other nodes. A participant is dishonest otherwise. Dishonest nodes can exhibit Byzantine behavior—they can be arbitrarily incorrect and can even just “go silent.”
The system is designed to provide anonymity among the set of honest participants, who remain online and uncompromised throughout an interaction period, and who do not compromise their identity via the content of the messages they send. We define this set of honest and online participants as the anonymity set for a protocol run. If a group contains many colluding dishonest participants, Verdict can anonymize the honest participants only among the remaining subset of honest members: in the worst case of a group containing only one honest member, for example, Verdict operates but can offer that member no meaningful anonymity.
Similarly, Verdict does not prevent long-term intersection attacks [28] against otherwise-honest participants who repeatedly come and go during an interaction period, leaking information to an adversary who can correlate online status with linkable anonymous posts. Reasoning about anonymity sets generally requires making inherently untestable assumptions about how many group members may be dishonest or unreliable, but Verdict at least does not assume that the honest participants know which other participants are honest and reliable.
Finally, Verdict's disruption-resistant design addresses internal disruption attacks by misbehaving anonymous participants, a problem specific to anonymous communication tools and particularly DC-nets. Like any distributed system, Verdict may be vulnerable to more general network-level Denial-of-Service (DoS) attacks as well, particularly against the servers that are critical to the system's availability and performance. Such attacks are important in practice, but not specific to anonymous communication systems. This paper thus does not address general DoS attacks since well-known defenses apply, such as server provisioning, selective traffic blocking, and proof-of-life or proof-of-work challenges.
Verdict consists of two major components: the messaging protocol, and the cryptographic primitive clients and servers use to construct their ciphertexts. This section describes the Verdict messaging protocols, and the following section describes the cryptographic constructions.
Figure 3 summarizes the steps comprising a normal-case run of the Verdict protocol. This protocol represents a direct adaptation of the DC-nets scheme (Section 2.2) to the two-level communication topology illustrated in Figure 2 (b), and to the client/server secret-sharing graph in Figure 2 (c). As in Dissent, Verdict's anonymity guarantee relies on Chaum's original security analysis [13], in which an honest node's anonymity set consists of the set of honest nodes that remain connected in the secret-sharing graph after removing links to dishonest nodes. Since each client shares a secret with every server, and we assume that there exists at least one honest server, this honest server forms a “hub” connecting all honest nodes. This anonymity property holds regardless of physical communication topology, which is why the clients need not trust their immediately upstream server.
The ciphertext- and proof-generation processes assume that communication in the DC-net is broken up into time slots (akin to TDMA), such that only one client—the slot's owner—is allowed to send an anonymous message in each time slot. The owner of a slot is the client who holds the private key corresponding to a pseudonym public key assigned to the slot. To maintain the slot owner's anonymity, no one must know which client owns which transmission slot. Section 4.3 below describes the assignment of pseudonym keys to transmission slots.
Figure 3: Core Verdict messaging protocol
Figure 4 shows an example DC-net transmission schedule with three slots, owned by pseudonyms A, B, and C. Each slot owner can transmit one message per messaging round, and the slot ordering in the schedule remains the same for the duration of the Verdict session.
While Verdict's anonymity derives from the same principles as Dissent's, the key difference is in the “alphabet” with which Verdict generates DC-net ciphertexts, and in the way Verdict combines and checks those ciphertexts. Dissent uses a symmetric-key cryptographic pseudo-random number generators (PRNG) to generate shared secrets, and uses bitwise XOR to combine them and later to reveal the plaintext message. While efficient, the symmetric-key approach offers no way to check that any node's ciphertext was generated correctly until the final cleartext messages are revealed. If any node corrupts a protocol round by sending an incorrect ciphertext, Dissent can eventually identify that node only via a complex retroactive blame procedure.
Figure 4: Example DC-net transmission schedule, where anonymous authors A, B, and C transmit in each round.
Verdict, in contrast, divides messages into chunks small enough to be encoded into elements of algebraic groups, such as Schnorr [42] or elliptic curve groups, to which known proof-of-knowledge techniques apply. Section 5 later outlines three particular ciphertext generation schemes that Verdict implements, although Verdict's architecture and protocol design is agnostic to the specific scheme. These schemes may be considered analogous to “pluggable” ciphersuites in SSL/TLS.
Thus, any Verdict ciphertext is generated on behalf of the holder of some particular pseudonym keypair. While the details of a ciphertext correctness proof depend on the particular scheme, all such proofs have the general form of an “either/or” knowledge proof, of the type systematized by Camenisch and Stadler [11]. In particular, a ciphertext correctness proof attests that either:
Only the pseudonym key owner can produce a correctness proof for an arbitrary message following the first alternative above, while any node can generate an “honest” cover ciphertext—and the proof by construction reveals no information about which alternative the proof generator followed. We leave discussion of further details of this process to Section 5, but merely note that such “either/or” proofs are pervasive and well-understood in the cryptographic theory community.
In Verdict, each client computes and attaches a cryptographic correctness proof to each ciphertext it sends to its upstream server, and each server in turn attaches a correctness proof to the server-side ciphertext it generates in Phase 3 of each round (Figure 3). In principle, therefore, each server can immediately verify the correctness of any client's or other server's ciphertext it receives, before “accepting” it and combining it with the other ciphertexts for that protocol round. As in Dissent, Verdict achieves resilience to client churn by (optionally) requiring clients to submit their ciphertexts before a certain “deadline” in each messaging round. We describe this technique in Section 4.5.
While Verdict nodes can in principle verify the correctness of any received ciphertext immediately, actually doing so has performance costs. These costs lead to design tradeoffs between “eager” and “lazy” verification, both of which we implement and evaluate later in Section 6. Lazy verification enables the critical servers to avoid significant computation costs during rounds that are not disrupted, at the expense of making a round's output unusable if it is disrupted. Even if a lazily-verified round is disrupted, however, the fact that Verdict nodes always generate and transmit signed ciphertext correctness proofs greatly simplifies and shortens the retroactive blame process with respect to Dissent.
Verdict currently treats server-side failures of all types, including invalid server ciphertexts, as “major events” requiring administrative action, and simply halts the protocol with an alert until such action is taken. Section 4.6 later discusses approaches to make Verdict resilient against server-side failures, but we leave implementing and evaluating such mechanisms to future work. Such server-side failures affect only availability, however; anonymity remains protected as long as at least one (not necessarily online) server remains uncompromised.
To assign ownership of transmission slots to clients in such a way that no one knows which client owns which slot, Verdict applies an architectural idea from Dissent [52]. At the start of a Verdict session, each of the N clients secretly submits a slot owner pseudonym key to a verifiable shuffle protocol [36] run by the servers. The public output of the shuffle is the N pseudonym keys in permuted order—such that no one knows which node submitted which pseudonym key other than their own. Verdict participants then use each of these N pseudonym keys to initialize N concurrent instances of the core Verdict DC-net with each instance becoming a slot in a verifiable DC-net transmission schedule.
Scheduling Policy Not every client will necessarily want to transmit an anonymous message in every messaging round. In addition, clients may want to transmit messages of different lengths. To make Verdict more efficient in these cases, Verdict allows clients to request a change in the length of their messaging slot (e.g., so that a client can send a long message in a single messaging round) and to temporarily “close” their transmission slot (if a client does not expect to send a message for several rounds). Clients issue these requests by prepending a few bits of control data to the anonymous message they send in their transmission slot.
While the verifiable DC-net design above may be needed in scenarios in which disruptions are frequent, the public-key cryptography involved imposes a much higher computational cost than traditional XOR-based DC-nets. To offer better performance in groups with fewer or less frequent disruptions, Verdict has a “hybrid” mode of operation that uses the fast XOR-based DC-net when there are no active disruptors in the group, and reverts to a verifiable DC-net in the presence of an active disruptor. This hybrid Verdict DC-net marries the relatively low computational cost of the XOR-based DC-net with the low accountability cost of the verifiable DC-net.
To set up a hybrid DC-net session, all protocol participants first participate in a pseudonym signing key shuffle, as described above in Section 4.3. At the conclusion of the shuffle, all nodes initialize two DC-net slots for each of the N clients: one traditional Dissent-style DC-net, and one verifiable Verdict DC-net.
When the group is not being disrupted, clients transmit in their Dissent DC-net slot, allowing nodes to take advantage of the speed of Dissent's XOR-based DC-net. When nodes detect the corruption of a message in the Dissent DC-net, the client whose message was corrupted reverts to transmitting in its verifiable DC-net slot. This client can use the verifiable slot to transmit anonymously the “accusation” necessary to identify the disruptor in the Dissent accusation process [52, Section 3.9]. The Verdict DC-net replaces the expensive verifiable shuffle necessary for nodes to exchange the accusation information in Dissent. In this way, Verdict offers the normal-case efficiency of XOR-based DC-nets while greatly reducing the cost of tracing and excluding disruptors.
In realistic deployments clients may go offline at any time, and this problem becomes severe in large groups of unreliable clients exhibiting constant churn. To prevent slow or unresponsive clients from disrupting communication, the servers need not wait in Phase 2 for all downstream clients to submit ciphertexts. Instead, servers can wait for a fixed threshold of t ≤ N clients to submit ciphertexts, or for some fixed time interval τ. Servers might also use some more complicated window closure policy, as in Dissent [52]: e.g., wait for a threshold of clients and then an additional time period before proceeding. The participants must agree on a window closure policy before the protocol run begins.
There is an inherent tradeoff between anonymity and the system's ability to cope with unresponsive clients. If the servers close the ciphertext submission window too aggressively, honest but slow clients might be unable to submit their ciphertexts in time, reducing the anonymity of clients who do manage to submit messages. In contrast, if the servers wait until every client has submitted a ciphertext, a single faulty client could prevent protocol progress indefinitely. Optimal policy choices depend on the security requirements of the application at hand.
This section outlines some of Verdict's current limitations, deployment issues, and areas for future work.
Group Evolution Verdict's architecture assumes that, at the start of the protocol, group members agree to a “roster” of protocol participants—essentially a list of public keys defining the group's membership. The current prototype simplistically assumes that this group roster is a static list, and that the session nonce is a hash of a file containing this roster and other group policy information. This design trivially ensures that all nodes participating in a given group (uniquely identified by its session nonce) agree upon the same roster and policy. Changing the group roster or policy in the current prototype requires forming a new group, but we are exploring approaches to group management which would allow for on-the-fly membership changes. For now, we simply note that Verdict's security properties critically depend on group membership policy decisions, which affect how quickly adversarial participants can infiltrate a group. We consider group management policy to be orthogonal to this paper's communication mechanisms.
Sybil Attacks If it is too easy to join a group, dishonest participants might flood the group with Sybil identities [19], giving an anonymous slot owner the impression that she has more anonymity than she actually does. The current “static group” design shifts the Sybil attack prevention problem to whomever formulates the group roster. Dynamic group management schemes could leverage existing Sybil prevention techniques [47, 53, 54], but we do not consider such approaches herein.
Membership Concealment Verdict considers the group roster, containing the public keys of all participants, to be public information: concealing participation in the protocol is an orthogonal security goal that Verdict currently does not address. We are exploring the use of anonymous authentication techniques [22, 29, 41] to enable Verdict clients to “sign on” and prove membership in the group without revealing to the Verdict servers (or to the adversary) which specific group members are online at any given time. Further, we expect that Verdict's design could be composed with other techniques to achieve membership concealment [33, 49], but we leave such enhancements to future work.
Unresponsive Servers Verdict currently assumes that the servers supporting a group are well-provisioned and highly reliable, and the system simply ceases communication progress in the face of any server's failure. Any fault-masking mechanism would be problematic, in fact, in the face of Verdict's assumption that only one server might be honest: if that one honest server goes offline and the protocol continues without it, then the remaining dishonest servers could collude against all honest users.
If we assume that there are h > 1 honest servers, however, a currently unimplemented variation of Verdict could allow progress if as many as h – 1 servers are unresponsive. Before the protocol run, every server uses a publicly verifiable secret sharing scheme [43], to distribute shares of its per-session secret key. The scheme is configured such that any quorum of M – h + 1 shares is sufficient to reconstruct the secret. Thus, at least one honest server must remain online and contribute a share for a secret to be reconstructed. (Golle and Juels [25] also use a secret-sharing scheme, but they rely on a trusted third-party to generate and distribute the shares.)
If a server becomes unresponsive, the remaining online servers can broadcast their shares of the unresponsive server's secret key. Once a quorum of servers broadcasts these shares, the remaining online servers will be able to reconstruct the unresponsive server's private key. Thereafter, each server can simulate the unresponsive server's messages for the rest of the protocol session.
Blame Recovery The current Verdict prototype can detect server misbehavior, but it does not yet have a mechanism by which the remaining servers can collectively form a new group “roster” with the misbehaving nodes removed. We expect off-the-shelf Byzantine Fault Tolerance algorithms [12] to be applicable to this group evolution problem. Using BFT to achieve agreement, however, requires a stronger security assumption: in a group with f dishonest servers, there must be at least 3f + 1 total servers. We sketch a possible BFT-based group evolution approach here.
The BFT cluster's shared state in this case is the group “roster,” containing the session nonce and a list of all active Verdict clients and servers, identified by their public keys. The two operations in this BFT system are:
EVOLVE_GROUP(nonce, node_index, proof)
, a request to remove a dishonest node (identified by node_index
) from the group roster. BFT servers remove the dishonest node from the group if the proof is valid, yielding the new group roster.GET_GROUP()
, which returns current the group roster. If, at some point during the Verdict session, a Verdict node concludes that the protocol has failed due to the dishonesty of node d, this honest node makes an EVOLVE_GROUP
request to the BFT cluster and waits for a response. The honest BFT servers will agree on a new group roster with the dishonest node d removed and the Verdict servers will begin a new instance of the Verdict protocol with the new group roster. Clients use GET_GROUP
to learn the new group roster.The Verdict architecture relies on a verifiable DC-net primitive that has many possible implementations. In this section, we first describe the general interface that each of the cryptographic constructions must implement—which could be described as a “Verdict ciphersuite API”—then we describe the three specific experimental schemes that Verdict currently implements.
All three schemes are founded on standard, well-understood cryptographic techniques that have been formally developed and rigorously analyzed in prior work. As with most practical, complex distributed systems with many components, however, we cannot realistically offer a rigorous proof that these cryptographic tools “fit together” correctly to form a perfectly secure overall system. (This is true even of SSL/TLS and its ciphersuites, which have received far more cryptographic scrutiny than Verdict but in which flaws are still found regularly.) We also make no claim that any of the current schemes are “the right” ones or achieve any particular ideal; we merely offer them as contrasting points in a large design space. To lend some informal credibility to their security, we note that our pairing-based scheme is closely modeled on the verifiable DC-nets scheme that Golle and Juels already developed formally [25], and the extended version of this paper [15] sketches a security argument for the third and most computationally efficient scheme.
The core cryptographic primitive consists of a set of six methods. Each of these six methods takes a list of protocol session parameters (e.g., group roster, session nonce, slot owner's public key) as an implicit argument:
However these methods are implemented, they must obey the following security properties, stated informally:
In practice, each of our current implementations of this verifiable DC-nets primitive achieve these security properties in the random-oracle model [5] using non-interactive zero-knowledge proofs [26].
The first scheme builds on the ElGamal public-key cryptosystem [20]. In ElGamal, a public/private keypair has the form B, b = gb,b,1 and plaintexts and ciphertexts are elements of an algebraic group G.2 We refer to this as the “ElGamal-style” construction because its use of an ephemeral public key and encryption by multiplication structurally resembles the ElGamal cryptosystem. Our construction does not exhibit the malleability of textbook ElGamal encryption, however, because a proof of knowledge of the secret ephemeral public key is attached to every ciphertext element.
Client Ciphertext Construction Given a list of server public keys B1,. . .,BM, a client constructs a ciphertext by selecting an ephemeral public key Ri = gri at random and computing the ciphertext element:
If the client is the slot owner, the client sets m to its secret message, otherwise the client sets m = 1.
To satisfy the security properties described in Section 5.1, the client must somehow prove that the ciphertext tuple Ri,Ci was generated correctly. We adopt the technique of Golle and Juels [25] and use a non-interactive proof-of-knowledge of discrete logarithms [11] to prove that the ciphertext has the correct form. If the slot owner's pseudonym public key is Y, the client's ephemeral public key is Ri, and the client's ciphertext element is Ci, the client generates a proof:
In words: the sender demonstrates that either it knows the discrete logarithm ri of the ephemeral public key Ri, and the ciphertext is the product of all server public keys raised to the exponent ri; or the sender knows the slot owner's secret pseudonym key y, in which case the slot owner can set Ci to a value of her choosing. The extended version of this paper [15] details how to construct and verify this type of non-interactive zero-knowledge proof.
Note that a dishonest slot owner can set Ci to a maliciously constructed value (e.g., Ci = 1). The only effect of such an “attack” is that the slot owner compromises her own anonymity. Since a dishonest slot owner can always compromise her own anonymity (e.g., by publishing her secret keys), a dishonest slot owner achieves nothing by setting Ci maliciously.
The tuple Ri, Ci, PoK serves as the client's ciphertext. As explained in Section 4.1, all participants sign the messages they exchange for accountability.
Server Ciphertext Construction Given a server public key Bj = gbj and a list of ephemeral client public keys R1,. . .,RN, server j generates its server ciphertext as:
The server proves the validity of its ciphertext by creating a non-interactive proof of knowledge that it knows its secret private key bj and that its ciphertext element Sj is the product of the ephemeral client keys raised to the exponent −bj:
Message Reveal To reveal the plaintext message, a participant computes the product of N client ciphertext elements and M server ciphertext elements:
Each factor gribj, where ri is client i's ephemeral secret key and bj is server j's secret key, is included exactly twice in the above product—once with a positive sign in the client ciphertexts and once with a negative sign in the server ciphertexts. These values therefore cancel, leaving only the plaintext m.
Drawbacks Since the clients must use a new ephemeral public key for each ciphertext element, sending a plaintext message that is L group elements in length requires each client to generate and transmit L ephemeral public keys. The proof of knowledge for this construction is L+ O(1) group elements long, so a message of L group elements expands to 3L + O(1) elements.
A major drawback of the ElGamal construction is that, due to the need for ephemeral keys, every ciphertext is three times as long as the plaintext it encodes. Golle and Juels [25] use bilinear maps to eliminate the need for ephemeral keys. Our pairing-based construction adopts elements of their technique, while avoiding their reliance on a trusted third party, a secret-sharing scheme, and a probabilistic transmission scheduling algorithm.
A symmetric bilinear map maps two elements of a group G1 into a target group G2— : G1 × G1 G2. A bilinear map has the property that: (aP, bQ) = (P, Q)ab.3 To be useful, the map must also be non-degenerate (if P is a generator of G1, (P, P) is a generator of G2) and efficiently computable [8]. We assume that the decision bilinear Diffie-Hellman assumption [7] holds in G1.4
Since pairing allows a single pair of public keys to generate a sequence of shared secrets, clients need not generate ephemeral public keys for each ciphertext element they send. This optimization leads to shorter ciphertexts and shorter correctness proofs.
Client Ciphertext Construction For a set of server public keys B1,. . .,BM, a public nonce τ G1 computed using a hash function, and a client public key Ai = gai, a pairing-based client ciphertext has the form:
As before, if the client is not the slot owner, the client sets m = 1. Each client can produce a proof of the correctness of its ciphertext by executing a proof of knowledge similar to one used in the ElGamal-style construction above:
While the ElGamal-style scheme requires 3L + O(1) group elements to encode L elements of plaintext, a pairing-based ciphertext requires only L+O(1) group elements to encode an L-element plaintext.
Server Ciphertext Construction Using a server public key Bj = gbj, a public round nonce τ, and client public keys A1,. . .,AN, a server ciphertext has the form:
The server proof of correctness is then:
Message Reveal To reveal the plaintext, the servers take the product of all client and server ciphertexts:
Drawbacks The main downside of this construction is the relatively high computational cost of the pairing operation. Computing the pairing operation on two elements of G1 can take an order of magnitude longer than a normal elliptic curve point addition in a group of similar security level, as Section 6.2 below will show.
Our hashing-generator construction pursues a “best of both worlds” combination of the ElGamal-style and pairing-based constructions. This construction hasshort ciphertexts, like the pairing-based construction, but avoids the computational cost of the pairing-based scheme by using conventional integer or elliptic curve groups. To achieve both of these desired properties, the hashing-generator construction adds some protocol complexity, in the form of a session set-up phase.
Set-up Phase In the set-up phase, each client i establishes a Diffie-Hellman shared secret rij with every server j using their respective public keys gai and gbj by computing rij = KDF(gaibj) using a key derivation function KDF. Clients publish commitments to these shared secrets Rij = rij using another public generator .
The hashing-generator construction requires a process by which participants compute a sequence of generators g1,. . .,gL of the group G, such that no participant knows the discrete logarithm of any of these generators with respect to any other generator. In other words, no one knows an x such that gxi = gj, for any i, j pair. In practice, participants compute this sequence of generators by hashing a series of strings, (e.g., the round nonce concatenated with “1”, “2”, “3”, . . . ), to choose the set of generating group elements.
At the end of the set-up phase, every client i can produce a sequence of shared secrets with each server j using their shared secret rij and the L generators: grij1,. . .,grijL. In the lth message exchange round, all participants use generator gl as their common generator.
Client Ciphertext Construction To use the hashing-generator scheme to create a ciphertext, the client uses its shared secrets ri1,. . .,riM with the servers, and generator gl for the given protocol round to produce a ciphertext:
As before, m = 1 if the sender is not the slot owner.
To prove the validity of a ciphertext element, the client executes the following proof of knowledge, where Y is the slot owner's pseudonym public key, ri = , and Rij is the commitment to the secret shared between client i and server j:
Server Ciphertext Construction Server j's ciphertext for the lth message exchange round is similar to the client ciphertext, except with negated exponents:
The server proves correctness of a ciphertext by executing a proof of knowledge, where rj = :
Message Reveal The product of the client and server ciphertexts reveals the slot owner's plaintext message m:
Failed Session Set-up A dishonest client i might try to disrupt the protocol by publishing a corrupted commitment Rij′ that disagrees with server j's commitment Rij to the shared secret rij = KDF(gaibj). If the commitments disagree, the honest server can prove its innocence by broadcasting the Diffie-Hellman secret ρij = gaibj along with a proof that it correctly computed the Diffie-Hellman secret using its public key Bj and the client's public key Ai.
If the server is dishonest, the client can produce a similar proof of innocence. Any user can verify this proof, and then use gaibj to recreate the correct commitment Rij. Once the verifier has the correct commitment Rij, the verifier can confirm either that the client in question published an invalid commitment or that the server in question dishonestly accused the client.
Since the session set-up between client i and server j will only fail if either i or j is dishonest, there is no security risk to publishing the shared secret gaibj after a failed set-up—the dishonest client (or server) could have shared this secret with the adversary anyway.
Long Messages The client and server ciphertext constructions described above allow the slot owner to transmit a plaintext message m that is at most one group element in length in each run of the protocol. To encode longer plaintexts efficiently, participants use a modified proof-of-knowledge construction that proves the validity of L ciphertext elements (Ci,1 through Ci,L) at once:
Servers can use a similarly modified proof of knowledge. This modified knowledge proof is surprisingly compact: the length of the proof is constant in L, since the length of the proof is linear in the number of proof variables (here, the only variables are ri and y). The total length of the tuple i, PoK using this proof is L + O(1).
Lazy Proof Verification In the basic protocol, every server verifies the validity proof on every client ciphertext in every protocol round. To avoid these expensive verification operations, servers can use lazy proof verification: servers check the validity of the client proofs only if they detect, at the end of a protocol run, that the anonymous slot owner's message was corrupted. For reasons discussed in the extended version of this paper [15], lazy proof verification is possible only using the pairing-based or hashing-generator ciphertext constructions.
Security Analysis Since the hashing-generator scheme is the most performant variant, we sketch an informal security proof for the hashing-generator proof construction in the extended version of this paper [15].
This section describes our Verdict prototype implementation and summarizes the results of our evaluations.
We implemented the Verdict protocol in C++ using the Qt framework as an extension to the existing Dissent prototype [52]. Our implementation uses OpenSSL 1.0.1 for standard elliptic curve groups, Crypto++ 5.6.1 for big integer groups, and the Stanford Pairing-Based Cryptography (PBC) 0.5.12 library for pairings [48]. Unless otherwise noted, the evaluations use 1024-bit integer groups, the 256-bit NIST P-256 elliptic curve group [37], and a pairing group in which G1 is an elliptic curve over a 512-bit field (using PBC's “Type A” parameters) [30]. We collected the macrobenchmark and end-to-end evaluation results on the DeterLab [17] testbed.
The source code for our implementation is available at https://github.com/DeDiS/Dissent
.
To compare the pure computational costs of the different DC-net schemes, Figure 5 shows ciphertext generation and verification throughput measured at a variety of block sizes, running on a workstation with a 3.2 GHz Intel Xeon W3565 processor. These experiments involve no network activity, and are single-threaded, thus they do not reflect any speedup that parallelization might offer.
Figure 5: Ciphertext generation and verification throughput for the three verifiable DC-net variants and the XOR-based scheme.
The hashing-generator construction, which is the fastest scheme tested, encrypts 20 KB of client plaintext per second. The slowest, paring-based construction encrypts around 3 KB per second. The fastest verifiable scheme is still over an order of magnitude slower than the traditional (unverifiable) XOR-based scheme, which encrypts 600 KB of plaintext per second. The hashing-generator scheme performs best because it needs no pairing operations and requires fewer group exponentiations than the ElGamal construction.
Figure 5 shows that ciphertext verification is slightly faster than ciphertext generation. This is because generating the ciphertext and zero-knowledge proof requires more group exponentiations than proof verification does.
The three constructions also vary in the size of ciphertexts they generate (Figure 6). While the pairing-based scheme and the hashing-generator schemes encrypt length L plaintexts as ciphertexts of length L + O(1), the ElGamal-style scheme encrypts length L plaintexts as length 3L + O(1) ciphertexts. As discussed in Section 5.2, for every plaintext message element encrypted, ElGamal-style ciphertexts must include an ephemeral public key and an additional proof-of-knowledge group element. Since the hashing-generator scheme is the fastest and avoids the ElGamal scheme's ciphertext expansion, subsequent experiments use the hashing-generator scheme unless otherwise noted.
Figure 7 presents three graphs: (a) the time it takes to set up a transmission schedule via a verifiable shuffle, prior to DC-net communication, (b) the time required to execute a single DC-net protocol round in each scheme, and (c) the time required to identify a disruptor. The graphs compare four protocol variants: Dissent, Verdict, Verdict with lazy proof verification, and the Dissent+Verdict hybrid DC-net. We ran this experiment on DeterLab using 8 servers and 128 clients. To scale beyond 128 clients, we ran multiple client processes on each client machine. Session setup time measures the time from session start to just before the first DC-net messaging round.
Figure 7: Time required to initialize a session, perform one messaging round, and to identify a disruptor.
Figure 6: Ciphertext expansion factor (overhead) using the integer ElGamal-style, pairing-based, and hashing-generator protocol variants.
The one-time session setup time for Verdict is longer than for Dissent because the verifiable shuffle implementation Dissent uses is heavily optimized for shuffling DSA signing keys. Shuffling Verdict public keys, which are drawn from different group types, requires using a less-optimized version of the verifiable shuffle. We do not believe this cost is fundamental to the Verdict approach, and in any case these setup costs are typically amortized over many DC-net rounds.
The Dissent+Verdict hybrid DC-net is just as fast as Dissent in the normal case, since Dissent and the hybrid DC-net run exactly the same code if there is no active disruptor in the group. Network latency comprises the majority of the time for a messaging round when using the Dissent and the hybrid Dissent+Verdict DC-nets—messaging rounds take between 0.6 and 1.4 seconds to complete in network sizes of 8 to 1,024 clients. In contrast, Verdict becomes computationally limited at 64 clients, taking approximately 2.5 seconds per round. Verdict (lazy) improves upon this by becoming computationally limited at 256 clients, requiring approximately 3 seconds per messaging round.
Verdict incurs the lowest accountability (blame) cost of the four schemes. Verdict's verifiable DC-net checks the validity of each client ciphertext before processing it further, so the time-to-blame in Verdict is equal to the cost of verifying the validity proofs on N client ciphertexts. “Verdict (lazy)” uses the lazy proof verification technique described in Section 5.4—servers verify the client proofs of correctness only if they detect a disruption. Lazy proof verification delays the verification operation to the end of a messaging phase, so the time-to-blame is slightly higher than in pure Verdict.
Dissent, which has the highest time-to-blame, has an accountability process that requires the anonymous client whose message was corrupted to submit an “accusation” message to a lengthy verifiable shuffle protocol, in which all members participate. This verifiable shuffle is the reason that Dissent takes the longest to identify a disruptor. The hybrid Dissent+Verdict DC-net (Section 4.4) avoids Dissent's extra verifiable shuffle by falling back instead to a verifiable DC-net to resolve disruptions.
As Figure 7 shows, the messaging round time in the hybrid Dissent+Verdict DC-net is as fast as in Dissent, but the hybrid scheme reduces Dissent's time to detect misbehavior by roughly two orders of magnitude.
Verdict's ability to tolerate many dishonest nodes makes it potentially attractive for anonymous microblogging in groups of hundreds of nodes. In Twitter, messages have a maximum length of 140 bytes, which means that a single tweet can fit into a few 256-bit elliptic curve group elements. Twitter users can also tolerate messaging latency of tens of seconds or even a few minutes, which would be unacceptable for interactive web browsing.
Figure 8: Rate at which various anonymity schemes process tweets, for varying numbers of active users.
This experiment evaluates the suitability of Verdict for small-scale anonymous microblogging applications, giving users anonymity among hundreds of nodes, e.g., for students microblogging on a university campus. To test Verdict in this scenario, we recorded 5,000 Twitter users' activity for one-hour and then took subsets of this trace: the smallest subset contained only the Tweets of the 40 most active users, and the largest subset contained the Tweets of the 1,032 most active users. We replayed each of these traces through Dissent and through Verdict, using each of the three ciphertext constructions.
We ran our experiment on DeterLab [17], on a test topology consisting of eight servers connected to a 100 Mbps LAN with 10 ms of server-to-server latency, and with each set of clients connecting to their upstream server over a shared 100 Mbps link with 50 ms of latency. Scarcity of testbed resources limited the number of available delay links, but our experiment attempts to approximate a wide-area deployment model in which clients are geographically dispersed and bandwidth-limited.
Figure 8 shows the Tweet-rate latency induced by the different anonymity systems relative to the baseline (no anonymity) as the number of active users (and hence, the anonymity set size) in the trace increases. Both Dissent and the Dissent+Verdict hybrid systems can keep pace with the baseline in a 1,000-node network—the largest network size feasible on our testbed. The pure Verdict variants could not keep pace with the baseline in a 1,000 node network, while hashing-generator variant of Verdict runs almost as quickly as the baseline in an anonymity set size of 264. These results suggest that Verdict might realistically support proactively accountable anonymity for microblogging groups of up to hundreds of nodes.
Figure 8 also compares Verdict to a mix-net cascade (a set of mix servers) in which each mix server uses a Neff proof-of-knowledge [36] to demonstrate that it has performed the mixing operation properly. Like Verdict, this sort of mix cascade forms a traffic-analysis-resistant anonymity system, so it might be used as an alternative to Verdict for anonymous messaging. Our evaluation results demonstrate that the hashing-generator variant of Verdict outperforms the mix cascade at all network sizes and that the Tweet throughput of the Dissent+Verdict hybrid is more than 6× greater than the throughput of the mix cascade at a network size of 564 participants.
Dissent demonstrated that accountable DC-nets are fast enough to support anonymous interactive Web browsing in local-area network deployments [52]. We now evaluate whether Verdict is similarly usable in a web browsing scenario. Our experiment simulates a group of nodes connected to a single WLAN network. This configuration emulates, for example, a group of users in an Internet café browsing the Internet anonymously.
In our simulation on DeterLab [17], 8 servers and 24 clients communicate over a network of 24 Mbps links with 20 ms node-to-node latency. To simulate a Web browsing session, we recorded the sequence of requests and responses that a browser makes to download home page content (HTML, CSS files, images, etc.) from the Alexa “Top 100” Web pages [2]. We then replayed this trace with the client using one of four anonymity overlays: no anonymity, the Dissent DC-net, the Verdict-only DC-net, and the Dissent+Verdict hybrid DC-net. The simulated client sends the upstream (request) traffic through the anonymity network and servers broadcast the downstream (response) traffic to all nodes.
Figure 9 charts the time required to download all home page content using the four different network configurations. The median Web page took one second to load with no anonymity, fewer than 10 seconds over Dissent, and around 30 seconds using Verdict only (Figure 10). Notably, the hybrid Dissent+Verdict scheme exhibits performance nearly identical to that of Dissent alone, since it it falls back to the slower verifiable Verdict DC-net only when there is active disruption. The Verdict-only DC-net is much slower than Dissent because every node must generate a computationally expensive zero-knowledge proof in every messaging round.
These experiments show that Verdict adds no overhead to Dissent's XOR-based DC-net in the absence of disruption. In addition, these experiments illustrate the flexibility of verifiable DC-nets, which can be used either as a “workhorse” for anonymous communication or more selectively in combination with traditional XOR-based DC-nets; we suspect that other interesting applications will be discovered in the future.
Figure 9: Time required to download home page context for Alexa “Top 100” Web sites (with linear trend lines).
Figure 10: CDF of time required to download home page context for Alexa “Top 100” Web sites.
Chaum recognized the risk of anonymous disruption attacks in his original formulation of DC-nets [13], and proposed a probabilistic tracing approach based on traps, upon which Waidner and Pfitzmann expanded [50].
Herbivore [24, 44] sidestepped the disruption issue by forming groups dynamically, enabling nodes to leave disrupted groups and form new groups until they find a disruption-free group. Unfortunately, the likelihood that a group contains some malicious node likely increases rapidly with group size, and hence anonymity set, limiting this and related partitioning approaches [1] to systems supporting small anonymity sets. Further, in an analog to a known attack against Tor [9], an adversary might selectively disrupt only groups he has only partially but not completely compromised. With a powerful adversary controlling many nodes, after some threshold a victim becomes more likely to “settle into” a group that works precisely because it is completely compromised, than to find a working uncompromised group.
k-anonymous message transmission [1] also achieves disruption resistance by partitioning participants into small disruption-free groups. A crucial limitation of the k-anonymity system is that an honest client is anonymous only among a small constant (k) number of nodes. In contrast, Verdict clients in principle obtain anonymity among the set of all honest clients using the system.
Dissent [14, 52] uses verifiable shuffles [10, 36] to establish a transmission schedule for DC-nets, enabling groups to guarantee a one-to-one correspondence of group members to anonymous transmission slots. The original Dissent protocol [14] offered accountability but limited performance. A more recent version [52] improves performance and scalability, but uses a retrospective “blame” protocol which requires an expensive shuffle when disruption is detected.
Golle and Juels [25] introduced the verifiable DC-net concept and formally developed a scheme based on bilinear maps, forming Verdict's starting point. To our knowledge this scheme was never implemented in a working anonymous communication system, however, and we find that its expensive pairing operations limit its practical performance.
Crowds [40], LAP [27], Mixminion [16], Tarzan [21], and Tor [18], provide anonymity in large networks, but these systems cannot protect against adversaries that observe traffic [4, 35] or perform active attacks [9] on a large fraction of network links. Verdict maintains its security properties in the presence of this type of strong adversary. A cascade of cryptographically verifiable shuffles [23, 36] can offer the same security guarantees that Verdict does, but these shuffles generally require more expensive proofs-of-knowledge.
Verdict is a new anonymous group messaging system that combines the traffic analysis resistance of DC-nets with disruption resistance based on public-key cryptography and knowledge proofs. Our experiments show that Verdict may be suitable for messaging in groups of hundreds to thousands of users, and can be combined with traditional XOR-based DC-nets to offer good normal-case performance while reducing the system's vulnerability to disruption events by two orders of magnitude.
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ZQL is a query language for expressing simple computations on private data. Its compiler produces code to certify data, perform client-side computations, and verify the correctness of their results. Under the hood, it synthesizes zero-knowledge protocols that guarantee both integrity of the query results and privacy for all other data.
We present the ZQL language, its compilation scheme down to concrete cryptography, and the security guarantees it provides. We report on a prototype compiler that produces F# and C++. We evaluate its performance on queries for smart-meter billing, for pay-as-you-drive insurance policies, and for location-based services.
A variety of private user data is used to tailor modern services, and some go as far as billing based on fine grained customer readings. For example, smart meters are used to charge a different tariff depending on the time of electricity usage; pay-as-you-drive insurance premiums depend on detailed driving pattern of drivers. Such schemes are currently implemented by collecting fine-grained information, and processing it on the service side—an architecture that has led to serious privacy concerns.
This paper supports an alternative approach: clients could perform sensitive computations on their own data certified by meters or car on-board units [55, 60], and upload only the results, together with a proof of correctness to ensure their integrity. We propose ZQL, a simple query language to express at a high level such computations, without any cryptographic details. Queries are compiled to code for the data sources, the clients, and the verifiers by synthesizing zero-knowledge protocols.
The most popular language for querying and performing computations on user data is SQL [29] based on relational algebra. The ZQL feature set was chosen to support a subset of SQL. Data is organized into tables of rows, with private and public columns. Queries accept tables as inputs, and can iterate over them to produce other tables, or aggregate values. Simple arithmetic operations on rows are supported natively, and so is a limited form of SQL joins through table lookups.
ZQL offers advantages over hand-crafted protocols, in that computations are flexible and can be expressed at a high level by application programmers. The computations can also be modified and recompiled, without the need to involve cryptography experts.
The ZQL compiler is free to synthesize custom zero-knowledge protocols behind the scene, and we currently support two main branches, for RSA and Elliptic Curve primitives. We also support a symbolic execution backend to derive estimates of the cost of evaluating and verifying queries. Synthesized protocols themselves are internally represented and optimized as fragments of an extended ZQL language until the final code is emitted. Intermediate ZQL is strongly typed, and precise refinement types can be used to verify security properties on the final compiled code, using F7 [16] or F* [58].
Informally, for a given source query, the desired security properties on the resulting ZQL-compiled code are:
This corresponds to the source query being executed by a fictional trusted third party sitting between the data sources, the user, and the verifier.
Contents The rest of the paper is organized as follows. §2 introduces our query language using a series of privacy-preserving data processing examples. §3 specifies our target privacy and integrity goals. §4 reviews the main cryptographic mechanisms used by our compiler. §5 describes the compilation process. §6 gives our main security theorems. §7 discusses applications and §8 provides experimental results and discusses future work.
This short version of the paper omits many details and discussions; an extended version with auxiliary definitions, proofs, and examples is available at research.microsoft.com/zql
.
Related work The ZQL language provides private data processing. The zero-knowledge protocols synthesized are standard Σ-protocols [32, 30, 33], but in ZQL they are used for proving the correctness of general computations rather than for cryptographic protocol design.
Arguably, previous works on zero-knowledge compilers focused on the latter as the primary use-case [19, 51, 2, 1]. The use of zero-knowledge for authentication and authorization as in credential and e-cash technologies [23, 51, 4] received particular attention, but, to our knowledge, no-one considered the use of Σ-protocols to prove the execution of general programs.
More specifically, a long line of work [19, 7, 2] culminating in the CACE compiler tackles the problem of automatically translating proof goals specified in the Camenisch-Stadler notation [22] into efficient Σ-protocols. Intermediate translations steps of ZQL (the shared translation) are at a similar level of abstraction to the Camenisch-Stadler notation but ZQL also synthesizes those representations from source code, and then proceeds to compile them to low level operations. ZKPDL [51], an alternative compiler for Σ-protocols, uses a natural language inspired specification of zero-knowledge proof goals. This specification language may be even closer in spirit to our intermediary notation, as it allows for the possibility to specify the generation of the protocol inputs. The authors of the CACE compiler discuss the difference and similarity between these two approaches in a Usenix poster [9]. The cryptographic prototyping language Charm [1] also includes a zero-knowledge proof compiler for Camenisch-Stadler statements which is currently primarily a proof of concept and thus less sophisticated than CACE and ZKPDL. We are also aware of an embedding of a zero-knowledge language in C++ [45].
ZQL differs from standard multi-party computation compilers [49], in that it assumes the client knows all private data. This assumption allows for single round protocols, and the efficient non-interactive implementation of non-linear operations including joins.
Figure 1: ZQL in a privacy friendly computation system.
Why ZQL? We design ZQL to support privacy protocols that rely on client-side computation while requiring high integrity [35]. In this setting, a number of (possibly independent) data sources provide signed personal data items to a user. The signed data is then used as an input to some computation performed on a user device on which the operation of a service relies (for example billing for a utility, determining the proximity of to a specific path, or profiling the shopping habits of a user). The results of the computation are then sent to the relying service, while private input data is kept secret. The ZQL compiler takes a high level description of the computation and is responsible for producing the code executed by the data sources to sign personal data, the computation prover and the computation verifier, as illustrated in Figure 1.
It is assumed that communications take place over private authenticated channels; the data sources are trusted by all to maintain the privacy of the raw personal data they produce, and to securely sign them. Given this, our protocols guarantee integrity through cryptographic proofs that establish the authenticity of the personal data inputs and the correctness of a particular computation. Thus, a malicious client cannot manipulate the result of the computation. On the other hand, the private inputs to the computations are kept secret by the user, and the proofs do not leak anything about them. Thus, privacy is preserved, and only the result of the computations (and any inferences that can be drawn from them) become known to the relying service. Compiling allows us to statically verify the security of the resulting protocols using refinement types (see the full paper). Hence, both the prover and the verifier, or anyone they trust, can separately review the source query, compile the protocol, and verify its security by typing.
There are advantages in de-coupling data sources from specific computations. It allows for meters, or services providing personal data, to remain simple, cheap, and generic. In turn, the computations, such as billing, can be updated without changing the devices that certify readings. Finally, private computations can aggregate disparate data sources that are not aware of one another, or may not trust one another with the privacy or integrity of the computations.
Figure 2: ZQL Syntax
We first provide a brief description of our source language and then illustrate its primitives through simple examples. §7 provides larger examples of protocols that have been proposed in the literature.
The ZQL language At its core, ZQL is a pure expression language, with built-in operators that act on integers and tables. Figure 2 gives its abstract syntax. A query θ e consists of the declaration of input variables (θ) that can be either public or private, and of an expression body (e).
Expressions consist of variables, operators applied to sub-expressions (including constants as a special case when is empty), and let bindings for sequential composition. Expressions evaluate to tuples of values: for example, the expression let x : int,y : int = e in e0 first evaluates the sub-expression e to a pair of integers vx,vy, then evaluates e0 after substituting vx and vy for x and y.
A variety of operators support arithmetic (0, 1, +, *), booleans (=, ), and operations on tables (map, fold, lookup). The iterators map and fold are parametrized by a ZQL expression, conceptually acting as the body of the corresponding loop. (We write these expressions as functions, but they can only specialize the iterator; they cannot be assigned to variables.)
Query inputs and expression results are specified using tuples of typed variables (θ for query inputs and ρ for sub-expressions). Each base type can be marked as public, and is otherwise treated as private. Types also include tables, where ρ indicates the type of each row in the table. Tables can contain mixtures of public and private columns; for example, (time:int pub, reading: int)table is the type of tables of private readings indexed by public times. On the other hand, the current ZQL compiler does not attempt to hide the query definition itself, or the number of rows in tables.
Intermediate expressions are automatically classified as public or private, depending on the types of their variables, following a standard information flow discipline: public inputs can flow to private results, but not the converse. Alternatively, a ZQL expression can be explicitly declassified, using the special operator e which specifies that the result of e can be released to the verifier, and marks it as public.
A ZQL query itself defines the privacy goals of the synthesized zero-knowledge protocols. For example, a query θ e, where e does not contain any declassification, states that only the final result of the query is released, and that the protocol should not leak any side information on inputs marked as private in θ. A key feature of the language is that the underlying cryptographic mechanisms are totally hidden in the definition of the ZQL query. Since the ZQL query defines what results are declassified, it is important that users, or their proxies, review it to ensure no more than the necessary information leaks from it. Additional privacy mechanisms, such as differential privacy [37], could be used to measure or minimize any leakage resulting from the query declassification.
The ZQL language is strongly typed, with a type system simple enough to allow for automated type checking and type inference, which means that the programmer only has to write the input types of the query. We write Γ e : ρ to state that expression e has type ρ in environment Γ. The type system ensures both runtime safety: e returns only to values of types ρ, and non-interference: in the absence of declassification, e does not leak inputs typed as private in Γ to results typed as public in ρ. The type system can also be used to track the maximal length of private variables to statically prevent arithmetic overflows. We omit the formal definition of the language semantics and type system, which are standard. Internally, ZQL relies on a richer type system with refinements types [14, 42] to keep track of various properties and to structure our security proofs—see the full paper.
ZQL by example We present the ZQL language and semantics through simple concrete examples, building to fuller queries that address problems in the literature in §7. The first example query computes the discriminant of the polynomial xk2 + zk + y, for public x and private y and z.
let discriminant (x:int pub) (y:int) (z:int) = (z*z − 4*x*y) Anticipating on its compilation, the part of the expression that is linear in the secrets, namely −4 * x * y, can be proved efficiently through homomorphisms of Pedersen commitments, while the non-linear z * z requires a Σ-protocol to prove the correctness of the private multiplication. The ZQL compiler will choose to synthesize the right proof mechanisms for each case.
The query declassifies its result, which leaks some information about y and z. For instance, given x = 30 and discriminant x y z = 1000, if the verifier knows a priori that 0 ≤ y 200 and 0 ≤ z 200, then it can infer that (y,z) is one of the pairs (5,40), (45, 80), (75, 100) or (155, 140), but our privacy theorem ensures that its does not learn which pair was actually used.
Our next examples illustrate the use of tables and iterators map and fold. The first query computes the sum of all integers in table X, while the second returns the sum of their squares. The third query takes a table with a public column and two secret columns and returns a table with the same public column, and the element-wise sum of the secret columns. By design, the size of the tables is not hidden by ZQL. (Hiding table sizes naively would involve padding the computation to the maximum size of allowed tables, which would be very expensive.)
In these queries, the iterators are parametrized by a sub-query, which is applied to every row of the table, accumulating the sums in s, or building another table of results. The equivalent SQL statements would be written select SUM(x) from X, select SUM(x*x)
from X
, and select a, x+y from T
. The first and third queries compute linear combinations of secrets; we compile them without the use of any expensive Σ-protocols.
We found sum queries to be frequent enough to justify some derived syntax: we write sum (ρ e) T as syntactic sugar for fold (s,ρ s + e) 0 T.
A key feature of the ZQL language is the ability to perform lookups on input tables. This provides a limited form of join and enable the computation of arbitrary functions with small domains. The expression lookup x T finds a row x,v1,...vn in T that matches x, and returns v1,...,vn. From an information-flow viewpoint, the result of a lookup on a private variable is also private (even if the lookup table is public); in that case, ZQL leaks no information about which row is returned. If multiple rows match x, the verifier is only able to assert that any matching row was used. If no row matches x, a runtime exception is raised on the prover side, and the proof fails. This semantics allow the implementation of functions, set membership tests, and half-joins.
To enable lookups, each row of the input table currently needs to be signed using a re-randomizable signature by a trusted source, so these tables are given a special type (ρ lookuptable) and lookups on intermediate, computed tables are not supported.
The example blur, listed below, repeatedly uses a lookup to map private city identifiers to their respective countries; the resulting table is then declassified.
The equivalent SQL statement would be select F.country from X, F where F.city = X.city
. The query implementation relies on a data source that issues a signed table from cities to countries.
The next two sections provide rigorous security definitions for what the ZQL compiler achieves and the cryptographic building blocks it uses, necessary for formulating our security theorems in §6. The mere fact that we can give formal cryptographic definitions for a large class of cryptographic protocols relies on our simple expression language having a formal semantic for both source and compiled programs. Readers interested in compiler architecture can jump straight to §5, or those curious about applications can find them in §7.
Notations Consider a well-typed ZQL source query Q θ e, with l input variables θ = (xi : τi)i=0..l−1, that declassifies only its result. As explained in §2, the typed variables θ specify the data sources and privacy policy. Let range over values of type θ, and R = Q() be the corresponding query result. Given Q, our compiler produces queries (S,(Ki,Di)i=0..l−1,P,V) with formal parameters indicated in parentheses as follows. (We use primed variables for compiled values.)
Main Properties We first define functional correctness when all participants comply with the protocol.
Definition 1 (S,(Ki,Di)i=0..l−1,P,V) correctly implements the source query Q when, for any source inputs : θ and χ := S, (ski,vki := Ki(χ))i=0..l−1, we have
We define privacy as indistinguishability between two series of chosen inputs that yield the same query result.
Definition 2 Given a source query Q and an adver sary , let AdvPriv = |2Pr[ wins]−1| where the event ‘ wins’ is defined by the following game:
(S,(Ki)i=0..l−1,(D)i=0..l−1,P,V) is (t,ε)-private when, for all running at most for time t, we have AdvPriv ≤ ε.
Note that we do not formally provide privacy protection against corrupted data sources. To strengthen our scheme against data source attacks, we would have to rerandomize all cryptographic material flowing from data sources to verifiers, which precludes our efficient use of homomorphic commitments.
We define integrity as a game in which an adversary has to produce an invalid but accepted response.
Definition 3 Given a source query Q and an adversary , let AdvSnd = Pr[ wins] where the event ‘ wins’ is defined by the following game:
(S,(Ki)i=0..l−1,(D)i=0..l−1,P,V) is (t,ε)-sound when, for all running at most for time t, we have AdvSnd ≤ ε.
Depending on the adversary, there can be zero, one, or numerous valid responses. In fact, depending on the query and the input tables, whether a response is valid may not even be efficiently checkable. The definition is, however, still meaningful.
Signatures A digital signature scheme allows everyone in possession of the verification key vk to verify the authenticity of data signed by the owner of the corresponding signing key sk. We use signatures to let verifiers authenticate data sources. Instead of signing private data in the clear, data sources sign public commitments; thus, the resulting signature tags are also public.
Cryptographic groups Besides conventional digital signatures, for which we use standardized schemes, our remaining cryptographic tools can either be specified for composite order groups, obtained by computing modulo an RSA modulus, or for prime order groups with a bilinear pairing. We use the latter for our presentation and formal analysis as it offers both performance and conceptual advantages.
Let G, , and GT be groups of prime order q. Let g G and be generators of G and respectively. A bilinear pairing is an efficiently computable function : G* GT that is bilinear, i.e. ∀a, b q: e(ga, b) = e(g, )ab and non-degenerate, i.e. e(g, ) ≠ 1. Whenever possible we perform all operations in the base group G with the shortest representation.
Commitments A commitment scheme allows a user to commit to a hidden value such that he can reveal the committed value at a later stage. The properties of a commitment scheme are hiding: the committed value must remain hidden until the reveal stage, and binding: the only value which may be revealed is the one that was chosen in the commit stage. We use the perfectly hiding commitment scheme proposed by Pedersen [54]: given a group G of prime order q with generators g and h, generate a commitment Cx to x q by sampling a random opening ox q and computing Cx = gxhox. The commitment is opened by revealing both x and ox.
Two useful properties of Pedersen commitments are (i) their homomorphic property that allows to derive a commitment to the linear combination of input values; and (ii) their algebraic structure that allows for efficient zero-knowledge proofs. For RSA groups, we use commitments with similar properties [43, 34].
Zero-knowledge proofs [59, 39, 11] provide a verifying algorithm with an efficient means for checking the truth of a statement by guaranteeing that given access to a successful proof generation algorithm one can extract a secret witness for said truth. At the same time, zero-knowledge proofs [47, 46], and the related concepts of witness indistinguishable proofs [38, 32], allow the prover to keep this witness secret. We make use of a long line of work on efficient proofs of conjunctions of discrete logarithm (DL) representations [57, 28, 52, 32, 30, 18, 26, 33, 50]. For non-linear computations such as multiplication, we use the approach of Brands [18], Camenisch [26], and Cramer and Damgård [31].
DL representation proofs are interactive protocols of three or more messages. To ease deployment and minimize communications, we use the Fiat-Shamir Heuristic [40] and replace random messages sent by the verifier with hash function computations. The resulting protocols can still be formally analyzed in the random oracle model [12, 62].
Proof compatible signatures The combination of zero-knowledge proofs and digital signatures allows us to prove authentication properties on private data, such as, for instance, the existence and properties of a matching row when performing a private lookup.
We use CL signatures [20], as they are compatible with DL representation proofs. The original scheme was proven secure under the Strong RSA assumption and requires groups with hidden order [6, 24]. Other CL signature proposals rely on a variety of assumptions based on bilinear pairings [21, 17, 3, 25] and require more standard prime order DL-representation proofs. We also use the scheme of [25], a good trade-off between security and performance. An additional benefit is that it is syntactically very close to RSA-based CL signatures.
To certify our lookup tables, data sources extend each row of the table with a CL signature. For instance, tables of triples of private integers (x0,x1,x2) are extended to tables with rows of the form (x0,x1,x2,e,v,A). The verification equations for RSA and bilinear pairing based CL signatures are of the form Z = and ) respectively, where (Z,R0,R1,R2S,pk) are group elements that form the components of the verification key vk. Both verification equations can be proven using efficient DL representations. The security of these two schemes is based on the strong RSA assumption and the strong Diffie-Hellman (SDH) assumption respectively.
Protocol Overview The ZQL compiler takes a source query, which contains no cryptographic computations, and automatically produces programs for each data source, for the prover, and for the verifier.
First, the compiler augments the source query with various cryptographic commitments to secrets and representation equations to generate a shared translation that will lead to both prover and verifier code. Some commitments are computed and signed by the data sources that certify the computation inputs, and simply passed to the prover and verifier programs. Others, representing intermediate secrets in the query, are interleaved with the source computation: for any such secret x, the prover may sample a secret opening ox, compute a Pedersen commitment Cx =G gxhox, and send it to the verifier; and the verifier may check it using a zero-knowledge proof.
Linear relations between secrets do not require complex zero knowledge proofs, as they can be checked by the verifier simply by using the homomorphisms of Pedersen commitments. For example, a private sum z = x+y will have commitment Cz =G Cx * Cy. Such commitments need not be transmitted, as they can be recomputed by the verifier. On the other hand, non-linear relations between secrets, including multiplication and table lookup, require Σ-protocol proofs to be synthesized. For instance, to prove that z is the product of a secret x committed in Cx and a secret y, one proves the conjunction of the representation equations Cx =G gxhox and 1 =G (Cx)−ygzhoz. Note that the second equation uses a variable commitment Cx as a base.
All Σ-protocols used in the compiler come down to proving knowledge of the secret values underlying the discrete logarithm representations of public group elements, and equality relations between the secret values. Assume the ZQL query reduces to proving in zero-knowledge the representations =G [] of a number of commitments , represented by public group elements, using a number of secrets (including secret openings). For the multiplication example above, we have two equations on five secrets: (x,ox,y,z,oz) and [(α,β,γ,δ,ε)] ≡ (). The zero-knowledge protocol synthesized works as follows. The prover
The proof sent to the verifier consists of the public parameters and values, the commitments , the global challenge c, and the responses . The verifier checks that H(c*G[]) = c, which ensures that the prover knows the secret values in the commitments [40, 12]. As detailed below, our compiled prover and verifier programs introduce secrets and process equations on the fly, depending on the query and its inputs.
Once the shared translation is decided, its specialization into prover and verifier code is relatively straight-forward. It involves mainly ensuring the right data flows within the query processing to compute all commitments and responses, and to correctly verify them in the same order. The inputs of the shared translation also determine the data source programs that generate keys, compute commitments, and sign extended data.
Embedding cryptography within ZQL Our compiler mostly operates within ZQL, with F# and C++ back-ends to turn the compiled queries into executable code. This enables us to reason about code in a simple, domain-specific language. To this end, Figure 3 supplements the source language of Figure 2 with the types and operators for expressing cryptographic operations. Expressions are extended with assert, used in the shared translation to embed proof obligations. As an invariant, all asserted equations ϕ must hold at runtime. We have types and operations for integers modulo q (q, written num), for group elements (eltG), and for bitstrings, and more specific sub-types to keep track of their usage. For instance, hash is the sub-type of bitstrings representing cryptographic hashes, and xopening is a sub-type of num tracking openings generated for the secret value x. In our presentation, we use standard abbreviated forms for their operations; for instance we often omit group parameters, writing gx for expGgx.
Figure 3: ZQL internal constructs
Setup and Key Generation The abstract setup S produces global parameters χ supplied by our cryptographic runtimes, including q, the prime order of G, , and GT; and independent, random generators g, h, (Ri)i=0..n, S, Z in G; and in . Its fixed code is provided by our cryptographic libraries.
We use DLT ⊆ 0..l − 1 to denote the subset of data sources that sign lookup table. The key generation Ki is defined as keygen χ when τi is a scalar or a table (i DLT), and as the CL-key generation let sk = sample() in sk,()sk when τi is a lookup table (i DLT). The data source code Di is explained below, as we discuss these two representations.
Shared Translation We extend the source query with openings and commitments, but not yet with the corresponding proof randomness and responses.
The main difficulty of the translation is to select cryptographic mechanisms, and notably intermediate commitments, to run the private computation: for every private sub-expression, our compiled protocol may rely on zero, one, or more Pedersen openings and commitments, and it may allocate some proof randomness or not.
In this presentation, for simplicity, we give a formal translation that assumes that all source private integer variables are handled uniformally, with a commitment in the same group, sharing the same bases, and (later) with a proof randomness for the secret and for its opening. Figure 4 and 5 show how we translate types and expressions, respectively, in this special case. We discuss our general, more efficient compilation scheme below.
A source expression is public in a typing environment when all its free variables have public types. The translation leaves public types (1) and expressions (3) unchanged. The translation of a private integer expression is a triple of an integer for the source value, its opening, and its commitment, with the types given on line (2).
Fresh commitments Our compilation rules may require openings and commitments on their arguments, and may not produce openings and commitments on their results. Our compiler attempts to minimize those cases. Nonetheless, assuming for instance that we need a commitment for z, we produce it on demand, using the expression abbreviation Commit z below
The translation is compositional, as can be seen on lines (4,5,6) in the figure. For instance, we translate let expressions by translating their two sub-expressions, and we translate source maps to maps that operate on their translated arguments.
The translation assumes prior rewriting of the source query into simpler sub-expressions. For instance, to compile the discriminant query of §2, we first introduce intermediate variables for the private product and the declassification, rewriting expression (z*z−4*x*y) into
As a sanity check, our translation preserves typing, in an environment extended with the constants used in our cryptographic libraries; variants of this lemma with more precise refinement types for the prover and verifier translation can be used to verify their privacy and integrity.
Lemma 1 (Typing the shared translation) Let
Next, we explain and illustrate the base cases of the shared translation on private expressions.
Figure 4: Shared translation of types and environments
Expressions affine in private variables are translated by supplementing the expression with a linear expression on openings and an homomorphic product of commitments (7); we easily check that the resulting triple (z,oz,Cz) is such that Cz = gz *G hoz. Note that the public constant a0 is not included in the opening computation.
Expressions polynomial in private variables are translated using an auxiliary representation equation for every product of private expressions, depending on the availability of openings and commitments—see translation rule (8). To illustrate affine and quadratic expressions, let us translate the discriminant query θ (ed) where the source environment θ = x : int pub,y : int,z : int specifies that x is public, whereas y and z are private. By definition, the translated environment θ is
and, from the translation invariant, we already know that Cy =G gy hoy and Cz =G gz hoz. Applying rules (4), (8), (7), and (10) and inlining the definition of Commit we arrive at the shared translation
and we easily check that Cd is a commitment to z2 − 4xy with opening op−4x*oy. The code of the shared translation makes explicit the two representation equations for the private multiplication, presented more abstractly at the beginning of §5. Anticipating on the next stages of the translation, the prover will compute Cp, pass it to the verifier, and extend its challenge computation with equation E2, whereas the verifier will receive some Cp and use it to check this equation. Note that the cryptographic overhead depends on the target level of privacy: given instead a source environment θ declaring that x is also private, the same discriminant expression would involve representation proofs for two private products.
Figure 5: Shared translation of typed source expressions
Private lookups are translated using proofs of knowledge of signatures. To enable this, data sources extend input tables T : ρ lookuptable, where ρ is of the form x0 : int,...,xn : int, into tables T′ : (ρ,σ)table with a CL signature at the end of each row, as follows:
Although this pre-processing may be expensive for large tables, it can be amortized over many queries.
A lookup within a source query, such as the one from the blur query of §2, is translated to a proof of possession of a CL signature. For instance, let us translate the expression lookup c F in environment
The environment is first translated to
The lookup itself is translated (using rule 9) to
This code first looks for a signed tuple (city,country, e,v,A) in F such that c = city and retrieves the remaining elements; it then proves knowledge of this tuple, without revealing which tuple is used in the proof, by blinding the element A of the signature. (Note that this proof internally relies on a proof of multiplication.)
Iterators and Committed Tables ZQL supports tables with mixed public and private columns, as well as iterators map and fold. To enable processing on their private contents, data sources extend tables with commitments and sign them. For instance, here is the code for the provider of the table of cities for the blur query.
This code first uses map to extend each source integer with a fresh opening and commitment, using the Commit abbreviation; this yield the extended table X′ passed to the prover. It then uses fold to compute the joint hash of these commitments, and finally signs the result. (In the hash computation, H0 is some fixed tag, and we omit a conversion from eltG to hash). As outlined at the end of this section, both the prover and the verifier perform some initial processing for these extended tables: the prover must show his knowledge of the representation for these commitments, and the verifier must verify the signature and the representation proofs for these commitments.
We illustrate the translation of the map iterator (5) on the blur query from §2. The translation of fold (6) is similar. The map expression of blur is translated to another map expression, in a translated environment that provides the extended input X : x : int table:
and the translation continues with the lookup expression, as explained above.
Prover Translation Continuing from the result of the shared translation, the prover translation uniformly turns its assertions into a custom non-interactive Σ-protocol, in two passes, written -1 and -2, that produce code first for the message randomness, then for the responses.
Figure 6 defines these two passes, as well as the top-level query translation -PROVER
that combines -1 and -2 with additional glue. Overall, the prover for a source query θ e is thus defined using this translation after the shared translation: PROVER
.
First-message translation In the first pass, H is the public hash incrementally computing the global challenge; a is the accumulated cryptographic evidence that will be sent to the verifier; and every private variable x is replaced with a pair x,tx where tx is the proof randomness for x. (Openings are treated as any other secrets.) In combination with the shared translation, every private source expression becomes a tuple of the form e 1 : (x,tx,ox,tox,Cx) where x is the value of e, tx is the randomness for x, ox is an opening for x, tox is the randomness for ox, and Cx is a commitment to x. For efficiency, all these additional values are optional in our compiler.
Compositionally, the type translation ρ1 maps shared environments to environments extended with an entry for each proof randomness, and leaves the other entries unchanged; the expression translation -1 takes H and a as free variables and returns their updated values of the form extend ... (extend H E1) ... En, with one exponential expression Ei for each assertion in e, and a, a1, ...am for each additional evidence aj produced by e.
We explain the main cases of the first-pass translation. Public expressions are (still) unaffected. Note that they may includes public expressions generated by the shared translation, such as products of commitments. Affine private expressions are translated homomorphically, adding a corresponding linear expression on the proof randomness. Private exponential computations yields evidence that must be communicated to the verifier; we add their results to a. More complex private expression are supplemented with the sampling of a fresh message randomness for their result—we rely on the assertions introduced by the shared translation to prove those expressions.
Assertions of equations of the form eP = ex are transformed into extensions of the global-challenge computation. The left-hand-side must be a public expression, and is discarded. The right-hand-side must be an expression on private variables. Let et be the expressions obtained by replacing each of theses variables x with tx. The translation computes it, and extends H with the result. Declassifications are similarly translated: the declassified value x is added to a, and the hash is extended with gtx to link it to its proof randomness (as if we were translating assert gx=gx). Continuing with our example, we give below the expression e1, obtained by translating the shared-translation of the discriminant query, after removing the unnecessary commitment Cd. (This code has been rearranged for simplicity; the full code produced by the translation rules appears in the full paper.)
Response Translation In the second pass, after completing the computation of the global challenge c, we revisit the collected evidence a, and we replace every pair of a private value x and associated proof randomness tx with the response rx = tx −c*x. This pass is defined by induction on the type of a, produced by the first-message translation, which indicates where those pairs are. (Technically, this pass also needs to re-balance nested tuples, as the prover produces (...(a0,a1),a2,...,an) whereas the verifier consumes (a0,(a1,(...an)...)); we omit those details.) Continuing with the discriminant prover, the resulting evidence a : δ binds the series of variables
and thus δ2 simply computes the responses for the five pairs of secret and associated proof randomness:
Top-Level Prover Translation (P) We arrive at the following code for the prover, given here for the discriminant query. (See Figure 6 for the general case.) This prover relies on data sources extending both private source inputs y and z with an opening, a commitment, and a signature on that commitment
In this code, H0 is the hash of all public values used as bases in the Σ-protocol, θD
is the tuple type of the (extended) provided data, and θpub
is an expression that extracts their public parts (including the plain signatures, excluding lookup tables). The type δ of the additional evidence depends on the first-pass of the translation, and is used to drive the second part. In-between, the final value H : hash is finalized into the global challenge c : num. The last line assembles the message passed from the prover to the verifier, which consists of (1) the public parts of the input data and of the result; (2) the additional evidence for proving this result; and (3) the global challenge for verifying this proof.
Verifier Translation Also following the shared translation, the prover translation leaves the public parts of the query unchanged, and it incrementally re-computes the challenge using the responses and additional evidence prepared by the prover for the private parts of the query. Figure 7 gives the compositional translation applied to the result of the shared translation, and the top-level translation - VERIFIER
. In combination, the verifier is defined as V VERIFIER
.
Compositional translation -v
In the verification pass, H is the public hash incrementally re-computing the global challenge, a is the received evidence consumed by the verifier, and every private variable x is replaced with a (public) response variable rx—the type translation ρv
performs this replacement. In combination with the shared translation, every private source expression now yields a tuple of the form rx,rox,Cx where rx and rox are (presumably) responses associated with the exponents committed to Cx. (Again, all these values are actually optional in the compiler.)
The verifier expression ev
takes free variables H and a, and additionally returns the updated H and the rest of a. Public expressions are unchanged. Private expressions are discarded, and replaced with response expressions, either computed (for affine expressions) or read off the evidence a (for more complex expressions). Note that the translation of affine expressions includes a term −c * a0 for the constant, to ensure that, given correct responses for its free variables, the translation of an expression also produces a correct response.
Assertions of equations of the form eP = ex are translated to hash computations, by computing the expression (eP)c* er, where er is obtained from exby replacing every variable x with rx, and by extending H with the result. Declassifications x are similarly translated by reading x off the evidence a and extending the hash with gx+c*rx.
For instance, continuing with the discriminant query, the (simplified) verifier translation ρ ed v
is
Top-Level Verifier We finally give below the top-level verifier translation, also for our sample discriminant query; see Figure 7 for additional details.
The prover first verifies the signatures on the two received commitments for y and z; it starts the challenge re-computation on the representation equation for input z (since we need a response for z an oz to check the proof of the square z2), then proceeds with the verification for the query expression; it checks that the received and recomputed challenges match; it finally returns the public result d (unless of course verify or check raised an error.)
Consider a well-typed ZQL source query Q θ e, with l input variables θ = (xi : τi)i=0..l−1, that declassifies only its result and its translation (S,(Ki,Di)i=0..l−1, P,V). We give our main results based on the definitions of §3. We refer to the full paper for the proof outlines, and for a discussion of automated, type-based verification for the compiled protocols. For functional correctness and soundness, we also suppose that there is no source-program overflow—formally, integers and their operations are computed modulo q.
Theorem 1 (Functional Correctness)
(S,(Ki,Di)i=0..l−1, P,V) is correct.
Theorem 2 (Perfect Privacy)
(S,(Ki,Di)i=0..l−1,P,V) is (t,0)-private.
Our soundness theorem below is in the random-oracle model, requiring that extend and finalize are independent random oracles. It assumes that the Discrete Logarithm (DL) and Strong Diffie Hellman (SDH) assumptions hold—to guarantee the security of commitments and CL signatures, respectively—and assuming that the lCMA conventional signatures primitives of data-sources are chosen message attack secure (CMA).
Theorem 3 (Computational Soundness)
(S,(Ki,Di)i=0..l−1,P,V) is (t,ε)-sound, where the execution time t and success probability ε are respectively lower- and upper-bounded by the corresponding parameters of the assumptions.
Concretely, let tDL, tSDH, tCMA andεDL, εSDH, εCMA be those parameters, for large enough bounds on the number of calls to their primitives. If t tCMA − tred1, t (tDL − tred2)/2, and t (tSDH − tred3)/2, where the tredi are small constants, then ε 1CMA · εCMA + Q · , where Q is the number of random oracle queries made by and q is the order of G and thus also the size of the challenge.
In contrast with our privacy theorem, which is information-theoretic, our concrete-security soundness theorem is somewhat more cumbersome than the asymptotic security theorems often found in theoretical cryptography, but it remains closer to reality, in which cryptographic primitives come with concrete security bounds, and thus provides guidance for configuring these primitives to achieve adequate security.
The expressivity of ZQL stems from the ease with which the primitive operators can be composed to build larger queries. We illustrate this by providing queries for applications in prior literature.
In the setting of smart metering, a meter issues signed private readings, and a household needs to compute their bill on the basis of a public tariff policy that maps each reading to a fee over time. A number of custom privacy protocols have been proposed to do this [55, 48]. One such billing policy takes a table of public times and private readings, as well as a lookup table from readings to prices to be summed:
The query looks up the non-linear price of each reading in the table T using lookup and sums the results.
Another popular application in the literature involves pay-as-you-drive insurance schemes. Such schemes require drivers to fit a black box in their car that records their driving habits, and allow the insurer to compute a premium based on the safety of the driving, as well as distance or time. The use of zero-knowledge protocols to support such automotive settings, including road usage billing and tolling has been well established in the literature [5, 61, 44].
An example policy used by a UK auto insurance pilot scheme involves recording the segment of road travelled, the distance and the speed and use those to subtract “points” from a virtual driving license. Points are linked to the magnitude of speed violations on the road segments travelled. The insurance rate per mile is then computed as a function of the points subtracted, up to a threshold where the insurance becomes invalid. We can express such a policy in ZQL using a table for the recorded road segments used, and lookup tables to encode the speed limit of road segments, the penalty points per magnitude of violation, and finally the insurance premium for a certain number of points:
The pay as you go application makes extensive use of lookup tables to simulate traditional database half-joins between tables. The values of these tables are largely arbitrary and related to the insurance policy. We note that to fully secure this insurance mechanism, some information about the start and end times of the segments must also be signed by the black box and verified to avoid malicious replays or omissions. We also note that, depending on policies, the query leaks information from individual secret inputs to the computed premium. Securing against source query leakage is beyond the remit of ZQL, but could be achieved by adapting differentially private schemes [36].
The final example illustrates how ZQL lookups can be used to approximate functions on real numbers. A very common problem in privacy preserving protocols for location based services is to prove that the reading from a trusted sensor is at a certain distance from a specific location. For example privacy friendly theft prevention system may need to periodically prove that a trusted reading is within a certain distance from their (secret) home location [56]. Similar protocols can be of use for offender monitoring, curfew enforcement or tracking of trucks of goods. Previous work has proposed zero-knowledge distance protocols, such as [15].
The gps distance protocol takes as secret inputs the longitude and latitude of two points, as well as some precomputed tables, and returns an approximation of the distance between the two points in meters. The approximation used works for small distances under the assumption that the curvature of the earth is negligible. It still requires the computation of the trigonometric function cos(x/2). To achieve this, we assume the input longitude and latitudes are in the units rad/105, and that intermediate computations are precise to two decimal points.
In this example, lookups are used to approximate real functions, including trigonometric functions and division which is not yet natively supported. The hcos table has a large domain (~ 1 million items) but can be reused across multiple operations. Other tables have a relatively small domain related to the distances of the points compared.
Prototype implementation & limitations Our compiler uses the language development and testing facilities of F#: we program source queries as (a small subset of) F#, then extract the ZQL abstract syntax tree (AST) through reflection. The compilation pipeline performs ZQL type-checking, applies the shared translation, and finally produces the data-source, prover and verifier code. Each of these steps operates on well-typed ZQL expressions. This enables us to share many optimizations as ZQL-to-ZQL transformations.
Besides standard optimizations, the compiler supports a more general variant of lookup primitive, named find, that returns any lookup-table row that meets a condition expressed as a boolean expression on the whole content of the row. This provides more flexibility on the use of lookup tables, but its compilation is more complex.
In addition to cryptographic code, ZQL also synthesizes a custom marshaller and un-marshaller for the cryptographic evidence and results of the query. Following the ZQL approach, this code is specialized and compiled for a specific proof. Hence, the size and location of all fields, parametrized on the input table lengths, in known at compile time and there is no need to rely on a general-purpose parser, a component that is traditionally a source of security flaws.
We support three distinct compiler back-ends:
Concrete F# The main branch of the compiler transforms and compiles the final ZQL data source, prover and verifier into F# code, linked either to the standard .NET big integer libraries, or to proprietary managed libraries that support pairing based cryptography.
Symbolic F# The second branch of the compiler is linked against symbolic execution libraries for all the operators and primitives. Interestingly, since the F# branch makes extensive use of abstract types in the final prover and verifier, there is no need to write a separate symbolic execution environment: the mathematical functions can simply be replaced with equivalents computing on symbolic polynomials. The resulting code jointly computes the execution time and the proof size, as polynomial expressions of the input lengths and the unit costs of each cryptographic operation. We use symbolic execution to predict the performance of the compiler, and hope to use it in the future to chose between alternative optimization strategies at compile time.
Concrete C++ Finally, we support compilation of the verifier to native C++ code, linked with high performance native big integer libraries. This branch involves transforming the functional ZQL verifier and unmarshaller code into an imperative program and optimizing it using standard low-level techniques such as removing dead code, removing spurious copies, and minimizing memory re-allocations. The resulting native program takes a proof as an input, and outputs the verified result. The native branch does not support on-the-fly compilation and execution, and currently works for RSA groups only. Yet the resulting binary can be easily deployed where .NET runtimes are not available.
The process of compiling a query remains fast even on small devices. Thus, a service could simply send ZQL queries to the user, to be reviewed, compiled, then executed locally. To this end, our compiler also has an API that takes source ZQL ASTs, compiles them to F#, then also compiles and dynamically load the resulting F# code. This is likely to be faster, cheaper, safer and more reliable than providing custom binaries every time the query is updated.
The prototype compiler is still subject to limitations. For instance, some optimizations, such as moving de-classifications up in the dataflow to minimize the size of the Σ-protocol, or batching some exponential computations, could be systematically applied.
Performance Evaluation Table 1 illustrates the performance of ZQL code for the three applications presented in Section 7. It provides the execution time for the F# provers and verifiers, as well as the size of the proof, for different security parameters of RSA (1024 bits, 2048 bits) and the pairing based cryptography over a 254 bits Barreto-Naehrig curve (BN254). The smart_meter_bill readings table is of size lread = 5 and the pay_as_you_go query road segments table is of size lseg = 25. This means that for the 1024 bit RSA branch, the prover can process a meter reading every ∼ 120mS or a segment of road every ∼ 360mS. The proof size for the pairing based branch is ∼ 755 bytes per reading and ∼ 1921 bytes per segment. As expected, the pairing based proofs are more compact than their RSA counterparts for the same or even higher levels of security: a 254 bits curve provides about 128 bits of security which would correspond to a 3072 bits RSA modulus.1 This is further aggravated by the lack of tightness in RSA-based security reductions [8]. Prover timings take into account the generation of random numbers. We note that these numbers, while slow by the standards of non-privacy friendly computation, are perfectly adequate for computing bills and insurance premiums in real time.
Besides the main F# backend we experimented with a C++ back-end that compiles to a native verifier. Although more performant in absolute terms, the native verifier is not significantly faster than its F# counterpart. The RSA 1024 bit computation of the pay_as_you_go verifier took 4,290mS as compared with the F# backend using native big integer binding that took 5,111mS. Profiling the C++ execution indicates that more than 90% of the time is spent inside the modular multiplication function performing exponentiations. Thus, improving the performance of ZQL comes down to either faster exponentiations (through batching, multi-exponentiation or hardware) or reducing the number of operations required through more aggressive simplification of the protocols.
Finally, table 1 illustrates the output of the symbolic execution engine on these three applications, in a configuration that measures the number of exponentiations (E), pairings (), and signature verification operations (sigv) in terms of the length of the input tables (lread and lseg), and ignore all other costs.
Where next? The current ZQL language is subject to some intrinsic limitations, and we are actively exploring options to overcome them.
Table 1: Performance for our three applications: runtime, and communicated proof sizes. The smart_meter_bill readings table is of size lread = 5, the pay_as_you_go query road segments table is of size lseg = 25, the gps_distance is between two points.
Many of the limitations are cryptographic and could be overcome by applying more advanced protocols. For example, lookup and find are currently restricted to externally signed tables. Lookup tables based on accumulators [13] or vector commitments [27] would be more flexible and may reduce cost. At a lower level, table processing leads to many similar cryptographic operations in a data-parallel style. Batch proof and verification techniques and homomorphic signature schemes could speed them up [10]. Well known, zero-knowledge proofs for disjunctions, would allow ZQL branching statements. The shared translation could bundle multiple secrets per commitment. Alternatively one could also employ completely different low-level proof engines, e.g., [53]. We note that choosing automatically the best encoding and technique, as well as compiling them in a compositional manner are challenging open problems. For some preliminary work in this direction see [41].
On the language design side, we illustrated in §7 how functions can be approximated though lookups. ZQL could automate and optimize the process by compiling data sources that calculate and sign function-tables appropriately. Finally, by design, our source language shields programmers from cryptography, and this may hinder power-users that wish to customize our compilation scheme, or experiment with its variants. Similarly, some users may wish to rely on external, unverified procedures, and use ZQL only to validate their results. Advanced APIs exposing the internals of the ZQL compiler without breaking its invariants would help them.
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Cloud storage service providers such as Dropbox, Mozy, and others perform deduplication to save space by only storing one copy of each file uploaded. Should clients conventionally encrypt their files, however, savings are lost. Message-locked encryption (the most prominent manifestation of which is convergent encryption) resolves this tension. However it is inherently subject to brute-force attacks that can recover files falling into a known set. We propose an architecture that provides secure deduplicated storage resisting brute-force attacks, and realize it in a system called DupLESS. In DupLESS, clients encrypt under message-based keys obtained from a key-server via an oblivious PRF protocol. It enables clients to store encrypted data with an existing service, have the service perform deduplication on their behalf, and yet achieves strong confidentiality guarantees. We show that encryption for deduplicated storage can achieve performance and space savings close to that of using the storage service with plaintext data.
Providers of cloud-based storage such as Dropbox [3], Google Drive [7], and Mozy [63] can save on storage costs via deduplication: should two clients upload the same file, the service detects this and stores only a single copy. The savings, which can be passed back directly or indirectly to customers, are significant [50, 61, 74] and central to the economics of the business.
But customers may want their data encrypted, for reasons ranging from personal privacy to corporate policy to legal regulations. A client could encrypt its file, under a user's key, before storing it. But common encryption modes are randomized, making deduplication impossible since the SS (Storage Service) effectively always sees different ciphertexts regardless of the data. If a client's encryption is deterministic (so that the same file will always map to the same ciphertext) deduplication is possible, but only for that user. Cross-user deduplication, which allows more storage savings, is not possible because encryptions of different clients, being under different keys, are usually different. Sharing a single key across a group of users makes the system brittle in the face of client compromise.
One approach aimed at resolving this tension is message-locked encryption (MLE) [18]. Its most prominent instantiation is convergent encryption (CE), introduced earlier by Douceur et al. [38] and others (c.f., [76]). CE is used within a wide variety of commercial and research SS systems [1, 2, 5, 6, 8, 12, 15, 32, 33, 55, 60, 66, 71, 78, 79]. Letting M be a file's contents, hereafter called the message, the client first computes a key K H(M) by applying a cryptographic hash function H to the message, and then computes the ciphertext C E(K,M) via a deterministic symmetric encryption scheme. The short message-derived key K is stored separately encrypted under a per-client key or password. A second client B encrypting the same file M will produce the same C, enabling deduplication.
However, CE is subject to an inherent security limitation, namely susceptibility to offline brute-force dictionary attacks. Knowing that the target message M underlying a target ciphertext C is drawn from a dictionary S = {M1,...,Mn} of size n, the attacker can recover M in the time for n = |S| off-line encryptions: for each i = 1,...,n, it simply CE-encrypts Mi to get a ciphertext denoted Ci and returns the Mi such that C = Ci. (This works because CE is deterministic and keyless.) Security is thus only possible when the target message is drawn from a space too large to exhaust. We say that such a message is unpredictable.
Bellare, Keelveedhi, and Ristenpart [18] treat MLE formally, providing a definition (semantic-security for unpredictable messages) to capture the best possible security achievable for MLE schemes in the face of the inherent limitation noted above. The definition is based on previous ones for deterministic encryption, a primitive subject to analogous inherent limitations [16, 17, 27]. The authors go on to show that CE and other mechanisms achieve their definition in the random-oracle model.
The unpredictability assumption. The above-mentioned work puts security on a firm footing in the case messages are unpredictable. In practice, however, security only for unpredictable data may be a limitation for, and threat to, user privacy. We suggest two main reasons for this. The first is simply that data is often predictable. Parts of a file's contents may be known, for example because they contain a header of known format, or because the adversary has sufficient contextual information. Some data, such as very short files, are inherently low entropy. This has long been recognized by cryptographers [43], who typically aim to achieve security regardless of the distribution of the data.
The other and perhaps more subtle fear with regard to the unpredictability assumption is the difficulty of validating it or testing the extent to which it holds for “real” data. When we do not know how predictable our data is to an adversary, we do not know what, if any, security we are getting from an encryption mechanism that is safe only for unpredictable data. These concerns are not merely theoretical, for offline dictionary attacks are recognized as a significant threat to CE in real systems [77] and are currently hindering deduplication of outsourced storage for security-critical data.
This work. We design and implement a new system called DupLESS (Duplicateless Encryption for Simple Storage) that provides a more secure, easily-deployed solution for encryption that supports deduplication. In DupLESS, a group of affiliated clients (e.g., company employees) encrypt their data with the aid of a key server (KS) that is separate from the SS. Clients authenticate themselves to the KS, but do not leak any information about their data to it. As long as the KS remains inaccessible to attackers, we ensure high security. (Effectively, semantic security [43], except that ciphertexts leak equality of the underlying plaintexts. The latter is necessary for deduplication.) If both the KS and SS are compromised, we retain the current MLE guarantee of security for unpredictable messages.
Unlike prior works that primarily incorporate CE into new systems, our goal is to make DupLESS work transparently with existing SS systems. DupLESS therefore sits as a layer on top of existing simple storage interfaces, wrapping store, retrieve, and other requests with algorithms for encrypting filenames and data on the fly. This also means that DupLESS was built: to be as feature-compatible as possible with existing API commands, to not assume any knowledge about the systems implementing these APIs, to give performance very close to that of using the SS without any encryption, and to achieve the same availability level as provided by the SS.
We implement DupLESS as a simple-to-use command-line client that supports both Dropbox [3] and Google Drive [7] as the SS. We design two versions of the KS protocol that clients can use while encrypting files. The first protocol uses a RESTful, HTTPS based, web interface, while the second is a custom protocol built over UDP. The first is simpler, being able to run on top of existing web servers, and the latter is optimized for latency, and capable of servicing requests at close to the (optimal) round-trip time of the network. These protocols and their implementations, which at core implement an oblivious pseudorandom function (OPRF) [64] service, may be of independent interest.
To evaluate end-to-end performance, we deploy our KS on Amazon EC2 [10] and experimentally evaluate its performance. DupLESS incurs only slight overheads compared to using the SS with plaintext data. For a 1 MB file and using Dropbox, the bandwidth overhead is less than 1% and the overhead in the time to store a file is about 17%. We compute storage overheads of as little as 4.5% across a 2 TB dataset consisting of over 2,000 highly dedupable virtual machine file system images that we gathered from Amazon EC2. All this shows that DupLESS is practical and can be immediately deployed in most SS-using environments. The source code for DupLESS is available from [4].
At a high level, our setting of interest is an enterprise network, consisting of a group of affiliated clients (for example, employees of a company) using a deduplicated cloud storage service (SS). The SS exposes a simple interface consisting of only a handful of operations such as storing a file, retrieving a file, listing a directory, deleting a file, etc.. Such systems are widespread (c.f., [1, 3, 7, 11, 63]), and are often more suitable to user file backup and synchronization applications than richer storage abstractions (e.g., SQL) [37, 69] or block stores (c.f., [9]). An example SS API, abstracted from Drop-box, is detailed in Figure 5 (Section 6). The SS performs deduplication along file boundaries, meaning it checks if the contents of two files are the same and deduplicates them if so, by storing only one of them.
Clients have access to a key server (KS), a semi-trusted third party which will aid in performing dedupable encryption. We will explain further the role of the KS below. Clients are also provisioned with per-user encryption keys and credentials (e.g., client certificates).
Threat model. Our goal is to protect the confidentiality of client data. Attackers include those that gain access to the SS provider's systems (including malicious insiders working at the provider) and external attackers with access to communication channels between clients and the KS or SS. Security should hold for all files, not just unpredictable ones. In other words, we seek semantic security, leaking only equality of files to attackers.
We will also be concerned with compromise resilience: the level of security offered by the scheme to legitimate clients should degrade gracefully, instead of vanishing, should other clients or even the KS be compromised by an attacker. Specifically, security should hold at least for unpredictable files (of uncompromised clients) when one or more clients are compromised and when the KS is compromised.
We will match the availability offered by the SS, but explicitly do not seek to ensure availability in the face of a malicious SS: a malicious provider can always choose to delete files. We will, however, provide protection against a malicious SS that may seek to tamper with clients' data, or mount chosen-ciphertext attacks, by modifying stored ciphertexts.
Malicious clients can take advantage of an SS that performs client-side deduplication to mount a side-channel attack [46]. This arises because one user can tell if another user has already stored a file, which could violate the latter's privacy.1 We will not introduce such side-channels. A related issue is that client-side deduplication can be abused to perform illicit file transfers between clients [73]. We will ensure that our systems can work in conjunction with techniques such as proofs-of-ownership [45] that seek to prevent such issues.
We will not explicitly target resistance to traffic analysis attacks that abuse leakage of access patterns [48] or file lengths [24, 31, 40, 47, 59, 65, 72], though our system will be compatible with potential countermeasures.
Our approaches may be used in conjunction with existing mechanisms for availability auditing [13, 41, 51, 70] or file replication across multiple services [26]. (In the latter case, our techniques will enable each service to independently perform deduplication.)
Design goals. In addition to our security goals, the system we build will meet the following functionality properties. The system will be transparent, both from the perspective of clients and the SS. This means that the system will be backwards-compatible, work within existing SS APIs, make no assumptions about the implementation details of the SS, and have performance closely matching that of direct use of the SS. In normal operation and for all clients of a particular KS, the space required to store all encrypted data will match closely the space required when storing plaintext data. The system should never reduce storage availability, even when the KS is unavailable or under heavy load. The system will not require any client-side state beyond a user's credentials. A user will be able to sit down at any system, provide their credentials, and synchronize their files. We will however allow client-side caching of data to improve performance.
Related approaches. Several works have looked at the general problem of enterprise network security, but none provide solutions that meet all requirements from the above threat model. Prior works [42, 53, 54, 58, 75] which build a secure file system on top of a flat outsourced storage server break deduplication mechanisms and are unfit for use in our setting. Convergent encryption (CE) based solutions [8, 71], as we explored in the Introduction, provide security only for unpredictable messages even in the best case, and are vulnerable to brute-force attacks. The simple approach of sharing a secret key across clients with a deterministic encryption scheme [16, 68] fails to achieve compromise resilience. Using CE with an additional secret shared across all clients [76] does not work for the same reason.
DupLESS starts with the observation that brute-force ciphertext recovery in a CE-type scheme can be dealt with by using a key server (KS) to derive keys, instead of setting keys to be hashes of messages. Access to the KS is preceded by authentication, which stops external attackers. The increased cost slows down brute-force attacks from compromised clients, and now the KS can function as a (logically) single point of control for implementing rate-limiting measures. We can expect that by scrupulous choice of rate-limiting policies and parameters, brute-force attacks originating from compromised clients will be rendered less effective, while normal usage will remain unaffected.
We start by looking at secret-parameter MLE, an extension to MLE which endows all clients with a system-wide secret parameter sk (see Section 4). The rationale here is that if sk is unknown to the attacker, a high level of security can be achieved (semantic security, except for equality), but even if sk is leaked, security falls to that of regular MLE. A server-aided MLE scheme then is a transformation where the secret key is restricted to the KS instead of being available to all clients. One simple approach to get server-aided MLE is to use a PRF F, with a secret key K that never leaves the KS. A client would send a hash H of a file to the KS and receive back a message-derived key K′ F(K,H). The other steps are as in CE. However, this approach proves unsatisfying from a security perspective. The KS here becomes a single point of failure, violating our goal of compromise resilience: an attacker can obtain hashes of files after gaining access to the KS, and can recover files with brute-force attacks. Instead, DupLESS employs an oblivious PRF (OPRF) protocol [64] between the KS and clients, which ensures that the KS learns nothing about the client inputs or the resulting PRF outputs, and that clients learn nothing about the key. In Section 4, we propose a new server-aided MLE scheme DupLESSMLE which combines a CE-type base with the OPRF protocol based on RSA blind-signatures [20, 29, 30].
Thus, a client, to store a file M, will engage in the RSA OPRF protocol with the KS to compute a message-derived key K, then encrypt M with K to produce a ciphertext Cdata. The client's secret key will be used to encrypt K to produce a key encapsulation ciphertext Ckey. Both Ckey and Cdata are stored on the SS. Should two clients encrypt the same file, then the message-derived keys and, in turn, Cdata will be the same (the key encapsulation Ckey will differ, but this ciphertext is small). The DupLESS client algorithms are described in Section 6 along with how DupLESS handles filenames and paths.
Building a system around DupLESSMLE requires careful design in order to achieve high performance. DupLESS uses at most one or two SS API calls per operation. (As we shall see, SS API calls can be slow.) Because interacting with the KS is on the critical path for storing files, DupLESS incorporates a fast client-to-KS protocol that supports various rate-limiting strategies. When the KS is overloaded or subjected to denial-of-service attacks, DupLESS clients fall back to symmetric encryption, ensuring availability. On the client side, DupLESS introduces dedup heuristics (see Section 6) to determine whether the file about to be stored on the SS should be selected for deduplication, or processed with randomized encryption. For example, very small files or files considered particularly sensitive can be prevented from deduplication. We use deterministic authenticated encryption (DAE) [68] to protect, in a structure-preserving way, the path and filename associated to stored files. Here we have several choices along an efficiency/security continuum. Our approach of preserving folder structure leaks some information to the SS, but on the other hand, enables direct use of the SS-provided API for file search and moving folders.
DupLESS is designed for a simple SS API, but can be adapted to settings in which block-oriented deduplication is used, and to complex network storage and backup solutions that use NFS [62], CIFS [56] and the like, but we do not consider these further.
In the following sections we go into greater detail on the various parts of the DupLESS system, starting with the cryptographic primitives in Section 4, then moving on to describing KS design in Section 5, and then on to the client algorithms in Section 6, followed by performance and security in Sections 7 and 8 respectively.
A one-time encryption scheme SE with key space {0,1}k is a pair of deterministic algorithms (E,D). Encryption E on input a key K {0,1}k and message M {0,1}* outputs a ciphertext C. Decryption D takes a key and a ciphertext and outputs a message. CTR mode using AES with a fixed IV is such a scheme. An authenticated encryption (AE) scheme is pair of algorithms AE = (EA,DA) [19, 67]. Encryption EA takes as input a key K {0,1}k, associated data D {0,1}*, and message M {0,1}* and outputs a ciphertext of size |M|+τd, where τd is the ciphertext stretch (typically, 128 bits). Decryption DA is deterministic; it takes input a key, associated data, and a ciphertext and outputs a message or error symbol . When encryption is deterministic, we call the scheme a deterministic authenticated encryption (DAE) scheme [68]. We use the Encrypt-then-MAC [19] scheme for AE and SIV mode [68] for DAE, both with HMAC[SHA256] and CTR[AES].
Oblivious PRFs. A (verifiable) oblivious PRF (OPRF) scheme [64] consists of five algorithms OPRF = (Kg,EvC,EvS,Vf,Ev), the last two deterministic. Key generation (pk,sk) Kg outputs a public key pk which can be distributed freely among several clients, and a secret key sk, which remains with a single entity, the server. The evaluation protocol runs as follows: on the client-side, EvC starts with an input x and ends with output y such that y = Ev(sk,x), while on the server-side, EvS starts with secret key sk and ends without output. Figure 1 gives an example. Verification Vf(pk,x,y) returns a boolean. Security requires that (1) when keys are picked at random, Ev(sk,·) outputs are indistinguishable from random strings to efficient attackers without pk, and (2) no efficient attacker, given (pk,sk), can provide x,x′,y such that Vf(pk,x,y) = Vf(pk,x′,y) = true, or Vf(pk,x,y) = true but Ev(sk,x) ≠ y, or Vf(pk,x,y) = false but Ev(sk,x) = y, except with negligible probability. Moreover, in the OPRF protocol, the server learns nothing about client inputs or resulting PRF outputs, and the client learns nothing about sk.
Verifiable OPRF schemes can be built from deterministic blind signatures [29]. The RSA-OPRF[G,H] scheme based on RSA blind signatures [20, 30] is described as follows. The public RSA exponent e is fixed as part of the scheme. Key generation Kg runs RSAKg with input e to get N,d such that ed ≡ 1 mod (N), modulus N is the product of two distinct primes of roughly equal length and N e. Then, (N,(N,d)) is output as the public key, secret key pair. The evaluation protocol (EvC, EvS) with verification Vf is shown in Figure 1. The client uses a hash function H : {0,1}* N to first hash the message to an element of N, and then blinds the result with a random group element r raised to the e-th power. The resulting blinded hash, denoted x, is sent to the KS. The KS signs it by computing y xd mod N, and sends back y. Verification then removes the blinding by computing z yr−1 mod N, and then ensures that ze mod N is indeed equal to H(M). Finally, the output of the PRF is computed as G(z), where G : N {0,1}k is another hash function.
Figure 1: The RSA-OPRF protocol. The key generation Kg outputs PRF key N,d and verification key N. The client uses two hash functions H: {0,1}* N and G: N {0,1}k.
This protocol can be shown to be secure as long as the map fe : *N *N, defined by fe(x) = xe mod N for all x *N, is a permutation on *N, which is assured by gcd(ϕ(N),e) = 1. In particular, this is true if the server creates its keys honestly. However, in our setting, the server can cheat while generating the keys, in an attempt to glean something about H(M). This is avoided by requiring that N e, which will be verified by the client. Given that e is prime, this standard technique ensures that gcd(ϕ(N),e) = 1 even if N is maliciously generated, and thus ensures that fe is a permutation. Since fe is a permutation and the client checks the signature, even a malicious server cannot force the output K = G(z) to be a fixed value or force two keys output for distinct messages to collide, as long as G is collision-resistant.
MLE. A deterministic Message-Locked Encryption (MLE) scheme is a tuple MLE = (P,K,E,D) of algorithms, the last three deterministic2. Parameter generation outputs a public parameter P P, common to all users of a system. To encrypt M, one generates the message-derived key K K(P,M) and ciphertext C E(P,K,M). Decryption works as M D(P,K,C). Security requires that no efficient attacker can distinguish ciphertexts of unpredictable messages from random strings except with negligible probability. Convergent encryption (CE) [38] is the most prominent MLE scheme. We use CE with parameters P set to random 128-bit strings, key generation returning the first 128 bits of SHA256(P||M) on input M, and encryption and decryption being implemented with CTR[AES].
In a secret-parameter MLE scheme SPMLE, parameter generation outputs a (system-wide) secret parameter sk along with a public parameter P. This secret parameter, which is provided to all legitimate users, is used to generate message-derived keys as K K(P,sk,M). In a server-aided MLE scheme, the secret parameter is provided only to a KS. Clients interact with the KS to obtain message-derived keys. A simple of way of doing this of course is that clients can send the messages to the KS which would then reply with message-derived keys. But, as we saw in the previous section, this is undesirable in the DupLESS setting, as the KS now becomes a single point of failure. Instead, we propose a new server-aided MLE scheme DupLESSMLE combining RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) and CTR[AES]. Here parameter generation runs Kg to get (N,(N,d)), then outputs N as the public parameter and (N,d) as the secret parameter (recall that e is fixed as part of the scheme). From a message M, a key K is generated as K Ev((N,d),M) = G(H(M)d mod N) by interacting with the KS using EvC and EvS. Encryption and decryption work as in CE, with CTR[AES]. We use RSA1024 with full-domain-hash using SHA256 in the standard way [22] to get H and G.
The advantage of server-aided MLE is the prospect of multi-tiered security. In DupLESSMLE in particular, when the adversary does not have access to the KS (but has access to ciphertexts and OPRF inputs and outputs), it has no knowledge of sk, and semantic-security similar to deterministic SE schemes follows, from the security of RSA-OPRF[G,H] and CTR[AES]. When the attacker has access to the KS additionally, attacks are still constrained to be online and consequently slow, and subject to rate-limiting measures that the KS imposes. Security here relies on implementing the OPRF protocol correctly, and ensuring that the rate-limiting measures cannot be circumvented. We will analyze this carefully in Section 5. Even when sk is compromised to the attacker, DupLESSMLE provides the usual MLE-style security, conditioned on messages being unpredictable. Moreover, we are guaranteed that the clients' inputs are hidden from the KS, even if the KS is under attack and deviates from its default behavior, from the security of the RSA-OPRF[G,H] protocol.
In this section we describe the KS side of DupLESS. This includes protocols for client-KS interaction which realize RSA-OPRF[G,H], and rate limiting strategies which limit client queries to slow down online brute-force attacks. We seek low-latency protocols to avoid degrading performance, which is important because the critical path during encryption includes interaction with a KS. Additionally, the protocol should be light-weight, letting the KS handle a reasonably high request volume.
We describe two protocols: OPRFv1, and OPRFv2, which rely on a CA providing the KS and clients with verifiable TLS certificates. In the following, we assume that each client has a unique certificate, and that clients can be identified by their certificates. Of course, the protocols can be readily converted to work with other authentication frameworks. We believe our OPRF protocols to be faster than previous implementations [36], and given the support for rate-limiting, we expect that they will be useful in other applications using OPRFs.
HTTPS based. In the first protocol, OPRFv1, all communication with the KS happens over HTTPS. The KS exposes an interface with two procedures: KSInit and KSReq. The first time a client uses the KS, it makes a KSInit request to obtain, and then locally cache, the KS's OPRF public key. Here the client must perform any necessary checks of the public key, which for our scheme is simply that e > N. When the client wants a key, say for a file it is about to upload, the client will make use of the KSReq interface, by sending an HTTPS POST of the blinded hash value. Now, the KS checks request validity, and performs rate-limiting measures which we describe below. Then, the KS computes the signature over the blinded hash value, and sends this back over the established HTTPS channel.
OPRFv1 has the benefit of extreme simplicity. With 20 lines of code (excluding rate limiting logic) in the form of a Web-Server Gateway Interface (WSGI) Python module, one can run the KS on top of most webservers. We used Apache 2.0 in our implementation.
Unfortunately, while simple, this is a high latency solution, as it requires four full round trips across the network (1 for TCP handshake, 2 for the TLS handshake, 1 for the HTTP request) to perform KSReq. While sub-second latency is not always critical (e.g., because of poor SS performance or because the KS and clients share a LAN), it will be critical in many settings, and so we would like to do better.
UDP based. We therefore turn to OPRFv2, which removes the slow per-request handshakes from the critical path of encryption. Here, the KSInit procedure starts with a TLS handshake with mutual authentication, initiated by a client. The KS responds immediately following a valid handshake with the OPRF public key pk, a TLS identifier of a hash function H (by default SHA-256), a random session identifier S {0,1}128, and a random session key KS {0,1}k (we set k = 128 in our implementations). We shave off one round trip from KSInit by responding immediately, instead of waiting for an HTTP message as in OPRFv1. The KS also associates a sequence number with this session, initialized to zero. Internally the KS maintains two tables, one mapping session identifiers with keys, and a second which keeps track of sequence numbers. Each session lasts for a fixed time period (currently 20 minutes in our implementation) and table entries are removed after the session expires. The client caches pk,S and KS locally and initializes a sequence number N = 0.
To make an OPRF request KSReq on a blinded value X, the client first increments the sequence number N N +1, then computes a MAC tag using its session key, as T HMAC[H](KS,S||N||X) and sends the concatenation S||N||X||T to the KS in a single UDP packet. The KS recovers S,N,X and T and looks up KS and NS. It ensures that N > NS and checks correctness of the MAC T. If the packet is malformed or if some check fails, then the KS drops the packet without further action. If all the checks pass, the KS sends the OPRF protocol response in a single UDP packet.
The client waits for time tR after sending a KSReq packet before triggering timeout behavior. In our implementation, this involves retrying the same request twice more with time tR between the tries, incrementing the sequence number each time. After three attempts, the client will try to initiate a new session, again timing out after tR units. If this step fails, the client believes the KS to be offline. This timeout behavior is based on DNS, and following common parameters, we set tR = 1 second.
We implemented OPRFv2 in Python. It comes to 165 lines of code as indicated by the cloc utility, the bulk of which is in fact the rate limiting logic discussed below. Our current KS implementation is not yet optimized. For example it spawns and kills a new thread for each connection request (as opposed to keeping a pool of children around, as in Apache). Nevertheless the implementation is fully functional and performs well.
Rate limiting KS requests. We explore approaches for per-client rate limiting. In the first approach, called Bounded, the KS sets a bound q on the total number of requests a client can make during a fixed time interval tE, called an epoch. Further queries by the client will be ignored by the KS, until the end of the epoch. Towards keeping the KS simple, a single timer controls when epochs start and end, as opposed to separate timers for each client that start when their client performs a session handshake. It follows that no client can make more than 2q queries within a tE-unit time period.
Setting q gives rise to a balancing act between online brute-force attack speed and sufficiently low-latency KS requests, since a legitimate client that exceeds its budget will have to wait until the epoch ends to submit further requests. However, when using these OPRF protocols within DupLESS, we also have the choice of exploiting the trade-off between dedupability and online brute-force speed. This is because we can build clients to simply continue with randomized encryption when they exceed their budgets, thereby alleviating KS availability issues for a conservative choice of q.
In any case, the bound q and epoch duration should be set so as to not affect normal KS usage. Enterprise network storage workloads often exhibit temporal self-similarity [44], meaning that they are periodic. In this case, a natural choice for the epoch duration is one period. The bound q can be set to the expected number of client requests plus some buffer (e.g., one or more standard deviations). Administrators will need to tune this for their deployment; DupLESS helps ease this burden by its tolerance of changes to q as discussed above.
We also considered two other mechanisms for rate limiting. The fixed delay mechanism works by introducing an artificial delay tD before the KS responds to a client's query. This delay can either be a system-wide constant, or be set per client. Although this method is the simplest to implement, to get good brute-force security, the delay introduced would have to be substantially high and directly impacts latency. The exponential delay mechanism starts with a small delay, and doubles this quantity after every query. The doubling stops at an upper limit tU. The server maintains synchronized epochs, as in the bounded approach, and checks the status of active clients after each epoch. If a client makes no queries during an entire epoch, its delay is reset to the initial value. In both these approaches, the server maintains an active client list, which consists of all clients with queries awaiting responses. New queries from clients in the active client list are dropped. Client timeout in fixed delay is max(tD,tR) and in exponential delay it is max(tU,tR).
To get a sense of how such rate-limiting mechanisms might work in real settings, we estimate the effects on brute-force attacks by deriving parameters from the characteristics of a workload consisting of about 2,700 computers running on an enterprise network at NetApp, as reported in [57]. The workload is periodic, with similar patterns every week. The clients together make 1.65 million write queries/week, but the distribution is highly skewed, and a single client could potentially be responsible for up to half of these writes. Let us be conservative and say that our goal is to ensure that clients making at most 825,000 queries/week should be unaffected by ratelimiting. We set the epoch duration tE as one week and query bound as q = 825k. The fixed delay would need to be set to 730 milliseconds (in order to facilitate 825k requests in one week), which is also the upper limit tU for the exponential technique.
Figure 2: Comparing brute-force rates in queries per second for different rate limiting approaches, no rate limiting (None), and hashes as computed using SHA-256 (Offline). The first column is the formula used to derive the rate as a function of the request limit q, epoch duration tE, delay tD, and upper limit tU. The second column is the rates as for the NetApp workload. The None row does not include offline computation cost.
The maximum query rates in queries per second that an attacker who compromised a client can achieve are given in Figure 2, along with the formulas used to calculate them. The “None” row, corresponding to no rate limiting, gives as the rate the highest number of replies per second seen for OPRFv2 in the throughput experiment above. The offline brute force rate was measured by running Intel's optimized version of SHA256 [49] to get processing speed as 120 MBps on our client system, whose 7200-RPM hard disk has peak read speed of 121MBps (as measured by hdparm). The range then varies from the number of hashes per second for 1 MB files up to the number of hashes per second for 1 KB files, assuming just a single system is used.
Despite being generous to offline brute-force attacks (by just requiring computation of a hash, not considering parallelization, and not including in the online attacks any offline computational costs), the exercise shows the huge benefit of forcing brute-force attackers to query the KS. For example, the bounded rate limiting mechanism slows down brute-force attacks by anywhere from 43x for large files up to 4,395x for small files. If the attacker wants to identify a 1KB file which was picked at random from a set S of 225 files, then the offline brute-force attack requires less than an hour, while the bounded rate limited attack requires more than twenty weeks.
We note that bounded rate-limiting is effective only if the file has enough unpredictability to begin with. If |S| q = 825k, then the online brute-force attack will be slowed down only by the network latency, meaning that it will proceed at one-fourth the offline attack rate. Moreover, parallelization will speed up both online and offline attacks, assuming that this is permitted by the KS.
Figure 3: The median time plus/minus one standard deviation to perform KSInit and KSReq operations over 1000 trials. Low KS load means the KS was otherwise idle, whereas Heavy KS load means it was handling 3000 queries per second.
Performance. For the OPRF, as mentioned in Section 4, we implement RSA1024 with full-domain-hash using SHA256 in the standard way [22]. The PKI setup uses RSA2048 certificates and we fix the ECDHE-RSA-AES128-SHA ciphersuite for the handshake. We set up the two KS implementations (OPRFv1 and OPRFv2) on Amazon EC2 m1.large instances. The client machine, housed on a university LAN, had an x86-64 Intel Core i7-970 processor with a clockspeed fixed at 3201 MHz.
Figure 3 depicts the median times, in milliseconds, of various operations for the two protocols. OPRFv2 significantly outperforms OPRFv1, due to the reduced number of round trip times. On a lightly loaded server, a KS request requires almost the smallest possible time (the RTT to the KS). The time under a heavy KS load was measured while a separate m1.large EC2 instance sent 3000 requests per second. The KS request time for OPRFv2 increases, but is still three times faster than OPRFv1 for a low KS load. Note that the time reported here is only over successful operations; ones that timed out three times were excluded from the median.
To understand the drop rates for the OPRFv2 protocol on a heavily loaded server and, ultimately, the throughput achievable with our (unoptimized) implementation, we performed the following experiment. A client sent 100i UDP request packets per second (qps) until a total of 10,000 packets are sent, once for each of 1 ≤ i ≤ 64. The number of requests responded to was then recorded. The min/max/mean/standard deviation over 100 trials are shown in Figure 4. At rates up to around 3,000 queries per second, almost no packets are dropped. We expect that with further (standard) performance optimizations this can be improved even further, allowing a single KS to support a large volume of requests with very occasional single packet drops.
Security of the KS protocols. Adversarial clients can attempt to snoop on, as well as tamper with, communications between (uncompromised) clients and the KS. With rate-limiting in play, adversaries can also attempt to launch denial-of-service (DOS) attacks on uncompromised clients, by spoofing packets from such clients. Finally, adversaries might try to circumvent rate-limiting. A secure protocol must defend against all these threats.
Figure 4: Packet loss in OPRFv2 as a function of query rate. Packet loss is negligible at rates 3k queries per second.
Privacy of OPRF inputs and outputs follows from blinding in the OPRF protocol. Clients can check OPRF output correctness and hence detect tampering. In OPRFv1, every KSReq interaction starts with a mutual-authentication TLS handshake, which prevents adversaries from spoofing requests from other clients. In OPRFv2, creating a new session once again involves a mutual-authentication TLS handshake, meaning that an adversary cannot initiate a session pretending to be a un-compromised client. Moreover, an adversary cannot create a fresh KSReq packet belonging to a session which it did not initiate, without a successful MAC forgery (HMAC with SHA256 specifically). Packets cannot be replayed across sessions, due to session identifiers being picked at random and being included in the MAC, and packets cannot be replayed within a session, due to increasing sequence numbers. Overall, both protocols offer protecting against request spoofing, and neither of the two protocols introduce new denial-of-service vulnerabilities.
In the Bounded rate-limiting approach, the server keeps track of the total number of the queries made by each client, across all sessions in an epoch, and stops responding after the bound q is reached, meaning that even adversarial clients are restricted to q queries per epoch. In the fixed-delay and exponential-delay approaches, only one query from a client is handled at a time by the KS in a session through the active clients list. If a client makes a second query — even from a different session, while a query is in process, the second query is not processed by the KS, but simply dropped.
Figure 5: API commands exposed by the storage service (SS) used by DupLESS. Here F represents a filename and P is the absolute path in a directory hierarchy.
The Dupless client works with an SS which implements the interface described in Figure 5 (based on the Drop-box API [39]), and provides an analogous set of commands DLput, DLget, DLlist, etc. Figure 6 gives pseudocode for the DupLESS commands for storing and retrieving a file. We now explain the elements of these commands, and will then discuss how other API commands are handled.
Path and filename encryption. The SS provides a rudimentary file system abstraction. Clients can generate directories, use relative and absolute paths, move files from one directory to another, etc. Following our design goal of supporting as much of the base SS functionality as possible, DupLESS should also support paths, filenames, and related functionalities such as copying files. One option is to treat paths and filenames as non-private, and simply mirror in clear the directory hierarchy and filenames asked for by a user. This has the benefit of simplicity and no path-related overheads, but it relies on users guaranteeing that paths and filenames are, in fact, not confidential. A second option would be to hide the directory structure from the SS by using just a single directory, and storing the client's directory hierarchy and filenames in completely encrypted form using some kind of digest file. But this would increase complexity and decrease performance as one would (essentially) have to build a file system on top of the SS. For example, this would bar use of the SS API to perform filename searches on behalf of DupLESS.
We design DupLESS to provide some security for directory and filenames while still enabling effective use of the SS APIs. To encrypt file and directory names, we use the SIV DAE scheme [68] SIV = (ED,DD) with HMAC[SHA256] and CTR[AES]. The EncPath subroutine takes as input a DAE key Kdae, a path P (a sequence of directory names separated by ‘/’), and a filename F, and returns an encrypted path Cpath and an encrypted filename F. It does so by encrypting each directory D in P by way of ED(Kdae,0,D) and likewise encrypting F by ED(Kdae,0,F). (The associated data being set to 0 here will be used to distinguish this use from that of the key encapsulation, see below.) Being deterministic, twice encrypting the same file or directory name results in the same ciphertext. We will then use the ciphertexts, properly encoded into a character set allowed by the SS, as the directory names requested in calls to, e.g., SScreate. We note that the choice of encoding as well as the ciphertext stretch τd mean that the maximum filename length supported by DupLESS will be shorter than that of the SS. Should this approach prove limiting, an alternative approach would be to use format-preserving encryption [21] instead to reduce ciphertext expansion.
All this means that we will be able to search for file and directory names and have efficient file copy and move operations. That said, this approach does leak the structure of the plaintext directory hierarchy, the lengths of individual directory and file names, and whether two files have the same name. While length leakage can be addressed with padding mechanisms at a modest cost on storage overhead, hierarchy leakage cannot be addressed without adversely affecting some operations.
Store requests. To store a file with filename F and contents M at path P, the DupLESS client first executes the client portion of the KS protocol (see Section 5). The result is either a message-derived key K or an error message . The client then runs a check canDedup to determine whether to use dedupable encryption or non-dedupable encryption. If K = l or canDedup returns false, then a random key is selected and will be used in place of a message-derived key. In this case the resulting ciphertext will not be dedupable. We discuss canDedup more below. The client next encrypts M under K with CTR[AES] and a fixed IV to produce ciphertext Cdata, and then wraps K using SIV to produce ciphertext Ckey. We include the filename ciphertext Cname and Cdata in order to cryptographically bind together the three cipher-texts. The client uploads to the SS via the SSput command the file “Cname.key” with contents Ckey and Cdata in file “Cname.data”. DupLESS encodes the ciphertexts into character sets allowed by the SS API. Both files are uploaded in parallel to the SS. Usually, the SS might require the client to be authorized, and if this is the case, the authorization can be handled when the client starts.
The “.data” file contains only ciphertext Cdata, and can be deduplicated by the SS assuming K was not replaced by a random value. The “.key” file cannot be deduplicated, its contents being essentially uniformly distributed, but requires only a fixed, small number of bits equal to k + τd. With our instantiation choices, this is 384 bits, and does not lead to significant overheads as we show in Section 7.
Figure 6: DupLESS client procedures for storage and retrieval. They use our server-aided MLE scheme DupLESSMLE = (P,K,E,D), built with RSA-OPRF[G,H] = (Kg,EvC,EvS,Vf,Ev) along with the DAE scheme SIV = (ED,DD), and the AE scheme EtM = (EA,DA). Instantiations are as described in text. The subroutine canDedup runs dedup heuristics while EncPath encrypts the path and file name using SIV.
Dedupability control. The canDedup subroutine enables fine-grained control over which files end up getting deduplicated, letting clients enforce polices such as not deduplicating anything in a personal folder, and setting a lower threshold on size. Our current implementation uses a simple length heuristic: files less than 1 KB in size are not deduplicated. As our experiments show in Section 7, employing this heuristic does not appear to significantly degrade storage savings.
By default, DLput ensures that ciphertexts are of the same format regardless of the output of canDedup. However, should canDedup mark files non-dedupable based only on public information (such as file length), then we can further optimize performance by producing only a single ciphertext file (i.e. no Ckey) using an authenticated-encryption scheme with a key Kae derived from the client's secret key. We use AES in CTR mode with random IVs with HMAC in an Encrypt-then-MAC scheme. This provides a slight improvement in storage savings over non-deduped ciphertexts and requires just a single SSput call. We can also query the KS only if needed, which is more efficient.
When canDedup's output depends on private information (e.g., file contents), clients should always interact with the KS. Otherwise there exists a side channel attack in which a network adversary infers from the lack of a KS query the outcome of canDedup.
Retrieval and other commands. The pseudocode for retrieval is given in Figure 6. It uses EncPath to recompute the encryptions of the paths and filenames, and then issues SSget calls to retrieve both Ckey and Cdata. It then proceeds by decrypting Ckey, recovering K, and then using it to decrypt the file contents. If non-dedupable encryption was used and Ckey was not uploaded, the second SSget call fails and the client decrypts accordingly.
Other commands are implemented in natural ways, and we omit pseudocode for the sake of brevity. DupLESS includes listing the contents of a directory (perform an SSlist on the directory and decrypt the paths and filenames); moving the contents of one directory to another (perform an SSmove command with encrypted path names); search by relative path and filename (perform an SSsearch using the encryptions of the relative path and filename); create a directory (encrypt the directory name and then use SScreate); and delete (encrypt the path and filename and perform a delete on that).
The operations are, by design, simple and whenever possible, one-to-one with underlying SS API commands. The security guarantees of SIV mean that an attacker with access to the SS cannot tamper with stored data. An SS-based attacker could, however, delete files or modify the hierarchy structure. While we view these attacks as out of scope, we note that it is easy to add directory hierarchy integrity to DupLESS by having EncPath bind ciphertexts for a directory or file to its parent: just include the parent ciphertext in the associated data during encryption. The cost, however, is that filename search can only be performed on full paths.
In DupLESS, only DLput requires interaction with the KS, meaning that even if the KS goes down files are never lost. Even DLput will simply proceed with a random key instead of the message-derived key from the KS. The only penalty in this case is loss of the storage savings due to deduplication.
Other APIs. The interface in Figure 5 is based on the Dropbox API [39]. Google Drive [7] differs by indexing files based on unique IDs instead of names. When a file is uploaded, SSput returns a file ID, which should be provided to SSget to retrieve the file. The SSlist function returns a mapping between the file names and their IDs. In this case, DupLESS maintains a local map by prefetching and caching file IDs by calling SSlist whenever appropriate; this caching reduces DLget latency. When a file is uploaded, the encrypted filename and returned ID are added to this map. Whenever a local map lookup fails, the client runs SSlist again to check for an update. Hence, the client can start without any local state and dynamically generate the local map.
Supporting keyword search in DupLESS requires additional techniques, such as an encrypted keyword index as in searchable symmetric encryption [34], increasing storage overheads. We leave exploring the addition of keyword search to future work.
We implemented a fully functional DupLESS client. The client was written in Python and supports both Drop-box [3] and Google Drive [7]. It will be straightforward to extend the client to work with other services which export an API similar to Figure 5. The client uses two threads during store operations in order to parallelize the two SS API requests. The client takes user credentials as inputs during startup and provides a command line interface for the user to type in commands and arguments. When using Google Drive, a user changing directory prompts the client to fetch the file list ID map asynchronously. We used Python's SSL and Crypto libraries for the client-side crypto operations and used the OPRFv2 KS protocol.
We now describe the experiments we ran to measure the performance and overheads of DupLESS. We will compare both to direct use of the underlying SS API (no encryption) as well as when using a version of DupLESS modified to implement just MLE, in particular the convergent encryption (CE) scheme, instead of DupLESSMLE. This variant computes the message-derived key K by hashing the file contents, thereby avoiding use of the KS. Otherwise the operations are the same.
Test setting and methodology. We used the same machine as for the KS tests (Section 5). Measurements involving the network were repeated 100 times and other measurements were repeated 1,000 times. We measured running times using the timeit Python module. Operations involving files were repeated using files with random contents of size 22i KB for i {0,1,...,8}, giving us a file size range of 1 KB to 64 MB.
Dropbox exhibited significant performance variability in the course of our experiments. For example, the median time to upload a 1 KB file was 0.92 seconds, while the maximum observed was 2.64 seconds, with standard deviation at 0.22 seconds. That is close to 25% of the median. Standard deviation decreases as the file size increases, for example it is only 2% of the median upload time for 32 MB files. We never observed more than 1 Mbps throughput to Dropbox. Google Drive exhibited even slower speeds and more variance.
Storage and retrieval latency. We now compare the time to store and retrieve files using DupLESS, CE, and the plain SS. Figure 7 (top left chart) reports the median time for storage using Dropbox. The latency overhead when storing files with DupLESS starts at about 22% for 1 KB files and reduces to about 11% for 64 MB files.
As we mentioned earlier, Dropbox and Google Drive exhibited significant variation in overall upload and download times. To reduce the effect of these variations on the observed relative performance between DupLESS over the SS, CE over the SS and plain SS, we ran the tests by cycling between the three settings to store the same file, in quick succession, as opposed to, say, running all plain Dropbox tests first. We adopted a similar approach with Google Drive.
We observe that the CE (Convergent Encryption) store times are close to DupLESS store times, since the KSReq step, which is the main overhead of DupLESS w.r.t CE, has been optimized for low latency. For example, median CE latency overhead for 1 KB files over Dropbox was 15%. Put differently, the overhead of moving to DupLESS from using CE is quite small, compared to that of using CE over the base system.
Relative retrieval latencies (bottom left, Figure 7) for DupLESS over Dropbox were lower than the store latencies, starting at about 7% for 1 KB files and reducing to about 6% for 64 MB files.
Performance with Google Drive (Figure 7, top middle chart) follows a similar trend, with overhead for DupLESS ranging from 33% to 8% for storage, and 40% to 10% for retrieval, when file sizes go from 1 KB to 64 MB.
These experiments report data only for files larger than 1 KB, as smaller files are not selected for deduplication by canDedup. Such files are encrypted with non-dedupable, randomized encryption and latency overheads for storage and retrieval in these cases are negligible in most cases.
Microbenchmarks. We ran microbenchmarks on DLput storing 1MB files, to get a breakdown of the overhead. We report median values over 100 trials here. Uploading a 1 MB file with Dropbox takes 2700 milliseconds (ms), while time for the whole DLput operation is 3160 ms, with a 17% overhead. The KSReq latency, from Section 5, is 82 ms or 3%. We measured the total time for all DLput steps except the two SSput operations (refer to Figure 6) to be 135 ms, and uploading the content file on top of this took 2837 ms. Then, net overhead of KS and cryptographic operations is about 5%, while storing the key file accounts for 12%. Our implementation of DLput stores the content and key files simultaneously, by spawning a new thread for storing the key, and waiting for both the stores to complete before finishing. If DLput exits before the key store thread completes, i.e., if the key is uploaded asynchronously, then the overhead drops to 14%. On the other hand, uploading the files sequentially by storing the content file first, and then storing the key, incurs a 54% overhead (for 1 MB files).
Figure 7: (Left) Median time to store (top two graphs) and retrieve (bottom two graphs) as a function of file size. (Top Right) Median time to delete a file as a function of file size. (Bottom Right) Median time to copy a file as a function of file size. All axes are log-scale and error bars indicate one standard deviation. Standard deviations are displayed only for base Dropbox/Google Drive times to reduce cluttering.
Bandwidth overhead. We measured the increase in transmission bandwidth due to DupLESS during storage. To do so, we used tcpdump and filtered out all traffic unrelated to Dropbox and DupLESS. We took from this the total number of bytes (in either direction). For even very small files, the Dropbox API incurs a cost of about 7 KB per upload. Figure 8 (middle) shows the ratio of bandwidth used by DupLESS to that used by plain Dropbox as file size increases. Given the small constant size of the extra file sent by DupLESS, overhead quickly diminishes as files get larger.
Storage overhead. DupLESS incurs storage overhead, due to the encrypted file name, the MLE key, and the MAC. The sizes of these components are independent of the length of the file. Let n denote the length of the filename in bytes. Then, encrypting the filename with SIV and encoding the result with base64 encoding consumes 2n + 32 bytes. Repeating the process for the content and key files, and adding extensions brings the file name overhead to 4n+72−n = 3n+72 bytes. The contents of the key file include the MLE key, which is 16 bytes long in our case, and the 32 byte HMAC output, and hence 48 bytes together. Thus, the total overhead for a file with an n-byte filename is 3n + 120 bytes. Recall that if the file size is smaller than 1 KB, then canDedup rejects the file for deduplication. In this case, the overhead from encrypting and encoding the file name is n+32 bytes, since only one file is stored. Randomized encryption adds 16 bytes, bringing the total to n + 48 bytes.
To assess the overall effect of this in practice, we collected a corpus of around 2,000 public Amazon virtual machine images (AMIs) hosting Linux guests. The AMIs were gathered using techniques similar to those used previously [14, 28], the difference being that we as well downloaded a snapshot of the full file system for each public AMI. There are 101,965,188 unique files across all the AMIs, with total content size of all files being 2,063 GB. We computed cryptographic hashes over the content of all files in the dataset, in order to simulate the storage footprint when using plain deduplication as well as when using DupLESS. This dataset has significant redundancy, as one would expect, given that many AMIs are derivative of other AMIs and so share common files. The plain dedup storage required for the file contents is just 335 GB. DupLESS with the dedupability length threshold used by canDedup (see Section 6) set to zero (all files were dedupable) requires 350 GB, or an overhead of about 4.5%. In this we counted the size of the filename and path ciphertexts for the DupLESS estimate, though we did not count these in the base storage costs. (This can only inflate the reported overhead.)
Figure 8: (Left) Median time to list a directory as a function of number of files in the directory. Both axes are logscale and error bars are one standard deviation. (Middle) Network bandwidth overhead of DupLESS as a function of file size (log-scale axis) for store operations. (Right) The ratio of space required when DupLESS is used for the AMI dataset and when plain dedup is used, as a function of the dedupable threshold length.
We also measure the effect of higher threshold values, when using non-dedupable encryption. Setting the threshold to 100 bytes saves a few hundred megabytes in storage. This suggests little benefit from deduping small files, which is in line with previous observations about deduplication on small files [61].
Figure 8 plots the storage used for a wide range of threshold values. Setting a larger threshold leads to improved security (for those files) and faster uploads (due to one less SSput request) and appears to have, at least for this dataset, only modest impact on storage overheads for even moderately sized thresholds.
The above results may not extend to settings with significantly different workloads. For example, we caution when there is significantly less deduplication across the corpus, DupLESS may introduce greater overhead. In the worst case, when there is no deduplication whatsoever and all 1 KB files with long names of about 100 characters, the overhead will be almost 30%. Of course here one could have canDedup force use of nondedupable encryption to reduce overhead for all files.
Overhead of other operations. The time to perform DLmove, DLdelete, and DLlist operations are reported in Figure 7 and Figure 8 for Dropbox. In these operations, the DupLESS overheads and the data sent over the network involve just the filenames, and do not depend on the length of the file. (The operations themselves may depend on file length of course.) The overhead of DupLESS therefore remains constant. For DLlist, DupLESS times are close to those of plain Dropbox for folders with twice as many files, since DupLESS stores an extra key encapsulation file for each user file. We also measured the times for DLsearch and DLcreate, but in these cases the DupLESS overhead was negligible.
We argued about the security of the KS protocols and client encryption algorithms in sections 5 and 6. Now, we look at the big picture, the security of DupLESS as a whole. DupLESS provides security that is usually significantly better than current, convergent encryption based deduplicated encryption architectures, and never worse. To expand, security is “hedged,” or multi-tiered, and we distinguish three tiers, always assuming that the adversary has compromised the SS and has the ciphertexts.
The optimistic or best case is that the adversary does not have authorized access to the KS. Recall that both OPRFv1 and OPRFv2 need clients to authenticate first, before requesting queries, meaning that in this setting, the attacker cannot obtain any information about message-derived keys. These keys are effectively random to the attacker. In other words, all data stored on the SS is encrypted with random keys, including file contents, names and paths. The attacker can only learn about equality of file contents and the topology of the file system (including file sizes). Thus, DupLESS provides, effectively, semantic security. In particular, security holds even for predictable messages. By using the SIV DAE scheme, and generating tags over the file names, file contents and keys, DupLESS ensures that attempts by the SS to tamper with client data will be detected.
The semi-optimistic, or next best case is that the adversary, having compromised one or more clients, has remote access to the KS but does not have the KS's secret key. Here, security for completely predictable files is impossible. Thus, it is crucial to slow down brute-force attacks and push the feasibility threshold for the attacker. We saw in Section 5 that with the right rate-limiting setup (Bounded, with appropriate parameters), brute-force attacks can be slowed down significantly. Importantly, attackers cannot circumvent the rate-limiting measures, by say, repeating queries.
Finally, the pessimistic case is that the adversary has compromised the KS and has obtained its key. Even then, we retain the guarantees of MLE, and specifically CE, meaning security for unpredictable messages [18]. Appropriate deployment scenarios, such as locating the KS within the boundary of a large corporate customer of a SS, make the optimistic case the most prevalent, resulting in appreciable security gains without significant increase in cost. The security of non-deduplicated files, file names, and path names is unaffected by these escalations in attack severity.
We studied the problem of providing secure outsourced storage that both supports deduplication and resists brute-force attacks. We design a system, DupLESS, that combines a CE-type base MLE scheme with the ability to obtain message-derived keys with the help of a key server (KS) shared amongst a group of clients. The clients interact with the KS by a protocol for oblivious PRFs, ensuring that the KS can cryptographically mix in secret material to the per-message keys while learning nothing about files stored by clients.
These mechanisms ensure that DupLESS provides strong security against external attacks which compromise the SS and communication channels (nothing is leaked beyond file lengths, equality, and access patterns), and that the security of DupLESS gracefully degrades in the face of comprised systems. Should a client be compromised, learning the plaintext underlying another client's ciphertext requires mounting an online brute-force attacks (which can be slowed by a rate-limited KS). Should the KS be compromised, the attacker must still attempt an offline brute-force attack, matching the guarantees of traditional MLE schemes.
The substantial increase in security comes at a modest price in terms of performance, and a small increase in storage requirements relative to the base system. The low performance overhead results in part from optimizing the client-to-KS OPRF protocol, and also from ensuring DupLESS uses a low number of interactions with the SS. We show that DupLESS is easy to deploy: it can work transparently on top of any SS implementing a simple storage interface, as shown by our prototype for Drop-box and Google Drive.
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As web services such as Twitter, Facebook, Google, and Yahoo now dominate the daily activities of Internet users, cyber criminals have adapted their monetization strategies to engage users within these walled gardens. To facilitate access to these sites, an underground market has emerged where fraudulent accounts – automatically generated credentials used to perpetrate scams, phishing, and malware – are sold in bulk by the thousands. In order to understand this shadowy economy, we investigate the market for fraudulent Twitter accounts to monitor prices, availability, and fraud perpetrated by 27 merchants over the course of a 10-month period. We use our insights to develop a classifier to retroactively detect several million fraudulent accounts sold via this marketplace, 95% of which we disable with Twitter's help. During active months, the 27 merchants we monitor appeared responsible for registering 10–20% of all accounts later flagged for spam by Twitter, generating $127–459K for their efforts.
As web services such as Twitter, Facebook, Google, and Yahoo now dominate the daily activities of Internet users [1], cyber criminals have adapted their monetization strategies to engage users within these walled gardens. This has lead to a proliferation of fraudulent accounts – automatically generated credentials used to disseminate scams, phishing, and malware. Recent studies from 2011 estimate at least 3% of active Twitter accounts are fraudulent [29]. Facebook estimates its own fraudulent account population at 1.5% of its active user base [13], and the problem extends to major web services beyond just social networks [14].
The complexities required to circumvent registration barriers such as CAPTCHAs, email confirmation, and IP blacklists have lead to the emergence of an underground market that specializes in selling fraudulent accounts in bulk. Account merchants operating in this space brazenly advertise: a simple search query for “buy twitter accounts”
yields a multitude of offers for fraudulent Twitter credentials with prices ranging from $10–200 per thousand. Once purchased, accounts serve as stepping stones to more profitable spam enterprises that degrade the quality of web services, such as pharmaceutical spam [17] or fake anti-virus campaigns [25].
In this paper we describe our investigation of the underground market profiting from Twitter credentials to study how it operates, the impact the market has on Twitter spam levels, and exactly how merchants circumvent automated registration barriers.1 In total, we identified and monitored 27 account merchants that advertise via web storefronts, blackhat forums, and freelance labor sites. With the express permission of Twitter, we conducted a longitudinal study of these merchants and purchased a total of 121,027 fraudulent Twitter accounts on a bi-weekly basis over ten months from June, 2012 – April, 2013. Throughout this process, we tracked account prices, availability, and fraud in the marketplace. Our findings show that merchants thoroughly understand Twitter's existing defenses against automated registration, and as a result can generate thousands of accounts with little disruption in availability or instability in pricing.
In order to fulfill orders for fraudulent Twitter accounts, we find that merchants rely on CAPTCHA solving services; fraudulent email credentials from Hotmail, Yahoo, and mail.ru; and tens of thousands of hosts located around the globe to provide a diverse pool of IP addresses to evade blacklisting and throttling. In turn, merchants stockpile accounts months in advance of their sale, where “pre-aged” accounts have become a selling point in the underground market. We identify which registration barriers effectively increase the price of accounts and summarize our observations into a set of recommendations for how web services can improve existing automation barriers to increase the cost of fraudulent credentials.
Finally, to estimate the overall impact the underground market has on Twitter spam we leveraged our understanding of how merchants abuse the registration process in order to develop a classifier that retroactively detects fraudulent accounts. We applied our classifier to all accounts registered on Twitter in the last year and identify several million suspected fraudulent accounts generated and sold via the underground market. During active months, the 27 merchants we monitor appeared responsible for registering 10–20% of all accounts later flagged by Twitter as spam. For their efforts, the merchants generated an estimated total revenue between $127,000–$459,000 from the sale of accounts.
With Twitter's cooperation, we disable 95% of all fraudulent accounts registered by the merchants we track, including those previously sold but not yet suspended for spamming. Throughout the suspension process, we simultaneously monitor the underground market for any fallout. While we do not observe an appreciable increase in pricing or delay in merchants delivering new accounts, we find 90% of all purchased accounts immediately after our action are suspended on arrival. We are now actively working with Twitter to integrate our defense into their real-time detection framework to help prevent abusive signups.
In summary, we frame our contributions as follows:
Fraudulent accounts are just a single facet of the menagerie of digital criminal goods and services for sale in the underground market. We provide an overview of previous investigations into the digital blackmarket, outline the role that account abuse plays in this space, and summarize existing strategies for detecting spam and abuse. Finally, in order to carry out our investigation of the market for fraudulent Twitter accounts, we adhere to a strict set of legal and ethical guidelines set down by our institutions and by Twitter, documented here.
At the center of the for-profit spam and malware ecosystem is an underground market that connects Internet miscreants with parties selling a range of specialized products and services including spam hosting [2, 11], CAPTCHA solving services [19], pay-per-install hosts [4], and exploit kits [9]. Even simple services such as garnering favorable reviews or writing web page content are for sale [21, 31]. Revenue generated by miscreants participating in this market varies widely based on business strategy, with spam affiliate programs generating $12–$92 million [17] and fake anti-virus scammers $5-116 million [25] over the course of their operations.
Specialization within this ecosystem is the norm. Organized criminal communities include carders that siphon credit card wealth [7]; email spam affiliate programs [16]; and browser exploit developers and traffic generators [9]. The appearance of account merchants is yet another specialization where sellers enable other miscreants to penetrate walled garden services, while at the same time abstracting away the complexities of CAPTCHA solving, acquiring unique emails, and dodging IP blacklisting. These accounts can then be used for a multitude of activities, outlined below, that directly generate a profit for miscreants.
Miscreants leverage fraudulent social networking accounts to expose legitimate users to scams, phishing, and malware [8, 10]. Spam monetization relies on both grey-market and legitimate affiliate URL programs, ad syndication services, and ad-based URL shortening [29]. Apart from for-profit activities, miscreants have also leveraged fraudulent accounts to launch attacks from within Twitter for the express purposes of censoring political speech [28]. All of these examples serve to illustrate the deleterious effect that fraudulent accounts have on social networks and user safety.
The pervasive nuisance of spam in social networks has lead to a multitude of detection strategies. These include analyzing social graph properties of sybil accounts [6, 33, 34], characterizing the arrival rate and distribution of posts [8], analyzing statistical properties of account profiles [3, 26], detecting spam URLs posted by accounts [27], and identifying common spam redirect paths [15]. While effective, all of these approaches rely on at-abuse time metrics that target strong signals such as sending a spam URL or forming hundreds of relationships in a short period. Consequently, at-abuse time classifiers delay detection until an attack is underway, potentially exposing legitimate users to spam activities before enough evidence of nefarious behavior triggers detection. Furthermore, dormant accounts registered by account merchants will go undetected until miscreants purchase the accounts and subsequently send spam. Overcoming these shortcomings requires at-registration abuse detection that flags fraudulent accounts during the registration process before any further interaction with a web service can occur.
Our study hinges on infiltrating the market for fraudulent Twitter credentials where we interact with account merchants and potentially galvanize the abuse of Twitter. We do so with the express intent of understanding how sellers register accounts and to disrupt their future efforts, but that does not allay our legal or ethical obligations. Prior to conducting our study, we worked with Twitter and our institutions to set down guidelines for interacting with merchants. A detailed summary of the restrictions placed on our study is available in Appendix A
We infiltrate the market for Twitter accounts to understand its organization, pricing structure, and the availability of accounts over time. Through the course of our study, we identify 27 account merchants (or sellers) whom we purchase from on a bi-weekly basis from June, 2012 – April, 2013. We determine that merchants can provide thousands of accounts within 24 hours at a price of $0.02 – $0.10 per account.
With no central operation of the underground market, we resort to investigating common haunts: advertisements via search engines, blackhat forums such as blackhatworld.com, and freelance labor pages including Fiverr and Freelancer [20, 21]. In total, we identify a disparate group of 27 merchants. Of these, 10 operate their own websites and allow purchases via automated forms, 5 solicit via blackhat forums, and 12 advertise via freelance sites that take a cut from sales. Advertisements for Twitter accounts range in offerings from credentials for accounts with no profile or picture, to “pre-aged” accounts2 that are months old with unique biographies and profile data. Merchants even offer 48 hours of support, during which miscreants can request replacements for accounts that are dysfunctional. We provide a detailed breakdown of the merchants we identify and their source of solicitation in Table 1. We make no claim our search for merchants is exhaustive; nevertheless, the sellers we identify provide an insightful cross-section of the varying levels of sophistication required to circumvent automated account registration barriers, outlined in detail in Section 4.
Once we identify a merchant, we place an initial test purchase to determine the authenticity of the accounts being sold. If genuine, we then determine whether to repeatedly purchase from the merchant based on the quality of accounts provided (discussed in Section 4) and the overall impact the seller has on Twitter spam (discussed in Section 6). As such, our purchasing is an iterative process where each new set of accounts improves our understanding of the market and subsequently directs our investigation.
Once we vet a merchant, we conduct purchases on a bi-weekly basis beginning in June, 2012 (at the earliest) up to the time of our analysis in April, 2013, detailed in Table 1. We note that purchasing at regular intervals is not always feasible due to logistical issues such as merchants delaying delivery or failing to respond to requests for accounts. In summary, we place 144 orders (140 of which merchants successfully respond to and fulfill) for a total of 120,019 accounts. Purchases typically consist of a bulk order for 1,000 accounts, though sellers on Fiverr operate in far less volume.
Throughout this process, we protect our identity from merchants by using a number of email and Skype pseudonyms. We conduct payments through multiple identities tied to PayPal, WebMoney, and pre-paid credit cards. Finally, we access all web content on a virtual machine through a network proxy.
Table 1: List of the merchants we track, the months monitored, total purchases performed (#), accounts purchased, and the price per 100 accounts. Source of solicitations include blackhat forums†, Fiverr, and Freelancer and web storefronts‡.
Prices through the course of our analysis range from $0.01 to $0.20 per Twitter account, with a median cost of $0.04 for all merchants. Despite the large overall span, prices charged by individual merchants remain roughly stable. Table 1 shows the variation in prices for six merchants we tracked over the longest period of time. Price hikes are a rare occurrence and no increase is more than $0.03 per account. So long as miscreants have money on hand, availability of accounts is a non-issue. Of the orders we placed, merchants fulfilled 70% in a day and 90% within 3 days. We believe the stable pricing and ready availability of fraudulent accounts is a direct result of minimal adversarial pressures on account merchants, a hypothesis we explore further in Section 4.
Figure 1: Variation in prices over time for six merchants we track over the longest period of time.
Our permission to purchase accounts is limited to Twitter credentials, but many of the merchants we interact with also sell accounts for Facebook, Google, Hotmail, and Yahoo. We compare prices between web services, but note that as we cannot vet non-Twitter credentials, some prices may represent scams.
Facebook Prices for Facebook accounts range from $0.45–1.50 per phone verified account (PVA) and $0.10 for non-PVA accounts. Phone verification requires that miscreants tie a SIM card to a newly minted Facebook account and verify the receipt of a text message, the complexities of which vastly increase the price of an account.3 For those sellers that advertise their registration process, SIM cards originate from Estonia or Ukraine.
Google Prices for Google PVA accounts range from $0.03–0.50 per account.
Hotmail Prices for Hotmail accounts cost $0.004 – 0.03 per account, a steep reduction over social networking or PVA credentials. We see similar prices for a multitude of web mail providers, indicating that email accounts are in demand and cheaper to create.
Yahoo Yahoo accounts, like Hotmail, are widely available, with prices ranging from $0.006 – 0.015 per account.
Table 2: List of dishonest merchants that reaccessed and resold credentials we purchased to other parties.
Operating in the underground market is not without risk of fraud and dishonesty on the part of account merchants. For instance, eight of the merchants we contacted attempted to sell us a total of 3,317 duplicate accounts. One merchant even schemed to resell us the same 1,000 accounts three times. For those merchants willing to honor their “48 hours of support”, we requested replacement accounts for duplicates, bringing our account total up to 121,027 unique credentials.
Apart from duplicate credentials, some merchants were quick to resell accounts we purchased to third parties. In order to detect resales, we coordinate with Twitter to monitor all successful logins to accounts we purchase after they come under our control. We denote these accounts reaccessed. We repeat this same process to detect new tweets or the formation of relationships. Such behaviors should only occur when an account changes hands to a spammer, so we denote these accounts as resold. Such surreptitious behavior is possible because we make a decision not to change the passwords of accounts we purchase.
Table 2 shows the fraction of purchased accounts per seller that merchants reaccessed and resold. A total of 10% of accounts in our dataset were logged into (either by the seller or a third party; it is not possible to distinguish the two) within a median of 3 days from our purchase. We find that 6% of all accounts go on to be resold in a median of 5 days from our purchase. This serves to highlight that some merchants are by no means shy about scamming potential customers.
Account merchants readily evade existing abuse safeguards to register thousands of accounts on a recurring basis. To understand these failings, we delve into the tools and techniques required to operate in the account marketplace. We find that merchants leverage thousands of compromised hosts, CAPTCHA solvers, and access to fraudulent email accounts. We identify what registration barriers increase the price of accounts and summarize our observations into a set of recommendations for how web services can improve existing automation barriers to increase the cost of fraudulent credentials in the future.
To carry out our analysis, we combine intelligence gathered from the underground market with private data provided through a collaboration with Twitter. Due to the sensitivity of this data, we strictly adhere to a data policy set down by Twitter, documented in Appendix A. In total, we have the credentials for 121,027 purchased accounts, each of which we annotate with the seller and source of solicitation. Furthermore, we obtain access to each account's associated email address; login history going back one year including IP addresses and timestamps; signup information including the IP and user agent used to register the account; the history of each account's activities including tweeting or the formation of social connections, if any; and finally whether Twitter has flagged the account as spam (independent of our analysis).
Unique IP addresses are a fundamental resource for registering accounts in bulk. Without a diverse IP pool, fraudulent accounts would fall easy prey to network-based blacklisting and throttling [12, 18, 35]. Our analysis leads us to believe that account merchants either own or rent access to thousands of compromised hosts to evade IP defenses.
IP Address Diversity & Geolocation As a whole, miscreants registered 79% of the accounts we purchase from unique IP addresses located across the globe. No single subnet captures the majority of abused IPs; the top ten /24 subnets account for only 3% of signup IPs, while the top ten /16 subnets account for only 8% of registrations. We provide a breakdown of geolocations tied to addresses under the control of merchants in Table 3. India is the most popular origin of registration, accounting for 8.5% of all fraudulent accounts in our dataset.
Table 3: Top 10 most popular geolocations of IP addresses used to register fraudulent accounts.
Other ‘low-quality’ IP addresses (e.g. inexpensive hosts from the perspective of the underground market [4]) follow in popularity. In summary, registrations come from 164 countries, the majority of which serve as the origin of fewer than 1% of accounts in our dataset. However, in aggregate, these small contributors account for 48.5% of all registered accounts.
Merchants that advertise on blackhat forums or operate their own web storefronts have the most resources at their disposal, registering all but 15% of their accounts via unique IPs from hundreds of countries. Conversely, merchants operating on Fiverr and Freelancer tend to operate solely out of the United States or India and reuse IPs for at least 30% of the accounts they register.
Long-term IP Abuse To understand the long-term abuse of IP addresses, we analyze data provided by Twitter that includes all registered accounts (not just our purchases) from June, 2012 – April, 2013. From this, we select a random sample of 100,000 unique IPs belonging to accounts that Twitter has disabled for spamming (e.g. suspended) and an equally sized sample of IPs used to register legitimate Twitter accounts. We add a third category to our sample that includes all the unique IP addresses used by merchants to register the accounts we purchased. For each of these IPs, we calculate the total number of Twitter accounts registered from the same IP.
A CDF of our results, shown in Figure 2, indicates merchants use the IP addresses under their control to register an abnormal number of accounts. Furthermore, the merchants we track are more cautious than other Twitter spammers who register a larger volume of accounts from a single IP address, making the merchants harder to detect. In total, merchants use 50% of the IP addresses under their control to register fewer than 10 accounts, compared to 73% of IPs tied to legitimate users and only 26% for other spammers. We note that the small fraction of legitimate IP addresses used to register thousands of accounts likely belong to mobile providers or other middleboxes.
Figure 2: CDF of registrations per IP tied to purchased accounts, legitimate accounts, and suspended (spam) accounts.
Figure 3: Availability of unique IPs over time for the six merchants we track over the longest period. All but one seller we repeatedly purchase from are able to acquire new IP addresses to register accounts from over time.
IP Churn & Pool Size In order to sustain demand for new accounts without overextending the abuse of a single IP address, merchants obtain access to tens of thousands of IP addresses that change over time. Figure 3 shows the fraction of accounts we purchase that appear from a unique IP address4 as a function of time. We restrict our analysis to the six merchants we track over the longest period. Despite successive purchases of 1,000 accounts, all but one seller maintains IP uniqueness above roughly 80% of registered accounts, indicating that the IPs available to merchants change over time.
We calculate the number of IP addresses under each merchant's control by treating IP reuse as a closed capture-recapture problem. Closed capture-recapture measurements – used to estimate an unknown population size – require (1) the availability of independent samples and (2) that the population size under study remains fixed. To begin, we assume each purchase we make is an independent sample of the IP addresses under a merchant's control, satisfying the first requirement. The second requirement is more restrictive. If we assume that merchants use IP addresses tied to compromised hosts, then there is an inherent instability in the population size of IPs due to hosts becoming uninfected, new hosts becoming infected, and ISPs reallocating dynamic IPs. As such, comparisons over long periods are not possible. Nevertheless, if we restrict our analysis to batches of accounts from a single seller that were all registered within 24 hours, we can minimize the imprecision introduced by IP churn.
To this end, we select clusters of over 300 accounts registered by merchants within a 24 hour window. We split each cluster in half by time, with the first half m acting as the set of marked IPs and the second set c as the captured IPs, where there are r overlapping, or recaptured, IPs between both sets. We can then estimate the entire population size (e.g. the number of unique IPs available to a merchant) according to the Chapman-Petersen method [24]:
And standard error according to:
For 95% confidence intervals, we calculate the error of as ±1.96 × SE. We detail our results in Table 4. We find that sellers like accs.biz and victoryservices have tens of thousands of IPs at their disposal on any given day, while even the smallest web storefront merchants have thousands of IPs on hand to avoid network-based blacklisting and throttling.
Web services frequently inhibit automated account creation by requiring new users to solve a CAPTCHA or confirm an email address. Unsurprisingly, we find neither of these barriers are insurmountable, but they do impact the pricing and rate of generation of accounts, warranting their continued use.
Table 4: Top 10 merchants with the largest estimated pool of IP addresses under their control on a single day.
Email Confirmation All but 5 of the merchants we purchase from readily comply with requirements to confirm email addresses through the receipt of a secret token. In total, merchants email confirm 77% of accounts we acquire, all of which they seeded with a unique email. The failure of email confirmation as a barrier directly stems from pervasive account abuse tied to web mail providers. Table 5 details a list of the email services frequently tied to fraudulent Twitter accounts. Merchants abuse Hotmail addresses to confirm 60% of Twitter accounts, followed in popularity by Yahoo and mail.ru. This highlights the interconnected nature of account abuse, where credentials from one service can serve as keys to abusing yet another.
While the ability of merchants to verify email addresses may raise questions of the processes validity, we find that email confirmation positively impacts the price of accounts. Anecdotally, Hotmail and Yahoo accounts are available on blackhatworld.com for $6 per thousand, while Twitter accounts from the same forum are $40 per thousand. This is also true of web storefront such as buyaccs.com where mail.ru and Hotmail accounts are $5 per thousand, compared to $20 per thousand for Twitter accounts. Within our own dataset, we find that Twitter accounts purchased without email confirmation cost on average $30 per thousand compared to $47 per thousand for accounts with a confirmed email address. This difference likely includes the base cost of an email address and any related overhead due to the complexity of responding to a confirmation email.
CAPTCHA Solving Twitter throttles multiple registrations originating from a single IP address by requiring a CAPTCHA solution. Merchants solved a CAPTCHA for 35% of the accounts we purchase; the remaining accounts were registered from fresh IPs that did not trigger throttling. While there are a variety of CAPTCHA solving services available in the underground market [19], none are free and thus requiring a CAPTCHA slightly increases the cost of creating fraudulent accounts.
Table 5: Top 5 email providers used to confirm fraudulent Twitter accounts.
Figure 4: CAPTCHA solution rates per each IP address abused by a variety of merchants as well as the rates for all merchants combined.
A second aspect of CAPTCHAs is the success rate of automated or human solvers. By virtue of only buying successfully registered accounts, we cannot exactly measure CAPTCHA failure rates (unless account sellers fail and re-try a CAPTCHA during the same registration session, something we find rare in practice). However, we can examine registration attempts that occur from the same IPs as the accounts we purchase to estimate the rate of failure. To carry out this analysis, we examine all registrations within the previous year, calculating the fraction of registrations that fail due to incorrect CAPTCHA solutions per IP address.
We show a CDF of CAPTCHA solution rates for a sample of merchants in Figure 4. The median CAPTCHA solution rate for all sellers is 7%, well below estimates for automated CAPTCHA solving software of 18–30% [19], a discrepancy we currently have no explanation for. For two of the Fiverr sellers, buuman and smokinbluelady, the median CAPTCHA solution rate per IP is 100% and 67% respectively, which would indicate a human solver. In total, 92% of all throttled registration attempts from merchants fail. Despite this fact, account sellers are still able to register thousands accounts over the course of time, simply playing a game of odds.
Without effective defenses against fraudulent account registration, merchants are free to stockpile accounts and sell them at a whim. For many solicitations, merchants consider “pre-aged” accounts a selling point, not a detraction. To highlight this problem, we examine the failure of at-abuse time metrics for detecting dormant accounts and the resulting account stockpiles that occur.
Account Suspension Twitter suspends (e.g. disables) spam accounts due to at-abuse time metrics such as sending spam URLs or generating too many relationships, as outlined in Twitter's rules [30]. In our case, we are interested in whether fraudulent accounts that do not perform visible spam actions (e.g. are dormant) nevertheless become suspended. While for miscreants this should ideally be impossible, there are multiple avenues for guilt by association, such as clustering accounts based on registration IP addresses or other features. As such, when Twitter suspends a large volume of active fraudulent accounts for spamming, it is possible for Twitter to catch dormant accounts in the same net.
Of the dormant accounts we purchase, only 8% are eventually detected and suspended. We exclude accounts that were resold and used to send spam (outlined in Section 3.5) from this metric in order to not skew our results. Of the merchants we track, Fiverr sellers take the least caution in registering unlinkable accounts, resulting in 57% of our purchases becoming suspended by the time of our analysis. In contrast, web storefronts leverage the vast resources at their disposal to create unlink-able accounts, where only 5% of our purchased accounts are eventually detected as fraudulent. These poor detection rates highlight the limitation of at-abuse time metrics against automated account registration. Without more sophisticated at-registration abuse signals, merchants are free to create thousands of accounts with minimal risk of Twitter suspending back stock.
Account Aging & Stockpiling We examine the age of accounts, measured as the time between their registration and subsequent date of purchase, and find that accounts are commonly stockpiled for a median of 31 days. While most merchants deal exclusively in back stock, some merchants operate in an on-demand fashion. At the far end of this spectrum is a merchant spamvilla.com that sold us accounts registered a median of 323 days ago – nearly a year in advance of our purchase. In contrast, webstores such as buyaccs.com and Fiverr merchants including smokinbluelady sell accounts less than a day old. Even though these merchants operate purely on-demand, they are still able to fulfill large requests in short order (within a day in our experience). Both modes of operation illustrate the ease that merchants circumvent existing defenses and the need for at-registration time abuse detection.
Web services that rely on automation barriers must strike a tenuous balance between promoting user growth and preventing the proliferation of fraudulent accounts and spam behavior. We summarize our findings in this section with a number of potential improvements to existing barriers that should not impede legitimate users. While we draw many of our observations from the Twitter account abuse problem, we believe our recommendations should generalize across web services.
Email Confirmation While account merchants have cheap, disposable emails on hand to perform email confirmation, confirmation helps to increase the cost of fraudulent accounts. In the case of Twitter, email confirmation raises the cost of accounts by 56%. Furthermore, in the absence of clear abuse signals, services can use email reconfirmation as a soft action against automation, similar to requiring a CAPTCHA before sending an email or tweet. Of the Twitter accounts we purchased, only 47% included the email address and password used to confirm the account. Merchants will sometimes re-appropriate these email addresses and sell them as “second-hand” at a discount of 20%. Without the original credentials, miscreants will be unable to perform email reconfirmation. Even if merchants adapt and begin to provide email credentials as part of their sale, the possibility of reselling email addresses disappears, cutting into a merchant's revenue.
CAPTCHAs CAPTCHAs serve to both increase the cost of accounts due to the requirement of a CAPTCHA solving service as well as to throttle the rate of account creation. In our experience, when required, CAPTCHAs prevent merchants from registering 92% of fraudulent accounts. Services could also leverage this failure rate as a signal for blacklisting an IP address in real-time, cutting into the number of accounts merchants can register from a single IP.
IP Blacklisting While miscreants have thousands of IP addresses at their disposal that rapidly change, IP blacklisting is not without merit. Our results show that merchants use a small fraction of IPs to register tens of thousands of accounts, which services could curb with real-time blacklisting. While public and commercial IP blacklists exist such as CBL [5], previous work has shown these generate too many false positives in the case of social spam [28], requiring service providers to generate and maintain their own blacklists.
Phone Verification While Twitter does not require phone verification, we observe the positive impact phone verification has on increasing the cost of fraudulent accounts for other services. Facebook and GMail accounts that are phone verified cost up to 150x more than their Twitter, non-PVA counterpart. As with CAPTCHAs or email reconfirmation, phone verification can serve as a soft action against spammers who do not clearly fall into the set of accounts that should be automatically disabled.
To understand the impact account merchants have on Twitter spam, we develop a classifier trained on purchased accounts to retroactively identify abusive registrations. Our technique relies on identifying patterns in the naming conventions and registration process used by merchants to automatically generate accounts. We apply our classifier to all Twitter accounts registered in the last year (overlapping with our investigation) and identify several million accounts which appear to be fraudulent. We note this approach is not meant to sustain accuracy in an adversarial setting; we only apply it to historical registrations where adaptation to our signals is impossible.
Our detection framework begins by leveraging the limited variability in naming patterns used by account generation algorithms which enables us to automatically construct regular expressions that fingerprint fraudulent accounts. Our approach for generating these expressions is similar to previous techniques for identifying spam emails based on URL patterns [32] or spam text templates [22, 23]. However, these previous approaches fail on small text corpuses (e.g. screennames), especially when samples cannot be linked by repeating substrings. For this reason, we develop a technique explicitly for account naming patterns. Algorithm 1 shows a sketch of our approach which we use to guide our discussion.
Common Character Classes To capture accounts that all share the same naming structure, we begin by defining a set of character classes:
composed of disjoint sets of characters including uppercase Unicode letters, lowercase Unicode letters, non-cased Unicode letters (e.g., Arabic). and digits.5 We treat all other characters as distinct classes (e.g., +, -,-). We chose these character classes based on the naming patterns of accounts we purchase, a sample of which we show in Table 6. We must support Unicode as registration algorithms draw account names from English, Cyrillic, and Arabic.
From these classes we define a function Σ-Seq that captures transitions between character classes and produces an ordered set σ1σ2 ... σn of arbitrary length, where σi represents the i-th character class in a string. For example, we interpret the account Wendy Hunt from accs.biz as a sequence p{Lu}p{Ll} p{Lu}p{Ll}. We repeat this process for the name, screenname, and email of each account. We note that for emails, we strip the email domain (e.g. @hotmail.com) prior to processing and use this as a separate feature in the process for pattern generation.
Repeated Substrings While repeated text stems between multiple accounts are uncommon due to randomly selected dictionary names, we find the algorithms used to generate accounts often reuse portions of text for names, screennames, and emails. For instance, all of the accounts in Table 6 from victoryservices have repeated substrings between an account's first name and screenname.
To codify these patterns, we define a function repeatedNames that canonicalizes text from an account's fields, brute forces a search of repeated substrings, and then codifies the resulting patterns as invariants. Canonicalization entails segmenting a string into multiple substrings based on Σ-Seq transitions. We preserve full names by ignoring transitions between upper and lowercase letters; spaces are also omitted from canonicalization. We then convert all substrings to their lowercase equivalent, when applicable. To illustrate this process, consider the screenname WendyHunt5. Canonicalization produces an ordered list [wendy,hunt,5], while the name Wendy Hunt is converted to [wendy,hunt].
The function repeatedNames proceeds by performing a brute force search for repeated substrings between all canonicalized fields of an account. For our previous example of WendyHunt5, one successful match exists between name[1] and screenname[1], where [i] indicates the i-th position of a fields substring list; this same pattern also holds for the name and screenname for Kristina Levy. We use this positional search to construct invariants that hold across accounts from a single merchant. Without canonicalization, we could not specify what relationship exists between Wendy and Kristina due to differing text and lengths. When searching, we employ both exact pattern matching as well as partial matches (e.g. neff found in brindagtgneff for buyaccs.com). We use the search results to construct invariants for both strings that must repeat as well as strings that never repeat.
Clustering Similar Accounts Once we know the Σ-Seq, repeatedNames, and email domain of every account from a merchant, we cluster accounts into non-overlapping groups with identical patterns, as described in Algorithm 1. We do this on a per-merchant basis rather than for every merchant simultaneously to distinguish which merchant an account originates from. We prune small clusters based on a empirically determined τ to reduce false positives, with our current implementation dropping clusters with fewer than 10 associated accounts.
Bounding Character Lengths The final phase of our algorithm strengthens the invariants tied to Σ-Seq transitions by determining a minimum length min(σi) and maximum length max(σi) of each character class σi. We use these to define a bound {lmin, lmax} that captures all accounts with the same Σ-Seq. Returning to our examples in Table 6, we group the account names from accs.biz and produce an expression p{Lu}{1,1}p{Ll}{5, 8} {1,1}p{Lu}{1,1}p{Ll}{4, 4}. We combine these patterns with the invariants produced by repeatedNames to construct a regular expression that fingerprints a cluster. We refer to these patterns for the rest of this paper as merchant patterns.
Table 6: Obfuscated sample of names, screennames, and emails of purchased accounts used to automatically generate merchant patterns. Popularity denotes the fraction of accounts that match the pattern for an individual merchant.
We refine our merchant patterns by including abuse-orientated signals that detect automated signup behavior based on the registration process, user-agent data, and timing events.
Signup Flow Events We begin our refinement of merchant patterns by analyzing the activities of purchased accounts during and immediately after the signup work flow. These activities include events such as a user importing contacts and accessing a new user tutorial. The complete list of these events is sensitive information and is omitted from discussion. Many of these events go un-triggered by the automated algorithms used by account sellers, allowing us to distinguish automated registrations from legitimate users.
Given a cluster of accounts belonging to a single merchant, we generate a binary feature vector esig = {0,1}n of the n possible events triggered during signup. A value of 1 indicates that at least ρ accounts in the cluster triggered the event e. For our experiments, we specify a cutoff ρ = 5% based on reducing false positives. Subsequently, we determine whether a new account with event vector e matches a seller's signup flow signature esig by computing whether e ⊆ esig holds. The majority of legitimate accounts have |e| |esig|, so we reject the possibility they are automated even though their naming conventions may match a merchant's.
User Agents A second component of signups is the user agent associated with a form submission. Direct matching of user agents used by a seller with new subsequent signups is infeasible due to sellers randomizing user agents. For instance, buytwitteraccounts.info uses a unique (faked) agent for every account in our purchased dataset. Nevertheless, we can identify uniformity in the naming conventions of user agents just as we did with account names and screennames.
Given a cluster of accounts from a single seller, we generate a prefix tree containing every account's user agent. A node in the tree represents a single character from a user agent string while the node's depth mirrors the character's position in the user agent string. Each node also contains the fraction of agents that match the substring terminated at the given node. Rather than find the longest common substring between all accounts, we prune the tree so that every substring terminating at a node has a fraction of at least accounts in the cluster (in practice, 5%). We then generate the set of all substrings in the prefix tree and use them to match against the agents of newly registered accounts. The resulting substrings include pattens such as Mozilla/5.0 (X11; Linux i686 which, if not truncated, would include multiple spurious browser toolbars and plugins and be distinct from subsequent signups. While in theory the resulting user agent substrings can be broad, in practice we find they capture browser variants and operating systems before being truncated.
Form Submission Timing The final feature from the signup process we use measures the time between Twitter serving a signup form to the time the form is submitted. We then compute a bound {mintts, maxts} for each seller to determine how quickly a seller's algorithm completes a form. To counter outliers, we opt for the 99% for both minimum and maximum time. For instance, the Fiverr merchant kathlyn registers accounts within {0, 1} seconds. A newly minted account can match a seller's algorithm if its form completion time is within the sellers bound.
There were a number of alternative signals we considered, but ultimately rejected as features for classification. We omitted the delay between an account's registration and subsequent activation as we lacked training data to measure this period; all our accounts remain dormant after purchase (minus the small fraction that were resold). We also analyzed both the timing of registrations as well as the interarrival times between successive registrations. We found that merchants sell accounts in blocks that sometimes span months, preventing any interarrival analysis. Furthermore, merchants register accounts at uniformly random hours and minutes. Finally, as merchants create accounts from IP addresses around the globe, no subnet or country accurately captures a substantive portion of abusive registrations.
To demonstrate the efficacy of our model, we retroactively apply our classifier to all Twitter accounts registered in the last year. In total, we identify several million6 distinct accounts that match one of our merchant patterns and thus are potentially fraudulent. We validate these findings by analyzing both the precision and recall of our model as well measuring the impact of time on the model's overall accuracy.
Precision & Recall Precision measures the fraction of identified accounts that are in fact fraudulent (e.g., not misclassified, legitimate users), while recall measures the fraction of all possible fraudulent accounts that we identify, limited to the merchants that we study. To estimate the precision of each merchant pattern, we select a random sample of 200 accounts matching each of 26 merchant patterns,7 for a total of 4,800 samples. We then manually analyze the login history, geographic distribution of IPs, activities, and registration process tied to each of these accounts and label them as spam or benign. From this process, we estimate our overall precision at 99.99%, with the breakdown of the most popular merchant pattern precisions shown in Table 7. In a similar vein, we estimate recall by calculating the fraction of all accounts we purchase that match our classifier. In total, we correctly identify 95% of all purchased accounts; the remaining 5% of missed accounts did not form large enough clusters to be included in a merchant's pattern, and as a result, we incorrectly classified them as legitimate.
Performance Over Time The performance of our model is directly tied to accurately tracking adaptations in the algorithms used by merchants to register accounts. To understand how frequently these adaptations occur, we evaluate the performance of our classifier as a function of time. Figure 5 shows the overall recall of each of our merchant patterns for the sellers we track over the longest period of time. For each merchant, we train a classifier on accounts acquired up to time t and evaluate it on all accounts from the merchant, regardless of when we purchased the account. We find that some sellers such as alexissmalley rarely alter their registration algorithm throughout our study, allowing only two purchases to suffice for accurate detection. In contrast, we see a shift in registration algorithms for a number of merchants around October and January, but otherwise patterns remain stable for long periods. The several million accounts we identify as fraudulent should thus be viewed as a lower bound in the event we missed an adaptation.
Table 7: Breakdown of the merchants, the relative volume of all detected accounts in the last year that match their pattern, precision (P) and recall (R).
Pattern Overlap & Resale The simultaneous adaptation of merchant patterns in Figure 5 around October and other periods leads us to believe that a multitude of merchants are using the same software to register accounts and that an update was distributed. Alternatively, the account marketplace may have multiple levels of resale (or even arbitrage) where accounts from one merchant are resold by another for an increased cost, leading to correlated adaptations. Further evidence of correlated patterns appears in the merchant patterns we construct, where a classifier for one merchant will accurately detect accounts sold to us by a second merchant. For instance, the accounts sold by kamalkishover from Freelancer overlap with the patterns of 9 other merchants, the most popular of which is buyaccountsnow.com. We find most Fiverr sellers are independent with the exception of denial93, ghetumarian, and formefor, whose patterns overlap with the major account web storefronts. This would explain why these three Fiverr sellers appear to be much larger (from the perspective of Table 7) compared to other Fiverr merchants. As a result, our estimates for the number of accounts registered by each merchant may be inflated, though our final total counts only unique matches and is thus globally accurate.
Figure 5: Recall of generated merchant patterns for all purchased accounts as a function of training the classifier on data only prior to time t.
We analyze the several million accounts we flag as registered by merchants operating in the underground market and estimate the fraction that have been sold and used to generate Twitter spam. We find that, during active months, the underground market was responsible for registering 10–20% of all accounts that Twitter later flagged as spam. For their efforts, we estimate that merchants generated a combined revenue between $127,000– $459,000.
Figure 6: Fraction of all suspended accounts over time that originate from the underground market.
From our seed set of 121,027 accounts purchased from 27 merchants, we are able to identify several million fraudulent accounts that were registered by the same merchants. Of these, 73% were sold and actively tweeting or forming relationships at one point in time, while the remaining 37% remained dormant and were yet to be purchased.
In cooperation with Twitter, we analyzed the total fraction of all suspended accounts that appear to originate from the merchants we track, shown in Figure 6. At its peak, the underground marketplace was responsible for registering 60% of all accounts that would go on to be suspended for spamming. During more typical periods of activity, the merchants we track contribute 10–20% of all spam accounts. We note that the drop-off around April does not indicate a lack of recent activity; rather, as accounts are stockpiled for months at a time, they have yet to be released into the hands of spammers, which would lead to their suspension. The most damaging merchants from our impact analysis operate out of blackhat forums and web storefronts, while Fiverr and Freelancer sellers generate orders of magnitude fewer accounts.8
We estimate the revenue generated by the underground market based on the total accounts sold and the prices charged during their sale. We distinguish accounts that have been sold from those that lay dormant and await sale based on whether an account has sent tweets or formed relationships. For sold accounts, we identify which merchant created the account and determine the minimum and maximum price the merchant would have charged for that account based on our historical pricing data.9 In the event multiple merchants could have generated the account (due to overlapping registration patterns), we simply take the minimum and maximum price of the set of matching merchants.
We estimate that the total revenue generated by the underground account market through the sale of Twitter credentials is between the range of $127,000– $459,000 over the course of a year. We note that many of the merchants we track simultaneously sell accounts for a variety of web services, so this value likely represents only a fraction of their overall revenue. Nevertheless, our estimated income is far less than the revenue generated from actually sending spam [17] or selling fake antivirus [25], where revenue is estimated in the tens of millions. As such, account merchants are merely stepping stones for larger criminal enterprises, which in turn disseminate scams, phishing, and malware throughout Twitter.
With Twitter's cooperation, we disable 95% of all fraudulent accounts registered by the 27 merchants we track, including those previously sold but not yet suspended for spamming. Throughout this process, we simultaneously monitor the underground market to track fallout and recovery. While we do not observe an appreciable increase in pricing or delay in merchant's delivering new accounts, we find 90% of all purchased accounts immediately after our actioning are suspended on arrival. While we successfully deplete merchant stockpiles containing fraudulent accounts, we find that within two weeks merchants were able to create fresh accounts and resume selling working credentials.
In order to disrupt the abusive activities of account merchants, we worked with Twitter's Anti-spam, SpamOps, and Trust and Safety teams to manually validate the accuracy of our classifier and tune parameters to set an acceptable bounds on false positives (legitimate users incorrectly identified as fraudulent accounts). Once tuned, we applied the classifier outlined in Section 5 to every account registered on Twitter going back to March, 2012, filtering out accounts that were already suspended for abusive behavior.
From the set of accounts we identified10, Twitter iteratively suspended accounts in batches of ten thousand and a hundred thousand before finally suspending all the remaining identified accounts. At each step we monitored the rate of users that requested their accounts be unsuspended as a metric for false positives, where un-suspension requests require a valid CAPTCHA solution. Of the accounts we suspended, only 0.08% requested to be unsuspended. However, 93% of these requests were performed by fraudulent accounts abusing the unsuspend process, as determined by manual analysis performed by Twitter. Filtering these requests out, we estimate the final precision of our classifier to be 99.9942%. The tuned classifier has a recall of 95%, the evaluation of which is identical to the method presented in Section 5. Assuming our purchases are a random sample of the accounts controlled by the underground market, we estimate that 95% of all fraudulent accounts registered by the 27 merchants we track were disabled by our actioning.
Immediately after Twitter suspended the last of the underground market's accounts, we placed 16 new orders for accounts from the 10 merchants we suspected of controlling the largest stockpiles. Of 14,067 accounts we purchased, 90% were suspended on arrival due to Twitter's previous intervention. When we requested working replacements, one merchant responded with:
All of the stock got suspended ... Not just mine .. It happened with all of the sellers .. Don't know what twitter has done ...
Similarly, immediately after suspension, buyaccs.com put up a notice on their website stating “ Twitter.com”, translating via Google roughly to “Temporarily not selling Twitter.com accounts”.
While Twitter's initial intervention was a success, the market has begun to recover. Of 6,879 accounts we purchased two weeks after Twitter's intervention, only 54% were suspended on arrival. As such, long term disruption of the account marketplace requires both increasing the cost of account registration (as outlined in Section 4) and integrating at-signup time abuse classification into the account registration process (similar to the classifier outlined in Section 5). We are now working with Twitter to integrate our findings and existing classifier into their abuse detection infrastructure.
We have presented a longitudinal investigation of the underground market tied to fraudulent Twitter credentials, monitoring pricing, availability, and fraud perpetrated by 27 account merchants. These merchants specialize in circumventing automated registration barriers by leveraging thousands of compromised hosts, CAPTCHA solvers, and access to fraudulent Hotmail, Yahoo, and mail.ru credentials. We identified which registration barriers positively influenced the price of accounts and distilled our observations into a set of recommendations for how web services can improve existing barriers to bulk signups. Furthermore, we developed a classifier based on at-registration abuse patterns to successfully detect several million fraudulent accounts generated by the underground market. During active months, the 27 merchants we monitor appeared responsible for registering 10–20% of all accounts later flagged by Twitter as spam. For their efforts, these merchants generated an estimated revenue between $127,000–$459,000. With Twitter's help, we successfully suspended 95% of all accounts registered by the 27 merchants we track, depleting the account stockpiles of numerous criminals. We are now working with Twitter to integrate our findings and existing classifier into their abuse detection infrastructure.
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To minimize the risk posed to Twitter or its users by our investigation of the account market, we follow a set of policies set down by our institutions and Twitter, reproduced here to serve as a note of caution to other researchers conducting similar research.
Twitter & Users Some of the account merchants we deal with work in an on-demand fashion, where purchases we place directly result in abusive registrations on Twitter (e.g. harm) in violation of the site's Terms of Services. Even purchases from existing stockpiles might be misconstrued as galvanizing further abuse of Twitter. As such, we directly contacted Twitter to receive permission to conduct our study. In the process, we determined that any interactions with the underground market should not result in harm to Twitter's user base. In particular, accounts we purchased should never be used to tweet or form relationships while under our control. Furthermore, we take no special action to guarantee our accounts are not suspended (e.g disabled) by Twitter; our goal is to observe the natural registration process, not to interact with or impede Twitter's service in any way.
Account Merchants We do not interact with merchants anymore than necessary to perform transactions. To this end, we only purchased from merchants that advertise their goods publicly and never contact merchants outside the web sites or forums they provide to conduct a sale (or to request replacement accounts in the event of a bad batch). Our goal is not to study the merchants themselves or to collect personal information on them; only to analyze the algorithms they use to generate accounts.
Sensitive User Data Personal data logged by Twitter is subject to a multitude of controls, while user names and passwords sold by merchants also carry controls to prevent fraud, abuse, and unauthorized access. First, we never log into accounts; instead, we rely on Twitter to verify the authenticity of credentials we purchase. Furthermore, all personal data such as IP addresses or activities tied to an account are never accessed outside of Twitter's infrastructure, requiring researchers involved in this study to work on site at Twitter and to follow all relevant Twitter security practices. This also serves to remove any risk in the event an account is compromised rather than registered by an account merchant, as no personal data ever leaves Twitter. To our knowledge, we never obtained credentials for compromised accounts.
1Our study is limited to Twitter, as we were unable to acquire permission to conduct our research from other companies we saw being abused.2Pre-aged accounts allow miscreants to evade heuristics that disable newly minted accounts based upon weak, early signs of misbehavior. In contrast, in order to limit the impact on legitimate users, disabling older accounts only occurs in the face of much stronger signals of maleficence.3Advertisements that we encountered for phone verification services ranged in price from $.10 – $.15 per verification for bulk orders of 100,000 verifications, and $.25 per verification for smaller orders.4We calculate uniqueness over the IP addresses in our dataset, not over all IPs used to register accounts on Twitter.5We use Java character class notation, where p{*} indicates a class of letters and Lu indicates uppercase, Ll lowercase, and Lo non-case.6Due to operational concerns, we are unable to provide exact numbers on the volume of spam accounts registered. As such, we reference merchants and the impact they have on Twitter as a relative volume of all several million accounts that we detect.7We omit accounts purchased from the Freelancer merchant shivnagsudhakar as these were registered over a year ago and thus lay outside the range of data to which we had access.8The exception to this is a Freelancer merchant kamalkishover, but based on their merchant pattern overlapping with 9 other merchants, we believe they are simply reselling accounts.9Determining the exact time of sale for an account is not possible due to the potential of miscreants stockpiling their purchases; as such, we calculate revenue for both the minimum and maximum possible price.10Due to operational concerns, we cannot specify the exact volume of accounts we detect that were not previously suspended by Twitter's existing defenses.
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Advertising is one of the primary means for revenue generation for millions of websites and mobile apps. While the majority of online advertising revenues are based on pay-per-click, alternative forms such as impression-based display and video advertising have been growing rapidly over the past several years. In this paper, we investigate the problem of invalid traffic generation that aims to inflate advertising impressions on websites. Our study begins with an analysis of purchased traffic for a set of honeypot websites. Data collected from these sites provides a window into the basic mechanisms used for impression fraud and in particular enables us to identify pay-per-view (PPV) networks. PPV networks are comprised of legitimate websites that use JavaScript provided by PPV network service providers to render unwanted web pages “underneath” requested content on a real user's browser so that additional advertising impressions are registered. We describe the characteristics of the PPV network ecosystem and the typical methods for delivering fraudulent impressions. We also provide a case study of scope of PPV networks in the Internet. Our results show that these networks deliver hundreds of millions of fraudulent impressions per day, resulting in hundreds of millions of lost advertising dollars annually. Characteristics unique to traffic delivered via PPV networks are also discussed. We conclude with recommendations for countermeasures that can reduce the scope and impact of PPV networks.
Advertising is one of the primary methods for generating revenues from websites and mobile apps. A recent report from the Internet Advertising Bureau (IAB) places ad revenues in the US for the first half of 2012 at $17B, which represents a 14% increase over the previous year [15]. While the majority of that revenue is search-based, ad words advertising, display and video advertising have been growing. Indeed, a recent report places display and video advertising in the US at $12.7B for FY2012, growing at 17% annually [27]. At a high level the basic notion of selling space on web pages and apps for advertising is simple. However, the mechanisms and infrastructure that are required for online advertising are highly diverse and complex.
The online ad ecosystem can roughly be divided into three groups: advertisers, publishers and intermediaries. Advertisers pay publishers to place a specified volume of creative content with embedded links (i.e., text, display or video ads) on websites and apps. Intermediaries (e.g., ad servers and ad exchanges) are often used to facilitate connections between publishers and advertisers. Intermediaries typically place a surcharge on the fees paid by advertisers to publishers for ad placements and/or ad clicks. What is immediately obvious from this simple description is that publisher and intermediary platform revenues are directly tied to the number of daily visits to a website or app. Thus, there are strong incentives for publishers and intermediaries to use any means available to drive user traffic to publisher sites.
There are certainly legitimate methods for traffic generation for publisher sites. The most widely used are the text-based ad words that appear in search results e.g., from Google or Bing. However, it can be quite difficult and expensive to drive large traffic volumes to target sites using ad words alone.1 Thus, other methods for traffic generation have emerged, many of which are deeded as fraudulent by advertisers and intermediaries. Google defines invalid (fraudulent) traffic as follows:2
Invalid traffic includes both clicks and impressions that Google suspects to not be the result of genuine user interest [21].
Standard methods for generating invalid traffic includes (i) using employees at publisher companies to view sites and click on ads, (ii) hiring 3rd parties to view sites and click on ads, (iii) click/view pyramid schemes and (iv) using software and/or botnets to automate views/clicks [21]. The challenges for advertisers and intermediaries focused on offering trustworthy platforms are to understand these and potentially other threats so that effective countermeasures can be deployed.
In this paper, we investigate a relatively new threat for display and video advertising called Pay-Per-View (PPV) networks. The basic idea for PPV networks is to pay legitimate publishers to run specialized JavaScript when users access their sites that will display other publishers websites in a camouflaged fashion. This will result in impressions and potentially even clicks that are registered on the camouflaged pages without “genuine user interest” i.e., invalid traffic generation. Legitimate publishers view this as another way to monetize their sites without impact to their users. PPV networks sell their traffic generation capability by touting real and unique users, geolocation and context specificity among other things. The fact that pages are appearing on real users' systems makes detecting and preventing PPV traffic generation challenging.
To study PPV networks, we employ a small set of honey-pot websites that we use as the target for traffic generation. These sites were constructed to include what appears to be legitimate content and advertising. We then use search to identify a wide variety of traffic generation offerings on the Internet. We purchased impressions for our honeypot sites in various quantities from a selection of different traffic generation services over the course of a 3.5 month period. By engaging with traffic generation services directly, we were able to uncover the basic mechanisms of PPV networks and initiate additional measurements to characterize their deployments.
The characteristics of the traffic purchased for our honey-pot sites is dictated at a high level by the service offerings, which enable volume, time frame and geographic location, etc. of users to be specified. Our results show that impressions are typically spread in a somewhat bursty fashion over the specified time frame and that user characteristics are well matched with specifications. By considering the referer field of the incoming traffic, we were able to identify the fact that our honeypot sites were being loaded into a frame (along with as many as ten other sites) for display on remote systems. By considering names of a small selection of traffic generation services, we use a recent, publicly-available, Internet-wide web crawl to identify the scope of PPV networks. We find tags from these services are, in fact, widely deployed – on tens of thousands of sites. By appealing to MuStat [29], we conservatively estimate the number of invalid impressions that are generated from this small set of PPV networks to be on the order of 500 million per day. Assuming a modest quality level for sites that are part of PPV networks, we estimate the annual cost to advertisers for this invalid traffic to be on the order of $180 million annually.
Finally, we offer three different methods to defend against PPV networks. First, observing viewport dimensions of ad requests can determine if the end user can possibly view the advertisement. In an effort to increase traffic, PPV networks commonly display destinations in zero sized frames. Second, blacklists of websites that participate in PPV networks can potentially be used. The idea is to block advertising on websites that commonly receive PPV traffic until the publisher discontinues purchasing PPV traffic. Such blacklists can be compiled through programmatic enumeration of PPV destinations. Finally, referer fields can be queried at the time of advertisement load in order to identify traffic originating from known PPV domains.
The remainder of this paper is organized as follows. In Section 2 we provide a description of the online advertising ecosystem and an overview of invalid traffic generation threats. In Section 3, we describe the details of our honeypot websites and our traffic purchases for these sites. In Section 4, we describe the details of the evaluations that we conduct on our data including analyses of additional data sets and measurements that enable us to project some of the broader characteristics of PPV networks. We provide recommendations for counter measures that can be employed to reduce the impact of PPV networks in Section 5. We discuss prior studies that inform our work in Section 6. We summarize, conclude and discuss future work in Section 7.
In this section we provide an overview of the online advertising ecosystem including both the business framework and technical framework for delivering advertisements to publisher websites and apps. Some prior studies have provided similar overviews including [16, 34, 41]. We also provide an overview of invalid traffic generation threats and the challenges they pose in the ecosystem.
As mentioned in Section 1, there are three main participant groups in ad networks: advertisers, intermediaries and publishers. As shown in Figure 1 there are two other important groups: brands and users. Brands pay advertisers to help them sell their products and services. Internet-based campaigns are attractive to brands and advertisers since consumers/users spend a growing proportion of their time online. An important appeal of online advertising (especially for consumer goods) is that it offers the opportunity to tie ad campaigns and associated costs directly to sales e.g., by tracking clicks from online ads to purchases on a brand's ecommerce site.
Advertisers are companies that create and manage advertising campaigns for brands. Advertisers pay publishers to make ad placements on websites and apps using one of several different models. One is the widely used Pay-Per-Click (PPC) model, where an advertiser only pays a publisher for an ad when a user clicks on it. PPC campaigns are typically associated with ad words (short, text-based ads) campaigns. An alternative payment method that is common in display and video advertising is Cost Per Mille/Thousand (CPM), where advertisers pay publishers whenever users view an ad (CPM prices are given per thousand impressions). The CPM-based payment model is the primary focus for this paper. The goal for advertisers is to place ads on sites that they believe attract a brand's target demographic in a cost-effective fashion. Thus, their challenge is in identifying these sites and facilitating ad placement.
Figure 1: Key participants in the online advertising ecosystem. Payments flow from brands to advertisers to intermediaries and publishers.
In addition to working with publishers directly, advertisers often work with intermediaries in order to actually place ads on websites and apps. The two main reasons for this are the complexity of Internet advertising's technical landscape (see below) and the enormous and growing diversity of websites and apps. Among other things, intermediaries offer “one-stop shopping” for advertisers, and competitive CPM rates to publishers who may not be able to fill all of their placements via direct campaigns.
The scope of intermediaries is quite broad. The most common offerings include targeting services, ad servers and ad exchanges to facilitate placements. One of the most widely used intermediaries in the display advertising space is Google AdExchange (AdX) [20, 30]. The revenue model that is most commonly used by intermediaries is to take a small CPM payment for each ad that they participate in serving and then to pass the remainder of the CPM paid by the advertiser to the publisher.
Internet publishers are companies that create content that is of interest to users. Publishers display ads on their pages using standard sized creatives that typically appear in an iframe. A publisher's goal is to maximize their revenue yield by attracting (i) premium advertisers that pay high CPM's and (ii) a high volume of users, some whom will click through on ads. It is important to note that while ad words-based advertising (e.g., through AdSense) is widely available, display and video ads are typically only available to sites that have somewhat higher volumes of users.
Displaying an advertisement on a publisher's page includes potentially a large number of data exchanges between participants in the advertising ecosystem. A simple example is depicted in Figure 2. The process begins with the placement of an ad tag in a section of a publisher page. Ad tags (often supplied by intermediaries that manage ad servers) are simple HREF strings that typically reference JavaScript code hosted in a CDN infrastructure.
Figure 2: Typical data exchanges required to render an ad in a user's browser. (1) User request to publisher page. (2) Base page delivered. (3) Ad tag request to CDN. (4) JavaScript delivered. (5) Update to JavaScript in CDN if necessary. (6) Request to ad server. (7) Redirected request delivered. (8) Request to exchange or 3rd party ad server. (9) Ad creative delivered.
The JavaScript typically gathers context keywords and other information from the publisher page or user browser and then sends an ad request to the target ad server infrastructure. Ad servers process the ad request and either respond with an ad directly (e.g., from a direct advertiser campaign) or send a redirect to a third party such as an ad exchange. The redirect is forwarded by browser to the target server or exchange, which will respond with an ad that is rendered in the browser. The redirect usually includes sufficient information for ad targeting and billing. This entire process must take place quickly (typically on the order of tens of milliseconds) in order to ensure a good user experience. When the ad is delivered, an impression is registered for the ad serving entity. Click tracking is typically managed by directing clicks to the ad server, which then redirects to the advertiser.
Impression-based advertising has a number of potential threats. The focus of this paper is on traffic generation that causes invalid impression and thereby inflates publisher and (some) intermediary revenues. Specifically, we focus on invalid traffic generation via PPV networks, which we describe in detail in Section 4.
Valid methods for traffic generation include search and ad words-based advertising. However, web search reveals that there is a wide variety of other traffic generation offerings available. Many offer a specified volume of traffic at a target site over a specified time period. Many also include guarantees of specific features in the traffic such as geographic locations of host systems. Most do not describe their methodology in detail if at all. One of the important objectives of traffic generation is that it appear to come from real users. Appealing to the definition of invalid traffic given in Section 1 above, there are many ways in which such traffic might be generated.
Common methods for invalid traffic generation have been borrowed directly from click generation services that have been offered for some time. Examples include hiring people to view pages, bots of various types, and using expired domains to divert users to 3rd-party pages.
PPV networks are sites that load 3rd-party pages in an obfuscated fashion when accessed by users. Publishers become part of a PPV network simply by placing a tag on their site that looks very much like a standard ad tag. We define a “network” as a series of sites that run tags from the same PPV service. Participating publishers are paid on a CPM basis for something that appears to be low or no impact on their site.
Since the third party pages that are rendered via PPV networks are clearly not the interest of the users, all of the resulting impressions are invalid. Beyond laking the intent necessary to qualify as valid traffic, we show that PPV network traffic has characteristics unlike organic traffic. For example, natural traffic displays a diurnal traffic pattern, while the PPV traffic we observed often showed highly artificial delivery patterns.
To begin our investigation of traffic generation and impression fraud we established a set of honeypot websites. We then purchased traffic from a number of different services and captured a diverse set of data from the resulting hits on our sites. In this section we provide details on our honeypot websites and traffic purchases. The results of these activities are described in detail in Section 4.
We created three websites as the starting point for our investigation of traffic generation service providers. The sites differed only in styling, formatting, and deployment. The content on each site was identical. The reason for creating three different sites was to enable us to conduct A-B comparisons between different traffic generation services.
The design objective for our honeypots was to create sites that looked relatively “legitimate”. To that end, they have a standard layout, content changes regularly and the deployment is standard. A second objective was that the sites were instrumented to gather as much data as possible on arriving traffic.
Each site consisted of a base landing page and four subpages. Three of the pages displayed RSS content from the news feeds of topwirenews.com or espn.com. One page listed links to popular news sites. The final page was a nonfunctional search result. Every page contained four advertisement placements, identical to standard CPM placements except they contained dummy creatives instead of displaying paying advertisers' placements. All of the ads have embedded links to dummy landing pages that we also monitor.
Figure 3: Screenshot of one of the honeypot websites that was a target for traffic generation purchases.
Domain names were registered for each site with GoDaddy using their anonymous registration option. We attempted to give the sites names that sounded interesting and connoted the news-related content of the sites. The sites were created using dotCMS inside Amazon EC2. Amazon's Cloud-Front CDN was enabled for the sites in order to handle larger bursts of traffic. We used a “noindex, nofollow” meta tag and a robots.txt file to attempt to prevent inclusion in search engine results.
Instrumentation was facilitated in several ways. Google Analytics tags were deployed on all pages for general monitoring. Logs from the serving infrastructure were used to understand the details of individual connections. A series of JavaScript blocks collected information about the site visitors. The instrumentation reported viewer characteristics (See Table 1) using 1x1 pixels. Each advertisement on the sites was instrumented with code that reported the three key events in the life cycle of every ad: (1) JavaScript load (2) JavaScript execution and (3) successful delivery. Finally, the pages contained JavaScript that tracked user interaction on the site. Simliar to [41] the interaction metrics reported mouse movements and clicks. The mouse position was collected every time the cursor moved at least 20 pixels.
We identified and reviewed 34 traffic generation service providers for this study. These service providers were identified using web search. We manually reviewed each service provider's site to catalog available purchasing options. Details of the sites and options are given in Table 3. We make no claims on the completeness of this list of traffic generation service providers. However, given the commonality of their offerings, we believe that they are a representative cross section.
We also investigated the service provider websites themselves to gain some insights on their legitimacy. Their domain names were checked with McAfee SiteAdvisor [6]. The DNS record was inspected using Network Solutions' Whois tool [8]. Finally, a tool available from SameID.net [9] was used to search for sites sharing the same IP address or Google Analytics tag.
Table 1: Visitor information collected from honeypot websites.
From the set of 34 traffic generation services, we selected 5 from which we made purchases. Services were selected to get a diversity of delivery rates and price points. The characteristics of our purchased traffic indicated the selected services were independent networks. The purchased traffic was directed to the honeypot sites between November 11th, 2012 and February 18th, 2013, resulting in over 69K delivered impressions. We used target URL's including Google Analytics campaign parameters [5] to help to differentiate overlapping purchases.
Our purchasing strategy was oriented around diversity and not volume. Details of the purchased traffic can be found in Table 2. With the exception of BuildTraffic all traffic purchased was designated as only traffic from United States and labeled as news and information. The intended delivery rate of purchased traffic varied between 333 visitors per day to 25,000 visitors per day. We intend to investigate further diversity and higher volume purchases in future work.
Table 2: Traffic purchases made for this study.
In addition to traffic generation itself, PPV service providers also offer publishers the opportunity to participate as a traffic source in their network (this was our initial indication of PPV networks). To further investigate the mechanisms of traffic generation, we enrolled as a website owner willing to display content with a PPV service provider called InfinityAds. The signup was completed using InfinityAds' fully automated publisher signup system on their website. Upon signup we were given a block of JavaScript to load on our site. In return for running this tag, the website owner is assured of a relatively attractive CPM (quoted and qualified at $1.80) and that “...pop under ads will not block any of your site content and do not lead to actions where users might be led to leave your site.” [23]. In this case, pop-under windows are the method that InfinityAds uses to generate traffic. We describe these in more detail below.
In this section we report the results of our analysis of purchased traffic at our honeypot sites. This analysis reveals the mechanisms used to drive traffic to target sites and opens the door to a broader analysis of PPV networks, which is also reported below.
We reviewed the details of the 34 traffic generation/ecommerce sites that we identified via web search using strings like “website traffic”, “buying web traffic”, “web trafficking”, etc. Features such as traffic characteristics, pricing, timing, reseller information, and DNS entries were noted for each site. Details are listed in Table 3.
There is no uniform pricing for traffic providers. The pricing given in Table 3 was normalized to the cost of delivering 25,000 visitors from the United States for comparison. Of the 34 traffic generation services that we investigated, five of them did not allow purchasing traffic originating exclusively from the United States. One site was deemed fraudulent because it did not have a space to enter a traffic destination prior to checkout completion. The remaining 28 sites charged between $29.99 and $200 to purchase 25k visitors.
There were significant similarities between many of the traffic purchase sites. Many of the providers made multiple copies of their site in order to target different publisher segments or to simply use another attractive domain name. All of the provider domains were assessed using the sameid.net
domain investigation tool [9]. Seven of the providers appeared to be repackaging another site (handy-traffic, cmkmarketing, visitorboost, revisitors, buybulkvisitor, highurlstats, xrealvisitors). Four of the repackaged sites shared a Google Analytics account with another traffic provider site (handytraffic, cmkmarketing, visitorboost, re-visitors). Three of the repackaged sites shared an IP address with another traffic purchase site (buybulkvisitor, highurlstats, xrealvisitors). Shared website hosting could cause IP overlap, but it is unlikely that 3 sites in our 34 site sample are randomly hosted on the same IP. Furthermore an implementation error caused highurlstats.com to load buybulkvisitor.com, making it plausible that these sites are related.
Four of the PPV sellers investigated offered the ability to become a traffic reseller (hitpro, ineedhits, toptrafficwholesaler, traffic-masters). A reseller sells traffic without having to manage traffic delivery infrastructure or payment processing. The reseller acts only as an intermediary forwarding orders along to the true traffic provider. As per the descriptions, the reseller is charged a fixed rate for the traffic and can resell the traffic at the price of their choosing. Two of the reseller packages offered prepackaged websites where the reseller only needs to supply their branding and marketing.
Table 3: Traffic provider details.
Given the potentially fraudulent nature of traffic generation, we were interested in a general measure of the trustworthiness of providers sites. McAfee's SiteAdvisor [6] rated most of the provider websites as safe. Specifically, out of the 34 sites investigated 22 were labeled as Safe, 11 had not yet been reviewed by SiteAdvisor, and 1 was labeled as suspicious.
A Whois lookup was performed on each of the traffic providers websites to gain insights on deployments. 14 out of the 34 sites listed a DNS anonymization service as their primary contact. Four of the sites were registered or renewed in the previous 12 months. Expiration and creation dates give the period the domain registration. On average the sites were registered for 5.71 years. The longest registration was for 16 years. Six sites are registered for only 1 year.
Looking at the contract information of the sites not using anonymization gave the following breakdown of country residency: 10 United States, 2 Australia, 2 Canada, 2 Spain, 1 France, 1 Italy, 1 Singapore, 1 China.
Providers offer a variety of options for purchased traffic. Many provide assurances that only “real” traffic will be delivered and no “black hat techniques” are used. Every site promises unique views, such that the same user will not be directed to the site multiple times in 24 hours. Six sites were more precise, specifying that a user's IP address will only be directed to the destination once in a 24-hour period. Typical traffic volumes range between 10K and 1M visitors per campaign. Direct email was required for campaigns larger than 1M visitors. See Table 4 for other options offered by the traffic providers that we evaluated.
Table 4: Traffic provider features.
One of our purchases did not deliver any appreciable volume of traffic. The reason for the failure of traffic delivery is not clear. The provider may have decided not to deliver due to the instrumentation of the destination site. The provider still collected payment for the traffic which was not delivered. See Tables 5 and 6 for a summary of our measurements. Of the target of 110,000 visits that we purchased, we received 69,567. At the time of writing AeTraffic was still delivering visitors beyond the campaign end. The BuildTraffic purchase stopped delivering visitors abruptly at the end of January, 28 days into the 60-day campaign.
We analyzed traffic delivered to our honeypot websites for a variety of characteristics. Before processing, the data was filtered to remove any events originating from our honeypot server's IP address. Also any user agent containing case-insensitive 'bot' was excluded. This was done to remove the effects of web crawler traffic from our results. All of the traffic observed appeared to originate from our purchases. We did not see any indications of natural traffic.
The IP addresses of the purchased traffic showed some overlap with public IP blacklists. Every morning at 7 GMT IP blocklists were pulled from DShield.org [3] and UceProtect [10] as points of comparison. The count of blacklisted IP addresses from these sources averaged 303,968 (or 0.007% of the entire IP space) for January 2013. On average, source IP addresses of the purchased data matched the blacklists 0.97% of the time. This is perhaps more than would be expected by chance, but too low to draw a strong conclusion about overlap between the set of sources from traffic generation services and malicious sources.
Each of our honeypot pages tracked four JavaScript events: onmousemove, onmousedown, onblur, onfocus. There was an extremely small number of activity events (190) reported for all purchased traffic. There are a few explanations for such low interation: (i) it may be an accurate reflection of reality, (ii) the site was 0 sized and the user could not interact with it (see 4.2.7) or (iii) it could be the result of JavaScript events not firing as expected. Unfortunately we cannot rule out JavaScript failure. We cannot draw strong conclusions from the lack of interaction events other than the fact that we did not pay for anything other than impressions.
The pacing of visitor delivery varied greatly depending on traffic service provider. As is described below service providers traffic millions if not billions of visitors a day, but individual purchases can require delivery of less than 100 visitors a day to a destination. Furthermore, the network throughput is not guaranteed. So the deliveries need to be slightly front-loaded to ensure full delivery in the case of lower than expected throughput. The problem of pacing manifested itself in both the time of arrivals within a day and the arrival distribution over the entire campaign.
The daily arrival patterns of visitors showed some unusual artifacts. AeTraffic delivered consistently though the entire day as can be seen in Figure 4. It is well known that typical user traffic follows a diurnal cycle, reaching the high peak during the day and low peak overnight when users are sleeping. A more obvious example of artificial delivery is Build-Traffic, which delivered only during the first 10 minutes of the hour, as can be seen in Figure 5.
The arrival of users throughout the campaign was quite bursty in some cases. With periods of high delivery followed by periods of low delivery. MaxVisists delivered traffic primarily in the first half of every day as can be seen in Figure 6. Meanwhile, TrafficMasters delivery primarily consisted of two large spikes with little delivery between, as can be seen in Figure 7.
Every page on our honeypot sites contained four JavaScript blocks which loaded advertising creatives. Each creative was independently instrumented to report when it had been loaded. Four blocks of JavaScript need to complete in order to successfully load all of the ads on the pages. Using this information, we can calculate the percentage of page loads that completed for all four ads.
Table 5: Purchased traffic delivery.
Figure 4: Traffic distribution from AeTraffic.
Figure 5: Traffic distribution from BuildTraffic.
Traffic from BuildTraffic and TrafficMasters resulted in ads completely loading approximately 60% of the time. AeTraffic and MaxVisits only loaded approximately 15% of the time. Reasons for failure to load all the ads include: JavaScript blockers, JavaScript errors, JavaScript execution timeout, and navigation away from the page.
IP addresses from an entire traffic generation campaign where checked for duplicates to get an idea of the distribution of traffic sources. According to the advertised 24 hour-unique policy an IP address could be used once per day. For small purchases our data showed very little overlap of IP address for the campaigns: AeTraffic reused 0.75% of IP addresses, BuildTraffic reused 0.64% and MaxVisits reused 11.25%. The larger purchase from TrafficMasters showed significantly more IP address overlap with 65% of IPs reused. The majority of the IPs geolocated inside of the US, with the exception of the BuildTraffic IPs.
Figure 6: Traffic distribution from MaxVisits.
Figure 7: Traffic Distribution from TrafficMasters.
The number of unique user agents across the purchases shows the traffic came from a diverse set of browsers. An alternative explanation could be that artificial traffic generators utilized a large set of User Agent strings. However, combined with the diverse set of IP addresses, it appears the traffic could well be generated from genuine viewers.
Table 6: Purchased traffic characteristics.
About 5% of the traffic from AeTraffic, MaxVisists and TrafficMasters had the User Agent signature of a mobile device. BuildTraffic traffic contained a much higher percentage of mobile device User Agents. Possibly due to the increased geographic diversity of the traffic.
Halfway through our purchases we instrumented the code to record the element height and width.3 Overall 46.51% of ad views had a height or width of 0, meaning that the advertisement could not possibly be viewed by the user. 13.42% of views had both a height and width of zero. These results corroborate the BuildTraffic delivery technique of zero-sized frames described in 4.3.1.
By examining the JavaScript provided by traffic generation services and the referer fields from traffic on our honeypot sites, we were able to identify the fact that traffic was generated primarily from pop-under windows. Interestingly, while we did see evidence of traffic from expired domains, we saw no evidence of traffic from botnets. This observation led to our deeper investigation of the use of pop-unders for traffic generation and our characterization of PPV networks.
As noted above when publishers participate in a traffic generation service i.e., a PPV network, they are given a block of JavaScript to place on their site, which looks very much like a standard ad tag. In the case of PPV networks, when a user accesses a PPV network publisher page, the JavaScript opens a new window (typically behind the active browser window, hence a pop-under) and loads the PPV server URL. The publisher running the tag gets a share of the revenue for every PPV URL that is subsequently loaded. The PPV network solves two problems with respect to marshaling users: (i) it delivers the JavaScript which creates the pop-under window and (ii) it determines the site to display in the window.
In response to prevalent pop-up advertising, web browsers give users the option to prevent pages from opening unsolicited windows. PPV networks need to circumvent this restriction. One option is the PPV code can explicitly bypass browser protections. A review of the issue trackers for Chrome or Firefox does not list many bugs related to the browsers' pop-up blockers, thus this is likely to be a difficult coding challenge. Our empirical data did not show any PPV network tags that attempt to bypass the pop-up blocker directly. The common approach is to tie pop-under creation to a user action since browsers typically allow creation of new windows on these events. Typically the pop-under action is attached to the onclick event of the body of the page. This causes the pop-under action to fire whenever the user clicks anywhere on the site.
After creation, the pop-under window is directed to load a specific URL pointing to the network's ad server. The ad server URL contains a number of parameters describing targeting and attribution of the visitor. The parameters always include an identifier for the originating site so that the publisher can get paid for the traffic. The list of parameters is clearly dependent on individual implementations, but some of the more common targeting parameters are: (i) user-Token, (ii) indication if adult sites are allowed, (iii) user IP/geolocation, and (iv) viewport size. Using these parameters the ad server selects and returns the most profitable 3rd-party web sites (i.e., the publishers that have purchased traffic) available. This is presumably the point where the 24 hour unique user guarantee is enforced.
Manually loading a publisher's PPV network tag often showed multiple redirections through a network of PPV servers. This mimics what is seen in standard advertising networks where an individual ad can be redirected across many networks in order to optimize the return from each user. For example, repeatedly loading the InfinityAds publisher tag showed network connections being made to ads.lzjl.com, cpxcenter.com, and 199.21.148.39. Whois and reverse IP lookups on these all indicate YesUp eCommerce Solutions Inc. for the contact information. YesUp is located in Ontario Canada and has a host of eCommerce offerings.
Ideally we would have identified the referer to the main pop-under page in our purchased traffic. This would enable us to identify the sites hosting pop-under tags. Unfortunately, the sandboxing of child frames (especially child frames with different domains than the parent) protects the Document Object Model of the parent frame. Therefore, the document.referrer node of the parent is inaccessible to the child frame. None of our traffic purchases had a value for parent.document.referrer. The best we can do is the referer value of the frame loading our honeypot sites. This referer points to the origin of the pop-under window code (originating from the PPV service provider).
In order to gain a better understanding of how traffic is delivered to purchasing sites, we reviewed the pages listed in the referer fields for the traffic arriving at our honeypot sites. A closer examination of two of the referer sites (BuildTraffic and RealTrafficSource) showed methods for increasing the number of “page views” for every user delivered.
Loading the referer of traffic purchased from BuildTraffic resulted in a simple HTML page, including 11 frames (see Appendix for example code). The main frame loads the primary target destination in 100% of the browser viewport. Following the primary frame there are 10 frames with a height of 0 pixels. Each of these frames loads the URL of a PPV network customer. Eight of the frames load paths from a link shortening service (itsssl.com), which resolve directly to a number of sites (presumably those purchasing traffic). One of the frames loads another targeting link from the same network. The final frame loads a targeting link from yet another domain. Resulting in a total of 11 “page loads” each time the PPV network URL is loaded. Ten of those page loads are invisible to the end user because they are loaded in a frame 0 pixels high.
The page listed as the referer in traffic from RealTrafficSource also used a frame to load the final destination. In this case only a single frame covered the entire viewport, but the outer page reloaded itself every 15 seconds. When the page is displayed as a pop-under it will continue to load a different site every 15 seconds even if the pop-under window is not visible to the user.
Based on our evaluation of the pop-under mechanisms used by PPV networks, we endeavored to assess the broader issues of the scale of these networks (e.g., number of publisher sites and number of users) and the potential volume of impressions that are being delivered on a daily basis. While all of this analysis is approximate and is based on certain assumptions, we take a conservative approach and argue that our results provide a meaningful depiction of this threat.
Many of the PPV providers list the throughput details (unique users and page views) of their network in advertising materials. Clearly, when self reporting these numbers, PPV network providers have incentive to over state in order to make their network appear larger than their competitors. Nonetheless, the self reported numbers give an insight into at least the approximate size of the networks. None of the providers publish throughput numbers broken down by features or delivery mechanisms. Thus, the numbers include pop-unders, expired domains and any other generation techniques. As shown in Table 4, 8 of the providers offer throughput information. An average of 17.16M unique visitors and 6.29B page views per provider per day are claimed. While the self report by TrafficMasters on page views is much higher than others and could be false, it may be due to an extensive affiliate network. Indeed, the use of affiliate networks means that simple summation of throughput to assess scope is unlikely to be accurate. However, the self reported numbers still point to a sizable capacity for PPV networks.
Table 7: Self reported network throughput from PPV providers.
In order to estimate throughput of the networks we investigated the scope of the deployment of the PPV network tags across publisher sites. Given the publisher sites where the PPV network tags are present along with the estimated traffic for those sites we create a conservative estimate for the daily traffic across PPV networks.
The first step in determining where the PPV network tags are deployed is identifying the tag URLs. The PPV networks we considered commonly used a domain name for their delivery infrastructure that was different from the public facing websites that market to publishers. We used three techniques to identify 10 active PPV network tag URLs: (i) subscribing to a PPV network as a publisher, (ii) investigating referer fields and (iii) searching for ad code on public forums.
Where possible we utilized automated signup processes to harvest PPV tags directly from the publishers. This is a trivial case where the code to be run on the publisher site is directly supplied.
Using referer fields to identify PPV tags was more challenging. Typically the destination is loaded inside a frame, so the referer references the outer page hosting the frame. The display page is typically not loaded directly from the publisher site. The publisher loads JavaScript which handles the pop-under creation and then calls the display page to fill the newly created window. In some cases, both the display page and the pop-under JavaScript are hosted on the same infrastructure. Searching the Common Crawl [2] database for the infrastructure domain lead to the identification of a number of PPV tags.
Table 8: Estimated pop-under window loads per day.
Finally, entering PPV network names into search engines resulted in a number of forum posts discussing pop-under tags. Many of the tags collected this way were no longer in use, but there were a few that were still active.
The next step is identifying the publisher sites that have deployed PPV network tags. To do this we used the Common Crawl repository of web crawl data. The August 2012 (see Table 4 for details provided by [11]) dataset included derived metadata about all of the crawled URLs. The metadata dataset contained a list of all outgoing links for each crawled page (including loading of JavaScript files). Amazon's Elastic MapReduce was used to list all paths with egress links pointing to the serving domains. The egress links were then manually reviewed to identify JavaScript files resulting in pop-under advertising. Selecting only pop-under tags from the MapReduce results gives a list of domains running those tags. We argue that this results in a conservative estimate of PPV networks that use pop-unders and an even more conservative estimate of PPV networks in general.
Estimates on traffic volumes on the identified publisher sites was done using public web analytics data. Alexa and Compete did not have traffic estimates for many of the domains. Thus, mustats.com was used to estimate domain traffic. A script was used to programmatically query mustats.com for traffic estimates on the identified PPV sites. We collected issued queries for 11,629 domains. MuStats returned an estimate for 10,737 of the queries. 2,635 of the returned queries estimated 0 views per day for the domain.
Subdomains posed an additional problem for traffic estimation. The web analytics products did not estimate traffic per subdomain. They only gave an estimate for the entire domain. For example, it is clear that just because blogsofnote.blogspot.com hosts a PPV network tag, not every domain on blogspot.com hosts that same ad tag. Attributing all of the traffic for blogspot.com to a PPV network would be inaccurate.
Table 9: August 2012 CommonCrawl database summary.
To estimate the impact of subdomains on PPV networks, we again utilize the Common Crawl database. Our analysis counts the total number of URLs crawled for each domain that lists PPV tags. URLs with file extensions jpg, png, gif, js were removed from the total count. The final total count approximates the number of webpages and page fragments crawled for a given domain. Dividing the link count by the total crawled pages results in the percentage of pages in a domain containing links to the PPV code. This is likely a significant underestimation of reality for two reasons First, many of the URLs crawled were page fragments (where a full page is the combination of many fragements). Second, each path is given even weight despite the fact that tags are more likely to be found on high traffic pages. In any case, subdomain traffic is estimated by taking the estimated traffic for the whole domain and multiplying that by the percentage of pages inside the domain linking to the tag.
Our final algorithm for calculating PPV network throughput is then the estimated traffic for domains hosting PPV tags plus the proportional estimated traffic for subdomains containing PPV tags as shown in Equation 3. Our estimates only include the traffic expected from pop-under tags. Obviously, by including traffic from expired domains and typo squatting domains and bots would likely increase the estimated throughput substantially.
Table 8 shows throughput estimates for a selection of 10 PPV networks using our algorithm. As is expected from our conservative approach, the dominant portion of estimated traffic was to full domains with subdomain estimates making up a small portion of the total estimate. The PPV tags from ero-advertising.com, which is the largest PPV network, were displayed predominantly on publishers hosting adult content. It is possible that visitors browsing adult content are more tolerant of pop-under advertising.
So far we have estimated the number of times that popunder code is executed per day. In reality many users have browser add-ons that prevent the creation of the pop-under window. One such popular extension for Firefox and Chrome is Adblock Plus [1]. The Firefox add-ons page for Adblock Plus lists 15.6M users [4]. Firefox claims 450M users [7], giving an install rate of 3.5% for Adblock Plus on Firefox. We conservatively estimate one quarter of all page loads prevent pop-up/pop-under creation due to plugins. Given this, we still would expect 75% of the estimated loads to result in a pop-under window. Our investigation of delivery mechanisms shows that PPV networks can load up to 11 destinations or more (in the case of auto refresh) in a single pop-under window. To maintain our conservative approach we assume four destinations loaded per pop-under window. Combining the effect of pop-up blockers and multiple loads we expect each view of a page hosting pop-under code will deliver 3 (0.75 * 4) impressions to the PPV network.
Our calculation of throughput for just 10 publisher networks resulted in more than 160M estimated tag loads per day, thus more than 500M visitor deliveries per day. Assuming a modest price of $25 per 25k visitors, the PPV providers make a minimum of $15M in sales of targeted traffic per month. Those 15B page views per month are delivered to purchasing websites. Assume the purchasing websites contain an average of 4 ads and each of those ads pays a $0.25 CPM. Advertisers spend $15M a month advertising to popunder viewers on these 10 networks alone.
In this section, we describe three potential counter measures to address the problem of invalid impressions generated by PPV networks. Each method offers a different perspective on the threat and each offers a different capability in terms of what can be done about the threat. While there could certainly be other viable counter measures, the following methods can be implemented by participants in the ad ecosystem who would benefit by detection and/or prevention of invalid impressions via PPV networks.
Advertisers who run their own ad server or intermediaries who run ad servers who are interested in removing impressions from PPV networks can filter ad requests based on viewport size. An advertiser or intermediary could implement a viewport size check countermeasure by augmenting their current JavaScript tag to include code that ensures a minimum sized viewport. This simple check code would prevent display of the advertisement for viewports which are too small to reasonably be seen by users on target platforms. In addition to reducing invalid impressions, this approach would save advertisers the bandwidth costs of delivering creatives in PPV networks.
JavaScript that detects zero-sized viewports could prevent a large amount of invalid impressions. Over 46% of the impressions in our data corpus are delivered via zero-sized viewports. Assuming this approach is used by PPV networks writ large, we estimate that a zero size viewport filter could block impressions from loading on over 200M pages per day from just the 10 PPV networks we investigated.
Participants in the ad ecosystem could also use blacklists to identify and block traffic originating from PPV networks. We found that the referer field identifies a source in the majority of the traffic that we purchased. Over time, a blacklist of referers could be built that identifies traffic originating from a large number of PPV networks. This is similar to browser ad-blocking add-ons or in-network solutions that utilize a blacklist to remove undesired traffic. The difference with the referer blacklist is that the advertiser or intermediary implements the list directly. One limitation of this approach is that it will only work if no iframes are in use since iframes would prevent the advertiser code from accessing the referer.
Similar to viewport size filters, an advertiser/intermediary could incorporate the blacklist into their ad tags in order to prevent display to questionable viewers. As a passive alternative an advertiser could simply log the referers and compare them against the blacklist at a later time. Then the advertiser can use the information in negotiations with their advertising network.
The blacklist will need continual tuning as new PPV networks emerge and old networks disappear. One drawback of this approach is that a savvy adversary can trivially defeat this method by clearing or altering the referer field. There is some evidence that this is already happening. A few of the referer strings in our data corpus contained direct IP addresses instead of DNS names, possibly to thwart existing or suspected blacklist methodology or simply to obfuscate their behavior. Even so a referer blacklist based on domain names would have prevented 99.51% of our purchased traffic.
An alternative approach is to create and maintain a blacklist of publishers that participate in PPV networks. Similar to countermeasures described above, this list could be used by advertisers to avoid running their display advertising on sites sourcing traffic from the PPV networks. This somewhat strong-armed approach would be likely to get the attention of publishers very quickly since we assume at least some percentage may not be aware of the negative aspects of their participation. Even if a publisher was aware, such an approach would discourage them from engaging with invalid traffic. Thus, this method could have potential benefits to the entire advertising ecosystem.
Publisher blacklists can be implemented by the advertiser in their tag as either preventative or informative, similar to the referer blacklist. Again this list will need continual updates as publisher behavior changes. One method of generating a publisher blacklist is to isolate and repeatedly call the PPV destination selection code block. This would enumerate all possible destinations for that PPV network over time.
General aspects of online advertising have been discussed in a large number of studies over the past decade. These studies have focused on wide variety of issues including the economic aspects of advertising e.g., [17, 18], theoretical or analytical evaluations of sponsored search and ad auctions e.g., [13, 35, 37] and more recently ad exchanges e.g., [14, 30]. However, there are relatively few examples of empirical characterization studies of online advertising, most likely due to the private nature of advertising data. Relatively recent empirical studies include [19, 26, 31, 32, 39], which provide informative insights on key assumptions made in theoretical studies as well as recommendations that improve the effectiveness of online advertising.
Google, Microsoft, Yahoo and other large industry players have online documentation about their invalid traffic monitoring activities (although no significant technical details are disclosed) [21, 24, 38]. This is given to raise trust for advertisers. However, many platforms offered by intermediaries have almost no documentation on fraud. What is clear is that detecting and preventing fraud in advertising networks presents significant challenges [33, 36].
The problem of fraud in online advertising has been the subject of many different studies over the years. The majority of these studies have focused on fraud in PPC-based environments. Botnets are well known to be used for click fraud. One example of a large-scale botnet focus on click fraud was the Bamital botnet, which was recently dismantled [25]. Similarly, the ZeroAccess botnet can generate fraudulent clicks estimated to cost advertisers over $900K/day in lost revenue [12]. Other studies have focused on developing methods for detecting click-fraud e.g., [28, 40]. Haddadi describes bluff ads as a means for measuring click fraud activity and creating blacklists for IP addresses to reduce click fraud [22]. Dave et al. [16] developed a novel measurement methodology to gather data on click fraud in ad networks. Their work informs our measurement efforts. Another recent empirical study by Zhang et al. is perhaps most similar to our work in terms of measurement methods [41]. In that study, the authors purchased traffic aimed at a honey-pot website, and reported on a range of characteristics. Our findings on the characteristics of purchased traffic are in line with theirs, although we only purchased impression traffic and did not focus on click-through in our study.
Finally, several recent studies have included brief discussions of impression fraud. In particular, Stone-Gross et al. use logs from a large online ad exchange to investigate a variety of characteristics that relate to invalid activity, including behaviors related to impression spam [34]. Our work differs from prior studies principally in its focus on impression fraud. To the best of our knowledge there are no prior studies that investigate impression fraud in depth from an empirical perspective, or that investigate PPV networks and their characteristics.
Internet-based advertising is a large and growing industry. Search-based advertising still dominates in terms of annual expenditures, however display and video advertising have seen significant growth over the past several years. While publishers have always been motivated to use diverse methods to drive users to their sites, the fact that payments for display and video ads are often based on impressions motivates new offerings from 3rd-party traffic generation services.
In this paper, we investigate the problem of invalid traffic generation that is aimed at inflating impressions on publisher websites and apps. We address this problem empirically by setting up several honeypot websites that were used as the targets for traffic generation purchases, which we made over the course of several months. This traffic provides the baseline from which we were able to identify a particular form of impression generation that we call pay-per-view networks. A PPV network is a series of legitimate publisher sites that include a common embedded reference from a particular traffic generation service. When users access publisher sites that participate in PPV networks, 3rd-party websites are rendered in an obfuscated and often invisible fashion. By evaluating the JavaScript associated with PPV networks, we find that the predominate mechanism used is popunder windows. We also find that PPV networks place multiple 3rd-party pages on pop-unders using frames or use periodic refresh to leverage every user access. This approach preserves the user experience on the publisher's site and generates invalid impressions on the 3rd-party sites in a way that is difficult to detect.
Next, we investigate aspects of the broader scope of PPV networks by gathering information from a small selection of ten traffic generation services. We search for tags from these services in a publicly available Internet-wide crawl database to estimate deployments on publisher sites. We couple these estimates with estimates for daily unique page views from those sites and find tag throughput above 150M per day. Combined with conservative estimates of 3rd-party displays per tag and ad placements per page, this easily pushes the number of invalid impressions above 500M per day from these ten PPV networks alone. Based on the fact that our sampling is so small, the impact of PPV networks is likely to be much larger.
To address the threat of PPV networks, we describe three different counter measures. Each offers a different constituency an opportunity to block the display of the unwanted 3rd-party content. In future work, we plan to focus on developing implementations of the proposed counter measures as well as developing other techniques to address this threat. Our measurement and characterization work are ongoing and will soon focus on traffic generation services outside of North America.
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1This has led to the emergence of a large number of Search Engine Optimization companies in recent years.2While Google is not the only company in this domain, we refer to them as an authoritative source of information due to their size and experience in online advertising.3Using document.documentElement.clientHeight, document.body.clientHeight, window.innerHeight depending on browser type.
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Weibo and other popular Chinese microblogging sites are well known for exercising internal censorship, to comply with Chinese government requirements. This research seeks to quantify the mechanisms of this censorship: how fast and how comprehensively posts are deleted. Our analysis considered 2.38 million posts gathered over roughly two months in 2012, with our attention focused on repeatedly visiting “sensitive” users. This gives us a view of censorship events within minutes of their occurrence, albeit at a cost of our data no longer representing a random sample of the general Weibo population. We also have a larger 470 million post sampling from Weibo's public timeline, taken over a longer time period, that is more representative of a random sample.
We found that deletions happen most heavily in the first hour after a post has been submitted. Focusing on original posts, not reposts/retweets, we observed that nearly 30% of the total deletion events occur within 5–30 minutes. Nearly 90% of the deletions happen within the first 24 hours. Leveraging our data, we also considered a variety of hypotheses about the mechanisms used by Weibo for censorship, such as the extent to which Weibo's censors use retrospective keyword-based censorship, and how repost/retweet popularity interacts with censorship. We also used natural language processing techniques to analyze which topics were more likely to be censored.
Virtually all measurements of Internet censorship are biased in some way, simply because it is not feasible to test every keyword or check every post at small increments of time. In this paper, we describe our method for tracking censorship on Weibo, a popular microblogging platform in China, and the results of our measurements. Our system focuses on a core set of users who are interconnected through their social graph and tend to post about sensitive topics. This biases us towards the content posted by these particular users, but enables us to measure with high fidelity the speed of the censorship and discern interesting patterns in censor behaviors.
Sina Weibo (weibo.com
, referred to in this paper simply as “Weibo”) has the most active user community of any microblog site in China [39]. Weibo provides services which are similar to Twitter, with @usernames, #hashtags, reposting, and URL shortening. In February 2012, Weibo had over 300 million users, and about 100 million messages sent daily [3]. Like Twitter in other countries, Weibo plays an important role in the discourse surrounding current events in China. Both professional reporters and amateurs can provide immediate, first-hand accounts and opinions of events as they unfold. Also like Twitter, Weibo limits posts to 140 characters, but 140 characters in Chinese can convey significantly more information than in English. Weibo also allows embedded photos and videos, as well as comment threads attached to posts.
China employs both backbone-level filtering of IP packets [5, 6, 11, 23, 37, 43] and higher level filtering implemented in the software of, for example, blog platforms [15, 20, 28], chat programs [13, 29] and search engines [30, 41]. Work specific to Weibo [2, 9] is discussed in more detail in Section 2. To our knowledge ours is the first work to focus on how quickly microblog posts are removed—on a scale of minutes after they are posted. This fidelity in measurement allows us to not only accurately measure the speed of the censorship, but also to compare censorship speeds with respect to topics, censor methods, censor work schedules, and other illuminating patterns.
What our results illustrate is that Weibo employs “defense-in-depth” in their strategy for filtering content. Internet censorship represents a conflict between the censors, who seek to filter content according to some policy, and the users who are subject to that censorship. Censorship can serve to squelch conversations directly as well as to chill future discussion with the threat of state surveillance. Our goal in this paper is to catalog the wide variety of mechanisms that Weibo's censors employ.
This research has several major contributions:
The rest of this paper is structured as follows. Section 2 gives some basic background information about microblogging and Internet censorship in China. Then Section 3 describes the methods we used for our measurement and analysis, followed by Section 4 that describes the timing of censorship events. Section 5 introduces the natural language processing we applied to the data and presents results from topical analysis. Finally, we conclude with a discussion of various Weibo filtering mechanisms in Section 6.
Starting from 2010, when microblogs debuted in China, not only have there been many top news stories where the reporting was driven by social media, but social media has also been part of the story itself for a number of prominent events [21, 38], including the protests of Wukan [33], the Deng Yujiao incident [32], the Yao Jiaxin murder case [35], and the Shifang protest [36]. There have also been events where social media has forced the government to address issues directly, such as the Beijing rainstorms in July 2012.
Chinese social media analysis is challenging [27]. One of many concerns that can hinder this work is the general difficulty of mechanically processing Chinese text. Western speakers (and algorithms) expect words to be separated by whitespace or punctuation. In written Chinese, however, there are no such word boundary delimiters. The word segmentation problem in Chinese is exacerbated by the existence of unknown words such as named entities (e.g., people, companies, movies) or neologisms (substituting characters that appear similar to others, or otherwise coining new euphemisms or slang expressions, to defeat keyword-based censorship) [12]. Furthermore, since social media is heavily centered around current events, it may well contain new named entities that will not appear in any static lexicon [8].
Despite these concerns, Weibo censorship has been the subject of previous research. Bamman et al. [2] performed a statistical analysis of deleted posts, showing that the presence of some sensitive terms indicated a higher probability of the deletion of a post. Their work also showed some geographic patterns in post deletion, with posts from the provinces of Tibet and Qinghai exhibiting a higher deletion rate than other provinces. WeiboScope [9] also collects deleted posts from Weibo, but their strategy is to follow all users with a high number of followers. This is in contrast to our strategy which is to follow a core set of users who have a high rate of post deletions, some of which have many followers and some of which have few. The deletion events in these works are measured with a resolution of hours or days. Our system is able to detect deletion events at the resolution of minutes.
To have a better understanding of what the Weibo system is targeting for censorship deletions, and how fast they do so, we have developed a system which collects removed posts on targeted users in almost real time.
In Weibo each IP address and Application Programming Interface (API) has a rate limit for access to the service. This forced us to make a number of engineering compromises, notably focusing our attention where we felt we could find those posts most likely to be subject to censorship. We decided to focus on users who we have seen being censored in the past, under the assumption that they will be more likely to be censored in the future. We call this group of users the sensitive group.
We started with 25 sensitive users that we discovered manually, leveraging a list from China Digital Times [4] of sensitive keywords which are not allowed to be searched on Weibo's server. To find our initial sample, we searched using out-dated keywords that were later un-banned. For example, (Reverse of , which means “Communist Party”) was found to be banned on 4 April 2011, but found to not be banned on 20 October 2011, which means the we were able to obtain some posts containing when we searched for this keyword after 20 October 2011. From the search results, we picked 25 users who stood out for posting about sensitive topics.
Next, we needed to broaden our search to a larger group of users. We assumed that anybody who has been reposted more than five times by our sensitive users must be sensitive as well. We followed them for a period of time and manually measured how often their posts were deleted. Any user with more than 5 deleted posts was added to our pool of sensitive users.
After 15 days of this process, our sensitive group included 3,567 users, and within this group we observed more than 4,500 post deletions daily, including about 1,500 “permission denied” deletions. (See Section 3.3 for discussion on different types of deletion events.) Roughly 12% of the total posts from our sensitive users were eventually deleted. Further, we have enough of these posts to be able to run topical analysis algorithms, letting us extract the main subjects that Weibo's censors seemed concerned with on any given day.
We contrast these statistics with WeiboScope [9], developed at the University of Hong Kong in order to track trends on Weibo concurrently with our own study. The core difference between our work and WeiboScope is that they track a large sample: around 300 thousand users who each have more than 1000 followers. Despite this, they report observing no more than 100 “permission denied” deletions per day. WeiboScope's results, therefore, are perhaps more representative of the overall impact of Weibo's censorship as a fraction of total Weibo traffic, while our work has more resolving power to consider the speed and techniques employed by Weibo's censors.
Because we do not have access to WeiboScope's data, we are limited in our ability to make direct comparisons of our datasets. They did briefly support data downloads, and we extracted their “2,500 last permission denied data” on 20 July 2012. This service has since been closed. Our system went live following user timelines on the same date, giving us a single day from which we might compare our data. For 20 July 2012, WeiboScope observed 54 permission-denied posts, while our system observed 1,056.
(Our own system does not yet support public, realtime downloads of our data, which among other issues could make it easier for Weibo to shut it down. An appropriate means of disseminating real-time results or regular summaries is future work for our group.)
While our methodology cannot be considered to yield a representative sample of Weibo users overall, we believe it is representative of how users who discuss sensitive topics will experience Weibo's censorship. We also believe our methodology enables us to measure the topics that Weibo is censoring on any given day.
Once we settled on our list of users to follow, we wanted to follow them with sufficient fidelity to see posts as they were made and measure how long they last prior to being deleted. Our target sampling resolution was one minute.
We use two APIs provided by Weibo, allowing us to query individual user timelines as well as the public timeline1. Starting in July 2012, we queried each of our 3,500 users, once per minute, for which Weibo returns the most recent 50 posts. Deleted posts outside of this 50-post window are not detected by our system, meaning that we may be underestimating the number of older posts that get deleted.
We also queried the public timeline roughly once every four seconds, for which Weibo returns 200 recent posts. Half of these posts appear to be 1–5 minutes older than real-time, and the other half are hours older.
Weibo does not support anonymous queries to its servers, requiring us to create fake accounts on the service. Weibo further enforces rate limits both on these users' queries as well as on source IP addresses, regardless of what user account is being used for the query. To overcome these concerns, we used roughly 300 concurrent Tor circuits [24], driven from our research computing cluster. Our resulting data was stored and processed on a four-node cluster using Hadoop and HBase [1].
If and when Weibo might make a concerted effort to block us, it is easy to imagine a ongoing game where they invent new detection strategies and we invent new workarounds. So far, this has not been an issue.
An absent post may have been censored, or it may have been deleted for any of a variety of other reasons. User accounts can also be closed, possibly for censorship purposes. Users cannot delete their own account, only the system can delete accounts. We conducted a variety of short empirical tests to see if we could distinguish the different cases. We concluded that we can detect two kinds of deletions.
If a user deletes his or her own post, a query for that post's unique identifier will return a “post does not exist” error. We have observed this same error code returned from censorship events and we refer to these, in the remainder of the paper as general deletion. However, there is another error code, “permission denied,” which seems to indicate that the relevant database record still exists but has been flagged by some censorship event. We refer to these as permission-denied deletions or system deletions. In either case, the post is no longer visible to Weibo users.
The ratio of system deletions to general deletions in our user timeline data set is roughly 1:2. In this paper, we generally focus on posts that have been system deleted, because there appears to be no way for a user to induce this state. It can only be the result of a censorship event (i.e., there are no censorship false positives in our system deletion dataset). Because we followed a core set of users who post on sensitive subjects, we did not find it necessary to account for spam in our user timeline dataset.
Our crawler, which repeatedly fetches each sensitive user's personal timeline, is searching for posts that appear and then are subsequently deleted. If a post is in our database but is not returned from Weibo, then we issue a secondary query for that post's unique ID to determine what error message is returned. Ultimately, with the speed of our crawler, we can detect a censorship event within 1–2 minutes of its occurrence.
For each returned post from Weibo, there is a field which records the creation time of the post. The lifetime of a post is the time difference between the time our system detected the post being deleted and the creation time. Therefore a post's lifetime recorded by our system is never shorter than its real lifetime, and never longer than its real lifetime by more than two minutes.
For easier explanation we first give some definitions. A post can be a repost of another post, and can have embedded images. Also other users can repost reposts. If post A is a repost of post B, we call post A a child post and post B a parent post. If post A is not a repost of another post, we call post A a regular post.
Using our user tracking method, from 20 July 2012 to 8 September 2012, we have collected 2.38 million user timeline posts, with a 12.8% total deletion rate (4.5% for system deletions and 8.3% for general deletions). Note that this deletion rate is specific to our users and not representative of Weibo as a whole. With a brief analysis, we found that 82% of the total deletions are child posts, and 75% of the total deletions have pictures either in themselves or in their parent post.
Figure 1: Lifetime histograms. (a) and (b) are the lifetime histograms of all system deletions. (c) and (d) are the lifetime histograms of regular text-only posts. (a) and (c) show the histogram of the whole lifetime, (b) and (d) only show the first two hours of the lifetime histogram.
To demonstrate how long a post survives before it gets deleted, we analyze the system deletion data set (see Section 3.3). Figure 1 gives us a big picture of how fast the Weibo system works for censorship purposes. The x axes are the length of the lifetime divided into 5-minute bins, and the y axes are the count of the deleted posts having the lifetime in the corresponding bin. We note that these figures have the distinctive shape of a power law or long tailed distribution, implying that there is no particular time bound on Weibo's censorship activity, despite the bulk of it happening quickly, and that metrics like mean and median are not as meaningful as they are in a normal distribution.
We can see that the post bins with small lifetimes are large. We zoom into the first 2 hours of data, which is plotted in Figure 1 (c) and (d). This tells us that system deletions start within 5 minutes, the same as text-only regular posts. For both of them, the modal deletion age appears to be between 5–10 minutes.
In our data set, 5% of the deletions happened in the first 8 minutes, and within 30 minutes, almost 30% of the deletions were finished. More than 90% of deletions happened within one day after a post was submitted. This demonstrates why a measurement fidelity on the order of minutes, rather than days, is critical.
Considering the big data set that Weibo has to process, the speed, especially the 5 to 10 minutes peak, is fast, especially considering that the data cannot be processed in a fully automated way. How can the Weibo system find sensitive posts and remove them so quickly? On the other hand, the long tails suggest that sensitive posts can still be deleted even after an extended period. How are those sensitive posts located by the moderators after a month in their huge database? What factors affect a post's lifetime?
In this section, to find the answers to these questions, we propose four hypotheses and then test them against our data. Hypotheses 1 and 2 try to explain how the speed of censorship on Weibo can be so fast. Hypothesis 3 explains why we see the long tails of the post lifetime for censored posts in Figure 1. Hypothesis 4 tells us that the deletion speed does not appear to be strongly related to particular conversation topics, but rather to popular topics (i.e., those that are being discussed on Weibo as a whole according to our public timeline) where our core sensitive users are putting a spin on the discussion that involves themes of government power (see Section 5).
Before we give our hypotheses, we first consider what factors affect a post's lifetime, regardless of the content of the post.
For each post, besides the basic information about the post itself, we also see an embedded picture, if present, as well as a parent post identifier, if it is a repost. Also, we know the number of followers and friends of each user, as well as of any parent post's user.
From the graphs in Figure 1, we decided to experimentally fit a negative binomial regression to it to see which factors affect the lifetime of a post. Table 1 and Table 2 show the results for the regular posts and child posts, respectively. Three asterisks (‘***’) indicates statistical significance, one asterisk (‘*’) indicates a coefficient that is not statistically significant, and no coefficient is indicated with a dash (‘-’). We can regress the log lifetime for a regular post or a child post via:
We examine the effect on post lifetime of: the existence of a picture, the number of friends and followers, and the number of posts sent by this user. We found that, for both regular and child posts, the existence of a picture affects the post's lifetime the most. That is, posts with pictures have shorter lifetimes than posts without pictures. Some of the user attributes, such as number of friends or number of posts, also affect post lifetime. We note that the coefficients for these are relatively small, but for users with large numbers of friends or who write large numbers of posts, these factors can have a significant impact on the speed of that users' posts being censored. However other attributes of a user, such as whether a Weibo user is “verified” by Weibo (i.e., Weibo knows who they are as part of newer Chinese requirements that crack down on pseudonyms unconnected to real world identities) or the number of followers of a user, are not statistically significant factors in a post's lifetime.
Table 1: Factors affecting post lifetime (regular posts).
Table 2: Factors affecting post lifetime (child posts)
As a distributed system with 70,000 posts per minute, Weibo has above a 10% rate of deletion in the public timeline (first observed by Bamman et al. [2]; we have seen similar behavior). This high deletion rate can be the result of many processes, including anti-spam features, user deletions, as well as anti-censorship features. Within the deletions that we believe are censorship events, we note that 40% of the deletions in our user timeline data set occur within the first hour after a post has appeared. Clearly, Weibo exerts significant controls over its content.
Before censors deal with the sensitive posts which are already in the system, are there filters which do not allow certain posts to enter the Weibo system? This question leads to our first hypothesis.
Hypothesis 1 Weibo has filtering mechanisms as a proactive, automated defense.
To find out if there are filtering mechanisms, we attempted to post posts containing sensitive words from the China Digital Times [4] and Tao et al. [41]. Here we summarize the filtering mechanisms Weibo was found to apply based on our observations.
For example, on 1 August 2012, we tried to post “ ” (Secretary of the Political and Legislative Committee). When we submitted a post with this character string in it, a warning message says “Sorry, since this content violates ‘Sina Weibo regulation rules’ or a related regulation or policy, this operation cannot be processed. If you need help, please contact customer service.”
For example when we submitted the post ‘youshenmefalundebanfa’ on the same day, 1 August 2012, Weibo responded with the message “Your post has been submitted successfully. Currently, there is a delay caused by server data synchronization. Please wait for 1 to 2 minutes. Thank you very much.” This delay, which frequently takes much longer than the 1–2 minutes suggested by Weibo, was triggered by our use of the substring “falun”, pertaining to the Falun Gong religion. In this example, it took more than 5 hours for the post to appear.
On 1 August 2012 we submitted a post containing the substring “cgc” (Chen Guangcheng [31]), and received no warning messages, so it seemed to be published successfully to our user. When we tried to access that post from another user account, however, we were redirected to Weibo's error page which claimed the post does not exist.
We found these phenomena to be repeatable. Over the course of our experiments, we selected a number of different subsets of the keyword list published by the China Digital Times [4], trying to post them to Weibo manually. We consistently found all of these same phenomena, although the specific keywords on any list vary over time.
Figure 1 shows that the deletions happen most heavily for a regular post within 5 to 10 minutes of it being posted. While we believe this process to happen largely via automation, it is instructive to estimate how much unaided human labor would otherwise be necessary. Suppose an efficient worker could read 50 posts per minute, including the reposts and figures included in the posts. Then to read Weibo's full 70,000 new posts [34] in one minute, 1,400 simultaneous workers would be needed. Assuming 8 hour shifts, 4,200 workers would then be required. We can imagine that such a staff would have a high error rate, owing to the repetitive nature of their work. Such a labor force would also be relatively expensive compared to automation. We instead conclude that Weibo must be using a large amount of automation, perhaps keyword-based as has been found in other systems in China such as TOM-Skype [16]. This is likely complemented with human efforts to evolve and refine the filtering process.
Some of this refinement certainly results from a centralized list of topics. Other refinement may occur internally, through a smaller number of censors who look for users finding new ways to misspell words or otherwise work around existing filters. Our subsequent hypotheses consider how this refinement occurs and delve into how Weibo's automation operates.
Hypothesis 2 Weibo targets specific users, such as those who frequently post sensitive content.
Another way to achieve prompt response to sensitive posts is to track users who are likely to post sensitive content, using techniques similar to what we are doing. The posts from those sensitive users could then be read by moderators more often and more promptly than the posts of other users.
To test this hypothesis, we plotted Figure 2. We grouped users together who have the same number of censorship events occurring to their posts. The x-axis is the number of such deletions for each cohort of users. The y-axis shows how long these to-be-censored posts live. The clear downward trend is evidence that users with larger deletion frequencies tend to observe faster censorship of their work, supporting our hypothesis.
Even though this figure shows us that the more deletion posts a user has, the faster the users' posts tend to be deleted, we cannot rule out other features which those users have in common and that those features may lead to the fast deletions. For example, they may tend to use the same keywords, post from the same geographical area, use the same kind of client platform, and so on. There is a clear correlation between post lifetime and post deletion counts, but correlation does not imply causation.
Figure 2: Users' median post lifetime in minutes vs. the number of deletions for that user on a log-log scale. Black circles show the median lifetime of posts in the cohort, and the dotted blue bars show the 25%–75% range.
If the surveillance keyword list and targeting of specific users were the only mechanisms for removing sensitive posts, then the histograms in Figure 1 would stop at a certain time, say 1 or 2 days. However, 10% of the deletions happen after one day, with some deletions occurring one month or more after the post was posted. Clearly, other mechanisms are in use for these long-tail censorship events, which leads to our next hypothesis.
Hypothesis 3 When a sensitive post is found, a moderator will use automated searching tools to find all of its related reposts (parent, child, etc.), and delete them all at once.
If this hypothesis is true, then the child posts which repost a censored parent post should all be removed at the same time. To test this hypothesis, we plot the histogram of the standard deviation of the deletion time of the posts sharing the same Repost Identification Number (rpid) in Figure 3. In our system deleted posts dataset, over 82% of reposted posts have a deletion time standard deviation of less than 5 minutes, meaning that a sensitive post is detected and then most of the other posts in a chain of reposts are immediately deleted.
Figure 3: Reposts standard deviation histogram.
There are outliers with standard deviations as high as 5 days which suggest that the mass deletion strategy mentioned here is not the only method Weibo employs to delete sensitive reposts. This leads to our next hypothesis.
Hypothesis 4 Deletion speed is related to the topic. That is, particular topics are targeted for deletion based on how sensitive they are.
We performed topical analysis on the deleted posts. The topical analysis methods we use are described in Section 5.1. Here, to save space, we only list the top topic in Table 3. (For further topical discussion, please refer to our technical report [42].) The third column is the response time for the censor to discover a sensitive topic. Specifically, the response time here refers to the period between the time when the first post on this topic appeared in our user timeline data set and the time when the Weibo system starts to delete the posts on this topic heavily. These times were identified through manual analysis. Even when a topic is still being actively censored, it does not necessarily disappear. People may still discuss the topic only to have their posts deleted. That is why some topics appear twice or more in the table. When a topic showed up again, there is no response time for it and we indicate this with a dash (‘-’).
The main five topics extracted by Independent Component Analysis (ICA, see Section 5) are: Qidong, Qian Yunhui, Beijing Rainstorm, Diaoyu Island2 and Group Sex. From Table 3, we can see that these topics have a relatively short lifetime compared to other topics. These five topics were also hot topics in our public timeline during this period.
Table 3: Blocked topics.
This suggests that when sensitive users and a large number of regular Weibo users are discussing the same general topic, i.e., the topic is popular in both the user timeline and public timeline, then extra resources are devoted to finding and deleting such posts3. In Section 5 we will show that the sensitive users in the user timeline combine topics with common themes related to state power (Beijing, government, China, country, police, and people). This suggests that the censors consider the combination of these themes with generally popular topics to warrant extra resources.
Even though we are following a relatively modest number of Weibo authors, the volume of text we are capturing is still too much to process manually. We need automatic methods to classify the posts that we see, particularly those which are deleted.
Automatic topic extraction is the process of identifying important terms in the text that are representative of the corpus as a whole. Topic extraction was originally proposed by Luhn [19] in 1958. The basic idea is to assign weights to terms and sentences based on their frequency and some other statistical information.
However, when it comes to microblog text, standard language processing tools become inapplicable [18, 40]. Microblogs typically contain short sentences and casual language [7]. Unknown words, such as named entities and neologisms often cause problems with these term-based models. It can be especially challenging to extract topics from Asian languages such as Chinese, Korean, and Japanese, which have no spaces between words.
We applied the Pointillism approach [27] and TF*IDF to extract hot topics. In the Pointillism model, a corpus is divided into n-grams; words and phrases are reconstructed from grams using external information (specifically, temporal correlations in the appearance of grams), giving the context necessary to manage informal uses of the language such as neologisms. Salton's TF*IDF [10] assigns weights to the terms of a document based on the terms' relative importance to that document compared to the entire corpus.
We next explain how these techniques work together.
TF*IDF is a common method to determine the importance of words to a document in a corpus. The TF*IDF value in our case is calculated as:
Here, f (t,d) means the frequency of the term t in document d. We use trigrams as t, and documents d are sets of posts over a certain period of time. dday is the deleted posts we caught on day day. We use the posts of July, 2012 in the public timeline as IDF. f (t,dmonth) is the frequency of term t in the public timeline in July, 2012.
First we calculate TF*IDF scores for all trigrams that have more than 20 occurrences in a day. The top 1000 trigrams with the highest TF*IDF score will be fed to our trigram connection algorithm, hereafter “Connector.” We call these top 1000 trigrams the 1000-TFIDF list. To connect trigrams back into longer phrases, Connector finds two trigrams which have two overlapping characters. For instance, if there are ABC and BCD, Connector will connect them to become ABCD. Sometimes there is more than one choice for connecting trigrams, e.g., there could also be BCE and BCF. Sometimes trigrams can even form a loop. To solve these problems, we first build directed graphs for the trigrams with a high TF*IDF score. Each node is a trigram, and edges indicate the overlap information between two trigrams. For example, if ABC and BCD can be connected to make ABCD, then there is an edge from ‘ABC’ to ‘BCD’. After all trigrams are selected, we use DFT (Depth First Traversal) to output the nodes. During the DFT we check to see if a node has been traversed already. If so we do not traverse it again. After the graphs have been traversed, we obtain a set of phrases.
For example, the Connector output of the third most popular topic on 4 August 2012 is:
In this example, the 7 outputs of Connector are translated in English, which is written in the next line after the original Chinese phrase. Outputs 4 and 6 are incorrectly connected. This is because the same trigrams are shared by different stories that have high TF*IDF scores on the same day. This problem can be solved by examining the cosine similarity of the frequency of occurrence of the first and the last trigram for each result.
Cosine similarity is used to judge whether two trigrams have correlated trends.
where ,> denotes an inner product between two vectors. For details, please refer to Song et al. [27].
From the connected sentences, listed above, we can begin to understand the general events that are driving major sensitive topics of discussion on Weibo. Table 3 lists the top topics of the deleted posts from 20 July 2012 to 18 August 2012. (A computer failure prevented us from collecting data on 6 August 2012.) Note that we just translated the posts from each topical cluster, we have not confirmed the veracity of any of the claims of the Weibo users' posts that we translated.
Interestingly, besides named entities, we also extracted three neologisms. They are W (Li Wangyang, from ), (June Fourth, from ), (Hu Jintao, from , replacing the middle character with open- and close-parentheses), and and (Qidong, from , inserting punctuation between the two characters). These neologisms became popular enough that they stood out in our TF*IDF analysis.
Table 3 tells us the top topic for each day in terms of having the highest TF*IDF scores—however, it does not tell us which topics among these have been discussed for the longest period of time by our users. Also, are there some common themes behind those separate topics?
Here are the top 50 words which have appeared in the 1000-TFIDF list most frequently from 20 July 2012 to 20 August 2013, manually translated to English:
Beijing City, Liu Futang, secretary, Lujiang County, Guo Jinlong, Qian Yunhui, City Government, Zhou Kehua, Red Cross, Diaoyu Island, subprefect, water drain, ordinary people, taxpayer, Fangshan district, Hagens, local police station, office, Beijing, Qidong, government, China, Japan, citizen, county's head commissioner, reporter, mayor, corrupt official, freedom, country, restrain, keyhole report, wrist watch, police, national, recommend, American, repression, patriotic, democratic, corpses, people, donation, cancel, opinion, reeducation through labor, abolition, truck4
We used Independent Component Analysis (ICA) to extract “independent signals” from those most important terms shown above. ICA [14] is a method to separate a linearly mixed signal, x, into mutually independent components, s.
Let X = [x1,x2,...,xm]T be the observation mixture matrix, consisting of m observed signals xi. Since X is the linear composition of the independent components, s, X can be modeled as:
A, the mixing matrix, gives the coefficients for linear combinations of the independent signals, the rows of S.
Here, each word is represented by a row vector of length 864 (36 × 24), which contains the 36 days worth of hourly frequency from 22 July 2012 to 2 September 2012. The 50 × 864 matrix X is fed to an ICA program [25]. The number of independent components number is set to 5, which retains almost 100% of the eigenvalues.
There are six words that appear in almost every independent signal: Beijing, government, China, country, policeman, and people. This means that the sensitive user group in our user timeline has these general themes that cut across the many individual topics that they discuss, which may explain why their posts are often subject to censorship.
Weibo appears to have a variety of other mechanisms that do not fit neatly into our hypotheses, but which are interesting to discuss. We first consider other aspects of Weibo's filtering, then we look at diurnal (time-of-day) censorship behaviors, and finally we try to synthesize some of our observations.
Sina Weibo has a complex variety of censorship mechanisms, including both proactive and retroactive mechanisms. Here we summarize the mechanisms Weibo may apply. Proactive mechanisms, as we discussed in Hypothesis 1, may include: explicit filtering, implicit filtering, and camouflaged posts. Retroactive mechanisms for removing content that has already been released may include:
Here, we give two examples ( and 37 ), out of many that we witnessed, with a strong spike in the deletion of posts containing that keyword.
We first consider , Tian Chao, a neologism for “Celestial Empire” where is an alternate form for ; the substitute character is visually similar to the original and also appears to be constructed from the two distinct characters , meaning “bastard.”). The frequency of in deleted posts, day by day, is the sequence (6,3,0,0,2,2,0,3,0,2,3,3,2,1,2,0,0,1,0,0,0,5,4,4,2,14,3,6,4) respectively from 28 July 2012 to 25 August 2012. There is a concentrated deletion (14 censorship events) of posts with this word within several minutes on 22 August 2012, impacting posts that were several weeks old at the time. It is likely that a censor discovered this new phrase and ordered it globally expunged.
Another example is the keyword 37 (37 people). There are 44 posts containing this keyword, which were created from 2 days to 5 days before the censorship event, all removed together within 5 minutes (03:25 to 03:30 27 July 2012). Those 44 posts are from different users, have no common parent posts, and have no common pictures. The only plausible explanation for this concentrated deletion would appear to be a keyword-based deletion. The deletion time at 3:25am Beijing time also strongly suggests that there are moderators working in the early morning. To understand this workforce and its distributed nature, we perform further analysis in Section 6.2.
In our data, the time at which the censors are working and deleting posts correlates more with the usage patterns of regular users than with a typical day-time work schedule (e.g., 8am to 5pm Beijing time). Figure 4 shows the total hourly deletions for different kinds of posts (on a log scale) from 20 July to 8 September 2012. Both “general deletions” and “system deletions” happen even very late at night.
Figure 4: Post deletion amounts over 24 hours.
So do the censors respond as quickly during the night as during day hours? We plotted the median lifetime of the posts as a function of their deletion time in Figure 5. The morning-hour spike suggests that the censors are behind in the morning, both catching up on overnight posts and dealing with a fresh influx of posts from morning risers. They catch up by late morning or early afternoon.
Figure 5: Post lifetime vs. deletion time of the day.
From Figure 4 and Figure 5 it is clear that, while a significant fraction of the censors seem to work during regular work hours, many do not.
Based on everything we have seen and observed, we can begin to understand how Weibo censorship works. Clearly, they are using a strong degree of automation to help them delete posts that have been declared sensitive. It is also clear that this process is relatively “loose,” in the sense that there are few sharp rules that define what gets deleted vs. what is allowed to remain. Given the long-tailed distribution that we observe in post lifetimes prior to censorship, it is clear that some posts are not considered a high priority for censorship, such as if two friends start conversing with each other using a new neologism, euphemism, or other coinage that would otherwise be censorship-worthy. However, when those new terms spread and grow, they are censored both proactively and retroactively.
This suggests that Weibo is trying to strike a balance between satisfying the legal requirements within which it operates and the costs of running a fine-grained instrument of political censorship. Weibo must conduct just enough censorship to satisfy government regulations without being so intrusive as to discourage users from using their service. Among other issues, they must surely be deeply concerned with false positives. If truly innocuous posts disappeared with any regularity, Weibo's users might defect to a competing service.
It is unclear the extent to which Weibo is using natural language processing (NLP) algorithms to aid in their work, versus having a stable of censors watching for things to go viral and then using search tools to stamp them out. Certainly, our use of fairly simple NLP techniques helped reduce the workload of analyzing trending topics, so comparable techniques may well be in use by Weibo. NLP techniques in a censor's hands can be thought of as a “force multiplier,” but it is unclear whether they fundamentally change the game. Consider, with English-language spam emails, the degree to which spammers will try to evade automated spam classification systems. These techniques and more could well be applied to automated or manual rewriting of postings, with the intent of avoiding automated censorship. The results might not be as easy to read, but humans will likely have an advantage at reading jumbled text, at least until NLP algorithms are extended to deal with them. Conversely, NLP techniques can cluster together related terms, assisting censors to overcome such techniques. At least so far, we have not seen evidence of any sort of arms race between increasingly sophisticated ways to avoid censorship and increasingly powerful censorship techniques.
In many ways, Internet censorship is related to intrusion detection. When our results in this paper are compared to related work (see Section 1), including both IPlayer filtering and application-level censorship, a picture of Internet censorship in China emerges where “defense-in-depth” is taken to a new level. Intrusion detection research has long focused on issues such as false positive vs. false negative tradeoffs, viral spreading patterns, polymorphic content, and the distinction between different layers of abstraction (such as IP packets vs. application-layer data). The so-called “Great Firewall of China” and the accompanying application-layer censorship that China's domestic web services, such as Weibo, carry out afford us an opportunity to study a real, national scale intrusion detection system.
The most important caveat to keep in mind when interpreting our results is that we collected posts from a very specific core set of users, built up from a “seed” group of users who post about sensitive topics, which we call the “user timeline.” Unless otherwise noted, such as when results are from the public timeline, all results in this paper are from the user timeline and therefore might be biased by the differences between this core set of users and the average Weibo user. All deletion rates, deletion times, etc. must be interpreted in this light. In other words, our sample users should not be considered to be representative of the general population of Weibo.
Another important caveat is that our system does not detect post deletions in the user timeline if the post deleted is not one of the 50 most recent posts by the user (see Section 3). This may affect our results about the distribution of post deletions over time in Section 4.
Our research found that deletions happen most heavily in the first hour after a post has been made (see Figure 1). Especially for original posts that are not reposts, most deletions occur within 30 minutes, accounting for 30% of the total deletions of such posts. Nearly 90% of the deletions of such posts happen within the first 24 hours of the post.
With respect to the hypotheses enumerated in Section 4, we make the following conclusions:
Beijing, government, China, country, policeman, and people
). This suggests that such broadly discussed topics are targeted with more censorship resources to limit certain kinds of discussion about the events.Future work may reveal many mechanisms beyond those we described here, and many different strategies that Weibo uses to prioritize what content to delete. Our results suggest that Weibo employs a distributed, heterogeneous strategy for censorship that has a great amount of “defense-in-depth.”
One aspect of censorship that is not considered in our analysis, but would be an interesting topic for future work, is the interactions between social media and traditional media. Leskovec et al. [17] gives an interesting analysis of the interplay between blogs and traditional media during the 2008 U.S. Presidential election. Traditional media relevant to Weibo may include the state-run media that is heavily censored, or off-shore news outlets that are uncensored but limited in availability and sometimes offset from China's news cycles by timezone differences.
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Fake identities and Sybil accounts are pervasive in today's online communities. They are responsible for a growing number of threats, including fake product reviews, malware and spam on social networks, and astroturf political campaigns. Unfortunately, studies show that existing tools such as CAPTCHAs and graph-based Sybil detectors have not proven to be effective defenses.
In this paper, we describe our work on building a practical system for detecting fake identities using server-side clickstream models. We develop a detection approach that groups “similar” user clickstreams into behavioral clusters, by partitioning a similarity graph that captures distances between clickstream sequences. We validate our clickstream models using ground-truth traces of 16,000 real and Sybil users from Renren, a large Chinese social network with 220M users. We propose a practical detection system based on these models, and show that it provides very high detection accuracy on our clickstream traces. Finally, we worked with collaborators at Renren and LinkedIn to test our prototype on their server-side data. Following positive results, both companies have expressed strong interest in further experimentation and possible internal deployment.
It is easier than ever to create fake identities and user accounts in today's online communities. Despite increasing efforts from providers, existing services cannot prevent malicious entities from creating large numbers of fake accounts or Sybils [9]. Current defense mechanisms are largely ineffective. Online Turing tests such as CAPTCHAs are routinely solved by dedicated workers for pennies per request [22], and even complex human-based tasks can be overcome by a growing community of malicious crowdsourcing services [23, 39]. The result of this trend is a dramatic rise in forged and malicious online content such as fake reviews on Yelp [35], malware and spam on social networks [10, 11, 32], and large, Sybil-based political lobbying efforts [27].
Recent work has explored a number of potential solutions to this problem. Most proposals focus on detecting Sybils in social networks by leveraging the assumption that Sybils will find it difficult to befriend real users. This forces Sybils to connect to each other and form strongly connected subgraphs [36] that can be detected using graph theoretic approaches [8, 34, 45, 46]. However, the efficacy of these approaches in practice is unclear. While some Sybil communities have been located in the Spanish Tuenti network [7], another study on the Chinese Renren network shows the large majority of Sybils actively and successfully integrating themselves into real user communities [43].
In this paper, we describe a new approach to Sybil detection rooted in the fundamental behavioral patterns that separate real and Sybil users. Specifically, we propose the use of clickstream models as a tool to detect fake identities in online services such as social networks. Clickstreams are traces of click-through events generated by online users during each web browsing “session,” and have been used in the past to model web traffic and user browsing patterns [12, 20, 24, 28]. Intuitively, Sybils and real users have very different goals in their usage of online services: where real users likely partake of numerous features in the system, Sybils focus on specific actions (i.e. acquiring friends and disseminating spam) while trying to maximize utility per time spent. We hypothesize that these differences will manifest as significantly different (and distinctive) patterns in clickstreams, making them effective tools for “profiling” user behavior. In our context, we use these profiles to distinguish between real and Sybil users.
Our work focuses on building a practical model for accurate detection of Sybils in social networks. We develop several models that encode distinct event sequences and inter-event gaps in clickstreams. We build weighted graphs of these sequences that capture pairwise “similarity distance” between clickstreams, and apply clustering to identify groups of user behavior patterns. We validate our models using ground-truth clickstream traces from 16,000 real and Sybil users from Renren, a large Chinese social network with 220M users. Using our methodology, we build a detection system that requires little or no knowledge of ground-truth. Finally, we validate the usability of our system by running initial prototypes on internal datasets at Renren and LinkedIn.
The key contributions of this paper are as follows:
To the best of our knowledge, we are the first to study clickstream models as a way to detect fake accounts in online social networks. Moving forward, we believe clickstream models are a valuable tool that can complement existing techniques, by not only detecting well-disguised Sybil accounts, but also reducing the activity level of any remaining Sybils to that of normal users.
Roadmap. We begin in Section 2 by describing the problem context and our ground-truth dataset, followed by preliminary analysis results in Section 3. Next, in Section 4 we propose our clickstream models to effectively distinguish Sybil with normal users. Then in Section 5, we develop an incremental Sybil detector that can scale with today's large social networks. We then extend this detector in Section 6 by proposing an unsupervised Sybil detector, where only a minimal (and fixed) amount of ground-truth is needed. Finally, in Section 7, we describe experimental experience of testing our prototype code in real-world social networks (Renren and LinkedIn). We then discuss related work in Section 8 and conclude in Section 9.
Table 1: Clickstream dataset.
In this section, we provide background for our study. First, we briefly introduce the Renren social network and the malicious Sybils that attack it. Second, we describe the key concepts of user clickstreams, as well as the ground-truth dataset we use in our study.
Renren. Renren is the oldest and largest Online Social Network (OSN) in China, with more than 220 million users [17]. Renren offers similar features and functionalities as Facebook: users maintain personal profiles and establish social connections with their friends. Renren users can update their status, write blogs, upload photos and video, and share URLs to content on and off Renren. When a user logs-in to Renren, the first page they see is a “news-feed” of their friends' recent activities.
Sybils. Like other popular OSNs, Renren is targeted by malicious parties looking to distribute spam and steal personal information. As in prior work, we refer to the fake accounts involved in these attacks as Sybils [43]. Our goal is to detect and deter these malicious Sybils; our goal is not to identify benign fakes, e.g. pseudonymous accounts used by people to preserve their privacy.
Prior studies show that attackers try to friend normal users using Sybil accounts [43]. On Renren, Sybils usually have complete, realistic profiles and use attractive profile pictures to entice normal users. It is challenging to identify these Sybils using existing techniques because their profiles are well maintained, and they integrate seamlessly into the social graph structure.
Clickstream Data. In this paper, we investigate the feasibility of using clickstreams to detect Sybils. A click-stream is the sequence of HTTP requests made by a user to a website. Most requests correspond to a user explicitly fetching a page by clicking a link, although some requests may be programmatically generated (e.g. XmlHttpRequest). In our work, we assume that a clickstream can be unambiguously attributed to a specific user account, e.g. by examining the HTTP request cookies.
Our study is based on detailed clickstreams for 9994 Sybils and 5998 normal users on Renren. Sybil click-streams were selected at random from the population of malicious accounts that were banned by Renren in March and April 2011. Accounts could be banned for abusive behaviors such as spamming, harvesting user data or sending massive numbers of friend requests. Normal user clickstreams were selected uniformly at random from Renren user population in April 2011, and were manually verified by Renren's security team.
Figure 1: # of sessions per user.
Figure 2: Sessions through the day.
Figure 3: Sessions per day per user.
Figure 4: Average session length per user.
Figure 5: Average # of clicks per session per user.
Figure 6: Average time interval between clicks per session per user.
The dataset summary is shown in Table 1. In total, our dataset includes 1,008,031 and 5,856,941 clicks for Sybils and normal users, respectively. Each click is characterized by a timestamp, an anonymized userID, and an activity. The activity is derived from the request URL, and describes the action the user is undertaking. For example, the “friend request” activity corresponds to a user sending a friend request to another user. We discuss the different categories of activities in detail in Section 3.2.
Each user's clickstream can be divided into sessions, where a session represents the sequence of a user's clicks during a single visit to Renren. Unfortunately, users do not always explicitly end their session by logging out of Renren. As in prior work, we assume that a user's session is over if they do not make any requests for 20 minutes [6]. Session duration is calculated as the time interval between the first and last click within a session. Overall, our traces contain 113,595 sessions for Sybils and 467,179 sessions for normal users.
We begin the analysis of our data by looking at the high-level characteristics of Sybil and normal users on Renren. Our goals are to provide an overview of the dataset, and to motivate the use of clickstreams as a rich data source for uncovering malicious behavior. Towards these ends, we analyze our data in four ways: first, we examine session-level characteristics. Second, we analyze the activities users engage in during each session. Third, we construct a state-based Markov Chain model to characterize the transitions between clicks during sessions. Finally, we use a Support Vector Machine (SVM) approach to learn the important features that distinguish Sybil and normal user clickstreams.
In this section, we seek to determine the session-level differences between normal and Sybil accounts in our dataset. First, we examine the total number of sessions from each user. As shown in Figure 1, >50% of Sybils have only a single session; far fewer than normal users. It is likely that these Sybils sent spam during this single session and were banned shortly thereafter. A small portion of Sybils are very active and have >100 sessions.
Next, we examine when Sybils and normal users are active each day. Figure 2 shows that all users exhibit a clear diurnal pattern, with most sessions beginning during daytime. This indicates that at least a significant portion of Sybils in our dataset could be controlled by real people exhibiting normal behavioral patterns.
Next, we investigate the number of sessions per user per day. Figure 3 shows that 80% of Sybils only login to Renren once per day or less, versus 20% of normal users. The duration of Sybil sessions is also much shorter, as shown in Figure 4: 70% of Sybil session are 100 seconds long, versus 10% of normal sessions. The vast majority of normal sessions last several minutes.
Figure 5 shows the number of clicks per session per user. Almost 60% of Sybil sessions only contain one click, whereas 60% of normal user sessions have ≥10 clicks. Not only do Sybil sessions tend to be shorter, but Sybils also click much faster than normal users. As shown in Figure 6, the average inter-arrival time between Sybil clicks is an order of magnitude shorter than for normal clicks. This indicates that Sybils do not linger on pages, and some of their activities may be automated.
The observed session-level Sybil characteristics are driven by attacker's attempts to circumvent Renren's security features. Renren limits the number of actions each account can take, e.g. 50 friend requests per day, and 100 profiles browsed per hour. Thus, in order to maximize efficiency, attackers create many Sybils, quickly login to each one and perform malicious activities (e.g. sending unsolicited friend requests and spam), then logout and move to the next Sybil. As shown in Table 2, Sybils spend a great deal of clicks sending friend requests and browsing profiles, despite Renren's security restrictions.
Having characterized the session-level characteristics of our data, we now analyze the type and frequency clicks within each session. As shown in Table 2, we organize clicks into categories that correspond to high-level OSN features. Within each category there are activities that map to particular Renren features. In total, we observe 55 activities that can be grouped into 8 primary categories. These categories are:
Table 2: Clicks from normal users and Sybils on different Renren activities. # of clicks are presented in thousands. Activities with 1% of clicks are omitted for brevity.
Table 2 displays the most popular activities on Renren. The number of clicks on each activity is shown (in thousands), as well as the percent of clicks. Percentages are calculated for Sybils and normal users separately, i.e. each “%” column sums to 100%. For the sake of brevity, only activities with ≥1% of clicks for either Sybils or normal users are shown. The “Like” category has no activity with ≥1% of clicks, and is omitted from the table.
Table 2 reveals contrasting behavior between Sybils and normal users. Unsurprisingly, normal users' clicks are heavily skewed toward viewing photos (76%), albums (6%), and sharing (4%). In contrast, Sybils expend most of their clicks sending friend requests (41%), viewing photos (24%), and browsing profiles (16%). The photo browsing and profile viewing behavior are related: these Sybils crawl Renren and download users' personal information, including profile photos.
Sybils' clicks are heavily skewed toward friending (41% for Sybils, 0.3% for normal users). This behavior supports one particular attack strategy on Renren: friending normal users and then spamming them. However, given that other attacks are possible (e.g. manipulating trending topics [16], passively collecting friends [32]), we cannot rely on this feature alone to identify Sybils.
Normal users and Sybils share content (4% and 3%, respectively) as well as send messages (2% and 2%) at similar rates. This is an important observation, because sharing and messaging are the primary channels for spam dissemination on Renren. The similar rates of legitimate and illegitimate sharing/messaging indicate that spam detection systems cannot simply leverage numeric thresholds to detect spam content.
Figure 7: Categories and transition probabilities in the clickstream models of Sybils and normal users.
Sections 3.1 and 3.2 highlight some of the differences between Sybils and normal users. Next, we examine differences in click ordering, i.e. how likely is it for a user to transition from activity A to activity B during a single session?
We use a Markov Chain model to analyze click transitions. In this model, each state is a click category, and edges represent transitions between categories. We add two abstract states, initial and final, that mark the beginning and end of each click session. Figure 7 shows the category transition probabilities for both Sybils and normal users. The sum of all outgoing transitions from each category is 1.0. To reduce the complexity of the Figure, edges with probability 5% have been pruned (except for transitions to the final state). Categories with no incoming edges after this pruning process are also omitted.
Figure 7(a) demonstrates that Sybils follow a very regimented set of behaviors. After logging-in Sybils immediately begin one of three malicious activities: friend invitation spamming, spamming photos, or profile browsing. The profile browsing path represents crawling behavior: the Sybil repeatedly views user profiles until their daily allotment of views is exhausted.
Compared to Sybils, normal users (Figure 7(b)) engage in a wider range of activities, and the transitions between states are more diverse. The highest centrality category is photos, and it is also the most probable state after login. Intuitively, users start from their newsfeed, where they are likely to see and click on friends' recent photos. The second most probable state after login is checking recent notifications. Sharing and messaging are both low probability states. This makes sense, given that studies of interactions on OSNs have shown that users generate new content less than once per day [41, 17].
It is clear from Figure 7 that currently, Sybils on Renren are not trying to precisely mimic the behavior of normal users. However, we do not feel that this type of modeling represents a viable Sybil detection approach.
Simply put, it would be trivial for Sybils to modify their behavior in order to appear more like normal users. If Sybils obfuscated their behavior by decreasing their transition probability to friending and profile browsing while increasing their transition probability to photos and blogs, then distinguishing between the two models would be extremely difficult.
The above analysis shows that Sybil sessions have very different characteristics compared to normal user sessions. Based on these results, we explore the possibility of distinguishing normal and Sybil sessions using a Support Vector Machine (SVM) [26]. For our SVM experiments, we extract 4 features from session-level information and 8 features from click activities:
We computed values for all 12 features for all users in our dataset, input the data to an SVM, and ran 10 fold cross-validation. The resulting classification accuracy was 98.9%, with 0.8% false positives (i.e. classify normal users as Sybils) and 0.13% false negatives (i.e. classify Sybils as normal users). Table 3 shows the weights assigned to the top 5 features. Features with positive weight values are more indicative of Sybils, while features with negative weights indicate they are more likely in normal users. Overall, higher absolute value of the weights corresponds to features that more strongly indicate either Sybils or normal users. These features agree with our ad-hoc observations in previous sections.
Table 3: Weight of features generated by SVM.
While our SVM results are quite good, an SVM-based approach is still a supervised learning tool. In practice, we would like to avoid using any ground truth datasets to train detection models, since they can introduce unknown biases. Later, we will describe our unsupervised detection techniques in detail.
In summary, we analyze the Renren clickstream data to characterize user behavior from three angles: sessions, click activities, and click transitions. SVM analysis of these basic features demonstrates that clickstreams are useful for identifying Sybils on social networks.
However, these basic tools (session distributions, Markov Chain models, SVM) are of limited use in practice: they require training on large samples of ground-truth data. For a practical Sybil detection system, we must develop clickstream analysis techniques that leverage unsupervised learning on real-time data samples, i.e. require zero or little ground-truth. In the next section, we will focus on developing clickstreams models for realtime, unsupervised Sybil detection.
In Section 3, we showed that clickstream data for Sybils and normal users captured the differences in their behavior. In this section, we build models of user activity patterns that can effectively distinguish Sybils from normal users. Our goal is to cluster similar clickstreams together to form general user “profiles” that capture specific activity patterns. We then leverage these clusters (or profiles) to build a Sybil detection system.
We begin by defining three models to represent a user's clickstream. For each model, we describe similarity metrics that allow us to cluster similar clickstreams together. Finally, we use our ground-truth data to evaluate the efficacy of each model in distinguishing Sybils from normal users. We build upon these results later to develop practical Sybil detection systems based on click-stream analysis.
We define three models to capture a user's clickstream. Click Sequence Model. We start with the most straightforward model, which only considers click events. As shown in Section 3, Sybils and normal users exhibit different click transition patterns and focus their energy on different activities. The Click Sequence (CS) Model treats each user's clickstream as a sequence of click events, sorted by order of arrival.
Time-based Model. As shown in Figure 6, Sybils and normal users generate click events at different speeds. The Time-based Model focuses on the distribution of gaps between events: each user's clickstream is represented by a list of inter-arrival times [t1,t2,t3,...,tn] where n is the number of clicks in a user's clickstream.
Hybrid Model. The Hybrid Model combines click types and click inter-arrival times. Each user's click-stream is represented as an in-order sequence of clicks along with inter-event gaps between clicks. For example: a(t1)c(t2)a(t3)d(t4)b where a,b,c,d are click types, and ti is the time interval between the ith and (i + 1)th event.
Click Types. Both the Click Sequence Model and the Hybrid Model represent each event in the sequence by its click event type. We note that we can control how granular the event types are in our sequence representation. One approach is to encode clicks based on their specific activity. Renren's logs define 55 unique activities. Another option is to encode click events using their broader category. In our dataset, our 55 activities fall under 8 click categories (see Section 3.2). Our experimental analysis evaluates both representations to understand the impact of granularity on model accuracy.
Having defined three models of clickstream sequences, we now move on to investigating methods to quantify the similarity between clickstreams. In other words, we want to compute the distance between pairs of clickstreams. First, we discuss general approaches to computing the distance between sequences. Then we discuss how to apply each approach to our three clickstream models.
Common Subsequences. The first distance metric involves locating the common subsequences of varying lengths between two clickstreams. We formalize a clickstream as a sequence S = (s1s2...si...sn), where si is the ith element in the sequence. We then define Tk as the set of all possible k-grams (k consecutive elements) in sequence S: Tk(S) = {k-gram|k-gram = (sisi+1...si+k−1),i [1,n + 1 − k]}. Simply put, each k-gram in Tk(S) is a subsequence of S. Finally, the distance between two sequences can then be computed based on the number of common subsequences shared by the two sequences. Inspired by the Jaccard Coefficient [19], we define the distance between sequences S1 and S2 as:
We will discuss the choice of k in Section 4.2.2.
Common Subsequences With Counts. The common subsequence metric defined above only measures distinct common subsequences, i.e. it does not consider the frequency of common subsequences. We propose a second distance metric that rectifies this by taking the count of common subsequences into consideration. For sequences S1, S2 and a chosen k, we first compute the set of all possible subsequences from both sequences as T = Tk(S1) Tk(S2). Next, we count the frequency of each subsequence within each sequence i (i = 1,2) as array [ci1,ci2,...,cin] where n = |T|. Finally, the distance between S1 and S2 can be computed as the normalized Euclidean Distance between the two arrays:
Distribution-based Method. Unfortunately, theprior metrics cannot be applied to sequences of continuous values (i.e. the Time-based Model). Instead, for continuous value sequences S1 and S2, we compute the distance by comparing their value distribution using a two-sample KolmogorovSmirnov test (K-S test). A two-sample K-S test is a general nonparametric method for comparing two empirical samples. It is sensitive to differences in location and shape of the empirical Cumulative Distribution Functions (CDF) of the two samples. We define the distance function using K-S statistics:
where Fn,i(t) is the CDF of values in sequence Si.
Having defined three distance functions for computing sequence similarity, we now apply these metrics to our three clickstream models. Table 4 summarizes the distance metrics we apply to each of our models. The Time-based Model is the simplest case, because it only has one corresponding distance metric (K-S Test). For the Click Sequence and Hybrid Models, we use several different parameterizations of our distance metrics.
Table 4: Summary of distance functions.
Click Sequence Model. We use the common subsequence and common subsequence with counts metrics to compute distances in the CS model. However, these two metrics require that we choose k, the length of k-gram subsequences to consider. We choose two values for k: 1 and 10, which we refer to as unigram and 10gram. Unigram represents the trivial case of comparing common click events in two clickstreams, while ignoring the ordering of clicks. 10gram includes all unigrams, as well as bigrams, trigrams, etc. As shown in Table 4, we also instantiate unigram+count and 10gram+count, which include the frequency counts of each unique subsequence.
Although values of k > 10 are possible, we limit our experiments to k = 10 for two reasons. First, when k = n (where n is the length of a clickstream), the computational complexity becomes O(n2). This overhead is significant when you consider that O(n2) subsequences will be computed for every user in a clickstream dataset. Second, long subsequences have diminishing utility, because they are likely to be unique for a particular user. In our tests, we found k = 10 to be a good limit on computational overhead and subsequence over-specificity.
Hybrid Model. Like the Click Sequence Model, distances between sequences in the Hybrid Model can also be computed using the common subsequence and common subsequence plus count metrics. The only change between the Click Sequence and Hybrid Models is that we must discretize the inter-arrival times between clicks so they can be encoded into the sequence. We do this by placing inter-arrival times into log-scale buckets (in seconds): [0,1],[1,10],[10,100],[100,1000],[1000,∞]. Based on Figure 6, the inter-arrival time distribution is highly skewed, so log-scale buckets are better suited than linear buckets to evenly encode the times.
After we discretize the inter-arrival times and insert them into the clickstream, we use k = 5 as the parameter for configuring the two distance metrics. Further increasing k offers little improvement in the model but introduces extra computation overhead. As shown in Table 4, we refer to these metrics as 5gram and 5gram+count. Thus, each 5gram contains three consecutive click events along with two tokens representing inter-arrival time gaps between them.
Figure 8: Error rate of three models.
Figure 9: Error rate using different distance functions.
Figure 10: Impact of number of clusters (K).
At this point we have defined models of clickstreams as well as metrics for computing the distance between them. Our next step is to cluster users with similar click-streams together. As shown in Section 3, Sybil and normal users exhibit very different behaviors, and should naturally form distinctive clusters.
To achieve our goal, we build and then partition a sequence similarity graph. Each user's clickstream is represented by a single node. The sequence similarity graph is complete, i.e. every pair of nodes is connected by a weighted edge, where the weight is the similarity distance between the sequences. Partitioning this graph means producing the desired clusters while minimizing the total weight of cut edges: users with similar activities (high weights between them) will be placed in the same cluster, while users with dissimilar activities will be placed in different clusters. Thus the clustering process separates Sybil and normal users. Note that not all Sybils and normal users exhibit homogeneous behavior; thus, we expect there to be multiple, distinct clusters of Sybils and normal users.
Graph Clustering. To cluster sequence similarity graphs, we use METIS [18], a widely used multilevel k-way partitioning algorithm. The objective of METIS is to minimize the weight of edges that cross partitions. In the sequence similarity graph, longer distances (i.e. dissimilar sequences) have lower weights. Thus, METIS is likely to place dissimilar sequences in different partitions. METIS requires a parameter K that specifies the number of partitions desired. We will assess the impact of K on our system performance in Section 4.4.
Cluster Quality. A key question when evaluating our methodology is assessing the quality of clusters produced by METIS. In Section 4.4, we leverage our ground-truth data to evaluate false positives and negatives after clustering the sequence similarity graph. We label each cluster as “Sybil” or “normal” based on whether the majority of nodes in the cluster are Sybils or normal users. Normal users that get placed into Sybil clusters are false positives, while Sybils placed in normalclusters are false negatives. We use these criteria to evaluate different clickstream models and distance functions.
We now evaluate our clickstream models and distance functions to determine which can best distinguish Sybil activity patterns from those of normal users. We examine four different variables: 1) choice of clickstream model, 2) choice of distance function for each model, 3) what representation of clicks to use (specific activities or categories), and 4) K, the number of desired partitions for METIS.
Experiment Setup. The experimental dataset consists of 4000 normal users and 4000 Sybils randomly selected from our dataset. In each scenario, we build click sequences for each user (based on a given clickstream model and click representation), compute all distances between each pair of sequences, and then cluster the resulting sequence similarity graph for a given value of K. Finally, each experimental run is evaluated based on the false positive and negative error rates.
Model Analysis. First, we examine the error rates of different clickstream models and click representations in Figure 8. For the CS and Hybrid models, we encode clicks based on activities as well as categories. In the Time model, all clicks are encoded as inter-arrival times. In this experiment, we use 10gram+count, 5gram+count, and K-S as the distance function for CS, Hybrid, and Time, respectively. We fix K = 100. We investigate the impact of distance functions and K in subsequent experiments.
Two conclusions can be drawn from Figure 8. First, the CS and Hybrid models significantly outperform the Time-based model, especially in false negatives. This demonstrates that click inter-arrival times alone are insufficient to disambiguate Sybils from normal users. Manual inspection of false negative Sybils from the Time experiment reveals that these Sybils click at the same rate as normal users. Thus these Sybils are either operated by real people, or the software that controls them has been intentionally rate limited.
The second conclusion from Figure 8 is that encoding clicks based on category outperforms encoding by activity. This result confirms findings from the existing literatures on web usage mining [3]: representing clicks using high-level categories (or concepts) instead of raw click types better exposes the browsing patterns of users. A possible explanation is that high-level categories have better tolerance for noise in the clickstream log. In the rest of our paper, we use categories to encode clicks.
Next, we examine the error rate of different distance functions for the CS and Hybrid models. As shown in Figure 9, we evaluate the CS model using the unigram and 10gram functions, as well as counting versions of those functions. We evaluate the Hybrid model using the 5gram and 5gram+count functions.
Several conclusions can be drawn from Figure 9. First, the unigram functions have the highest false negative rates. This indicates that looking at clicks in isolation (i.e. without click transitions) is insufficient to discover many Sybils. Second, the counting versions of all three distance functions produce low false positive rates. This demonstrates that the repeat frequency of sequences is important for identifying normal users. Finally, we observe that CS 10gram+count and Hybrid have similar accuracy. This shows that click inter-arrival times are not necessary to achieve low error rates.
Finally, we examine the impact of the number of clusters K on detection accuracy. Figure 10 shows the error rate of Hybrid 5gram+count as we vary K. The overall trend is that larger K produces lower error rates. This is because larger K grants METIS more opportunities to partition weakly connected sequences. This observation is somewhat trivial: if K = N, where N is the number of sequences in the graph, then the error rate would be zero given our evaluation methodology. In Section 6, we discuss practical reasons why K must be kept ≈100.
Summary. Our evaluation shows that the Click Sequence and Hybrid models perform best at disambiguating Sybils and normal users. 10gram+count and 5gram+count are the best distance functions for each model, respectively. We find that accuracy is highest when clicks are encoded based on categories, and when the number of partitions K is large. In the following sections, we will use these parameters when building our Sybil detection system.
Our results in Section 4 showed that our models can effectively distinguish between Sybil clickstreams and normal user clickstreams. In this section, we leverage this methodology to build a real-time, incremental Sybil detector. This system works in two phases: first, we create clusters of Sybil and normal users based on groundtruth data, as we did in Section 4. Second, we compute the position of unclassified clickstreams in our sequence similarity graph. If an unclassified clickstream falls into a cluster representing clickstreams from ground-truth Sybils, we conclude the new clickstream is a Sybil. Otherwise, it is benign.
To classify a new clickstream given an existing clustered sequence similarity graph, we must determine how to “re-cluster” new sequences into the existing graph. We investigate three algorithms.
The first is K Nearest Neighbor (KNN). For a given unclassified sequence, we find the top-K nearest sequences in the ground-truth data. If the majority of these sequences are located in Sybil clusters, then the new sequence is classified as a Sybil sequence.
The second algorithm is Nearest Cluster (NC). We compute the average distance from an unclassified sequence to all sequences in each cluster. The unclassified sequence is then added to the cluster with the closest average distance. The new sequence is classified as Sybil or normal based on the cluster it is placed in.
The third algorithm is a less computationally-intensive version of Nearest Cluster that we refer to as Nearest Cluster-Center (NCC). NC and KNN require computing the distance from an unclassified sequence to all sequences in the ground-truth clusters. We can streamline NC's classification process by precomputing centers for each cluster. In NCC, we only need to compute the distance from an unclassified sequence to the center of each existing cluster.
For each existing cluster, the center is chosen by closeness centrality. Intuitively, the center sequence is the one that has the shortest distance to all the other sequences in the same cluster. To be more robust, we precompute three centers for each cluster, that is, the three sequences with highest closeness centrality.
In this section, we evaluate our incremental Sybil detection system using our ground-truth clickstream dataset. We start by evaluating the basic accuracy of the system at classifying unknown sequences. Next, we evaluate how quickly the system can identify Sybils, in terms of number of clicks in their clickstream. Finally, we explore how long the system can remain effective before it needs to be retrained using updated ground-truth data.
Detection Accuracy. We start with a basic evaluation of system accuracy using our ground-truth dataset. We split the dataset into training data and testing data. Both datasets include 3000 Sybils and 3000 normal users. We build sequence similarity graphs from the training data using Hybrid Model with 5gram+count as distance function. The number of clusters K = 100. In each sequence similarity graph, we label the Sybil and normal clusters.
Figure 11: Error rate of three reclustering algorithms.
Figure 12: Error rate vs. maximum # of clicks in each sequence.
Figure 13: Detection accuracy when training data is two weeks old.
Next, we examine the error rates of the incremental detector when unclassified users (3000 Sybils and 3000 normal users) are added to the sequence similarity graph. We perform this experiment three times, once for each of the proposed reclustering algorithms (KNN, NC and NCC). As shown in Figure 11, the error rates for all three reclustering algorithms are very similar, and all three have 1% false positives. NC has slightly fewer false positives, while NCC has the fewest false negatives.
Detection Speed. The next question we want to address is: what is the minimum number of clicks necessary to accurately classify clickstreams? Another way to frame this question is in terms of detection speed: how quickly (in terms of clicks) can our system accurately classify clickstreams? To identify and respond to Sybils quickly, we must detect Sybils using the minimal number of click events.
Figure 12 shows the results of our evaluation when the maximum number of clicks in all sequences are capped. The “All” results refer to a cap of infinity, i.e. all clicks in our dataset are considered. Note that not all sequences in our dataset have 50 or 100 clicks: some Sybils were banned before they produced this may clicks. Hence, the caps are upper bounds on sequence length.
Surprisingly, the “All” results are not the most accurate overall. As shown in Figure 12, using all clicks results in more false negatives. This occurs due to overfitting: given a large number of very long clickstreams from normal users, it is likely that they will occasionally exhibit unusual, Sybil-like behavior. However, this problem is mitigated if the sequence length is capped, since this naturally excludes these infrequent, aberrant clickstreams.
In contrast to the “All” results, the results from the ≤ 50 click experiments produce the most false positives. This demonstrates that there is a minimum sequence length necessary to perform accurate classification of clickstreams. We repeated these experiments using CS/10gram+count and received similar result, which we omit for brevity.
There are two additional, practical take-aways from Figure 12. First, the NCC algorithm performs equally well versus NC and KNN. This is a positive result, since the computational complexity of NCC is dramatically lower than NC and KNN. Second, we observe that our system can produce accurate results (false positives 1%, false negatives 3%) when only considering short sequences. This means that the system can make classifications quickly, without needing to store very long click-streams in memory.
Accuracy Over Time. In order for our incremental detection system to be practically useful, its accuracy should remain high for long periods of time. Put another way, sequence similarity graphs trained with old data should be able to detect fresh Sybil clickstreams. To evaluate the accuracy of our system over time, we split our dataset based on date. We train our detector using the early data, and then apply the detector to the later data. We restrict our analysis to data from April 2011; although we have Sybil data from March 2011, we do not have corresponding data on normal users for this month.
Figure 13 shows the accuracy of the detector when it is trained on data from March 31-April 15, then applied to data from April 16-30. As the results show, the detector remains highly accurate for at least two weeks after it has been trained using the NCC reclustering algorithm. Unfortunately, the limited duration of our dataset prevents us from examining accuracy at longer time intervals.
We repeated this experiment using only one week of training data, but the false negative rate of the detector increased to ≈10%. This shows that the detector needs to be trained on sufficient data to provide accurate results.
Our incremental Sybil detection system from Section 5 has a serious shortcoming: it must be trained using large samples of ground-truth data. In this section, we develop an unsupervised Sybil detection system that requires only a small, constant amount of ground-truth. The key idea is to build a clustered sequence similarity graph as before. But instead of using full ground-truth of all clickstreams to mark a cluster as Sybil or normal, we only need a small number of clickstreams of known real users as “seeds” that color the clusters they reside in. These seeds can be manually verified as needed. We color all clusters that include a seed sequence as “normal,” while uncolored clusters are assumed to be “Sybil.” Since normal users are likely to fall under a small number of behavioral profiles (clusters in the graph), we expect a small fixed number of seeds will be sufficient to color all clusters of normal user clickstreams.
Figure 14: Unsupervised clustering with coloring.
Figure 15: # of seeds vs. % of correctly colored normal user clusters.
Figure 16: Consistency over time of normal seeds for coloring.
Figure 14 depicts our unsupervised approach, showing how METIS partitions nodes into clusters which are then colored if they contain seed users. Once the system is trained in this manner, it can be used incrementally to detect more Sybils over time, as described in Section 5.
In this section, we discuss the design of our unsupervised system and evaluate its performance. We begin by analyzing the number and composition of seeds that are necessary to ensure high accuracy of the system. Next, we evaluate the performance of the system by comparing its accuracy to our ground-truth data. Finally, we examine how the ratio of Sybils to normal users in the unclassified data impacts system accuracy.
Number of Seeds. The most important parameter in our unsupervised Sybil detection system is the number of seeds. On one hand, the number of seeds needs to be large and diverse enough to color all “normal” clusters. Normal clusters that remain uncolored are potential false positives. On the other hand, the seed set needs to be small enough to be practical. If the size of the seed set is large, it is equivalent to having ground-truth about the dataset, which is the situation we are trying to avoid.
We now conduct experiments to determine how many seeds are necessary to color the clusters. We choose 3000 Sybils and 3000 normal users at random from our dataset to be the unclassified dataset. We also randomly choose some number of additional normal users to be the seeds. As in Section 5, we use the Hybrid Model with the 5gram+count distance function. We also conducted experiments with CS/10gram+count, but the results are very similar and we omit them for brevity.
Figure 15 depicts the percentage of normal of clusters that are correctly colored for different values of K (number of METIS partitions) as the number of seeds is varied. As expected, fewer seeds are necessary when K is small because there are fewer clusters (and thus each cluster includes more sequences). When K = 100, 250 seeds (or 4% of all normal users in the experiment) are able to color 99% of normal clusters.
Seed Consistency Over Time. Next, we examine whether a set of seeds chosen at an early date are equally effective at coloring clusters based on later data. In other words, we want to know if the seeds are consistent over time. If this is not the case, it would represent additional overhead on the deployment of our system.
To test seed consistency over time, we divide our two months of Sybil clickstream data into four, two-week long datasets. We add an equal number of randomly selected normal users to each of the four datasets. Finally, we select an additional x random normal users to act as seeds. We verify (for each value of x) that these seeds color 100% of the normal clusters in the first temporal dataset. We then evaluate what percentage of normal clusters are colored in the subsequent three temporal datasets. In all experiments, we set K = 100, i.e. the worst case scenario for our graph coloring approach.
The results of the temporal consistency experiments are shown in Figure 16. In general, even though the Sybil and normal clickstreams change over time, the vast majority of normal clusters are successfully colored. Given 600 seeds, 99% of normal clusters are colored after 4 weeks, although the percentage drops to 83% with 300 seeds. These results demonstrate that the seed set does not need to be drastically altered over time.
We now evaluate the overall effectiveness of our Sybil detection system when it leverages unsupervised training. In these experiments, we use our entire clickstream dataset. We choose x random normal users as seeds, build and cluster the sequence similarity graph using Hybrid/5gram+count, and then color the clusters that contain the seeds. Finally, we calculate the false positive and negative rates using the same methodology as in Section 5, i.e. by comparing the composition of the colored clusters to ground-truth.
The results are shown in Figure 17. As the number of seeds increases, the false positive rate decreases. This is because more seeds mean more normal clusters are correctly colored. With just 400 seeds, the false positive rate drops to 1%. Unfortunately, relying on unsupervised training does increase the false negative rate of our system by 2% versus training with ground-truth data. However, in cases where ground-truth data is unavailable, we believe that this is a reasonable tradeoff. Note that we also repeated these experiment with CMS/10gram+count, and it produced slightly higher false positive rates, although they were still 1%.
Unbalanced Training Dataset. Next, we evaluate the impact of having an unbalanced training dataset (e.g. more normal users than Sybils) on the accuracy of our system. Thus far, all of our experiments have assumed a roughly equal percentage of Sybils and normal users in the data. However, in practice it is likely that normal users will outnumber Sybils when unsupervised learning is used. For example, Facebook suspects that 8.7% of its user base is illegitimate, out of >1 billion total users [1].
We now evaluate how detection accuracy changes when we decrease the percentage of Sybils in the training data. In these experiments, we construct training sets of 6000 total users with different normal-to-Sybil ratios. We then run unsupervised training with 500 seeds. Finally, we incrementally add an additional 3000 Sybils and 3000 normal users to the colored similarity graph using the NCC algorithm (see Section 5.1). We ran additional tests using the NC and KNN algorithms, but the results were very similar and we omit them for brevity.
Figure18 shows the final error rate of the system (i.e. after 6000 users have been incrementally added) for varying normal-to-Sybil ratios. The false positive rate remains ≤1.2% regardless of the normal-to-Sybil ratio. This is a very good result: even with highly skewed training data, the system is unlikely to penalize normal users. Unfortunately, the false negative rate does rise as the number of Sybils in the training data falls. This result is to be expected: the system cannot adequately classify Sybil clickstreams if it is trained on insufficient data.
Handling False Positives. The above analysis demonstrates that our system achieves high accuracy with a false positive rate of 1% or less. Through manual inspection, we find that “false positives” generated by our detector exhibit behaviors generally attributed to Sybils, including aggressively sending friend requests or browsing profiles. In real-world OSNs, suspicious users identified by our system could be further verified via existing complementary systems that examines other aspects of users. For example, this might include systems that classify user profiles [32, 43], systems that verify user real-world identity [2], or even Sybil detection systems using crowdsourced human inspection [38]. These efforts could further protect benign users from misclassification.
In this section, we examine the practical performance of our proposed Sybil detection system. First, we shipped our code to the security teams at Renren and LinkedIn, where it was evaluated on fresh data in a production environment. Both test results are very positive, and we report them here. Second, we discuss the fundamental limits of our approach, by looking at our impact on Sybil accounts that can perfectly mimic the clickstream patterns of normal users.
With the help of supportive collaborators at both Renren and LinkedIn, we were able to ship prototype code to the security teams at both companies for internal testing on fresh data. We configured our system to use unsupervised learning to color clusters. Sequence similarity graphs are constructed using the Hybrid Model and the 5gram+count distance function, and the number of METIS partitions K is 100.
Renren. Renren's security team trained our systemusing clickstreams from 10K users, of which 8K were randomly selected, and 2K were previously identified as suspicious by the security team. These clickstreams were collected between January 17–27, 2013. 500 honest users that have been manually verified by Renren's security team were used as seeds. Once trained, our system was fed clickstreams from 1 million random users (collected in early February, 2013) for classification as normal or suspicious. In total, our system identified 22K potential Sybil accounts. These accounts are now being investigated by the security team.
While corporate privacy policies prevented Renren from sharing detailed results with us, their feedback was very positive. They also indicated that our system identified a new attack performed by a large cluster of users whose clickstream behavior focused heavily on photo sharing. Manual inspection revealed that these photos used embedded text to spread spam for brands of clothes and shoes. Traditional text analysis-based spam detectors and URL blacklists were unable to catch this new attack, but our system identified it immediately.
Figure 17: Detection accuracy versus number of seeds.
Figure 18: Detection accuracy versus Normal-Sybil ratio.
Figure 19: Clicks per day by outlier normal users.
LinkedIn. LinkedIn's security team used our software to analyze the clickstreams of 40K users, of which 36K were randomly sampled, and 4K were previously identified as suspicious by the security team. These clickstreams were gathered in February, 2013. Again, our feedback was very positive, but did not include precise statistics. However, we were told that our system confirmed that ≈1700 of the 4000 suspicious accounts are likely to be Sybils. Our system also detected an additional 200 previously unknown Sybils.
A closer look at the data shows that many of the accounts not detected by our system were borderline accounts with specific flags popping up in their profiles. For example, some accounts had unusual names or occupational specialties, while others had suspicious URLs in their profiles. These results remind us that a behavior model is clearly only a part of the equation, and should be used in conjunction with existing profile analysis tools and spam detectors [5, 10, 37, 38, 44].
Ongoing Collaboration. In summary, the security teams at both Renren and LinkedIn were very pleased with the initial results of our system. We plan to continue collaborating with both groups to improve our system and implement it in production.
Finally, we wish to discuss the worst case scenario for our system, i.e. a scenario where attackers have full knowledge of the clickstream patterns for real users, and are able to instrument the behavior of their Sybils to mimic them precisely. In this attack model, the attacker's goal is to have Sybils carry out malicious actions (e.g. sending spam) without being detected. However, to evade detection, these Sybils must limit themselves to behavior consistent with that of normal users.
We can thus bound the capabilities of Sybils that avoid detection in this attack model. First, the Sybil's click-stream must remain inside the “normal” clusters produced by our detector. Second, the most aberrant behavior within a given “normal” cluster is exhibited by real users within the cluster who are farthest from the center.
The activities performed by these outliers serve as effective bounds on Sybil behavior. Sybil clickstreams cannot deviate from the center of the cluster more than these outliers, otherwise they will be excluded from the cluster and risk detection. Thus, we can estimate the maximum amount of malicious activity a Sybil could perform (without getting caught) by studying these outliers.
We now examine the behavior of outliers. We calibrate our system to produce clusters with false positive rate 1% using Hybrid/5gram+count, and K = 100. In this configuration, the detector outputs 40 Sybil and 60 normal clusters when run on our full dataset. Next, we identify the two farthest outliers in each normal cluster. Finally, we plot the clicks per day in three activities from the 120 outliers in Figure 19. We focus on clicks for sending friend requests, posting status updates/wall messages, and viewing user profiles. These activities correspond to the three most common attacks we observe in our ground-truth data, i.e. sending friend request spam, status/wall spam, and profile crawling.
As shown in Figure 19, 99% of outliers generate ≤10 clicks per day in the target activities. In the vast majority of cases, even the outliers generate 2 clicks per day. These results show that the effective bound on Sybil behavior is very tight, i.e. to avoid detection, Sybils can barely generate any clicks each day. These bounds significantly increase the cost for attackers, since they will need many more Sybils to maintain the same level of spam generation capacity.
Sybil Detection on OSNs. Studies have shown that Sybils are responsible for large amounts of spam on Facebook [10], Twitter [11, 32], and Renren [43]. Various systems have been proposed by the research community to detect and mitigate these Sybils. One body of work leverages social graphs to detect Sybils. These systems detect tight-knit Sybil communities that have a small quotient-cut from the honest region of the graph [46, 45, 34, 36, 8, 7]. However, recent studies have demonstrated the limitations of this approach. Yang et al. show that Sybils on Renren blend into the social graph rather than forming tight communities [43]. Mohaisen et al. show that many social graphs are not fast-mixing, which is a necessary precondition for community-based Sybil detectors to be effective [21].
A second body of work has used machine learning to detect Sybil behavior on Twitter [44, 5, 37] and Face-book [31]. However, relying on specific features makes these systems vulnerable to Sybils with different attack strategies. Finally, one study proposes using crowd-sourcing to identify Sybils [38].
Web Usage Mining. Researchers have studied the usage patterns of web services for the last decade [30]. Several studies focus on session-level analysis to learn user's browsing habits [14, 13, 24]. Others develop session clustering techniques [4, 42, 40, 33, 25], Markov Chain models [20, 28], and tree-based models [12] to characterize user browsing patterns. We also leverage a Markov Chain model and clustering in our work. Two studies have focused specifically on characterizing click-streams from OSNs [6, 29].
The vast majority of the web usage mining literature focuses on characterizing the behavior of normal users. To the best of our knowledge, there are only two studies that leverage clickstreams for anomaly detection [15, 28]. Both of these studies use session-level features to identify crawlers, one focusing on e-commerce and the other on search engines. Their techniques (e.g. session distributions, Markov Chain models) require training on large samples of ground-truth data, and cannot scale to today's large social networks.
To the best of our knowledge, this is the first work to leverage clickstream models for detecting malicious users in OSNs. Our results show that we can build an accurate Sybil detector by identifying and coloring clusters of “similar” clickstreams. Our system has been validated on ground-truth data, and a prototype has already detected new types of image-spam attacks on Renren.
We believe clickstream models can be a powerful technique for user profiling in contexts outside of OSNs. In our ongoing work, we are studying ways to extend click-stream models to detect malicious crowdsourcing workers and forged online product and travel reviews.
This work was carried out under an approved IRB protocol. All data was anonymized by Renren prior to our use. The clickstreams are old enough that the events they describe are no longer accessible via the current website. All experiments run on recent user data were conducted-on-site at Renren and LinkedIn respectively, and all results remain on-site.
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We empirically assess whether browser security warnings are as ineffective as suggested by popular opinion and previous literature. We used Mozilla Firefox and Google Chrome's in-browser telemetry to observe over 25 million warning impressions in situ. During our field study, users continued through a tenth of Mozilla Firefox's malware and phishing warnings, a quarter of Google Chrome's malware and phishing warnings, and a third of Mozilla Firefox's SSL warnings. This demonstrates that security warnings can be effective in practice; security experts and system architects should not dismiss the goal of communicating security information to end users. We also find that user behavior varies across warnings. In contrast to the other warnings, users continued through 70.2% of Google Chrome's SSL warnings. This indicates that the user experience of a warning can have a significant impact on user behavior. Based on our findings, we make recommendations for warning designers and researchers.
An oft-repeated maxim in the security community is the futility of relying on end users to make security decisions. Felten and McGraw famously wrote, “Given a choice between dancing pigs and security, the user will pick dancing pigs every time [21].” Herley elaborates [17],
Not only do users take no precautions against elaborate attacks, they appear to neglect even basic ones. For example, a growing body of measurement studies make clear that ...[users] are oblivious to security cues [27], ignore certificate error warnings [31] and cannot tell legitimate web-sites from phishing imitations [11].1
The security community's perception of the “oblivious” user evolved from the results of a number of laboratory studies on browser security indicators [5, 11, 13, 15, 27, 31, 35]. However, these studies are not necessarily representative of the current state of browser warnings in 2013. Most of the studies evaluated warnings that have since been deprecated or significantly modified, often in response to criticisms in the aforementioned studies. Our goal is to investigate whether modern browser security warnings protect users in practice.
We performed a large-scale field study of user decisions after seeing browser security warnings. Our study encompassed 25,405,944 warning impressions in Google Chrome and Mozilla Firefox in May and June 2013. We collected the data using the browsers' telemetry frameworks, which are a mechanism for browser vendors to collect pseudonymous data from end users. Telemetry allowed us to unobtrusively measure user behavior during normal browsing activities. This design provides realism: our data reflects users' actual behavior when presented with security warnings.
In this paper, we present the rates at which users click through (i.e., bypass) malware, phishing, and SSL warnings. Low clickthrough rates are desirable because they indicate that users notice and heed the warnings. Click-through rates for the two browsers' malware and phishing warnings ranged from 9% to 23%, and users clicked through 33.0% of Mozilla Firefox's SSL warnings. This demonstrates that browser security warnings can effectively protect most users in practice.
Unfortunately, users clicked through Google Chrome's SSL warning 70.2% of the time. This implies that the user experience of a warning can have a significant impact on user behavior. We discuss several factors that might contribute to this warning's higher clickthrough rates. Our positive findings for the other five warnings suggest that the clickthrough rate for Google Chrome's SSL warning can be improved.
We also consider user behaviors that are indicative of attention to warnings. We find that Google Chrome's SSL clickthrough rates vary by the specific type of error. In Mozilla Firefox, a fifth of users who choose to click through an SSL warning remove a default option, showing they are making cognitive choices while bypassing the warning. Together, these results contradict the stereotype of the wholly oblivious user with no interest in security.
We conclude that users can demonstrate agency when confronted with browser security warnings. Users do not always ignore security warnings in favor of their desired content. Consequently, security experts and platform designers should not dismiss the role of the user. We find that the user experience of warnings can have an enormous impact on user behavior, justifying efforts to build usable warnings.
Contributions. We make the following contributions:
Web browsers show warnings to users when an attack might be occurring. If the browser is certain that an attack is occurring, it will show an error page that the user cannot bypass. If there is a chance that the perceived attack is a false positive, the browser will show a bypassable warning that discourages the user from continuing. We study only bypassable warnings because we focus on user decisions.
A user clicks through a warning to dismiss it and proceed with her original task. A user leaves the warning when she navigates away and does not continue with her original task. A clickthrough rate describes the proportion of users who clicked through a warning type. When a user clicks through a warning, the user has (1) ignored the warning because she did not read or understand it or (2) made an informed decision to proceed because she believes that the warning is a false positive or her computer is safe against these attacks (e.g., due to an antivirus).
Figure 1: Malware warning for Google Chrome
Figure 2: Malware warning for Mozilla Firefox
Figure 3: SSL warning for Google Chrome. The first paragraph changes depending on the specific SSL error.
Figure 4: SSL warning for Mozilla Firefox
Figure 5: SSL Add Exception Dialog for Mozilla Firefox
We focus on three types of browser security warnings: malware, phishing, and SSL warnings. At present, all three types of warnings are full-page, interstitial warnings that discourage the user from proceeding.
Malware and phishing warnings aim to prevent users from visiting websites that serve malicious executables or try to trick users. Google Chrome and Mozilla Firefox rely on the Google Safe Browsing list [26] to identify malware and phishing websites. The browsers warn users away from the sites instead of blocking them because the Safe Browsing service occasionally has false positives, although the false positive rate is very low [26].
Clickthrough Rate. If a malware or phishing warning is a true positive, clicking through exposes the user to a dangerous situation. Nearly all Safe Browsing warnings are true positives; the false positive rate is low enough to be negligible. The ideal clickthrough rate for malware and phishing warnings is therefore close to 0%.
Warning Mechanisms. The browsers routinely fetch a list of suspicious (i.e., malware or phishing) sites from Safe Browsing servers. If a user tries to visit a site that is on the locally cached list, the browser checks with the Safe Browsing service that the URL is still on the malware or phishing list. If the site is still on one of the lists, the browser presents a warning.
The two browsers behave differently if a page loads a third-party resource (e.g., a script) from a URL on the Safe Browsing list. Google Chrome stops the page load and replaces the page with a warning. Mozilla Firefox blocks the third-party resource with no warning. As a result, Mozilla Firefox users can see fewer warnings than Google Chrome users, despite both browsers using the same Safe Browsing list.
Warning Design. Figures 1 and 2 show the Google Chrome and Mozilla Firefox warnings. Their phishing warnings are similar to their respective malware warnings. When a browser presents the user with a malware or phishing warning, she has three options: leave the page via the warning's escape button, leave the page by closing the window or typing a new URL, or click through the warning and proceed to the page. The warnings also allow the user to seek more information about the error.
Click Count. Mozilla Firefox users who want to bypass the warning need to click one button: the “Ignore this warning” link at the bottom right. On the other hand, Chrome users who want to bypass the warning need to click twice: first on the “Advanced” link, and then on “Proceed at your own risk.”
The Secure Sockets Layer (SSL/TLS) protocol provides secure channels between browsers and web servers, making it fundamental to user security and privacy on the web. As a critical step, the browser verifies a server's identity by validating its public-key certificate against a set of trusted root authorities. This validation will fail in the presence of a man-in-the-middle (MITM) attack.
Authentication failures can also occur in a wide variety of benign scenarios, such as server misconfigurations. Browsers usually cannot distinguish these benign scenarios from real MITM attacks. Instead, browsers present users with a warning; users have the option to bypass the warning, in case the warning is a false positive.
Clickthrough Rate. We hope for a 0% clickthrough rate for SSL warnings shown during MITM attacks. However, many SSL warnings may be false positives (e.g., server misconfigurations). There are two competing views regarding SSL false positives. In the first, warning text should discourage users from clicking through both true and false positives, in order to incentivize developers to get valid SSL certificates. In the other, warning text should provide users with enough information to correctly identify and dismiss false positives. The desired click-through rates for false-positive warnings would be 0% and 100%, respectively. In either case, false positives are undesirable for the user experience because we do not want to annoy users with invalid warnings. Our goal is therefore a 0% clickthrough rate for all SSL warnings: users should heed all valid warnings, and the browser should minimize the number of false positives.
Warning Design. Figures 3 and 4 present Google Chrome and Mozilla Firefox's SSL warnings. The user can leave via the warning's escape button, manually navigate away, or click through the warning. In Mozilla Firefox, the user must also click through a second dialog (Figure 5) to bypass the warning.
The browsers differ in their presentation of the technical details of the error. Google Chrome places information about the specific error in the main warning (Figure 3, first paragraph), whereas Firefox puts the error information in the hidden “Technical Details” section and the second “Add Exception” dialog (Figure 5).
Click Count. Mozilla Firefox's SSL warning requires more clicks to bypass. Google Chrome users click through a single warning button to proceed. On the other hand, Mozilla Firefox's warning requires three clicks: (1) click on “I Understand The Risks,” (2) click on the “Add Exception” button, which raises a second dialog, (3) click on “Confirm Security Exception” in the second dialog. By default, Firefox permanently remembers the exception and will not show the warning again if the user reencounters the same certificate for that website. In contrast, Chrome presents the warning every time and does not remember the user's past choices.
Mozilla and Google both follow rapid release cycles. They release official versions of their browsers every six or seven weeks, and both browsers update automatically. The official, default version of a browser is referred to as “stable” (Google Chrome) or “release” (Mozilla Firefox).
If users are interested in testing pre-release browser versions, they can switch to a different channel. The stable/release channel is the recommended channel for end users, but a minority of users choose to use earlier channels to test cutting-edge features. The “Beta” channel is several weeks ahead of the stable/release channel. The “developer” (Google Chrome) or “Aurora” (Mozilla Firefox) channel is delivered even earlier. Both browsers also offer a “nightly” (Mozilla Firefox) or “Canary” (Google Chrome) release channel, which updates every day and closely follows the development repository.
The pre-release channels are intended for advanced users who want to experience the latest-and-greatest features and improvements. They give website, extension, and add-on developers time to test their code on upcoming versions before they are deployed to end users. The early channels are not recommended for typical end users because they can have stability issues, due to being under active development. The rest of this paper assumes a positive correlation between pre-release channels use and technical ability. While this matches the intention of browser developers, we did not carry out any study to validate this assumption.
We survey prior laboratory studies of SSL and phishing warnings. The body of literature paints a grim picture of browser security warnings, but most of the warnings have since been deprecated or modified. In some cases, warnings were changed in response to these studies.
Only two studies evaluated warnings that are similar to the modern (June 2013) browser warnings that we study in this paper. Sunshine et al. and Sotirakopoulos et al. reported clickthrough rates of 55% to 80% for the Firefox 3 and 3.5 SSL warnings, which are similar but not identical to the current Firefox SSL warning [30, 31]. However, Sotirakopoulos et al. concluded that laboratory biases had inflated both studies' clickthrough rates [30].
SSL warnings are the most studied type of browser warning. Usability researchers have evaluated SSL warnings in both SSL-specific studies and phishing studies because SSL warnings and passive indicators were once viewed as a way to identify phishing attacks.2
Dhamija et al. performed the first laboratory study of SSL warnings in 2006. They challenged 22 study participants to differentiate between phishing and legitimate websites in Mozilla Firefox 1.0.1 [11]. In this version, the warning was a modal dialog that allowed the user to permanently accept, temporarily accept, or reject the certificate. When viewing the last test website, participants encountered an SSL warning. The researchers reported that 15 of their 22 subjects (68%) quickly clicked through the warning without reading it. Only one user was later able to tell the researchers what the warning had said. The authors considered the clickthrough rate of 68% a conservative lower bound because participants knew that they should be looking for security indicators.
In 2007, Schechter et al. studied user reactions to Internet Explorer 7's SSL warning, which is the same one-click interstitial that is present in all subsequent versions of Internet Explorer [27]. Participants encountered the warning while logging into a bank website to look up information. The researchers were aware of ecological validity concerns with laboratory studies and split their participants into three groups: participants who entered their own credentials, a role-playing group that entered fake passwords, and a security-primed role-playing group that entered fake passwords. Overall, 53% of the total 57 participants clicked through. However, only 36% of the non-role-playing group clicked through. The difference between the role-playing participants and non-role-playing participants was statistically significant, illustrating one challenge of experiments in artificial environments.
Sunshine et al. performed multiple studies of SSL warnings in 2009 [31]. First, they conducted an online survey. They asked 409 people about Firefox 2, Firefox 3, and Internet Explorer 7 warnings. Firefox 2 had a modal dialog like Firefox 1.0.1, and Firefox 3's warning is similar but not identical to the current Firefox warning. Less than half of respondents said they would continue to the website after seeing the warning. As a follow-up, Sunshine et al. also conducted a laboratory study that exposed 100 participants to SSL warnings while completing information lookup tasks. The clickthrough rates were 90%, 55%, and 90% when participants tried to access their bank websites in Firefox 2, Firefox 3, and Internet Explorer 7, respectively. The clickthrough rates increased to 95%, 60%, and 100% when participants saw an SSL warning while trying to visit the university library website.
Sotirakopoulos et al. replicated Sunshine's laboratory SSL study with a more representative population sample [30]. In their study, 80% of participants using Firefox 3.5 and 72% of participants using Internet Explorer 7 clicked through an SSL warning on their bank website. More than 40% of their participants said that the laboratory environment had influenced them to click through the warnings, either because they felt safe in the study environment or were trying to complete the experimental task. Sotirakopoulos et al. concluded that the laboratory environment biased their results, and they suspect that these biases are also present in similar laboratory studies.
Bravo-Lillo et al. interviewed people about an SSL warning from an unspecified browser [5]. They asked 20 participants about the purpose of the warning, what would happen if a friend were to click through, and whether a friend should click through the warning. Participants were separated into “advanced” and “novice” browser users. “Advanced” participants said they would not click through an SSL warning on a bank website, but “novice” participants said they would.
Passive Indicators. Some studies focused on passive SSL indicators, which non-interruptively show the status of the HTTP(S) connection in the browser UI. Although browsers still have passive SSL indicators, interruptive SSL and phishing warnings are now the primary tool for communicating security information to users.
Friedman et al. asked participants whether screenshots of websites depicted secure connections; many participants could not reliably determine whether a connection was secure [15]. Whalen and Inkpen used eye-tracking software to determine that none of their 16 participants looked at the lock or key icon in the URL bar, HTTP(S) status in the URL bar, or the SSL certificate when asked to browse websites “normally” [34]. Some browsers modify the lock icon or color of the URL bar to tell the user when a website has an Extended Validation (EV) SSL certificate. Jackson et al. asked 27 study subjects to classify 12 websites as either phishing or legitimate sites, but the EV certificates did not help subjects identify the phishing sites [19]. In a follow-up study, Sobey et al. found that none of their 28 subjects clicked on the EV indicators, and the presence of EV indicators did not affect decision-making [29]. Similarly, Biddle et al. found that study participants did not understand Internet Explorer's certificate summaries [3].
In 2012, a Google Chrome engineer mentioned high clickthrough rates for SSL warnings on his blog [20]. We expand on this with a more accurate and detailed view of SSL clickthrough rates in Google Chrome.
Phishing warnings in contemporary browsers are active, interstitial warnings; in the past, they have been passive indicators in toolbars. Researchers have studied whether they are effective at preventing people from entering their credentials into phishing websites.
Wu et al. studied both interstitial and passive phishing warnings [35]. Neither of the warnings that they evaluated are currently in use in browsers. First, they launched phishing attacks on 30 participants. The participants role-played during the experiment while using security toolbars that display passive phishing warnings. Despite the toolbars, at least one attack fooled 20 out of 30 participants. In their next experiment, they asked 10 study participants to perform tasks on PayPal and a shopping wish list website; they injected modal phishing warnings into the websites. None of the subjects entered the credentials into the PayPal site, but the attack on the wish list site fooled 4 subjects. The authors do not report the warning clickthrough rates.
Egelman et al. subjected 60 people to simulated phishing attacks in Internet Explorer 7 or Mozilla Firefox 2.0 [13]. Firefox 2.0 had a modal phishing dialog that is not comparable to the current Mozilla Firefox phishing dialog, and Internet Explorer had both passive and active warnings. Participants believed that they were taking part in a laboratory study about shopping. The researchers asked participants to check their e-mail, which contained both legitimate shopping confirmation e-mails and similar spear phishing e-mails sent by the researchers. Users who clicked on the links in the phishing e-mails saw a phishing warning. Participants who saw Mozilla Firefox's active warning, Internet Explorer's active warning, or Internet Explorer's passive warning were phished 0%, 45%, and 90% of the time, respectively. The clickthrough rates were an unspecified superset of the rates at which people fell for the phishing attacks.
Google Chrome and Microsoft Internet Explorer also display non-blocking warning dialogs when users attempt to download malicious executables. In a blog post, a Microsoft employee stated that the clickthrough rate for Internet Explorer's SmartScreen warning was under 5% [16]. We did not study this warning for Google Chrome, and Mozilla Firefox does not have this warning.
We rely on the telemetry features implemented in Mozilla Firefox and Google Chrome to measure clickthrough rates in situ. Telemetry is a mechanism for browser vendors to collect pseudonymous data from end users who opt in to statistics reporting. Google Chrome and Mozilla Firefox use similar telemetry platforms.
We implemented metrics in both browsers to count the number of times that a user sees, clicks through, or leaves a malware, phishing, or SSL warning. Based on this data, we can calculate clickthrough rates for each warning type. As discussed in Section 2, we report only the clickthrough rates for warnings that the user can bypass. We measured the prevalence of non-bypassable warnings separately. To supplement the clickthrough rates, we recorded whether users clicked on links like “Help me understand,” “View,” or “Technical Details.”
Bypassing some warnings takes multiple clicks, and our clickthrough rates for these warnings represent the number of users who completed all of the steps to proceed to the page. For Mozilla Firefox's SSL warning (which takes three clicks to proceed), we recorded how often users perform two intermediate clicks (on “Add Exception” or “Confirm Security Exception”) as well as the overall clickthrough rate.
We also measured how often users encounter and click through specific SSL errors. In addition to the overall clickthrough rates for the warnings, we collected click-through data for each type of Mozilla Firefox SSL error and the three most common Google Chrome SSL errors.
Our Mozilla Firefox data set does not allow us to track specific telemetry participants. In Google Chrome, we can correlate warning impressions with psuedonymous browser client IDs; however, the sample size for most individual users is too small to draw conclusions. We therefore report the results of measurements aggregated across all users unless otherwise specified. The telemetry frameworks do not provide us with any personal or demographic information except for the operating system and browser version for each warning impression.
We also used the Google Chrome telemetry framework to observe how much time Google Chrome users spent on SSL warnings. Timing began as soon as an SSL warning came to the foreground in a tab. In particular,
Together, these correspond to five timing measurements (two for outcome and three for error type). For scalability, the telemetry mechanism in Google Chrome only allows timing measurements in discrete buckets. As a result, our analysis also treats time as a discrete, ordinal variable.
We used log-scaled bucket sizes (e.g., the first bucket size is 45ms but the last is 90,279ms) with 50 buckets, ranging from 0ms to 1,200,000ms, for the two outcome histograms. The three error type histograms had 75 buckets each, ranging from 0ms to 900,000ms. We used more buckets for the error histograms because we anticipated that they would be more similar to each other.
We collected data from users who participate in their browsers' broad, unpaid user metrics programs. At first run of a browser, the browser asks the user to share usage data. If the user consents, the browser collects data on performance, features, and stability. In some pre-release developer channels, data collection is enabled by default. The browser periodically sends this pseudonymous data over SSL to the central Mozilla or Google servers for analysis. The servers see the IP addresses of clients by necessity, but they are not attached to telemetry data. All telemetry data is subject to strict privacy policies and participants can opt out by changing their settings [7, 23]. Multiple Google Chrome committers and Mozilla Firefox contributors reviewed the data collection code to ensure that the metrics did not collect any private data.
This work is not considered human subjects research by UC Berkeley because the student did not have access to database identifiers or personally identifying information.
Collection Period. Google Chrome's malware and phishing measurement code was in place in Chrome 24 prior to our work, and our SSL measurement code was added to Google Chrome 25. The Google Chrome data in this paper was collected April 28 - May 31, 2013. Our Mozilla Firefox measurement code was added to Firefox 17, and a bug in the SSL measurement code was fixed in Firefox 23. The data on the Firefox malware warning, phishing warning, and SSL “Add Exception” dialog was collected May 1-31, 2013. The data on Firefox SSL warnings was collected June 1 - July 5, 2013, as the Firefox 23 fix progressed through the various release channels.
Sample Sizes. In Google Chrome, we recorded 6,040,082 malware warning impressions, 386,350 phishing warning impressions, and 16,704,666 SSL warning impressions. In Mozilla Firefox, we recorded 2,163,866 malware warning impressions, 100,004 phishing warning impressions, and 10,976 SSL warning impressions. Appendix A further breaks downs these sample sizes by OS and channel.
Number of Users. For Mozilla Firefox, we recorded warning impressions from the approximately 1% of Firefox users who opt in to share data with Mozilla via telemetry. In Google Chrome, we observed malware, phishing, and SSL warning impressions on 2,148,026; 204,462; and 4,491,767 clients (i.e., browser installs), respectively.
Private Data. Due to privacy constraints, we could not collect information about users' personal demographics or browsing habits. Consequently, we cannot measure whether user behavior differs based on personal characteristics, the target site, or the source of the link to the site. We also cannot identify SSL false positives due to captive portals, network proxies, or server misconfigurations.
Sampling Bias. The participants in our field study are not a random population sample. Our study only represents users who opt in to browser telemetry programs. This might present a bias. The users who volunteered might be more likely to click through dialogs and less concerned about privacy. Thus, the clickthrough rates we measure could be higher than population-wide rates. Given that most of our observed rates are low, this bias augments our claim that clickthrough rates are lower than anticipated.
Overrepresentation. We present clickthrough rates across all warnings shown to all users. A subset of users could potentially be overrepresented in our analysis. Within the Google Chrome data set, we identified and removed a small number of overrepresented clients who we believe are either crawlers or malware researchers. We were unable to remove individual clients from the Mozilla Firefox set, but we do not believe this represents a bias because we know that the overrepresented clients in Chrome still contributed fewer than 1% of warning impressions. Some clients experienced multiple types of warning impressions; we investigated this in Chrome and found that the clickthrough rates do not differ if we remove non-independent clients. Our large sample sizes and small critical value (α = 0.001) should further ameliorate these concerns.
Frames. Our original measurement for Mozilla Firefox did not differentiate between warnings shown in top-level frames (i.e., warnings that fill the whole tab) and warnings shown in iframes. In contrast, Google Chrome always shows malware and phishing warnings in the top-level frame and does not render any warning type in iframes. Since users might not notice warnings in iframes, the two metrics are not necessarily directly comparable.
Upon discovering this issue, we modified our Firefox measurement implementation to take frame level into account. Our new implementation is not available to all Firefox users yet, but we have data for recent pre-release channels. For malware and phishing warning impressions collected from the beta channel, the clickthrough rate for the top-level frame is within two percentage points of the overall clickthrough rate. This is due to the relative infrequency of malware and phishing warnings in iframes and the low overall clickthrough rate. Since the frame level does not make a notable difference for malware and phishing warnings, we present the overall rates (including both top-level frames and iframes) for the full sample sizes in Section 5.1. The difference is more important for SSL warnings: the clickthrough rate for top-level frames is 28.7 percentage points higher than the overall clickthrough rate of 4.3%. Consequently, Section 5.2 presents only the top-level frame rate for SSL warnings, although it limits our sample to pre-release users.
We present the clickthrough data from our measurement study. Section 5.1 discusses malware and phishing warnings together because they share a visual appearance. We then present rates for SSL warnings in Section 5.2.
The clickthrough rates for malware warnings were 7.2% and 23.2% in stable versions of Mozilla Firefox and Google Chrome, respectively. For phishing warnings, we found clickthrough rates of 9.1% and 18.0%. In this section, we discuss the effects of warning type, demographics, and browser on the clickthrough rates.
The malware warning clickthrough rates for Google Chrome vary widely by date. We have observed click-through rates ranging from 11.2% to 24.9%, depending on the week, since the current version of the warning was released in August 2012. In contrast, the Mozilla Firefox malware warning clickthrough rate across weeks stays within one percentage point of the month-long average. We did not observe similar temporal variations for phishing or SSL warnings.
Table 1: User operating system vs. clickthrough rates for malware and phishing warnings. The data comes from stable (i.e., release) versions.
Table 2: Release channel vs. clickthrough rates for malware and phishing warnings, for all operating systems.
Recall from Section 2.1 that Google Chrome and Mozilla Firefox's malware warnings differ with respect to secondary resources: Google Chrome shows an interstitial malware warning if a website includes secondary resources from a domain on the Safe Browsing list, whereas Mozilla Firefox silently blocks the resource. We believe that this makes Google Chrome's malware clickthrough rates more sensitive to the contents of the Safe Browsing list. For example, consider the case where a well-known website accidentally loads an advertisement from a malicious domain. Google Chrome would show a warning, which users might not believe because they trust the website. Mozilla Firefox users would not see any warning. Furthermore, Chrome phishing warnings are less likely to be due to secondary resources, and that warning's clickthrough rates do not vary much by time.
In Mozilla Firefox, we find a significantly higher click-through rate for phishing warnings than malware warnings (χ2 test: p(1) 0.0001). This behavior is rational: a malware website can infect the user's computer without any action on the user's part, but a phishing website can only cause harm by tricking the user at a later point in time. Mozilla Firefox makes this priority ordering explicit by choosing to display the malware warning if a website is listed as both malware and phishing.3 However, the practical difference is small: 7.2% vs. 9.1%.
In Google Chrome, the average malware clickthrough rate is higher than the phishing clickthrough rate. However, the malware clickthrough rate fluctuates widely (Section 5.1.1); the malware clickthrough rate is sometimes lower than the phishing clickthrough rate.
We consider whether users of different operating systems and browser release channels react differently to warnings. As Table 1 depicts, Linux users have significantly higher clickthrough rates than Mac and Windows users combined for the Firefox malware warning, Firefox phishing warning, and Chrome phishing warning (χ2 tests: p(1) 0.0001). While the low prevalence of malware for Linux could explain the higher clickthrough rates for the Firefox malware warning, use of Linux does not provide any additional protection against phishing attacks. The Chrome malware warning does not follow the same pattern: Windows users have a significantly higher click-through rate (χ2 tests: p(1) 0.0001).
We also see differences between software release channels (Table 2). Nightly users click through Google Chrome malware and Firefox phishing warnings at much higher rates than stable users, although they click through Firefox malware and Google Chrome phishing warnings at approximately the same rates.
In several cases, Linux users and early adopters click through malware and phishing warnings at higher rates. One possible explanation is that a greater degree of technical skill – as indicated by use of Linux or early-adopter versions of browsers – corresponds to reduced risk aversion and an increased willingness to click through warnings. This does not hold true for all categories and warnings (e.g., nightly and stable users click through the Firefox malware warning at the same rate), suggesting the need for further study.
Google Chrome stable users click through phishing warnings more often than Mozilla Firefox stable users. This holds true even when we account for differences in how the browsers treat iframes (Section 4.5). Mozilla Firefox's beta channel users still click through warnings at a lower rate when we exclude iframes: 9.6% for malware warnings, and 10.8% for phishing warnings.
One possibility is that Mozilla Firefox's warnings are more frightening or more convincing. Another possibility is that the browsers have different demographics with different levels of risk tolerance, which is reflected in their clickthrough rates. There might be differences in technical education, gender, socioeconomic status, or other factors that we cannot account for in this study. In support of this theory, we find that differences between the browsers do not hold steady across operating systems or channels. The gap between the browsers narrows or reverses for some categories of users, such as Linux users and nightly release users.
The clickthrough rates for SSL warnings were 33.0% and 70.2% for Mozilla Firefox (beta channel) and Google Chrome (stable channel), respectively.
In Section 5.1, we observed that malware and phishing clickthrough rates differed across operating systems and channels. For SSL, the differences are less pronounced.
As with the malware and phishing warnings, nightly users click through SSL warnings at a higher rate for both Firefox and Chrome (χ2 tests: p 0.0001).
The effect of users' operating systems on SSL click-through rates differs for the two browsers. In Firefox, Linux users are much more likely to click through SSL warnings than Windows and Mac users combined (χ2 test: p 0.0001), although it is worth noting that the Firefox Linux sample size is quite small (58). In Chrome, Windows users are very slightly more likely to click through SSL warnings than Linux and Mac users combined (χ2 test: p 0.0001).
We find a large difference between the Mozilla Firefox and Google Chrome clickthrough rates: Google Chrome users are 2.1 times more likely to click through an SSL warning than Mozilla Firefox users. We explore five possible causes.
Number of Clicks. Google Chrome users click one button to dismiss an SSL warning, but Mozilla Firefox users need to click three buttons. It is possible that the additional clicks deter people from clicking through. However, we do not believe this is the cause of the rate gap.
First, the number of clicks does not appear to affect the clickthrough rates for malware and phishing warnings. Mozilla Firefox's malware and phishing warnings require one click to proceed, whereas Google Chrome's malware and phishing warnings require two. The Google Chrome malware and phishing warnings with two clicks do not have lower clickthrough rates than the Mozilla Firefox warnings with one click. Second, as we discuss in Section 5.2.3, 84% of users who perform the first two clicks in Mozilla Firefox also perform the third. This indicates that the extra click is not a determining decision point. Unfortunately, we do not have data on the difference between the first and second clicks.
Table 3: User operating system vs. clickthrough rates for SSL warnings. The Google Chrome data is from the stable channel, and the Mozilla Firefox data is from the beta channel.
Table 4: Channel vs. clickthrough rates for SSL warnings.
Warning Appearance. The two warnings differ in several ways. Mozilla Firefox's warning includes an image of a policeman and uses the word “untrusted” in the title. These differences likely contribute to the rate gap. However, we do not think warning appearance is the sole or primary factor; the browsers' malware and phishing warnings also differ, but there is only about a 10% difference between browsers for these warnings.
Certificate Pinning. Google Chrome ships with a list of “pinned” certificates and preloaded HTTP Strict Transport Security (HSTS) sites. Users cannot click through SSL warnings on sites protected by these features. Certificate pinning and HSTS cover some websites with important private data such as Google, PayPal, and Twitter [8]. In contrast, Mozilla Firefox does not come with many preloaded “pinned” certificates or any pre-specified HSTS sites. As a result, Chrome shows more non-bypassable warnings: our field study found that 20% of all Google Chrome SSL warning impressions are non-bypassable, as compared to 1% for Mozilla Firefox.
Based on this, we know that Mozilla Firefox users see more warnings for several critical websites. If we assume that users are less likely to click through SSL warnings on these critical websites, then it follows that Mozilla Firefox's clickthrough rate will be lower. This potential bias could account for up to 15 points of the 37-point gap between the two clickthrough rates, if we were to assume that Google Chrome users would never click through SSL errors on critical websites if given the chance.
Remembering Exceptions. Due to the “permanently store this exception” feature in Mozilla Firefox, Mozilla Firefox users see SSL warnings only for websites without saved exceptions. This means that Mozilla Firefox users might ultimately interact with websites with SSL errors at the same rate as Google Chrome users despite having lower clickthrough rates. For example, imagine a user that encounters two websites with erroneous SSL configuration: she leaves the first after seeing a warning, but visits the second website nine times despite the warning. This user would have a 50% clickthrough rate in Mozilla Firefox but a 90% clickthrough rate in Google Chrome, despite visiting the second website at the same rate.
We did not measure how often people revisit websites with SSL errors. However, we suspect that people do repeatedly visit sites with warnings (e.g., a favorite site with a self-signed certificate). If future work were to confirm this, there could be two implications. First, if users are repeatedly visiting the same websites with errors, the errors are likely false positives; this would mean that the lack of an exception-storing mechanism noticably raises the false positive rate in Google Chrome. Second, warning fatigue could be a factor. If Google Chrome users are exposed to more SSL warnings because they cannot save exceptions, they might pay less attention to each warning that they encounter.
Demographics. It's possible that the browsers have different demographics with different levels of risk tolerance. However, this factor likely only accounts for a few percentage points because the same demographic effect applies to malware and phishing warnings, and the difference between browsers for malware and phishing warnings is much smaller.
To gain insight into the factors that drive clickthrough rates, we study whether the particular certificate error affects user behavior.
Google Chrome. Google Chrome's SSL warning includes a short explanation of the particular error, and clicking on “Help me understand” will open a more-detailed explanation. In case a certificate has multiple errors, Google Chrome only shows the first error out of untrusted issuer error, name mismatch error, and certificate expiration error, respectively.
Table 5 presents the clickthrough rates by error types for Google Chrome. If Google Chrome users are paying attention to and understanding the warnings, one would expect different clickthrough rates based on the warning types. We find a 24.4-point difference between the click-through rates for untrusted issuer errors and expired certificate errors. One explanation could be that untrusted issuer errors appear on unimportant sites, leading to higher click-through rates without user attention or comprehension; however, the Mozilla Firefox data suggests otherwise. An alternative explanation could be that expired certificates, which often occur for websites with previously valid certificates [1], surprise the user. In contrast, untrusted certificate errors always occur for a website and conform with expectations.
Table 5: Prevalence and clickthrough rates of error types for the Google Chrome SSL warning. Google Chrome only displays the most critical warning; we list the error types in order, with untrusted issuer errors as the most critical. Data is for the stable channel across all operating systems.
Mozilla Firefox. Mozilla Firefox's SSL warning does not inform the user about the particular SSL error by default.4 Instead, the secondary “Add Exception” dialog presents all errors in the SSL certificate. The user must confirm this dialog to proceed.
Table 6 presents the rates at which users confirm the “Add Exception” dialog in Mozilla Firefox. The error types do not greatly influence the exception confirmation rate. This indicates that the “Add Exception” dialog does not do an adequate job of explaining particular error categories and their meaning to the users. Thus, users ignore the categories and click through errors at the same rate. This finding also suggests that the differences in click-through rates across error types in Google Chrome cannot be attributed to untrusted issuer errors corresponding to unimportant websites; if that were the case, we would expect to see the same phenomenon in Firefox.
Error Prevalence. The frequency of error types encountered by users in our field study also indicates the base rate of SSL errors on the web. Our Google Chrome data contradicts a previous network telemetry study, which suggested that untrusted issuer errors correspond to 80% of certificate errors seen on the wire [18]. Also, Google Chrome users see fewer untrusted issuer errors than Mozilla Firefox users; this may be because Mozilla Firefox users are more likely to click on the “Add Exception” dialog for untrusted issuer errors. Recall that we collect the Mozilla Firefox error type statistics only after a user clicks on the “Add Exception” button.
Table 6: Prevalence and confirmation rates of error types for the Mozilla Firefox “Add Exception” dialog. The confirmation rate measures the percentage of users who click on “Confirm Security Exception” (Figure 5). The Mozilla Firefox dialog lists all the errors that occur for a certificate. Data is for the release channel across all operating systems; we did not need to limit it to the beta channel because frame level issues do not affect clickthrough rates inside the “Add Exception” dialog.
The high frequency of untrusted issuer errors highlights the usability benefits of “network view” SSL certificate verification systems like Perspectives and Convergence [10, 33], which do not need certificates from trusted authorities. All of the untrusted certificate warnings—between 38% and 56% of the total—would disappear. Warnings with other errors in addition to an untrusted certificate error would remain. Nonetheless, our study also shows that these mechanisms are not a panacea: name mismatch errors constitute a large fraction of errors, and new systems like Perspectives and Convergence still perform this check.5
We collected several additional metrics to complement the overall clickthrough rates.
More Information. Google Chrome and Mozilla Firefox both place additional information about the warning behind links. However, very few users took the opportunity to view this extra information. The “Help me understand” button was clicked during 1.6% of Google Chrome SSL warning impressions. For Mozilla Firefox warnings, 0 users clicked on “Technical Details,” and 3% of viewers of the “Add Exception” dialog clicked on “View Certificate.” This additional content therefore has no meaningful impact on the overall clickthrough rates.
Add Exception Cancellation. Not all Mozilla Firefox users proceed to the page after opening the “Add Exception” dialog: 14.6% of the time that a dialog is opened, the user cancels the exception. These occurrences indicate that at least a minority of users consider the text in the dialog before confirming the exception.
Figure 6: Google Chrome SSL clickthrough times (ms), by outcome. The graph shows the percent of warning impressions that fall in each timing bucket. The x-axis increases logarithmically, and we cut off the distribution at 90% due to the long tail.
Remember Exception. By default, the “Remember Exception” checkbox is checked in the Mozilla Firefox “Add Exception” dialog. Our measurements found that 21.3% of the time that the dialog is opened, the user un-ticks the checkbox. We hypothesize that these users are still wary of the website even if they choose to proceed.
In addition to MITM attacks, SSL warnings can occur due to server misconfigurations. Previous work found that 20% of the thousand most popular SSL sites triggered a false warning due to such misconfigurations [31]. Consequently, it may be safe and rational to click through such false warnings. The prevalence of a large number of such false warnings can potentially train users to consider all SSL warnings false alarms and click through them without considering the context.
In order to determine whether users examine SSL warnings before making a decision, we measured how much time people spent on SSL warning pages. In this section, we compare the click times by outcome (clickthrough or leave) and error type to gain insight into user attention. Our timing data is for all operating systems and channels.
Figure 6 presents the click times for different outcomes. Users who leave spend more time on the warning than users who click through and proceed to the page. 47% of users who clicked through the warning made the decision within 1.5s, whereas 47% of users who left the page did so within 3.5s. We interpret this to mean that users who click through the warning often do so after less consideration.
Figure 7: Google Chrome SSL clickthrough times (ms), by error type. The graph shows the percent of warning impressions that fall in each timing bucket. The x-axis increases logarithmically, and we cut off the distribution at 90% due to the long tail.
Figure 7 depicts the click times for three error types (untrusted authority, name mismatch, and expired certificate errors). Users clicked through 49% of untrusted issuer warning impressions within 1.7s, but clicked through 50% of name and date errors within 2.2s and 2.7s, respectively. We believe that this data is indicative of warning fatigue: users click through more-frequent errors more quickly. The frequency and clickthrough rate of each error type (as reported in Section 5.2) are inversely correlated with that error type's timing variance and mode (Figure 7).
Our primary finding is that browser security warnings can be effective security mechanisms in practice, but their effectiveness varies widely. This should motivate more attention to improving security warnings. In this section, we summarize our findings and their implications, present suggestions for warning designers, and make recommendations for future warning studies.
Popular opinion holds that browser security warnings are ineffective. However, our study demonstrates that browser security warnings can be highly effective at preventing users from visiting websites: as few as a tenth of users click through Firefox's malware and phishing warnings. We consider these warnings very successful.
We found clickthrough rates of 18.0% and 23.2% for Google Chrome's phishing and malware warnings, respectively, and 31.6% for Firefox's SSL warning. These warnings prevent 70% (or more) of attempted visits to potentially dangerous websites. Although these warnings could be improved, we likewise consider these warnings successful at persuading and protecting users.
Google Chrome's SSL warning had a clickthrough rate of 70.2%. Such a high clickthrough rate is undesirable: either users are not heeding valid warnings, or the browser is annoying users with invalid warnings and possibly causing warning fatigue. Our positive findings for the other warnings demonstrate that this warning has the potential for improvement. We hope that this study motivates further studies to determine and address the cause of its higher clickthrough rate. We plan to test an exception-remembering feature to investigate the influence of repeat exposures to warnings. At Google, we have also begun a series of A/B tests in the field to measure the impact of a number of improvements.
Although we did not directly study user attention, two results of our study suggest that at least a minority of users pay attention to browser security warnings.
These results contradict the stereotype of wholly oblivious users with no interest in security.
As Bravo-Lillo et al. wrote [5]:
Evidence from experimental studies indicates that most people don't read computer warnings, don't understand them, or simply don't heed them, even when the situation is clearly hazardous.
In contrast, a majority of users heeded five of the six types of browser warnings that we studied. This section explores why our results differ from prior research.
Browser Changes. Most prior browser research was conducted between 2002 and 2009. Browsers were rapidly changing during this time period; some changes were directly motivated by published user studies. Notably, passive indicators are no longer considered primary security tools, and phishing toolbars have been replaced with browser-provided, full-page interstitial warnings. As a result, studies of passive indicators and phishing toolbars no longer represent the state of modern browser technology.
Two studies tested an older version of the Mozilla Firefox SSL warning, in which the warning was a modal (instead of full-page) dialog. Dhamija et al. observed a 68% clickthrough rate, and Sunshine et al. recorded clickthrough rates of 90%-95% depending on the type of page [11, 31]. The change in warning design could be responsible for our lower observed clickthrough rates.
Ecological Invalidity. Sunshine et al. and Sotirakopoulos et al. recorded 55%-60% and 80% clickthrough rates, respectively, for a slightly outdated version of the Mozilla Firefox SSL warning [30, 31]. They evaluated the Firefox 3 and 3.5 warnings, which had the same layout and appearance as the current (Firefox 4+) warning but with different wording. It's possible that changes in wording caused clickthrough rates to drop from 55%-80% to 33.0%. However, during an exit survey, 46% of Sotirakopoulos's subjects said they clicked through the warning because they either felt safe in the laboratory environment or wanted to complete the task [30]. Since their study methodology was intentionally similar to the Sunshine study, Sotirakopoulos et al. concluded that both studies suffered from biases that raised their clickthrough rates [30]. We therefore attribute some of the discrepancy between our field study data and these two laboratory studies to the difficulty of establishing ecological validity in a laboratory environment.
In light of this, we recommend a renewed emphasis on field techniques for running and confirming user studies of warnings. Although we used in-browser telemetry, there are other ways of obtaining field data. For example, experience sampling is a field study methodology that asks participants to periodically answer questions about a topic [2, 6, 9, 28]. Researchers could install a browser extension on participants' computers to observe their responses to normally occurring warnings and display a survey after each warning. This technique allows researchers to collect data about participants' emotions, comprehension, and demographics. Participants may become more cautious or attentive to warnings if the purpose of the study is apparent, so researchers could obscure the purpose by surveying subjects about other browser topics. Network-based field measurements also provide an alternative methodology with high ecological validity. A network monitor could maintain its own copy of the Safe Browsing list and identify users who click through warnings. If the monitor can associate network flows with specific demographics (e.g., students), it can help understand the impact of these factors on user behavior. Similar studies could help understand SSL clickthrough rates; recent work addressed how to reproduce certificate validation at the network monitor [1].
We found that clickthrough rates differ by operating system and browser channel. Our findings suggest that higher technical skill (as indicated by use of Linux and prerelease channels) may predispose users to click through some types of warnings. We recommend further investigation of user demographics and their impact on user behavior. Large-scale demographic studies might uncover additional demographic factors that we were unable to study with our methodology. If so, can warning design address and overcome those demographic differences?
Technically advanced users might feel more confident in the security of their computers, be more curious about blocked websites, or feel patronized by warnings. Studies of these users could help improve their warning responses.
Our data suggests that the amount of effort (i.e., number of clicks) required to bypass a warning does not always have a large impact on user behavior. To bypass Google Chrome's malware and phishing warnings, the user must click twice: once on a small “Advanced” link, and then again to “proceed.” Despite the hidden button, users click through Google Chrome's malware/phishing warning at a higher rate than Mozilla Firefox's simpler warning. Furthermore, 84% of users who open Mozilla Firefox's “Add Exception” dialog proceed through it.
We find this result surprising. Common wisdom in e-commerce holds that extra clicks decrease clickthrough rates (hence, one-click shopping) [12, 32]. Google Chrome's warning designers introduced the extra step in the malware/phishing warning because they expected it to serve as a strong deterrent. One possible explanation is that users make a single cognitive decision when faced with a warning. The decision might be based on the URL, warning appearance, or warning message. Once the user has decided to proceed, additional clicks or information is unlikely to change his or her decision.
Our data suggests that browser-warning designers should not rely on extra clicks to deter users. However, we did not explicitly design our study to examine the effects of multiple clicks. Future studies on multi-click warnings could shed light on user decision models and impact security warning design. It is possible that extra clicks do not serve as a deterrent until they reach some threshold of difficulty.
We observed behavior that is consistent with the theory of warning fatigue. In Google Chrome, users click through the most common SSL error faster and more frequently than other errors. Our findings support recent literature that has modeled user attention to security warnings as a finite resource [4] and proposed warning mechanisms based on this constraint [14].
Based on this finding, we echo the recommendation that security practitioners should limit the number of warnings that users encounter. Designers of new warning mechanisms should always perform an analysis of the number of times the system is projected to raise a warning, and security practitioners should consider the effects that warning architectures have on warning fatigue.
Users rarely click on the explanatory links such as “More Information” or “Learn More” (Section 5.2.4). Designers who utilize such links should ensure that they do not hide a detail that is important to the decision-making process.
Mozilla Firefox places information about SSL errors under “Technical Details” and in the “Add Exception” dialog instead of the primary warning. Thus, the error type has little impact on clickthrough rates. In contrast, Google Chrome places error details in the main text of its SSL warning, and the error has a large effect on user behavior. It is possible that moving this information into Mozilla Firefox's primary warning could reduce their clickthrough rates even further for some errors.
We performed a field study with Google Chrome and Mozilla Firefox's telemetry platforms, allowing us to collect data on 25,405,944 warning impressions. We find that browser security warnings can be successful: users clicked through fewer than a quarter of both browser's malware and phishing warnings and a third of Mozilla Firefox's SSL warnings. We also find clickthrough rates as high as 70.2% for Google Chrome SSL warnings, indicating that the user experience of a warning can have a tremendous impact on user behavior. However, warning effectiveness varies between demographic groups. Our findings motivate more work on browser security warnings, with particular attention paid to demographics. At Google, we have begun experimenting with new warning designs to further improve our warnings.
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Table 7: Warning impression sample sizes for Mozilla Firefox warnings, by channel, for all operating systems.
Table 8: Warning impression sample sizes for Mozilla Firefox warnings, by operating system. The malware, phishing, and the “Add Exception” samples are from the release channel, whereas the SSL samples are from the beta channel. The frame issue does not affect statistics that pertain only to the “Add Exception” dialog.
Table 9: Warning impression sample sizes for Google Chrome warnings, by channel, for all operating systems.
Table 10: Warning impression sample sizes for Google Chrome warnings, by operating system, for the stable channel.
In Google Chrome, we recorded 6,040,082 malware warning impressions, 386,350 phishing warning impressions, and 16,704,666 SSL warning impressions. In Mozilla Firefox, we recorded 2,163,866 malware warning impressions, 100,004 phishing warning impressions, and 45,153 SSL warning impressions. Tables 7, 8, 9, and 10 further separate the sample sizes based on OS and release channel.
*The Mozilla Firefox experiments were implemented while the author was an intern at Mozilla Corporation.1Citations updated to match our bibliography.2There is evidence that modern phishing sites can have valid SSL certificates [24].3Google Chrome will display both warnings. To preserve independence, our measurement does not include any warnings with both phishing and malware error messages. Dual messages are infrequent.4This information is available under the “Technical details” link, but our measurements indicate that it is rarely opened (Section 5.2.4).5Convergence does not check the certificate issuer, relying on network views instead. However, it performs name checks [10].
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We perform an empirical study to better understand two well-known vulnerability rewards programs, or VRPs, which software vendors use to encourage community participation in finding and responsibly disclosing software vulnerabilities. The Chrome VRP has cost approximately $580,000 over 3 years and has resulted in 501 bounties paid for the identification of security vulnerabilities. The Firefox VRP has cost approximately $570,000 over the last 3 years and has yielded 190 bounties. 28% of Chrome's patched vulnerabilities appearing in security advisories over this period, and 24% of Firefox's, are the result of VRP contributions. Both programs appear economically efficient, comparing favorably to the cost of hiring full-time security researchers. The Chrome VRP features low expected payouts accompanied by high potential payouts, while the Firefox VRP features fixed payouts. Finding vulnerabilities for VRPs typically does not yield a salary comparable to a full-time job; the common case for recipients of rewards in either program is that they have received only one reward. Firefox has far more critical-severity vulnerabilities than Chrome, which we believe is attributable to an architectural difference between the two browsers.
Some software vendors pay security researchers for the responsible disclosure of a security vulnerability. Programs implementing the rules for this exchange are known as vulnerability rewards programs (VRPs) or bug bounty programs. The last couple of years have seen an upsurge of interest in VRPs, with some vendors expanding their existing programs [1, 19], others introducing new programs [3, 34, 38], and some companies offering to act as an intermediary between security researchers and vendors offering VRPs [53].
VRPs offer a number of potential attractions to software vendors. Offering adequate incentives entices security researchers to look for vulnerabilities, and this increased attention improves the likelihood of finding latent vulnerabilities.1 Second, coordinating with security researchers allows vendors to more effectively manage vulnerability disclosures, reducing the likelihood of unexpected and costly zero-day disclosures. Monetary rewards provide an incentive for security researchers not to sell their research results to malicious actors in the underground economy or the gray world of vulnerability markets. Third, VRPs may make it more difficult for black hats to find vulnerabilities to exploit. Patching vulnerabilities found through a VRP increases the difficulty and therefore cost for malicious actors to find zero-days because the pool of latent vulnerabilities has been diminished. Additionally, experience gained from VRPs (and exploit bounties [23, 28]) can yield improvements to mitigation techniques and help identify other related vulnerabilities and sources of bugs. Finally, VRPs often engender goodwill amongst the community of security researchers. Taken together, VRPs provide an attractive tool for increasing product security and protecting customers.
Despite their potential benefits, there is an active debate over the value and effectiveness of VRPs. A number of vendors, notably Microsoft,2 Adobe, and Oracle, do not maintain a VRP, with Microsoft arguing that VRPs do not represent the best return on investment on a per-bug basis [26]. Further, it is also not clear if the bounties awarded are a sufficient attraction for security researchers motivated by money—underground economy prices for vulnerabilities are far higher than those offered by VRPs [20, 37].
Given the emergence of VRPs as a component of the secure development lifecycle and the debate over the efficacy of such programs, we use available data to better understand existing VRPs. We focus on the Google Chrome and Mozilla Firefox web browsers, both of which are widely considered to have mature VRPs, as case studies. We analyze these VRPs along several dimensions with the intention of better understanding the characteristics, metrics, and trajectory of a VRP.
We make the following contributions:
A secure software development lifecycle (SDLC) aims to address software security throughout the entire software development process, from before specifications are developed to long after software has been released [15]. A vulnerability remediation strategy is any systematic approach whose goal is to reduce the number of software vulnerabilities [57]. Vulnerability remediation strategies are one important part of an SDLC, complemented by things like incident response [32], operational security considerations [46], and defense in depth [16].
Potential vulnerability remediation strategies include:
How such strategies are systematized and realized varies widely between software vendors. One company might require mandatory code reviews before code check-in, while another might hire outside penetration testing experts a month before product release. Vendors often combine or innovate on existing strategies.
Vulnerability rewards programs (VRPs) appear to be emerging as a viable vulnerability remediation strategy. Many companies have them, and their popularity continues to grow [6, 9]. But VRPs have gone largely unstudied. For a company considering the use of a VRP in their SDLC, guidance is limited.
By studying mature, high-profile VRPs, we aim to provide guidance on the development of new VRPs and the evolution and maturation of existing VRPs. Vendors looking to grow their VRPs can benefit from an improved understanding of those VRPs we study.
Toward this end, we measure, characterize, and discuss the Google Chrome and Mozilla Firefox VRPs. We choose these VRPs in particular because browsers are a popular target for malicious actors today. Their ubiquitous nature and their massive, complex codebase with significant legacy components make them especially vulnerable. Complex, high-performance components with a large attack surface such as JavaScript JITs also provide an alluring target for malicious actors. For the same reasons, they are also widely studied by security researchers; they therefore provide a large sample size for our study. In addition, browser vendors were among the first to offer rewards for vulnerabilities: Mozilla's VRP started in 2004 and Google introduced the Chrome VRP in 2010, before the security community at large adopted VRPs as a vulnerability remediation strategy.
We intend to improve our understanding of the following characteristics of a mature VRP: (1) Expected cost, (2) expected benefits, (3) incentive levels effective for encouraging and sustaining community participation, and (4) volume of VRP activity (e.g., number of patches coming out of VRP reports).
We do so by studying available data coming out of two exemplars of well-known, mature VRPs, that of Google Chrome and Mozilla Firefox. Understanding these VRPs will allow these vendors to evaluate and improve their programs, and it will suggest targets for other vendors to strive toward with their VRPs. At minimum, we hope to arrive at a better understanding of the current state of VRPs and how they have evolved. At best, we aim to make concrete suggestions for the development and improvement of VRPs.
The Google Chrome VRP3 is widely considered an exemplar of a mature, successful VRP. When first introduced in January 2010, the Google Chrome VRP offered researchers rewards ranging from $500 for high- and critical-severity bugs, with a special $1337 reward for particularly critical or clever bugs. Over time, the typical payout increased to a $1000 minimum with a maximum payout of $3133.7 for high-impact vulnerabilities. Additionally, the Chrome team, has provided rewards of up to $31,336 for exceptional vulnerability reports [21].
Google also sponsors a separate, semi-regular exploit bounty called the “pwnium” competition [23]. This program focuses on full exploits; a mere vulnerability is not enough. In return, it awards higher bounties (as high as $150,000) for these exploits [8]. Reliable exploits for modern browsers typically involve multiple vulnerabilities and significant engineering effort. For example, the two winning entries in a recent “pwnium” contest required six and ten vulnerabilities in addition to “impressive” engineering in order to achieve a successful exploit [7, 45]. Our focus is on programs that provide bounties for vulnerabilities; we do not consider exploit bounties in this work.
The severity of a vulnerability plays a key role in deciding reward amounts. Google Chrome uses a clear guideline for deciding severity [12]. In short, a critical vulnerability allows an attacker to run arbitrary native code on the user's machine; for instance, web-accessible memory corruption vulnerabilities that appear in the Chrome kernel4 are typically critical severity. A high-severity vulnerability is one that allows an attacker to bypass the same-origin policy, e.g., via a Universal XSS vulnerability (which enables an attacker to mount an XSS attack on any web site) or a memory corruption error in the sandbox. A vulnerability is of medium severity if achieving a high/critical status requires user interaction, or if the vulnerability only allows limited disclosure of information. Finally, a low-severity vulnerability refers to all the remaining security vulnerabilities that do not give the attacker control over critical browser features. Medium-severity vulnerabilities typically receive rewards of $500, and low-severity vulnerabilities typically do not receive rewards.
Mozilla's VRP is, to the best of our knowledge, one of the oldest VRPs in the industry. It was first started in 2004 and based on a similar project at Netscape in 1995 [41]. The Mozilla VRP initially awarded researchers $500 for high-or critical-severity security bugs. Starting July 1, 2010 Mozilla expanded its program to award all high/critical vulnerabilities $3000 [1].
Mozilla's security ratings are similar to that of Chrome. Critical vulnerabilities allow arbitrary code execution on the user's computer. Vulnerabilities that allow an attacker to bypass the same-origin policy or access confidential information on the user's computer are high severity. Due to the absence of privilege separation in the Fire-fox browser, all memory corruption vulnerabilities are critical, regardless of the component affected. Mozilla is currently investigating a privilege-separated design for Firefox [17, 36, 39].
Mozilla's VRP also qualitatively differs from the Google program. First, Mozilla awards bounties even if the researcher publicly discusses the vulnerability instead of reporting it to Mozilla.5 Second, Mozilla also explicitly awards vulnerabilities discovered in “nightly” (or “trunk”) versions of Firefox. In contrast, Google discourages researchers from using “canary” builds and only awards bounties in canary builds if internal testing would miss those bugs [55].
For both browsers, we collect all bugs for which rewards were issued through the browser vendor's VRP. To evaluate the impact of the VRP as a component of the SDLC, we also collected all security bugs affecting stable releases. We chose to look only at bugs affecting stable releases to ignore the impact of transient bugs and regressions caught by internal testing.
For each bug in the above two datasets, we gathered the following details: (1) severity of the bug, (2) reward amount, (3) reporter name, (4) report date. For bugs affecting stable releases, we also aimed to gather the date a release patching the bug became available for download. As we discuss below, we were able to gather this data for only a subset of all bugs.
For all bugs, we mark a bug as internally or externally reported via a simple heuristic: if a reward was issued, the reporter was external, and otherwise the reporter was internal. Because low and medium severity vulnerabilities usually do not receive bounties, we only look at critical/high vulnerabilities when comparing internal and external bug reports. While all high/critical vulnerabilities are eligible for an award, a researcher can still refuse an award, in which case, our heuristic falsely marks the bug “internal.” We are aware of a handful of such instances, but there are not enough of these in our dataset to affect our analysis.
We are also aware of some researchers who transitioned from external to internal over the course of our study period. Because our heuristic operates on a per-bug basis (as opposed to marking each person as internal or external), the same person may be (intentionally) considered internal for one bug and external for another.
In this section, we present how we gathered this dataset for Chrome and Firefox. We first discuss how we identify the list of bugs affecting stable releases and bugs awarded bounties, followed by a discussion on how we identified, for each bug, other details such as severity. Finally, we discuss threats to the validity of our measurement study.
We gathered data from the official Chromium bug tracker [13] after confirming with Google employees that the bug tracker contained up-to-date, authoritative data on rewards issued through their VRP. We search the bug tracker for bugs marked with the special “Reward” label to collect bugs identified through the VRP. Next, we searched the bug tracker for bugs marked with the special “Security-Impact: Stable” to collect bugs affecting stable releases. Next, we remove the special Pwnium [23] rewards from all datasets because Pwnium rewards exploits instead of vulnerabilities as in the regular VRP. This provides us with 501 bugs identified through the VRP and 1347 bugs affecting stable releases.
The Chromium Bug tracker provides a convenient interface to export detailed bug metadata, including severity, reporter, and report date, into a CSV file, which we use to appropriately populate our dataset. We identify the reward amounts using the “Reward” label.
Unfortunately, the Chromium bug tracker does not include the release date of bug fixes. Instead, we gather this data from the Google Chromium release blog [27]. For each stable release of the Chromium browser, Google releases a blog post listing security bugs fixed in a release. For the subset of bugs mentioned in these release notes, we extract the release date of the stable version of Chrome that patches the bug.
Similar to Google Chrome, we searched Bugzilla, the Firefox bug tracker, for an attachment used to tag a bug bounty.6 We identified 190 bugs via this search.
Unlike the Chrome bug tracker, Bugzilla does not provide a convenient label to identify bugs affecting stable releases. Instead, Mozilla releases Mozilla Foundation Security Advisories (MFSA) with every stable release of Mozilla Firefox [40]. We scraped these advisories for a list of bugs affecting stable releases. We also use the MFSAs to identify the release date of a patched, stable version of Firefox. We gathered 613 unique bugs from the MFSA advisories dating back to March 22, 2010 (Firefox 3.6).
Similar to the Chromium Bug tracker, the Bugzilla website provides a convenient interface to export detailed bug data into a CSV file for further analysis. We used Bugzilla to collect, for each bug above, the bug reporter, the severity rating, and the date reported. The security severity rating for a bug is part of the Bugzilla keywords field and not Bugzilla's severity field. We do not separately collect the amount paid because, as previously discussed, Mozilla's expanded bounty program awards $3,000 for all critical/high vulnerabilities.
Table 1: Number of observations in our dataset.
Table 1 presents information about the final dataset we used for our analysis. We have made our dataset available online for independent analysis [33].
In this section, we document potential threats to validity so readers can better understand and take into account the sources of error and bias in our study.
It is possible that our datasets are incomplete, i.e., there exist patched vulnerabilities that do not appear in our data. For example, for both Chrome and Firefox, we rely heavily on the keyword/label metadata to identify bugs; since this labeling is a manual process, it is possible that we are missing bugs. To gather the list of bugs affecting stable releases, we use the bug tracker for Chrome but use security advisories for Mozilla, which could be incomplete. Given the large number of vulnerabilities we do have in our datasets, we expect that a small number of missing observations would not materially influence the conclusions we draw.
We treat all rewards in the Firefox VRP as $3,000 despite knowing that 8% of the rewards were for less than this amount [56]. Data on which rewards were for less money and what those amounts were is not publicly available. Any results we present regarding amounts paid out for Firefox vulnerabilities may therefore have as much as 8% error, though we expect a far lower error, if any. We do not believe this affects the conclusions of our analysis.
Parts of our analysis also compare Firefox and Chrome VRPs in terms of number of bugs found, which assumes that finding security vulnerabilities in these browsers requires comparable skills and resources. It could be the case that it is just easier to find bugs in one over the other, or one browser has a lower barrier to entry for vulnerability researchers. For example, the popular Address Sanitizer tool worked only on Google Chrome until Mozilla developers tweaked their build infrastructure to enable support for the same [31]. Another confound is the possibility that researchers target a browser based on personal factors beyond VRPs. For example, researchers could look for vulnerabilities only in the browser they personally use.
Assigning bug severity is a manual process. While the severity assignment guidelines for both browsers are similar, it is possible that vendors diverge in their actual severity assignment practices. As a result, the bug severities could be incomparable across the two browsers.
We study only two VRPs; our results do not necessarily generalize to any other VRPs. We caution the reader to avoid generalizing to other VRPs, but instead take our results as case studies of two mature, well-known VRPs.
We study VRPs from the perspectives of three interested parties: the software vendor, the independent security researcher, and the security researcher employed full-time by the software vendor.
We model the software vendor's goal as follows: to increase product security as much as possible while spending as little money as possible. There are many potential strategies for working toward this goal, but in this paper we consider the strategy of launching a VRP. We present data on costs and benefits for two VRPs, and generate hypotheses from this data. The software vendor's motivation can also include publicity and engaging the security research community. We do not measure the impact of VRPs on these.
The intended benefit of a VRP is to improve product security. A reduction in the number of latent vulnerabilities is one way of improving product security. We find that the Chrome VRP uncovers about 2.6 times as many vulnerabilities as that of Firefox (501 vs. 190), despite the fact that Chrome's total number of security vulnerabilities in our dataset is only 2.2 times that of Firefox (Table 1). 27.5% of bugs affecting Chrome releases originate from VRP contributions (371 of 1347), and 24.1% of bugs affecting Firefox releases (148 of 613) result from VRP contributions.
Discussion Both VRPs yield a significant fraction of the total number of security advisories, which is a clear benefit. Chrome is seeing approximately 1.14 times the benefit of Firefox by our metric of fraction of advisories resulting from VRP contributions. We only study bugs affecting stable releases in this metric and caution the reader from assuming that VRPs are competitive with internal researchers. For both browsers, internal researchers find far more bugs during the months of testing that precede a typical browser release. For example, from January to May 2013, across all release channels, Google researchers found 140 high or critical vulnerabilities in Chrome, while the Chrome VRP only found 40 vulnerabilities in the same time period.
Figure 1: Moving average over the current plus 5 previous months of the percentage of vulnerabilities at each severity level (low is blue solid line, medium is red long-dashed line, high is green short-dashed line, and critical is yellow dash-dotted line). In this and subsequent line graphs, the data are aggregated by month to improve graph readability, and the x-axis represents the open date of the bug.
Another measure of improvement to product security is change in vulnerability severity over time. It is a good sign, for example, if the percentage of critical-severity vulnerabilities has decreased over time.
Table 1 lists the total number of vulnerabilities by severity for Firefox and Chrome. Figure 1 plots the fraction of vulnerabilities at each severity level over the current plus 5 previous months.
Discussion Firefox has a much higher ratio of critical vulnerabilities to high vulnerabilities than Chrome. We expect that many of Firefox's critical vulnerabilities would instead be high severity if, like Chrome, it also had a privilege-separated architecture. The lack of such an architecture means that any memory corruption vulnerability in Firefox is a critical vulnerability. We therefore hypothesize that:
Hypothesis 1 This architectural difference between Chrome and Firefox—that the former is privilege-separated and the latter is not—is the most influential factor in causing such a large difference in vulnerability severity classification.
The fraction of critical severity bugs has remained relatively constant for Chrome. We also notice the start of a trend in Chrome—the fraction of high severity vulnerabilities is declining and the fraction of medium severity vulnerabilities is increasing.
Chrome's privilege-separated architecture means that a critical vulnerability indicates malicious code execution in the privileged process. We see that there continue to be new bugs resulting in code execution in the privileged process. Further investigation into these bugs can help understand how and why they continue to surface.
Low-severity vulnerabilities in Google Chrome make up a significant fraction of all vulnerabilities reported. In contrast, the fraction of low- and medium-severity vulnerabilities in Firefox remains negligible.
Note that our dataset does not allow us to attribute any change in vulnerability severity over time to the use or success of a VRP. However, severity over time is a metric worth tracking for a software vendor because it can indicate trends in the overall efforts to improve product security, of which a VRP may be one component.
One advantage of VRPs is engagement with the broader security community. We studied this engagement along two axes: (1) the contribution of internal and external researchers towards identifying security vulnerabilities, and (2) the number of external participants in each VRP.
Figure 2 depicts the cumulative number of high- and critical-severity vulnerabilities patched and Figure 3 depicts the same, but for only critical vulnerabilities. Table 2 shows the distribution of the total number of vulnerabilities reported by each external participant in each of the two VRPs. Although a few external participants submit many bugs, there is a clear long tail of participants in both VRPs. Table 3 shows the same distribution, but for internal (i.e., employee) reporters of vulnerabilities.
Discussion For both browsers, internal contributions for high- and critical-severity vulnerabilities have consistently yielded the majority of patches. The number of external contributions to Chrome has nearly caught up with the number of internal contributions (i.e., around 4/11 and 3/12, in Figure 2a) at various times, and as of the end of our study, these two quantities are comparable. Considering only critical-severity vulnerabilities, external contributions have exceeded internal contributions as of the end of our study. For Firefox, on the other hand, the number of external contributions has consistently been far lower than the number of internal contributions.
Figure 2: Number of high- plus critical-severity vulnerabilities reported over time, discovered internally (blue long-dashed line), externally (red short-dashed line), and total (green solid line).
We observe an increase in the rate of external contributions to Chrome starting around July 2010, six months after the inception of the VRP. As seen in Figure 3a, this is more pronounced when considering only critical-severity vulnerabilities. We conjecture that this change corresponds to increased publicity for the Chrome VRP after Google increased reward amounts [19].
Linus's Law, defined by Eric Raymond as “Given enough eyes, all bugs are shallow,” suggests that it is in the interests of the software vendor to encourage more people to participate in the search for bugs. The distributions of bugs found by external participants indicate that both VRPs have been successful in encouraging broad community participation. The existence of a long tail of contributors holds for internal contributors as well as external contributors.
Figure 3: Number of critical-severity vulnerabilities reported over time, discovered internally (blue long-dashed line), externally (red short-dashed line), and total (green solid line).
There is the potential benefit that the wide variety of external participants may find different types of vulnerabilities than internal members of the security team. A few pieces of anecdotal evidence support this. Chrome has awarded bounty amounts that include $1,337, $2,337, $3,133.7, and $7,331 for bugs that they considered clever or novel [21], and our dataset contains 31 such awards. Additionally, one of PinkiePie's Pwnium exploits led to a full review of the Chrome kernel file API, which resulted in the discovery of several additional vulnerabilities [21, 51]. The Chrome security team missed all these issues until PinkiePie discovered and exploited one such issue [14]. We therefore hypothesize that:
Hypothesis 2 An increase in the number of researchers looking for vulnerabilities yields an increase in the diversity of vulnerabilities discovered.
Table 2: Frequency distribution of number of high- or critical-severity vulnerabilities found by external contributors.
Table 3: Frequency distribution of number of high- or critical-severity bugs found by internal contributors.
Though the number of bounties suggests that VRPs provide a number of benefits, a thorough analysis necessarily includes an analysis of the costs of these programs. In this section, we examine whether VRPs provide a cost-effective mechanism for software vendors. We analyze one ongoing cost of the VRP: the amount of money paid to researchers as rewards for responsible disclosure. Running a VRP has additional overhead costs that our dataset does not provide any insight into.
Figure 4 displays the total cost of paying out rewards for vulnerabilities affecting stable releases. We find that over the course of three years, the costs for Chrome and Firefox are similar: approximately $400,000.
Figure 4: Cumulative rewards paid out for Chrome (blue solid line) and Firefox (red dashed line), excluding rewards for vulnerabilities not affecting stable versions.
Rewards for Development Releases Both Firefox and Chrome issue rewards for vulnerabilities that do not affect stable release versions, increasing the total cost of the VRP beyond the cost of rewarding vulnerabilities affecting stable releases. One potential drawback of such rewards is that the VRPs awards transient bugs that may never make their way into a user-facing build in the first place. On the other hand, such rewards could catch bugs earlier in the development cycle, reducing the likelihood of expensive out-of-cycle releases.
Figure 5 shows the cumulative rewards issued by each of the two VRPs for vulnerabilities affecting stable releases, vulnerabilities not affecting stable releases, and the sum of the two. We observe that the Chrome VRP has paid out $186,839, 32% of its total cost of $579,605 over the study period for vulnerabilities not affecting a stable release. The Firefox VRP has paid out $126,000, 22% of its total cost of $570,000, over the study period for such vulnerabilities.
Discussion The total cost of each of the two VRPs is remarkably similar. Both spend a significant fraction of the total cost on vulnerabilities not present in stable release versions.
Figure 6 plots the average daily cost to date of each VRP over time. We see that Chrome's VRP has cost $485 per day on average, and that of Firefox has cost $658 per day.
Discussion If we consider that an average North American developer on a browser security team (i.e., that of Chrome or Firefox) would cost the vendor around $500 per day (assuming a $100,000 salary with a 50% overhead), we see that the cost of either of these VRPs is comparable to the cost of just one member of the browser security team. On the other hand, the benefit of a VRP far outweighs that of a single security researcher because each of these VRPs finds many more vulnerabilities than any one researcher is likely to be able to find. For bugs affecting stable releases, the Chrome VRP has paid 371 bounties, and the most prolific internal security researcher has found 263 vulnerabilities. For Firefox, these numbers are 148 and 48, respectively. Based on this simple cost/benefit analysis, we hypothesize that:
Figure 5: Cumulative rewards paid out for vulnerabilities affecting a stable release (blue long-dashed line), vulnerabilities not affecting any stable release (red short-dashed line), and the sum of the two (green solid line).
Hypothesis 3 A VRP can be a cost-effective mechanism for finding security vulnerabilities.
We model the goal of an external security researcher as follows: to make as much money as possible in as little time as possible.7 The researcher can contribute to any VRP he chooses, each of which pays out according to some rewards distribution. The researcher has some perception of security of each product, which reflects the expected amount of time the researcher will have to spend to find a vulnerability.
Figure 6: Average daily cost to date since first reward.
A rational strategy for the security researcher is to look for products perceived to be insecure that also happen to pay large bounties. This implies that a product with a higher perceived security must pay relatively higher bounties to encourage researchers to look for vulnerabilities in it as opposed to in a different product that is perceived to be less secure. We therefore hypothesize that:
Hypothesis 4 In an efficient market with many VRPs and fluid reward structures, larger rewards reflect a higher level of perceived security by the population of researchers who contribute to VRPs.
Our dataset provides insight into the distributions of rewards for two products. Firefox offers a standard reward of $3,000 for all vulnerabilities. In contrast, the Chrome VRP's incentive structure provides different reward levels based on a number of subjective factors like difficulty of exploit, presence of a test case, novelty, and impact, all of which is at the discretion of Google developers.
Table 4: Percentage of rewards given for each dollar amount in Chrome VRP.
Table 4 depicts the reward amounts paid to external researchers by the Chrome VRP. The majority of the rewards are for only $500 or $1,000. Large rewards, such as $10,000 rewards, are infrequent.
Discussion We hypothesize that high maximum rewards entice researchers to participate, but low ($500 or $1,000) rewards are typical, and the total cost remains low. The median (mean) payout for Chrome bug bounty is $1,000 ($1,156.9), suggesting that a successful VRP can be inexpensive with a low expected individual payout. Much like the lottery, a large maximum payout ($30,000 for Chrome), despite a small expected return (or even negative, as is the case of anyone who searches for bugs but never successfully finds any) appears to suffice in attracting enough participants. Bhattacharyya and Garrett [5] explain this phenomenon as follows:
Lotteries are instruments with negative expected returns. So when people buy lottery tickets, they are trading off negative expected returns for skewness. Thus, if a lottery game has a larger prize amount, then a buyer will be willing to accept a lower chance of winning that prize.
Our dataset also allows limited insight into how much money independent security researchers make. Table 5a displays the total amounts of money earned by each external contributor to the Chrome VRP. Only three external contributors (out of eighty two) have earned over $80,000 over the lifetime of the VRP, and an additional five have earned over $20,000.
Table 5: Frequency distributions of total amounts earned by external VRP contributors.
In contrast to Google Chrome, we see in Table 5b that a single Firefox contributor has earned $141,000 ($47,000 per year) since the beginning of our study period. Ten of this individual's rewards, representing $30,000, were for vulnerabilities that did not impact a stable release. Six contributors have earned more than $20,000 via the Mozilla VRP.
Discussion Based on the data from 2 VRPs, we hypothesize that:
Hypothesis 5 Contributing to a single VRP is, in general, not a viable full-time job, though contributing to multiple VRPs may be, especially for unusually successful vulnerability researchers.
Figure 7 shows the cumulative number of vulnerabilities patched due to reports from first-time VRP participants and repeat participants. For both programs, first-time participant rewards are steadily increasing, and repeat participant rewards are increasing even more quickly.
Discussion Both VRP incentive structures are evidently sufficient for both attracting new participants and continuing to entice existing participants, though we do note differences between Chrome and Firefox. Until recently, repeat participants in Firefox's VRP represented a relatively small fraction of the number of awards issued. Chrome, on the other hand, has seen the majority of its reports come from repeat participants for nearly the whole lifetime of its VRP.
Figure 7: Cumulative number of vulnerabilities rewarded, as reported by (1) first-time VRP contributors (blue short-dashed line), (2) repeat contributors (red long-dashed line), and (3) all contributors (green solid line).
An internal security researcher is a full-time employee of a software vendor who is paid a salary to find as many vulnerabilities as possible. Google hired at least three researchers who first came to light via the Chrome VRP [21] and Mozilla hired at least three researchers as well [56].
Discussion A software vendor may choose to hire an unusually successful independent security researcher. The researcher's past performance indicates how many vulnerabilities the vendor can expect them to find, and the vendor may prefer to pay a fixed salary instead of a per-vulnerability reward. The researcher may also prefer this; the researcher trades a potentially higher amount of cash for less compensation, but more benefits and job security. Accordingly, we hypothesize that:
Table 6: Median and standard deviation of number of days between vulnerability report and release that patches the vulnerability, for each severity level.
Hypothesis 6 Successful independent security researchers bubble to the top, where a full-time job awaits them.
Our dataset provides an additional opportunity to better understand the state of the SDLC (software development lifecycle) at Mozilla and Google. In particular, we analyze (1) the elapsed time between a vulnerability report and the release of a patched browser version that fixes the vulnerability, and (2) how often vulnerabilities are independently discovered, and what the potential implications are of this rediscovery rate.
As previously discussed, we choose to study time to release a patched version, not time to commit a patch. Although relying on time to release a patch means we analyze only a subset of the data (Section 3), we believe the time to release a patched version of the browser is the more useful metric for end users. Mozilla Firefox and Google Chrome both follow a rapid-release cycle, with a new release every 6 or 7 weeks [11, 25]. In some cases, browser vendors release an out-of-band (or “chemspill”) release for vulnerabilities with active exploits in the wild. Such out-of-band releases are one of the most expensive incidents for software companies, with costs running into millions of dollars [30]. Our metric awards the engineering and management commitment required in choosing to release such versions.
Figure 8 depicts the time between initial report of a vulnerability and the stable release that patches it. Table 6 gives summary statistics for these distributions.
Figure 9 is a scatter plot of the same data, which allows us to see changes in time to patch over time. Figure 10 shows the change in standard deviation of time to patch over time. More specifically, for a given release date, the y-value is the standard deviation for all bugs patched in that release or up to five prior releases. These graphs indicate that the standard deviation in time to patch critical vulnerabilities has slowly dropped for Firefox, while Chrome's time to patch critical vulnerabilities has remained relatively constant over time.
Figure 8: Box and whisker plots depicting the distributions of time between vulnerability report and release that patches the vulnerability, for each severity level.
Discussion For Chrome, both the median time to patch and the variance are lower for higher severity vulnerabilities. This is an important parameter for a VRP because responsible disclosure depends critically on vendor response time [22, 50]. If a vendor does not patch in a reasonable time frame, security researchers are less likely to exercise responsible disclosure. Accordingly, this may be a contributing factor in Firefox's lower degree of community participation (as compared to Chrome), given that the time to patch critical vulnerabilities in Firefox is longer and has very high variance.
In Chrome, the time to patch is faster for critical vulnerabilities than it is for high severity vulnerabilities. This trend continues for medium- and low-severity vulnerabilities as well. This indicates correct prioritization of higher-severity vulnerabilities by Chrome security engineers. The same cannot be said for Firefox; high and critical severity vulnerabilities tend to take about the same amount of time to fix.
Figure 9: Scatter plots depicting the time between vulnerability report and release that patches the vulnerability vs. time, for each severity level.
The high variance in Firefox's time to patch critical vulnerabilities may be partly attributable to the lack of privilege separation in Firefox, since a larger TCB for critical vulnerabilities means that there is a larger pool of engineers owning code that might hold a critical vulnerability. However, it is an encouraging sign that Firefox has gradually reduced this variance. Nonetheless, the variance in patch times and typical time to patch for Firefox both remain far higher than we see for Chrome, suggesting the need for a concerted effort at reducing this.
Using the Chromium release blog, we manually coded an additional variable independent
. This variable represents the number of times a vulnerability was independently discovered. We coded it using the text of the credit
variable, which mentions “independent discovery” of a vulnerability in the case of multiple independent discoveries.
Figure 10: Standard deviation of time to patch over time. For a given release date, the y-value is the standard deviation of all bugs patched in that release or up to five prior releases. The red solid line is for Firefox, and the blue dashed line is for Chrome.
Our Chrome dataset indicates when a vulnerability was independently discovered by multiple parties, identifies the parties, and in some cases, gives an upper bound on the time between discovery and rediscovery. Of the 668 vulnerabilities in our Chrome VRP dataset, fifteen (2.25\%) of them had at least two independent discoveries, and two of these had three independent discoveries. This is a lower bound on the number of independent discoveries of these vulnerabilities, since it represents only those known to the vendor.
Figure 11 displays the independent rediscovery rates for individuals. Each dot represents an individual contributor in our dataset. Its x-value gives the number of vulnerabilities discovered by this individual, and its y-value gives the number of these vulnerabilities independently rediscovered by another contributor in our dataset. Of those individuals who reported five or more vulnerabilities, the highest rediscovery rate is 25\% and the mean is 4.6\%.
Figure 11: Independent vulnerability discoveries within the Chrome VRP dataset. Each dot represents an individual contributor in our dataset. Its x-value gives the number of vulnerabilities contributed by this individual, and its y-value gives the number of these contributions that were independently discovered by another contributor in our dataset.
Our Firefox dataset does not indicate independent rediscovery, but we have limited data from personal communication with a Firefox security engineer [56]. He indicated that there had been at least 4–7 vulnerabilities reported through the VRP for which there had been two independent discoveries, a rate of 2.7% to 4.7%, which is consistent with what we see in our Chrome dataset.
Discussion Independent rediscovery rates can have implications for estimating the number of latent bugs in software [29] as well as understanding the expected decay rate of a stash of zero-day vulnerabilities.
A zero-day loses its value when the vendor becomes aware of it, which happens via independent discovery of the vulnerability. Thus, a stash of zero-days will decay at some rate. From the limited data available to us via our study, we hypothesize that:
Hypothesis 7 The decay rate of a stash of zero-day vulnerabilities is low enough to be inconsequential as a result of relatively low empirical independent rediscovery rates.
We encourage future studies that aim to confirm or refute this hypothesis using larger, more appropriate datasets.
In this section, we synthesize what we have learned and present concrete recommendations for software vendors based on our data analysis.
Despite costing approximately the same as the Mozilla program, the Chrome VRP has identified more than three times as many bugs, is more popular and shows similar participation from repeat and first-time participants. There is a stark difference between the levels of external participation in the two VRPs (Figure 2).
Despite having the oldest bounty program, external contributions lag far behind internal contributions to Firefox's security advisories. In contrast, external contributions to Chrome's security advisories closely rival internal contributions. Investigating further, we find three key differences between the two programs:
Tiered structure with large special rewards Mozilla's program has a fixed payout of $3,000, which is approximately equal to the normal maximum payout for Chrome ($3,1337). Nonetheless, Chrome's tiered structure, with even higher payouts (e.g., $10,000) possible for clever bugs and special cases appears to be far more effective in encouraging participation. This makes sense with an understanding of incentives in lotteries: the larger the potential prize amount, the more willing participants are to accept a lower expected return, which, for VRPs, means the program can expect more participants [5].
Time to patch We see a far higher variance in the time-to-release-patch metric for critical vulnerabilities in Mozilla Firefox. It is generally accepted that the viability of responsible disclosure depends on a reasonable vendor response time [50]. Thus, the high variance in Mozilla's response time could affect responsible disclosure through the VRP.
Higher profile Chrome's VRP has a higher profile, with annual competitions like Pwnium providing particularly high rewards (up to $150,000). Chrome authors also provide extra reward top-ups for “interesting” bugs. We believe this sort of “gamification” leads to a higher profile for the Chrome VRP, which may help encourage participation, particularly from researchers interested in wider recognition.
Our methodology does not provide insight into the motivations of security researchers and the impact of VRP designs on the same—a topic we leave for future work. Nevertheless, we hypothesize that these three factors combined explain the disparity in participation between the Firefox and Chrome VRPs. Accordingly, we recommend Mozilla change their reward structure to a tiered system like that of Chrome. We urge Mozilla to do whatever it takes to continue to reduce the variance in time to release a patch for critical vulnerabilities, though we also realize the difficulty involved in doing so. Ongoing attempts at privilege separation might enable reducing the variance in time to patch critical vulnerabilities [17, 36, 39]. Mozilla can also consider holding its own annual competitions or otherwise increasing the PR surrounding its VRP.
Our study of the Chrome and Firefox VRPs yield a number of observations that we believe can guide vendors interested in launching or evolving their own VRPs.
We find that VRPs appear to provide an economically efficient mechanism for finding vulnerabilities, with a reasonable cost/benefit trade-off (Sections 4.1.1 and 4.1.6). In particular, they appear to be 2-100 times more cost-effective than hiring expert security researchers to find vulnerabilities. We therefore recommend that more vendors consider using them to their (and their users') advantage. The cost/benefit trade-off may vary for other types of (i.e., non-browser) software vendors; in particular, the less costly a security incident is for a vendor, the less useful we can expect a VRP to be. Additionally, we expect that the higher-profile the software project is (among developers and security researchers), the more effective a VRP will be.
Response time, especially for critical vulnerabilities, is important (Section 4.4.1). High variance in time-to-patch is not appreciated by the security community. It can reasonably be expected to reduce participation because it makes responsible disclosure through the VRP a less attractive option than the other options available to security researchers.
VRP incentive design is important and should be carefully considered. Chrome's tiered incentive structure appears more effective at encouraging community participation than Firefox's fixed-amount incentive structure (Section 4.2.1). Additionally, both Chrome and Firefox have increased their rewards over time. Doing so increases publicity, entices participants, and signals that a vendor is betting that their product has become more secure over time.
Our analysis demonstrates the impact of privilege separation on the Chrome VRP (Section 4.1.2). Privilege separation also provides flexibility to the Chrome team. For example, a simple way for Chrome to cut costs while still increasing participation could be to reduce reward amounts for high-severity vulnerabilities and increase reward amounts for critical-severity vulnerabilities. Mozilla does not have this flexibility. Vendors should consider using their security architecture to their advantage.
Mein and Evans share our motivation and present Google's experience with its vulnerability rewards programs [35]. In contrast, our focus is on understanding and comparing two popular VRPs run by competing browser vendors. We also perform a number of analyses not performed by the previous work as well as make our data available for other researchers. We also independently confirm that, for both Google and Mozilla, VRPs are cost-effective mechanisms for finding security vulnerabilities.
Development lifecycle datasets Many authors have looked to large datasets, including code repositories, bug trackers, and vulnerability databases, to gather and analyze data in an effort to better understand some aspect of the development lifecycle. Rescorla gathered data from NIST's ICAT database (which has since been updated and renamed to NVD [44]) to analyze whether vulnerability rates tend to decrease over time [49]. He found no evidence that it is in fact worthwhile for software vendors to attempt to find vulnerabilities in their own software because there is no evidence that such efforts are reducing vulnerability rates.
Ozment and Schechter used the OpenBSD CVS repository to ask and answer similar questions as Rescorla [47]. They find that the rate of discovery of what they call foundational vulnerabilities—those present since the beginning of the study period—had decreased over the study period.
Neuhaus and Plattner use vulnerability reports for Mozilla, Apache httpd, and Apache Tomcat to evaluate whether vulnerability fix rates have changed over time [42]. They conclude that the supply of vulnerabilities is not declining, and therefore that attackers and/or vulnerability researchers have not hit diminishing returns in looking for vulnerabilities.
Neuhaus et al. use a dataset of Firefox security advisories in combination with the Firefox codebase to map vulnerabilities to software components and predict which components are likely to contain vulnerabilities [43].
Scholte et al. use the NVD to evaluate how cross-site scripting and SQL injection vulnerabilities have evolved over time [52]. They find that the complexity of such vulnerabilities does not appear to have changed over time and that many foundational cross-site scripting vulnerabilities are still being discovered.
Evaluating vulnerability-finding techniques Other work has focused specifically on evaluating the many available techniques for finding vulnerabilities, though we are unaware of any previous work that has considered public-facing VRPs as one such technique.
Austin and Williams evaluated four different techniques for vulnerability discovery on two health record systems: “systematic and exploratory manual penetration testing, static analysis, and automated penetration testing” [2], finding that very few vulnerabilities are in fact found by multiple techniques and that automated penetration testing is the most effective in terms of vulnerabilities found per hour.
Finifter and Wagner compared manual source code analysis to automated penetration testing on a web application, with similar findings: the techniques are complementary, and manual analysis found more vulnerabilities, but took much more time than automated penetration testing [24].
Edmundson et al. found that different reviewers tend to find different vulnerabilities and, even in a small codebase, it takes many reviewers to spot all or even a significant fraction of the vulnerabilities present [18]. This is consistent with our findings about the effectiveness of crowdsourced VRPs.
A large body of work investigates defect prediction using empirical techniques; we refer the reader to a survey by Catal et al. [10].
We examined the characteristics of well-known vulnerability rewards programs (VRPs) by studying two such VRPs. Both programs appear economically efficient, comparing favorably to the cost of hiring full-time security researchers. The Chrome VRP features low expected payouts accompanied by high potential payouts, a strategy that appears to be effective in engaging a broad community of vulnerability researchers.
We hope that our study of these two VRPs serves as a valuable reference for software vendors aiming to evolve an existing VRP or start a new one. Potential future work on understanding VRPs includes economic modeling of VRPs; identifying typical patterns, trajectories, or phases in a VRP; and studying failed or unsuccessful VRPs to get a better sense of possible pitfalls in VRP development. Gathering and analyzing data from more VRPs will surely paint a more complete picture of their potential costs and benefits.
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Garbled circuits provide a powerful tool for jointly evaluating functions while preserving the privacy of each user's inputs. While recent research has made the use of this primitive more practical, such solutions generally assume that participants are symmetrically provisioned with massive computing resources. In reality, most people on the planet only have access to the comparatively sparse computational resources associated with their mobile phones, and those willing and able to pay for access to public cloud computing infrastructure cannot be assured that their data will remain unexposed. We address this problem by creating a new SFE protocol that allows mobile devices to securely outsource the majority of computation required to evaluate a garbled circuit. Our protocol, which builds on the most efficient garbled circuit evaluation techniques, includes a new out-sourced oblivious transfer primitive that requires significantly less bandwidth and computation than standard OT primitives and outsourced input validation techniques that force the cloud to prove that it is executing all protocols correctly. After showing that our extensions are secure in the malicious model, we conduct an extensive performance evaluation for a number of standard SFE test applications as well as a privacy-preserving navigation application designed specifically for the mobile use-case. Our system reduces execution time by 98.92% and bandwidth by 99.95% for the edit distance problem of size 128 compared to non-outsourced evaluation. These results show that even the least capable devices are capable of evaluating some of the largest garbled circuits generated for any platform.
Secure Function Evaluation (SFE) allows two parties to compute the result of a function without either side having to expose their potentially sensitive inputs to the other. While considered a generally theoretical curiosity even after the discovery of Yao's garbled circuit [43], recent advances in this space have made such computation increasingly practical. Today, functions as complex as AES-128 and approaching one billion gates in size are possible at reasonable throughputs, even in the presence of a malicious adversary.
While recent research has made the constructions in this space appreciably more performant, the majority of related work makes a crucial assumption - that both parties are symmetrically provisioned with massive computing resources. For instance, Kreuter et al. [25] rely on the Ranger cluster at the Texas Advanced Computing Center to compute their results using 512 cores. In reality, the extent of a user's computing power may be their mobile phone, which has many orders of magnitude less computational ability. Moreover, even with access to a public compute cloud such as Amazon EC2 or Windows Azure, the sensitive nature of the user's data and the history of data leakage from cloud services [40, 42] prevent the direct porting of known SFE techniques.
In this paper, we develop mechanisms for the secure outsourcing of SFE computation from constrained devices to more capable infrastructure. Our protocol maintains the privacy of both participant's inputs and outputs while significantly reducing the computation and network overhead required by the mobile device for garbled circuit evaluation. We develop a number of extensions to allow the mobile device to check for malicious behavior from the circuit generator or the cloud and a novel Outsourced Oblivious Transfer for sending garbled input data to the cloud. We then implement the new protocol on a commodity mobile device and reasonably provisioned servers and demonstrate significant performance improvements over evaluating garbled circuits directly on the mobile device.
We make the following contributions:
While this work is similar in function and provides equivalent security guarantees to the Salus protocols recently developed by Kamara et al. [21], our approach is dramatically different. The Salus protocol framework builds their scheme on a completely different assumption, specifically, that they are outsourcing work from low-computation devices with high communication bandwidth. With provider-imposed bandwidth caps and relatively slow and unreliable cellular data connections, this is not a realistic assumption when developing solutions in the mobile environment. Moreover, rather than providing a proof-of-concept work demonstrating that offloading computation is possible, this work seeks to develop and thoroughly demonstrate the practical potential for evaluating large garbled circuits in a resource-constrained mobile environment.
The remainder of this work is organized as follows: Section 2 presents important related work and discusses how this paper differs from Salus; Section 3 provides cryptographic assumptions and definitions; Section 4 formally describes our protocols; Section 5 provides security discussion - we direct readers to our technical report [6] for full security proofs; Section 6 shows the results of our extensive performance analysis; Section 7 presents our privacy preserving navigation application for mobile phones; and Section 8 provides concluding remarks.
Beginning with Fairplay [32], several secure two-party computation implementations and applications have been developed using Yao garbled circuits [43] in the semi-honest adversarial model [3, 15, 17, 19, 26, 28, 31, 38]. However, a malicious party using corrupted inputs or circuits can learn more information about the other party's inputs in these constructions [23]. To resolve these issues, new protocols have been developed to achieve security in the malicious model, using cut-and-choose constructions [30], input commitments [41], and other various techniques [22, 34]. To improve the performance of these schemes in both the malicious and semi-honest adversarial models, a number of circuit optimization techniques have also been developed to reduce the cost of generating and evaluating circuits [8, 11, 24, 35]. Kreuter et al. [25] combined several of these techniques into a general garbled circuit protocol that is secure in the malicious model and can efficiently evaluate circuits on the order of billions of gates using parallelized server-class machines. This SFE protocol is currently the most efficient implementation that is fully secure in the malicious model. (The dual execution construction by Huang et al. leaks one bit of input [16].)
Garbled circuit protocols rely on oblivious transfer schemes to exchange certain private values. While several OT schemes of various efficiencies have been developed [1, 30, 36, 39], Ishai et al. demonstrated that any of these schemes can be extended to reduce kc oblivious transfers to k oblivious transfers for any given constant c [18]. Using this extension, exchanging potentially large inputs to garbled circuits became much less costly in terms of cryptographic operations and network overhead. Even with this drastic improvement in efficiency, oblivious transfers still tend to be a costly step in evaluating garbled circuits.
Currently, the performance of garbled circuit protocols executed directly on mobile devices has been shown to be feasible only for small circuits in the semi-honest adversarial model [5, 13]. While outsourcing general computation to the cloud has been widely considered for improving the efficiency of applications running on mobile devices, the concept has yet to be widely applied to cryptographic constructions. Green et al. began exploring this idea by outsourcing the costly decryption of ABE ciphertexts to server-class machines while still maintaining data privacy [12]. Considering the costs of exchanging inputs and evaluating garbled circuits securely, an outsourcing technique would be useful in allowing limited capability devices to execute SFE protocols. Naor et al. [37] develop an oblivious transfer technique that sends the chooser's private selections to a third party, termed a proxy. While this idea is applied to a limited application in their work, it could be leveraged more generally into existing garbled circuit protocols. Our work develops a novel extension to this technique to construct a garbled circuit evaluation protocol that securely outsources computation to the cloud.
In work performed concurrently and independently from our technique, Kamara et al. recently developed two protocols for outsourcing secure multiparty computation to the cloud in their Salus system [21]. While their work achieves similar functionality to ours, we distinguish our work in the following ways: first, their protocol is constructed with the assumption that they are outsourcing work from devices with low-computation but high-bandwidth capabilities. With cellular providers imposing bandwidth caps on customers and cellular data networks providing highly limited data transmission speed, we construct our protocol without this assumption using completely different cryptographic constructions. Second, their work focuses on demonstrating outsourced SFE as a proof-of-concept. Our work offers a rigorous performance analysis on mobile devices, and outlines a practical application that allows a mobile device to participate in the evaluation of garbled circuits that are orders of magnitude larger than those evaluated in the Salus system. Finally, their protocol that is secure in the malicious model requires that all parties share a secret key, which must be generated in a secure fashion before the protocol can be executed. Our protocol does not require any shared information prior to running the protocol, reducing the overhead of performing a multiparty fair coin tossing protocol a priori. While our work currently considers only the two-party model, by not requiring a preliminary multiparty fair coin toss, expanding our protocol to more parties will not incur the same expense as scaling such a protocol to a large number of participants. To properly compare security guarantees, we apply their security definitions in our analysis.
To construct a secure scheme for outsourcing garbled circuit evaluation, some new assumptions must be considered in addition to the standard security measures taken in a two-party secure computation. In this section, we discuss the intuition and practicality of assuming a non-colluding cloud, and we outline our extensions on standard techniques for preventing malicious behavior when evaluating garbled circuits. Finally, we conclude the section with formal definitions of security.
Throughout our protocol, we assume that none of the parties involved will ever collude with the cloud. This requirement is based in theoretical bounds on the efficiency of garbled circuit evaluation and represents a realistic adversarial model. The fact that theoretical limitations exist when considering collusion in secure multiparty computation has been known and studied for many years [2, 7, 27], and other schemes considering secure computation with multiple parties require similar restrictions on who and how many parties may collude while preserving security [4, 9, 10, 20, 21]. Kamara et al. [21] observe that if an outsourcing protocol is secure when both the party generating the circuit and the cloud evaluating the circuit are malicious and colluding, this implies a secure two-party scheme where one party has sub-linear work with respect to the size of the circuit, which is currently only possible with fully homomorphic encryption. However, making the assumption that the cloud will not collude with the participating parties makes outsourcing securely a theoretical possibility. In reality, many cloud providers such as Amazon or Microsoft would not allow outside parties to control or affect computation within their cloud system for reasons of trust and to preserve a professional reputation. In spite of this assumption, we cannot assume the cloud will always be semi-honest. For example, our protocol requires a number of consistency checks to be performed by the cloud that ensure the participants are not behaving maliciously. Without mechanisms to force the cloud to make these checks, a “lazy” cloud provider could save resources by simply returning that all checks verified without actually performing them. Thus, our adversarial model encompasses a non-colluding but potentially malicious cloud provider that is hosting the outsourced computation.
When running garbled circuit based secure multiparty computation in the malicious model, a number of well-documented attacks exist. We address here how our system counters each.
Malicious circuit generation: In the original Yao garbled circuit construction, a malicious generator can garble a circuit to evaluate a function f′ that is not the function f agreed upon by both parties and could compromise the security of the evaluator's input. To counter this, we employ an extension of the random seed technique developed by Goyal et al. [11] and implemented by Kreuter et al. [25]. Essentially, the technique uses a cut-and-choose, where the generator commits to a set of circuits that all presumably compute the same function. The parties then use a fair coin toss to select some of the circuits to be evaluated and some that will be re-generated and hashed by the cloud given the random seeds used to generate them initially. The evaluating party then inspects the circuit commitments and compares them to the hash of the regenerated circuits to verify that all the check circuits were generated properly.
Selective failure attack: If, when the generator is sending the evaluator's garbled inputs during the oblivious transfer, he lets the evaluator choose between a valid garbled input bit and a corrupted garbled input, the evaluator's ability to complete the circuit evaluation will reveal to the generator which input bit was used. To prevent this attack, we use the input encoding technique from Lindell and Pinkas [29], which lets the evaluator encode her input in such a way that a selective failure of the circuit reveals nothing about the actual input value. To prevent the generator from swapping garbled wire values, we use a commitment technique employed by Kreuter et al. [25].
Input consistency: Since multiple circuits are evaluated to ensure that a majority of circuits are correct, it is possible for either party to input different inputs to different evaluation circuits, which could reveal information about the other party's inputs. To keep the evaluator's inputs consistent, we again use the technique from Lindell and Pinkas [29], which sends all garbled inputs for every evaluation circuit in one oblivious transfer execution. To keep the generator's inputs consistent, we use the malleable claw-free collection construction of shelat and Shen [41]. This technique is described in further detail in Section 4.
Output consistency: When evaluating a two-output function, we ensure that outputs of both parties are kept private from the cloud using an extension of the technique developed by Kiraz [23]. The outputs of both parties are XORed with random strings within the garbled circuit, and the cloud uses a witness-indistinguishable zero-knowledge proof as in the implementation by Kreuter et al. [25]. This allows the cloud to choose a majority output value without learning either party's output or undetectably tampering with the output. At the same time, the witness-indistinguishable proofs prevent either party from learning the index of the majority circuit. This prevents the generator from learning anything by knowing which circuit evaluated to the majority output value.
Figure 1: The complete outsourced SFE protocol.
To prevent the generating party from providing different inputs for each evaluation circuit, we implement the malleable claw-free collections technique developed by shelat and Shen [41]. Their construction essentially allows the generating party to prove that all of the garbled input values were generated by exactly one function in a function pair, while the ability to find an element that is generated by both functions implies that the generator can find a claw. It is composed of a four-tuple of algorithms (G,D, F, R), where G is the index selection algorithm for selecting a specific function pair, D is an algorithm for sampling from the domain of the function pair, F is the algorithm for evaluating the functions in the pair (in which it should be difficult to find a claw), and R is the “malleability” function. The function R maps elements from the domain of F to the range of F such that for b {0,1}, any I in the range of G, and any m1,m2 in the domain of F, we have for the function indexed by I and b fIb (m1 m2) = fIb (m1) RI(m2), where and represent the group operations over the domain and range of F. We provide full definitions of their construction in our technical report [6].
The work of Kamara et al. [21] presents a definition of security based on the ideal-model/real-model security definitions common in secure multiparty computation. Because their definition formalizes the idea of a non-colluding cloud, we apply their definitions to our protocol for the two-party case in particular. We summarize their definitions below.
Real-model execution. The protocol takes place between two parties (P1,P2) executing the protocol and a server P3, where each of the executing parties provides input xi, auxiliary input zi, and random coins ri and the server provides only auxiliary input z3 and random coins r3. In the execution, there exists some subset of independent parties (A1,..,Am),m ≤ 3 that are malicious adversaries. Each adversary corrupts one executing party and does not share information with other adversaries. For all honest parties, let OUTi be its output, and for corrupted parties let OUTi be its view of the protocol execution. The ith partial output of a real execution is defined as:
where H is the set of honest parties and r is all random coins of all players.
Ideal-model execution. In the ideal model, the setup of participants is the same except that all parties are interacting with a trusted party that evaluates the function. All parties provide inputs xi, auxiliary input zi, and random coins ri. If a party is semi-honest, it provides its actual inputs to the trusted party, while if the party is malicious (and non-colluding), it provides arbitrary input values. In the case of the server P3, this means simply providing its auxiliary input and random coins, as no input is provided to the function being evaluated. Once the function is evaluated by the trusted third party, it returns the result to the parties P1 and P2, while the server P3 does not receive the output. If a party aborts early or sends no input, the trusted party immediately aborts. For all honest parties, let OUTi be its output to the trusted party, and for corrupted parties let OUTi be some value output by Pi. The ith partial output of an ideal execution in the presence of some set of independent simulators is defined as:
where H is the set of honest parties and r is all random coins of all players. In this model, the formal definition of security is as follows:
Definition 1. A protocol securely computes a function fif there exists a set of probabilistic polynomial-time (PPT) simulators {Simi} i[3] such that for all PPT adversaries (A1,...,A3), x, z, and for all i [3]:
Where S = (S1,...,S3), Si = Simi(Ai), and r is random and uniform.
Our protocol can be divided into five phases, illustrated in Figure 1. Given a circuit generator Bob, and an evaluating mobile device Alice, the protocol can be summarized as follows:
Figure 2: The Outsourced Oblivious Transfer protocol
Our protocols reference three different entities:
Evaluator: The evaluating party, called Alice, is assumed to be a mobile device that is participating in a secure two-party computation.
Generator: The party generating the garbled circuit, called Bob, is an application- or web- server that is the second party participating with Alice in the secure computation.
Proxy: The proxy, called cloud, is a third party that is performing heavy computation on behalf of Alice, but is not trusted to know her input or the function output.
Common inputs: a function f(x,y) that is to be securely computed, a claw-free collection (GCLW,DCLW,FCLW,RCLW), two hash functions H1 : {0,1}* {0,1}n and H2 : {0,1}* {0,1}w, a primitive 1-out-of-2 oblivious transfer protocol, a perfectly hiding commitment scheme comH(key,message), and security parameters for the number of circuits built k, the number of primitive oblivious transfers t, and the number of encoding bits for each of Alice's input wires l.
Private inputs: The generating party Bob inputs a bit string b and a random string of bits br that is the length of the output string. The evaluating party Alice inputs a bit string a and a random string of bits ar that is the length of the output string. Assume without loss of generality that all input and output strings are of length |a| = n.
Output: The protocol outputs separate private values fa for Alice and fb for Bob.
Phase 1: Circuit generation and checking
If any of these checks fail, the cloud immediately aborts. Otherwise, it sends the hash values HC′i for i Chk to Alice. For every i Chk, Alice checks if HCi = HC′i. If any of the hash comparisons fail, Alice aborts.
Phase 2: Outsourced Oblivious Transfer (OOT)
for i = 2...e. If any of these checks fails, the cloud aborts the protocol.
Phase 3: Generator input consistency check
for i = 2...e. If any of these checks fails, Alice aborts the protocol.
Phase 4: Circuit evaluation
Phase 5: Output check and delivery
In this section, we provide a summary of the security mechanisms used in our protocol and an informal security discussion of our new outsourced oblivious transfer primitive. Due to space limitations, we provide further discussion and proofs of security in our technical report [6].
Recall from Section 3 that there are generally four security concerns when evaluating garbled circuits in the malicious setting. To solve the problem of malicious circuit generation, we apply the random seed check variety of cut-&-choose developed by Goyal et al. [11]. To solve the problem of selective failure attacks, we employ the input encoding technique developed by Lindell and Pinkas [29]. To prevent an adversary from using inconsistent inputs across evaluation circuits, we employ the witness-indistinguishable proofs from shelat and Shen [41]. Finally, to ensure the majority output value is selected and not tampered with, we use the XOR-and-prove technique from Kiraz [23] as implemented by Kreuter et al. [25]. In combination with the standard semi-honest security guarantees of Yao garbled circuits, these security extensions secure our scheme in the malicious security model.
Outsourced Oblivious Transfer: Our outsourced oblivious transfer is an extension of a technique developed by Naor et al. [37] that allows the chooser to select entries that are forwarded to a third party rather than returned to the chooser. By combining their concept of a proxy oblivious transfer with the semi-honest OT extension by Ishai et al. [18], our outsourced oblivious transfer provides a secure OT in the malicious model. We achieve this result for four reasons:
It is important to note that this particular application of the OOT allows for this efficiency gain since the evaluation of the garbled circuit will fail if Alice behaves maliciously. By applying the maliciously secure extension by Ishai et al. [18], this primitive could be applied generally as an oblivious transfer primitive that is secure in the malicious model. Further discussion and analysis of this general application is outside the scope of this work.
We provide the following security theorem here, which gives security guarantees identical to the Salus protocol by Kamara et al. [21]. However, we use different constructions and require a completely different proof, which is available in our technical report [6].
Theorem 1. The outsourced two-party SFE protocol securely computes a function f (a,b) in the following two corruption scenarios: (1)The cloud is malicious and non-cooperative with respect to the rest of the parties, while all other parties are semi-honest, (2)All but one party is malicious, while the cloud is semi-honest.
We now characterize how garbled circuits perform in the constrained-mobile environment with and without outsourcing.1 Two of the most important constraints for mobile devices are computation and bandwidth, and we show that order of magnitude improvements for both factors are possible with outsourced evaluation. We begin by describing our implementation framework and testbed before discussing results in detail.
Our framework is based on the system designed by Kreuter et al. [25], hereafter referred to as KSS for brevity. We implemented the outsourced protocol and performed modifications to allow for the use of the mobile device in the computation. Notably, KSS uses MPI [33] for communication between the multiple nodes of the multi-core machines relied on for circuit evaluation. Our solution replaces MPI calls on the mobile device with sockets that communicate directly with the Generator and Proxy. To provide a consistent comparison, we revised the KSS codebase to allow for direct evaluation between the mobile device (the Evaluator) and the cloud-based Generator.2
Our deployment platform consists of two Dell R610 servers, each containing dual 6-core Xeon processors with 32 GB of RAM and 300 GB 10K RPM hard drives, running the Linux 3.4 kernel and connected as a VLAN on an internal 1 Gbps switch. These machines perform the roles of the Generator and Proxy, respectively, as described in Section 4.1. The mobile device acts as the Evaluator. We use a Samsung Galaxy Nexus phone with a 1.2 GHz dual-core ARM Cortex-A9 processor and 1 GB of RAM, running the Android 4.0 “Ice Cream Sandwich” operating system. We connect an Apple Airport Express wireless access point to the switch attaching the servers, The Galaxy Nexus communicates to the Airport Express over an 802.11n 54Mbps WiFi connection in an isolated environment to minimize co-channel interference. All tests are run 10 times with error bars on figures representing 95% confidence intervals.
Figure 3: Execution time for the Edit Distance program of varying input sizes, with 2 circuits evaluated.
We measured both the total execution time of the programs and microbenchmarks for each program. All results are from the phone's standpoint. We do not measure the time the programs take to compile as we used the standard compiler from Kreuter et al. For our microbenchmarks, the circuit garbling and evaluation pair is referred to as the ‘evaluation’.
Our tests evaluated the following problems:
Millionaires: This problem models the comparison of two parties comparing their net worth to determine who has more money without disclosing the actual values. We perform the test on input values ranging in size from 4 to 8192 bits.
Edit (Levenshtein) Distance: This is a string comparison algorithm that compares the number of modifications required to covert one string into another. We performed the comparison based on the circuit generated by Jha et al. [19] for strings sized between 4 and 128 bytes.
Set Intersection: This problem matches elements between the private sets of two parties without learning anything beyond the intersecting elements. We base our implementation on the SCS-WN protocol proposed by Huang et al. [14], and evaluate for sets of size 2 to 128.
AES: We compute AES with a 128-bit key length, based on a circuit evaluated by Kreuter et al. [25].
Figure 3 shows the result of the edit distance computation for input sizes of 2 to 128 with two circuits evaluated. This comparison represents worst-case operation due to the cost of setup for a small number of small circuits—with input size 2, the circuit is only 122 gates in size. For larger input sizes, however, outsourced computation becomes significantly faster. Note that the graph is logarithmic such that by the time strings of size 32 are evaluated, the outsourced execution is over 6 times faster than non-outsourced execution, while for strings of size 128 (comprising over 3.4 million gates), outsourced computation is over 16 times faster.
Figure 4: Execution time for significant stages of garbled circuit computation for outsourced and non-outsourced evaluation. The Edit Distance program is evaluated with variable input sizes for the two-circuit case.
The reason for this becomes apparent when we examine Figure 4. There are three primary operations that occur during the SFE transaction: the oblivious transfer (OT) of participant inputs, the circuit commit (including the circuit consistency check), and the circuit generation and evaluation pair. As shown in the figure, the OT phase takes 292 ms for input size 2, but takes 467 ms for input size 128. By contrast, in the non-outsourced execution, the OT phase takes 307 ms for input size 2, but increases to 1860 ms for input size 128. The overwhelming factor, however, is the circuit evaluation phase. It increases from 34 ms (input size 2) to 7320 ms (input size 128) for the outsourced evaluation, a 215 factor increase. For non-outsourced execution however, this phase increases from 108 ms (input size 2) to 98800 ms (input size 128), a factor of 914 increase.
The security parameter for the garbled circuit check is 2−0.32k [25], where k is the number of generated circuits. To ensure a sufficiently low probability (2−80) of evaluating a corrupt circuit, 256 circuits must be evaluated. However, there are increasing execution costs as increasing numbers of circuits are generated. Figure 5 shows the execution time of the Edit Distance problem of size 32 with between 2 and 256 circuits being evaluated. In the outsourced scheme, costs rise as the number of circuits evaluated increases. Linear regression analysis shows we can model execution time T as a function of the number of evaluated circuits k with the equation T = 243.2k + 334.6 ms, with a coefficient of determination R2 of 0.9971. However, note that in the non-outsourced scheme, execution time increases over 10 times as quickly compared to outsourced evaluation. Regression analysis shows execution time T = 5435.7k + 961 ms, with R2 = 0.9998. Because in this latter case, the mobile device needs to perform all computation locally as well as transmit all circuit data to the remote parties, these costs increase rapidly. Figure 6 provides more detail about each phase of execution. Note that the OT costs are similar between outsourced and non-outsourced execution for this circuit size, but that the costs of consistency checks and evaluation vastly increase execution time for non-outsourced execution.
Figure 5: Execution time for the Edit Distance problem of size 32, with between 2 and 256 circuits evaluated. In the non-outsourced evaluation scheme, the mobile phone runs out of memory evaluating 256 circuits.
Note as well that in the non-outsourced scheme, there are no reported values for 256 circuits, as the Galaxy Nexus phone ran out of memory before the execution completed. We observe that a single process on the phone is capable of allocating 512 MB of RAM before the phone would report an out of memory error, providing insight into how much intermediate state is required for non-outsourced evaluation. Thus, to handle circuits of any meaningful size with enough check circuits for a strong security parameter, the only way to be able to perform these operations is through outsourcing.
Table 1 presents the execution time of a representative subset of circuits that we evaluated. It spans circuits from small to large input size, and from 8 circuits evaluated to the 256 circuits required for a 2−80 security parameter. Note that in many cases it is impossible to evaluate the non-outsourced computation because of the mobile device's inability to store sufficient amounts of state. Note as well that particularly with complex circuits such as set intersection, even when the non-outsourced evaluation is capable of returning an answer, it can require orders of magnitude more time than with outsourced evaluation. For example, evaluating the set intersection problem with 128 inputs over 32 circuits requires just over 55 seconds for outsourced evaluation but over an hour and a half with the non-outsourced KSS execution scheme. Out-sourced evaluation represents a time savings of 98.92%. For space concerns, we have omitted certain values; full results can be found in our technical report [6].
Table 1: Execution time (in ms) of outsourced vs non-outsourced (KSS) evaluation for a subset of circuits. Results with a dash indicate evaluation that the phone was incapable of performing.
Figure 6: Microbenchmarks of execution time for Edit Distance with input size 32, evaluating from 2 to 256 circuits. Note that the y-axis is log-scale; consequently, the vast majority of execution time is in the check and evaluation phases for non-outsourced evaluation.
Multicore Circuit Evaluation We briefly note the effects of multicore servers for circuit evaluation. The servers in our evaluation each contain dual 6-core CPUs, providing 12 total cores of computation. The computation process is largely CPU-bound: while circuits on the servers are being evaluated, each core was reporting approximately 100% utilization. This is evidenced by regression analysis when evaluating between 2 and 12 circuit copies; we find that execution time T = 162.6k + 1614.6 ms, where k is the number of circuits evaluated, with a coefficient of determination R2 of 0.9903. As the number of circuits to be evaluated increases beyond the number of available cores, the incremental costs of adding new circuits becomes higher; in our observation of execution time for 12 to 256 circuits, our regression analysis provided the equation T = 247.4k − 410.6 ms, with R2 = 0.998. This demonstrates that evaluation of large numbers of circuits is optimal when every evaluated circuit can be provided with a dedicated core.
Figure 7: Bandwidth measurements from the phone to remote parties for the Edit Distance problem with varying input sizes, executing two circuits.
The results above show that as many-way servers are deployed in the cloud, it becomes easier to provide optimal efficiency computing outsourced circuits. A 256-core machine would be able to evaluate 256 circuits in parallel to provide the accepted standard 2−80 security parameter. Depending on the computation performed, there can be a trade-off between a slightly weaker security parameter and maintaining optimal evaluation on servers with lower degrees of parallelism. In our testbed, optimal evaluation with 12 cores provides a security parameter of 2−3.84 Clearly more cores would provide stronger security while keeping execution times proportional to our results. A reasonable trade-off might be 32 circuits, as 32-core servers are readily available. Evaluating 32 circuits provides a security parameter of 2−10.2, equivalent to the adversary having less than a chance of causing the evaluator to compute over a majority of corrupt circuits. Stronger security guarantees on less parallel machines can be achieved at the cost of increasing execution time, as individual cores will not be dedicated to circuit evaluation. However, if a 256-core system is available, it will provide optimal results for achieving a 2−80 security parameter.
Table 2: Total Bandwidth (Bytes) transmitted to and from the phone during execution.
For a mobile device, the costs of transmitting data are intrinsically linked to power consumption, as excess data transmission and reception reduces battery life. Bandwidth is thus a critical resource constraint. In addition, because of potentially uncertain communication channels, transmitting an excess of information can be a rate-limiting factor for circuit evaluation. Figure 7 shows the bandwidth measurement between the phone and remote parties for the edit distance problem with 2 circuits. When we compared execution time for this problem in Figure 3, we found that trivially small circuits could execute in less time without outsourcing. Note, however, that there are no cases where the non-outsourced scheme consumes less bandwidth than with outsourcing.
This is a result of the significant improvements garnered by using our outsourced oblivious transfer (OOT) construction described in Section 4. Recall that with the OOT protocol, the mobile device sends inputs for evaluation to the generator; however, after this occurs, the majority of computation until the final output verification from the cloud occurs between the generator and the cloud, with the mobile device only performing minor consistency checks. Figure 7 shows that the amount of data transferred increases only nominally compared to the non-outsourced protocol. Apart from the initial set of inputs transmitted to the generator, data demands are largely constant. This is further reflected in Table 2, which shows the vast bandwidth savings over the 32-circuit evaluation of our representative programs. In particular, for large, complex circuits, the savings are vast: outsourced AES-128 requires 96.3% less bandwidth, while set intersection of size 128 requires 99.7% less bandwidth than in the non-outsourced evaluation. Remarkably, the edit distance 128 problem requires 99.95%, over 1900 times less bandwidth, for outsourced execution. The full table is in our technical report [6].
The takeaway from our evaluation is simple: outsourcing the computation allows for faster and larger circuit evaluation than previously possible on a mobile device. Specifically, outsourcing allows users to evaluate garbled circuits with adequate malicious model security (256 circuits), which was previously not possible on mobile devices. In addition, outsourcing is by far the most efficient option if the bandwidth use of the mobile devices is a principle concern.
Beyond the standard benchmarks for comparing garbled circuit execution schemes, we aimed to provide compelling applications that exploit the mobile platform with large circuits that would be used in real-world scenarios. We discuss public-key cryptography and the Dijkstra shortest path algorithm, then describe how the latter can be used to implement a privacy-preserving navigation application for mobile phones.
Table 3 shows the execution time required for a blinded RSA circuit of input size 128. For these tests we used a more powerful server with 64 cores and 1 Terabyte of memory. Our testbed is able to give dedicated CPUs when running 32 circuits in parallel. Each circuit would have 1 core for the generation and 1 core for the evaluation. As described in Section 6, larger testbeds capable of executing 128 or 256 cores in parallel would be able to provide similar results for executing the 256 circuits necessary for a 2−80 security parameter as they could evaluate the added circuits in parallel. The main difference in execution time would come from the multiple OTs from the mobile device to the outsourced proxy. The RSA circuit has been previously evaluated with KSS, but never from the standpoint of a mobile device.
We only report the outsourced execution results, as the circuits are far too large to evaluate directly on the phone. As with the larger circuits described in Section 6, the phone runs out of memory from merely trying to store a representation of the circuit. Prior to optimization, the blinded RSA circuit is 192,537,834 gates and afterward, comprises 116,083,727 gates, or 774 MB in size.
The implementation of Dijkstra's shortest-path algorithm results in very large circuits. As shown in Table 3, the pre-optimized size of the shortest path circuit for 20 vertices is 20,288,444 gates and after optimization is 1,653,542 gates. The 100-node graph is even larger, with 168,422,382 gates post optimization, 1124 MB in size. This final example is among the largest evaluated garbled circuits to date. While it may be possible for existing protocols to evaluate circuits of similar size, it is significant that we are evaluating comparably massive circuits from a resource-constrained mobile device.
Table 3: Execution time for evaluating a 128-bit blinded RSA circuit and Dijkstra shortest path solvers over graphs with 20, 50, and 100 vertices. All numbers are for outsourced evaluation, as the circuits are too large to be computed without outsourcing to a proxy.
Figure 8: Map of potential presidential motorcade routes through Washington, DC. As the circuit size increases, a larger area can be represented at a finer granularity.
Mapping and navigation are some of the most popular uses of a smartphone. Consider how directions may be given using a mobile device and an application such as Google Maps, without revealing the user's current location, their ultimate destination, or the route that they are following. That is, the navigation server should remain oblivious of these details to ensure their mutual privacy and to prevent giving away potentially sensitive details if the phone is compromised. Specifically, consider planning of the motorcade route for the recent Presidential inauguration. In this case, the route is generally known in advance but is potentially subject to change if sudden threats emerge. A field agent along the route wants to receive directions without providing the navigation service any additional details, and without sensitive information about the route loaded to the phone. Moreover, because the threats may be classified, the navigation service does not want the holder of the phone to be given this information directly. In our example, the user of the phone is trying to determine the shortest path.
To model this scenario, we overlay a graph topology on a map of downtown Washington D.C., encoding intersections as vertices. Edge weights are a function of their distance and heuristics such as potential risks along a graph edge. Figure 8 shows graphs generated based on vertices of 20, 50, and 100 nodes, respectively. Note that the 100-node graph (Figure 8c) encompasses a larger area and provides finer-grained resolution of individual intersections than the 20-node graph (Figure 8a).
There is a trade-off between detail and execution time, however; as shown in Table 3, a 20-vertex graph can be evaluated in under 26 seconds, while a 100-vertex graph requires almost 15 minutes with 32 circuits in our 64 core server testbed. The 64 circuit evaluation requires more time: almost 50 seconds for the 20-vertex graph, and almost 22 minutes for a 100-vertex graph. We anticipate that based on the role a particular agent might have on a route, they will be able to generate a route that covers their particular geographical jurisdiction and thus have an appropriately sized route, with only certain users requiring the highest-resolution output. Additionally, as described in Section 6.3, servers with more parallel cores can simultaneously evaluate more circuits, giving faster results for the 64 circuit evaluation.
Figure 9 reflects two routes. The first, overlaid with a dashed blue line, is the shortest path under optimal conditions that is output by our directions service, based on origin and destination points close to the historical start and end points of the past six presidential inaugural motorcades. Now consider that incidents have happened along the route, shown in the figure as a car icon in a hazard zone inside a red circle. The agent recalculates the optimal route, which has been updated by the navigation service to assign severe penalties to those corresponding graph edges. The updated route returned by the navigation service is shown in the figure as a path with a dotted purple line. In the 50-vertex graph in Figure 8, the updated directions would be available in just over 135 seconds for 32-circuit evaluation, and 196 and a half seconds for 64-circuit evaluation.
Figure 9: Motorcade route with hazards along the route. The dashed blue line represents the optimal route, while the dotted violet line represents the modified route that takes hazards into account.
While garbled circuits offer a powerful tool for secure function evaluation, they typically assume participants with massive computing resources. Our work solves this problem by presenting a protocol for outsourcing garbled circuit evaluation from a resource-constrained mobile device to a cloud provider in the malicious setting. By extending existing garbled circuit evaluation techniques, our protocol significantly reduces both computational and network overhead on the mobile device while still maintaining the necessary checks for malicious or lazy behavior from all parties. Our outsourced oblivious transfer construction significantly reduces the communication load on the mobile device and can easily accommodate more efficient OT primitives as they are developed. The performance evaluation of our protocol shows dramatic decreases in required computation and bandwidth. For the edit distance problem of size 128 with 32 circuits, computation is reduced by 98.92% and bandwidth overhead reduced by 99.95% compared to non-outsourced execution. These savings are illustrated in our privacy-preserving navigation application, which allows a mobile device to efficiently evaluate a massive garbled circuit securely through outsourcing. These results demonstrate that the recent improvements in garbled circuit efficiency can be applied in practical privacy-preserving mobile applications on even the most resource-constrained devices.
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The Transport Layer Security (TLS) protocol aims to provide confidentiality and integrity of data in transit across untrusted networks. TLS has become the de facto protocol standard for secured Internet and mobile applications. TLS supports several symmetric encryption options, including a scheme based on the RC4 stream cipher. In this paper, we present ciphertext-only plaintext recovery attacks against TLS when RC4 is selected for encryption. Our attacks build on recent advances in the statistical analysis of RC4, and on new findings announced in this paper. Our results are supported by an experimental evaluation of the feasibility of the attacks. We also discuss countermeasures.
TLS is arguably the most widely used secure communications protocol on the Internet today. Starting life as SSL, the protocol was adopted by the IETF and specified as an RFC standard under the name of TLS 1.0 [7]. It has since evolved through TLS 1.1 [8] to the current version TLS 1.2 [9]. Various other RFCs define additional TLS cryptographic algorithms and extensions. TLS is now used for securing a wide variety of application-level traffic: It serves, for example, as the basis of the HTTPS protocol for encrypted web browsing, it is used in conjunction with IMAP or SMTP to cryptographically protect email traffic, and it is a popular tool to secure communication with embedded systems, mobile devices, and in payment systems.
Technically speaking, TLS sessions consist of two consecutive phases: the execution of the TLS Handshake Protocol which typically deploys asymmetric techniques to establish a secure session key, followed by the execution of the TLS Record Protocol which uses symmetric key cryptography (block ciphers, the RC4 stream cipher, MAC algorithms) in combination with the established session key and sequence numbers to build a secure channel for transporting application-layer data. In the Record Protocol, there are mainly three encryption options:
The third of these three options is only available with TLS 1.2 [21, 18], which is yet to see widespread adoption.2 The first option has seen significant cryptanalysis (padding oracle attacks [6], BEAST [10], Lucky 13 [3]). While countermeasures to the attacks on CBC-mode in TLS exist, many commentators now recommend, and many servers now offer, RC4-based encryption options ahead of CBC-mode.3 Indeed, the ICSI Certificate Notary4 recently performed an analysis of 16 billion TLS connections and found that around 50% of the traffic was protected using RC4 ciphersuites [5].
This makes it timely to examine the security of RC4 in TLS. While the RC4 algorithm is known to have a variety of cryptographic weaknesses (see [23] for an excellent survey), it has not been previously explored how these weaknesses can be exploited in the context of TLS. Here we show that new and recently discovered biases in the RC4 keystream do create serious vulnerabilities in TLS when using RC4 as its encryption algorithm.
While the main focus of this paper lies on the security of RC4 in TLS, our attacks (or variants thereof) might also be applicable to other protocols where RC4 is meant to ensure data confidentiality. Indeed, the WPA protocol used for encrypting wireless network traffic also utilizes the RC4 stream cipher in a way that allows (partial) plaintext recovery in specific settings — using basically the same attack strategies as in the TLS case.
We hope that this work will help spur the adoption of TLS 1.2 and its authenticated encryption algorithms, as well as the transition from WPA to (the hopefully more secure) WPA2.
We present two plaintext recovery attacks on RC4 that are exploitable in specific but realistic circumstances when this cipher is used for encryption in TLS. Both attacks require a fixed plaintext to be RC4-encrypted and transmitted many times in succession (in the same, or in multiple independent RC4 keystreams). Interesting candidates for such plaintexts include passwords and, in the setting of secure web browsing, HTTP cookies.
A statistical analysis of ciphertexts forms the core of our attacks. We stress that the attacks are ciphertextonly: no sophisticated timing measurement is needed on the part of the adversary, the attacker does not need to be located close to the server, and no packet injection capability is required (all premises for Lucky 13). Instead, it suffices for the adversary to record encrypted traffic for later offline analysis. Provoking the required repeated encryption and transmission of the target plaintext, however, might require more explicit action: e.g., resetting TCP connections or guiding the victim to a website with specially prepared JavaScript (see examples below).
Since both our attacks require large amounts of cipher-text, their practical relevance could be questioned. However, they do show that the strength of RC4 in TLS is much lower than the employed 128-bit key would suggest. We freely admit that our attacks are not particularly deep, nor sophisticated: they only require an understanding of how TLS uses RC4, solid statistics on the biases in RC4 keystreams, and some experience of how modern browsers handle cookies. We consider it both surprising and alarming that such simple attacks are possible for such an important and heavily-studied protocol as TLS. We further discuss the implications of our attack in Section 6 and in the full version of this paper [4].
Our first attack targets the initial 256 bytes of RC4 ciphertext. It is fixed-plaintext and multi-session, meaning that it requires a fixed sequence of plaintext bytes to be independently encrypted under a large number of (random) keys. This setting corresponds to what is called a “broadcast attack” in [17, 15, 23]. As we argue below, such attacks are a realistic attack vector in TLS. Observe that, in TLS, the first 36 bytes of the RC4 keystream are used to encrypt a TLS Handshake Finished message. This message is not fixed across TLS sessions. As a consequence, our methods can be applied only to recover up to 220 bytes of the TLS application plaintext.
Our attack exploits statistical biases occurring in the first 256 bytes of RC4 keystream. Such biases, i.e., deviations from uniform in the distributions of the keystream bytes at certain positions, have been reported and theoretically analyzed by [17], [15], and [23]. The corresponding authors also propose algorithms to exploit such biases for plaintext recovery. In this paper, we discuss shortcomings of their algorithms, empirically obtain a complete view of all single-byte biases occurring in the first 256 keystream positions, and propose a generalized algorithm that fully exploits all these biases for advanced plaintext recovery. As a side result of our research, in Section 3.1 we report on significant biases in the RC4 keystream that seemingly follow specific patterns and that have not been identified or analysed previously.
For concreteness, we describe how our single-byte bias attack could be applied to recover cookies in HTTPS traffic. Crucial here is to find an automated mechanism for efficiently generating a large number of encryptions of the target cookie. In line with the scenario employed by the BEAST and Lucky 13 attacks against CBC-mode encryption in TLS [3, 10], a candidate mechanism is for JavaScript malware downloaded from an attacker-controlled website and running in the victim's browser to repeatedly send HTTPS requests to a remote server. The corresponding cookies are automatically included in each of these requests in a predictable location, and can thus be targeted in our attack. If client and server are configured to use TLS session resumption, the renewal of RC4 keys could be arranged to happen with particularly high frequency — as required for our attack to be successful.5 Alternatively, the attacker can cause the TLS session to be terminated after the target encrypted cookie is sent; the browser will automatically establish a new TLS session when the next HTTPS request is sent.
As a second example, consider the case where IMAP passwords6 are attacked. In a setup where an email client regularly connects to an IMAP server for (password-authenticated) mail retrieval, let the adversary reset the TCP connection between client and server immediately after the encrypted password is transmitted. In some client configurations this might trigger an automatic resumption of the session, including a retransmission of the (encrypted) password. If this is the case, the adversary is in the position to harvest a large set of independently encrypted copies of the password —one per reset— precisely fulfilling the precondition of our attack.
Our single-byte bias attack is on the verge of practicality. In our experiments, the first 40 bytes of TLS application data after the Finished message were recovered with a success rate of over 50% per byte, using 226 sessions. With 232 sessions, the per-byte success rate is more than 96% for the first 220 bytes (and is 100% for all but 12 of these bytes). If, for example, a target plaintext byte is known to be a character from a set of cardinality 16 (e.g., in a 4-bits-per-byte-encoded HTTP cookie), our algorithm recovers the first 112 bytes of plaintext with a success rate of more than 50% per byte, using 226 sessions. For further details, see Section 5.
As we have seen, our single-byte bias attack on RC4 is quite effective in recovering ‘early’ plaintext bytes in the fixed-plaintext multi-session setting. It has, however, a couple of limitations when it comes to attacking practical systems that employ TLS. Focussing on the recovery of cookies in HTTPS-secured web sessions, we note that modern web browsers typically send a large number of HTTP headers before any cookies (these headers carry information about the particular client or server software, accepted MIME types, compression options, etc.). In practice, cookie data appears only at positions that come after the attackable initial 220 bytes of the ciphertext7. Independently of this issue, in the attack scenarios proposed above, a large number of HTTPS sessions would have to be established and torn down again, inducing non-negligible computing and bandwidth overheads via the TLS Handshake. Lastly, it has been proposed to routinely drop the first few hundred keystream bytes of RC4 before starting encryption in order to avoid the relatively strong early keystream biases [19] — if this were to be implemented in TLS, our single-byte bias attack would effectively be defeated.
Complementary to our single-byte bias attack, we present a second fixed-plaintext ciphertext-only attack on RC4. It exploits biases that appear in the entire keystream (and not just in the first 256 positions) and does not assume, but tolerates, frequent changes of the encryption key. Our second attack hence covers some scenarios where our single-byte bias attack does not seem to be applicable; it would, for example, be able to recover cookies from (long-persisting) HTTPS sessions. It would also be applicable if the initial keystream bytes were to be discarded.
In contrast to our first attack, our second attack exploits certain biases in consecutive pairs of bytes in the RC4 keystream that were first reported by Fluhrer and McGrew [12]. We empirically evaluate the probability of occurrence for each possible pair of bytes beginning at each position (modulo 256), obtaining a complete view of the distributions of pairs of bytes in positions (i,i + 1) (modulo 256). Our analysis strongly suggests that there are no further biases in consecutive positions of the same strength as the Fluhrer-McGrew biases. We use the obtained results in a specially designed attack algorithm to recover repeatedly encrypted plaintexts.
Our double-byte bias attack is again close to being practical. In our experiments, we focus on our attack's ability to correctly recover 16 consecutive bytes of plaintext, roughly equating to an HTTP cookie. With 13 · 230 encryptions of the plaintext, we achieve a success rate of 100% in recovering all 16 bytes. We obtain better success rates for restricted plaintexts, as in the single-byte case. For further details, see Section 5.
In independent and concurrent work, Isobe et al. [13] have considered the security of RC4 against broadcast attacks. They present attacks based on both single-byte and multi-byte biases. They identify three biases in the first output bytes Zr of RC4 that we also identify (specifically, the biases towards Z3 = 0x83
, Zr = r, and Zr = −r when r is a multiple of 16) as well as a new conditional bias Z1 = 0|Z2 = 0.
The single-byte bias attack in [13] only considers the strongest bias at each position, whereas our single-byte bias attack simultaneously exploits all biases in each keystream position. Specifically, we use Bayes's law to compute the a posteriori plaintext distribution from the a priori plaintext distribution and the precomputed distributions of the Zr. This explains why our single-byte attack out-performs that of [13]. For example, we achieve reliable plaintext recovery in the first 256 positions with 232 ciphertexts, while Isobe et al. [13] require 234 cipher-texts. We also achieve uniformly higher success rates for lower numbers of sessions. Previous authors exploring broadcast attacks on RC4 also only used single biases, leading to attacks that simply do not work [15, 23] or which have inferior performance to ours [22].
The multi-byte bias attack in [13] exploits the positive bias towards the pattern ABSAB that was identified by Mantin [16]. Here A and B are keystream bytes and S is a short string consisting of any keystream bytes (possibly of length 0). The attack in [13] assumes that 3-out-of-4 bytes in particular positions are known and uses the Mantin bias to recover the fourth. A limited experimental evaluation of the attack is reported in [13]: the attack is applied only to recovery of plaintext bytes 258-261, assuming all previous plaintext bytes have been successfully recovered, with success rates of 1 (for each of the 4 targeted bytes) using 234 ciphertexts. As explained in [13], this multi-byte attack would fail if the initial bytes of RC4 output were to be discarded. By contrast, our double-byte bias attack, which exploits the Fluhrer-McGrew biases, recovers more bytes with comparable success rate using slightly fewer ciphertexts and is resilient to initial byte discarding. It is an interesting open problem to determine whether the Mantin ABSAB bias can be combined with the Fluhrer-McGrew biases to gain enhanced attack performance.
A further point of comparison between our work and that of [13] concerns practical implementation. We have extensively explored the applicability of our attacks to RC4 as used in TLS, while [13] makes only brief mention of TLS in its concluding section and gives no mechanisms for generating the large numbers of ciphertexts needed for the attacks.
Finally, the authors of [13] claim in their abstract that their methods “can recover the first 250 bytes ≈ 1000 T bytes of the plaintext, with probability close to 1, from only 234 ciphertexts”. We point out that their methods would only recover 216 distinct bytes of output, rather than the advertised 250 bytes, since their attacks require the same plaintext to be encrypted 234 times. Furthermore, their multi-byte bias attack is not resilient to errors occurring in the recovery of early plaintext bytes (whereas ours is), so this claim would only be true if their multi-byte bias attack does not fail at any stage, and this is as yet untested.
Section 2 provides further background on the RC4 stream cipher and the TLS Record Protocol. Section 3 summarises weaknesses in RC4 that we exploit in our attacks. Section 4 describes our two plaintext recovery attacks on RC4. We evaluate the attacks in Section 5, with our main focus there being on TLS. Finally, Section 6 discusses countermeasures to our attacks, and concludes with a recap of the main issues raised by our work.
The stream cipher RC4, originally designed by Ron Rivest, became public in 1994 and found application in a wide variety of cryptosystems; well-known examples include SSL/TLS, WEP [1], WPA [2], and some Kerberos-related encryption modes [14]. RC4 has a remarkably short description and is extremely fast when implemented in software. However, these advantages come at the price of lowered security: several weaknesses have been identified in RC4 [12, 11, 17, 16, 15, 23, 25, 24, 26], some of them being confirmed and exploited in the current paper.
Technically, RC4 consists of two algorithms: a key scheduling algorithm (KSA) and a pseudo-random generation algorithm (PRGA), which are specified in Figure 1. The KSA takes as input a key K, typically a byte-array of length between 5 and 32 (i.e., 40 to 256 bits), and produces the initial internal state st0 = (i, j,S), where S is the canonical representation of a permutation on the set [0,255] as an array of bytes, and i, j are indices into this array. The PRGA will, given an internal state str, output ‘the next’ keystream byte Zr+1, together with the updated internal state str+1. Particularly interesting to note is the fact that updated index j is computed in dependence on current i, j, and S, while i is just a counter (modulo 256).
Figure 1: Algorithms implementing the RC4 stream cipher. All additions are performed modulo 256.
We describe in detail the cryptographic operation of the TLS Record Protocol in the case that RC4 is selected as the encryption method.
Data to be protected by TLS is received from the application and may be fragmented and compressed before further processing. An individual record R (viewed as a sequence of bytes) is then processed as follows. The sender maintains an 8-byte sequence number SQN
which is incremented for each record sent, and forms a 5-byte field HDR
consisting of a 2-byte version field, a 1-byte type field, and a 2-byte length field. It then calculates an HMAC over the string HDR
||SQN
||R; let T denote the resulting tag.
For RC4 encryption, record and tag are concatenated to create the plaintext P = R||T. This plaintext is then xored in a byte-by-byte fashion using the RC4 keystream, i.e., the ciphertext bytes are computed as
where Pr are the individual bytes of P, and Zr are the RC4 keystream bytes. The data transmitted over the wire then has the form
where C is the concatenation of the bytes Cr.
The RC4 algorithm itself is initialised at the start of each TLS connection, using a 128 bit encryption key K. This key K is computed with a hash-function-based key derivation function from the TLS master secret that is established during the TLS Handshake Protocol. In more detail, the key K may be established either via a full TLS Handshake or via TLS session resumption. In a full TLS Handshake, a total of 4 communication round-trips are needed, and usually some public key cryptographic operations are required of both client and server. A full TLS Handshake run establishes a new TLS session and a new TLS master secret from which all other keys, including RC4 key K, are derived. TLS session resumption involves a lightweight version of the TLS Handshake Protocol being run to establish a new connection within an existing session: essentially, an exchange of nonces takes place, followed by an exchange of Finished messages; no public key cryptographic operations are involved. The keys for the new connection, including K, are derived from the existing master secret and the new nonces. Given the design of the key derivation process, it is reasonable to model K as being uniformly random in the different sessions/connections.
The initialisation of RC4 in TLS is the standard one for this algorithm. Notably, none of the initial keystream bytes is discarded when RC4 is used in TLS, despite these bytes having known weaknesses. Note also that the first record sent under the protection of RC4 for each session or connection will be a Finished message, typically of length 36 bytes, consisting of a Handshake Protocol header, a PRF output, and a MAC on that output. This is typically 36 bytes in size. This record will not be targeted in our attacks, since it is not constant across multiple sessions.
The decryption process reverses this sequence of steps, but its details are not germane to our attacks. For TLS, any error arising during decryption should be treated as fatal, meaning an (encrypted) error message is sent to the sender and the session terminated with all keys and other cryptographic material being disposed of. This gives an attacker a convenient method to cause a session to be terminated and force new encryption and MAC keys to be set up. Another method is to somehow induce the client or server to initiate session resumption.
In this section, we summarise known biases in the RC4 keystream, and report new biases that we have observed experimentally.
The first significant bias in the RC4 keystream was observed by Mantin and Shamir in [17]. Their main result can be stated as:
Result 1. [17, Thm 1] The probability that Z2, the second byte of keystream output by RC4, is equal to 0x00
is approximately 1/128 (where the probability is taken over the random choice of the key).
Since this result concerns only the second byte of the keystream, and this byte is always used to encrypt a Finished message in TLS, we are unable to exploit it in our attacks. More recently, the following result was obtained by Sen Gupta et al. in [23] as a refinement of an earlier result of Maitra et al. [15]:
Result 2. [23, Thm 14 and Cor 3] For 3 ≤ r ≤ 255, the probability that Zr, the r-th byte of keystream output by RC4, is equal to 0x00
is
where the probability is taken over the random choice of the key, c3 = 0.351089, and c4,c5 ...,c255 is a decreasing sequence with terms that are bounded as follows:
In other words, bytes 3 to 255 of the keystream have a bias towards 0x00
of approximately 1/216. This result was experimentally verified in [23] and found to be highly accurate (see Figure 11 of that paper). The biases here are substantially smaller than those observed in Result 1.
Additionally, Sen Gupta et al. [23] have identified a key-length-dependent bias in RC4 keystreams. Specifically, [23, Theorem 5] shows that when the key-length is l bytes, then byte Zl is biased towards value 256 −1, with the bias always being greater than 1/216. For RC4 in TLS, we have l = 16.
Experimentally, we have observed additional biases in the RC4 keystream that do not yet have a theoretical explanation. As an example, Figure 2 shows the empirical distribution for the RC4 keystream bytes Z16, Z32 and Z50, calculated over 244 independent, random 128-bit keys. For Z16, we have 3 main biases: the bias towards 0x00
, the very dominant key-length-dependent bias towards 0xF0
(decimal 240) from [23], and a new bias towards 0x10
(decimal 16). For Z32, we also have 3 main biases: the bias towards 0x00
, a large, new bias towards 0xE0
(decimal 224), and a new bias towards 0x20
(decimal 32). For Z50, there are significant biases towards byte values 0x00
and 0x32
(decimal 50), as well as an upward trend in probability as the byte value increases.
Individual inspection of ciphertext distributions at all positions 1 ≤ r ≤ 256 reveals two new significant biases that occur with specific regularities: a bias towards value r for all r, and a bias towards value 256 − r at positions r that are multiples of (key-length) 16; note that the latter finding both confirms and extends the results from [23]. Both of these new biases were also observed by Isobe et al. [13], with a theoretical explanation being given for the bias towards r. Figure 3 shows the estimated strength of these biases in comparison with the strength of the bias towards 0x00
for the keystream bytes Z1,...,Z256. The estimates are based on the empirical distribution of the RC4 keystream bytes, calculated over 244 random 128-bit RC4 keys. We note that the key-length dependent bias dominates the other two biases until position Z112, and that the bias of Zr towards r dominates the bias towards 0x00
observed by [15] between positions Z5 and Z31, except for byte Z16 where the bias towards 0x00
is slightly stronger.
Figure 2: Measured distributions of RC4 keystream bytes Z16 (top), Z32 (middle), and Z50 (bottom).
Furthermore, for the first keystream byte Z1, we have observed a bias away from value 0x81
(decimal 129) in the addition to the known bias away from value 0x00
. This additional bias is not consistent with the recent results of Sen Gupta et al. [23] who provide a theoretical treatment of the distribution of Z1. The disparity likely arises because Sen Gupta et al. work with 256 byte keys, while our work is exclusively concerned with 128-bit (16-byte) keys as used in TLS; in other words, our observed bias in Z1 = 0x81
seems to be key-length-dependent. Finally, our computations have revealed a number of other, smaller biases in the initial bytes of the RC4 keystream.
Figure 3: Measured strength of the bias towards0x00
(green), the bias towards value r in Zr (blue), and the key-length dependent bias towards byte value 256 − r (red) for keystream bytes Z1,...,Z256, based on keystreams generated by 244 independent random keys. Note that the large peak for the0x00
bias in Z2 extends beyond the bounds of the graph and is not fully shown for illustrative purposes.
Besides the single-byte biases highlighted above, several multi-byte biases have been identified in the RC4 keystream. In contrast to the single-byte biases, most of the identified multi-byte biases are “long term” biases which appear periodically at regular intervals in the keystream.
The most extensive set of multi-byte biases was identified by Fluhrer and McGrew [12] who analyzed the distribution of pairs of byte values for consecutive keystream positions (Zr,Zr+1), r ≥ 1. More precisely, they estimated the distribution of consecutive keystream bytes for scaled-down8 versions of RC4 by assuming an idealized internal state of RC4 in which the permutation S and the internal variable j are random (see Figure 1), and then extrapolated the results to standard RC4.
The reported biases for standard RC4 are listed in Table 1. Note that all biases are dependent on the internal variable i which is incremented (modulo 256) for each keystream byte generated. It should also be noted that, due to the assumption that S and j are random, the biases cannot be expected to hold for the initial keystream bytes. However, this idealization becomes a close approximation to the internal state of RC4 after a few invocations of the RC4 keystream generator, [12].
We experimentally verified the Fluhrer-McGrew biases by analysing the output of 210 RC4 instances using 128-bit keys and generating 240 keystream bytes each. For each keystream, the initial 1024 bytes were dropped. Based on this data, we found the biases from [12] to be accurate, also for 128-bit keys. This is in-line with the experiments and observations reported in [12]. Furthermore, we did not identify any additional significant long term biases for consecutive keystream bytes which are repeated with a periodicity that is a proper divisor of 256. Hence, for the purpose of implementing the attack presented in Section 4.2, we assume that the biases identified in [12] are the only existing long term biases for consecutive keystream bytes, and that all other pairs of byte-values are uniformly distributed.
Table 1: Fluhrer-McGrew biases for consecutive pairs of byte values. In the table, i is the internal variable of the RC4 keystream generation algorithm (see Section 2.1).
Independently of [12], Mantin [16] identified a positive bias towards the pattern ABSAB, where A and B represent byte values and S is a short string of bytes (possibly of length 0). The shorter the string S is, the more significant is the bias. Additionally, Sen Gupta et al. [23] identified a bias towards the byte values (0,0) for keystream positions (Zr,Zr+2), separated by any single keystream byte for r ≥ 1. However, we do not make use of these biases in the attacks presented in this paper.
For the purpose of exposition, we first explain how the broadcast attack by Maitra et al. [15] and Sen Gupta et al. [23] is meant to work. Suppose byte Zr of the RC4 keystream has a dominant bias towards value 0x00
. As RC4 encryption is defined as Cr = Pr Zr, the corresponding ciphertext byte Cr has a bias towards plaintext byte Pr. Thus, obtaining sufficiently many ciphertext samples Cr for a fixed plaintext Pr allows inference of Pr by a majority vote: Pr is equal to the value of Cr that occurs most often. This is the core idea of Algorithm 3 that we reproduce from [15, 23]. Let S denote the number of ciphertexts available to the attacker and, for all 1 ≤ j ≤ S, let Cj,r denote the r-th byte of ciphertext Cj. For a fixed position r, Algorithm 3 runs through all j, and in each iteration increments one out of 256 counters, namely the one that corresponds to value Cj,r. After processing all ciphertexts, the character corresponding to the largest counter in the obtained histogram is the output of the algorithm.
The algorithm is tailor-made for plaintext recovery in the case described by Result 2: it assumes that the largest bias in the RC4 keystream is towards 0x00
. However, it is highly likely to fail to reliably suggest the correct plaintext byte Pr if the RC4 keystream has, in position r, additional biases of approximately the same size (or larger) as the bias towards 0x00
. Such additional biases would simply be misinterpreted as the bias towards 0x00
and hence falsify the result. As we observed in Section 3.1 (and Figure 3), several other quite strong biases in the RC4 keystream do indeed exist. This clearly invalidates Algorithm 3 for practical use.
We propose a plaintext-recovery algorithm that takes into account all possible single-byte RC4 biases at the same time, along with their strengths. The idea is to first obtain a detailed picture of the distributions of RC4 keystream bytes Zr, for all positions r, by gathering statistics from keystreams generated using a large number of independent keys (244 in our case). That is, for all r, we (empirically) estimate
where the probability is taken over the random choice of the RC4 encryption key (i.e., 128 bit keys in the TLS case). Using these biases pr,k, in a second step, plaintext can be recovered with optimal accuracy using a maximum-likelihood approach, as follows.
Suppose we have S ciphertexts C1,...,CS available for our attack. For any fixed position r and any candidate plaintext byte μ for that position, vector (N(μ)0x00
,...,N(μ)0xFF
with
represents the distribution on Zr required to obtain the observed ciphertexts {Cj,r}1≤j≤S by encrypting μ. We compare these induced distributions (one for each possible μ) with the accurate distribution pr,0x00
,..., pr,0xFF
and interpret a close match as an indication for the corresponding plaintext candidate μ being the correct one, i.e., Pr = μ. More formally, we observe that the probability λμ that plaintext byte μ is encrypted to ciphertext bytes {Cj,r}1≤j≤S follows a multinomial distribution and can be precisely calculated as
By computing λμ for all 0x00
≤ μ ≤ 0xFF
and identifying μ such that λμ is largest, we determine the (optimal) maximum-likelihood plaintext byte value. Algorithm 4 specifies the details of the described single-byte bias attack, including the optimizations discussed next.
Observe that, for each fixed position r and set of ciphertexts {Cj,r}1≤j≤S, values N(μ)k can be computed from values N(μ′)k by equation N(μ)k = N(μ′)kμ′μ, for all k. In other words, vectors (N(μ′)0x00
,...,N(μ′)0xFF
) and (N(μ′)0x00
,...,N(μ′)0xFF
) are permutations of each other; by consequence, term S!/ (N(μ′)0x00
!...N(μ′)0xFF
!) in equation (1) can safely be ignored when determining the largest λμ. Furthermore, computing and comparing log(λμ) instead of λμ makes the computation slightly more efficient.
As we have seen, Algorithm 4 allows the recovery of the initial 256 bytes of plaintext when multiple encryptions under different keys are observed by the attacker. In the following, we describe an algorithm which allows the recovery of plaintext bytes at any position in the plaintext.
Furthermore, the algorithm does not require the plaintext to be encrypted under many different keys but works equally well for plaintexts repeatedly encrypted under a single key.
Our algorithm is based on biases in the distribution of consecutive bytes (Zr,Zr+1) of the RC4 keystream that occur as long term biases, i.e., that appear periodically at regular intervals in the keystream. As described in Section 3, we empirically measured the biases which are repeated with a period of 256 bytes. However, in 250 experimentally generated keystream bytes we observed no significant new biases besides those already identified by Fluhrer and McGrew [12]; for the purpose of constructing our algorithm, we hence use the biases described in Table 1 and assume that all other consecutive byte pairs are equally likely to appear in the keystream. In other words, we assume that we have accurate estimates pr,k1,k2 such that
for 1 ≤ r ≤ 256 and 0x00
≤ k1,k2 ≤ 0xFF
, where the probability is taken over all possible configurations of the internal state S and the index j of the RC4 keystream generation algorithm.9 Note that, since these probabilities express biases that are repeated with a period of 256 bytes, we have pr,k1,k2 = p(r mod 256),k1,k2 for all r,k1,k2.
Let L be an integer multiple of 256. In the following description of our plaintext recovery algorithm, we assume that a fixed L-byte plaintext P = P1||···||PL is encrypted repeatedly under a single key, i.e., we consider a ciphertext C obtained by encrypting P||···||P. (In fact, it is sufficient for our attack that the target plaintext bytes form a subsequence of consecutive bytes that are constant across blocks of L bytes.) Let Cj denote the substring of C corresponding to the encryption of the j-th copy of P, and let Cj,r denote the r-th byte of Cj (i.e., Cj,r corresponds to byte (j −1) · L + r of C).
Given this setting, it seems reasonable to take an approach towards plaintext recovery similar to that of Algorithm 4: for each position r, the most likely plaintext pair (μr, μr+1) could be computed from the ciphertext bytes {(Cj,r,Cj,r+1)}1≤j≤S and the probability estimates {pr,k1,k2}0x00
≤k1,k2≤0xFF
. In other words, a plaintext candidate wouldbe obtained by splitting ciphertexts C into byte pairs and individually computing the most likely corresponding plaintext pairs.
However, by considering overlapping byte pairs, it is possible to construct a more accurate estimate of the likelihood of a plaintext candidate being correct than by just considering the likelihood of individual byte-pairs. More specifically, for any plaintext candidate P′ = μ1||···||μL we compute an estimated likelihood λP′ = λμ1||···||μL for P′ being correct via the recursion
where δμl|μl−1 denotes the probability that Pl = μl assuming Pl−1 = μl−1, and λμ1||···||μl−1 is the estimated likelihood of μ1||···||μl−1 being the correct (l − 1)-length prefix of P. We show below how values δμl|μl−1 can be computed given the ciphertext bytes {(Cj,l−1,Cj,l )}1≤j≤S and the probability estimates {pl−1,k1,k2}0x00
≤k1,k2≤0xFF
. Note that, by rewriting equation (2) and assuming that λμ1 = Pr[P1 = μ1] is accurately known, we obtain likelihood estimate λP′ = Pr[P1 = .
Our algorithm computes the plaintext candidate P* = μ1||···||μL which maximizes the estimated likelihood λP*. This is done by exploiting the following easy-to-see optimality-preserving property: for all prefixes μ1||···||μl of P*, l ≤ L, we have that λμ1||···||μll−1 is the largest likelihood among all (l−1)-length plaintext candidates with μl−1 as the last byte.
The basic idea of our algorithm is to iteratively construct P* by considering the prefixes of P* with increasing length. As just argued, these correspond to the (partial) plaintext candidates with the highest likelihood and a specific choice of the last byte value. However, when computing a candidate for a length l ≤ L, it is not known in advance what the specific value of the last byte μl should be. Our algorithm hence computes the most likely partial plaintext candidates for all possible values of μl. More specifically, for each (l − 1) length partial candidate μ1||···||μl−1 and any value μl, we compute the likelihood of the l-length plaintext candidate μ1||···||μl−1||μl via equation (2) as λμ1||···||μl = δμl|μl−1 · λμ1||···||μl−1. Due to the optimality-preserving property, the string μ1||···||μl with the highest likelihood will correspond to the most likely plaintext candidates of length l with the last byte μl. This guarantees that the l-length prefix of (optimal) P* will be among the computed candidates and, furthermore, when the length of P* is reached, that P* itself will be obtained.
To initialize the above process, the algorithm assumes that the first plaintext byte μ1 of P is known with certainty, i.e., λμ1 = 1 (this can, for example, be assumed if the attack is used to recover HTTP cookies from an encrypted HTTP(S) header). Likewise, the algorithm assumes that the last byte μL of P is known, i.e., λμL = 1 (also this is the case when recovering HTTP cookies). This leads to a single μL being used in the last iteration of the above process which will then return the most likely plaintext candidate P*. (See Remark 1 for how the algorithm can be modified to work without these assumptions.)
It remains to show the details of how δμi+1|μi can be computed. This is done similarly to the maximum-likelihood computation of the probability estimate used in Algorithm 4. More pre-cisely, each combination of index i, pair (μi,μi+1), and ciphertext bytes {(Cj,i,Cj,i+1)}1≤j≤S induces a distribution on the keystream bytes {(Z(j−1)L+i,Z(j−1)L+i+1)}1≤j≤S. The latter can berepresented as a vector (Ni,0x00,0x00
,...,Ni,0xFF,0xFF
), where
As in Section 4.1, we see that this vector follows a multinomial distribution, and that the probability that (Ni,0x00
,0x00
,...,Ni,0xFF,0xFF
) will arise (i.e., the probability that (μi, μi+1) corresponds to the i-th and the (i+1)-th plaintext bytes) is given by
We assume that no significant single-byte biases are present in the keystream, i.e., that Pr[Pi = μi |C] is uniform over the possible plaintext values μi. Under this condition, since the term will stay invariant for all plaintext candidates, we can ignore the contribution of factor 1/Pr[Pi = μi |C] in (4), when comparing probability estimates. This is likewise the case for the terms S!/(Ni,0x00
,0x00
,...,Ni,0xFF,0xFF
) in (3), due to similar observations as made for Algorithm 4.
We combine the results of the discussion from the preceeding paragraphs, including the proposed optimizations, to obtain our double-byte bias attack in Algorithm 5.
Remark 1. The above assumption, that the first and last byte of the plaintext P is known, can easily be avoided. Specifically, if the first byte is unknown, Algorithm 5 can be initialized by computing, for each possible value μ2, the most likely pairs (μ1, μ2). This can be done based on the ciphertext bytes {(Cj,1,Cj,2)}1≤j≤S and the probability estimates {p1,k1,k2}0x00
≤k1,k2≤0xFF
. Likewise, if the last byte is unknown, the algorithm will identify P* as the plaintext candidate with the highest likelihood estimate among the computed plaintext candidates of length L. Note, however, that knowing the first and last plaintext byte will lead to a more accurate likelihood estimate and will thereby increase the success rate of the algorithm.
Through simulation, we measured the performance of the single-byte and double-byte bias attacks. We furthermore validated our algorithms in real attack scenarios.
We simulated the first plaintext recovery attack described in Section 4. We used RC4 keystreams for 244 random keys to estimate the per-output-byte probabilities {pr,k}1≤r≤256,0x00
≤k≤0xFF
. We then ran the attack in Algorithm 4 256 times for each of S = 224,225,...,232 sessions to estimate the attack's success rate. The results for S = 224, 226,...,230 are shown in Figures 4–7. In each figure, we show the success rate in recovering the correct plaintext byte versus the position r of the byte in the output stream (but recall that, in practice, the first 36 bytes are not interesting as they contain the Finished message). Some notable features of these figures are:
Figure 4: Recovery rate of the single-byte bias attack for S = 224 sessions for first 256 bytes of plaintext (based on 256 experiments).
Figure 5: Recovery rate of the single-byte bias attack for S = 226 sessions for the first 256 bytes of plaintext (based on 256 experiments).
Secondly, we executed the recovery attack in a setting where plaintexts are encoded with a 4-bits-per-byte encoding scheme using the characters ‘0
’ to ‘9
’ and ‘a
’ to ‘f
’. Such restricted plaintext character sets are routinely used in different applications [4]; for instance, in the popular PHP server-side scripting language, the encoding of HTTP cookies can be limited to a representation with 4 bits per character [20]. We reused the probability estimates {pr,k}1≤r≤256,0x00
≤k≤0xFF
for the RC4 keystream bytes generated for the simulation above, and ran a modified version of Algorithm 4 which takes into account the restricted plaintext space. The modified algorithm was run 256 times for each of S = 224,225,...,232 sessions. The results for S = 224, S = 226 and S = 228 are shown in Figures 8–10. For comparison, the figures include the success rate of the original attack for an unrestricted plaintext space. We note:
Figure 6: Recovery rate of the single-byte bias attack for S = 228 sessions for the first 256 bytes of plaintext (based on 256 experiments).
Figure 7: Recovery rate of the single-byte bias attack for S = 230 sessions for the first 256 bytes of plaintext (based on 256 experiments).
We simulated the second plaintext recovery attack based on Algorithm 5. In the simulation, we encrypted S = 1·230,...,13·230 copies of the same 256-byte plaintext and attempted to recover 16 bytes located at a fixed position in the plaintext. More precisely, we simulated an attack in which we assume the first byte of the plaintext is known, the following 16 bytes are the unknown bytes targeted by the attack, and the byte immediately following these is known. The remaining bytes are assumed not to be of interest in the attack. This attack scenario is very similar to the case in which an adversary attempts to recover a cookie value from an HTTP request. Depending on the number of plaintext copies, we used between one and five 128-bit RC4 keys for the encryption10. As highlighted in Section 4.2, we used the biases described by Fluhrer-McGrew [12] to compute the probability estimates {pr,k1,k2}1≤r≤255,0x00
≤k1,k2≤0xFF
required by Algorithm 5.
Figure 8: Recovery rates for the restricted plaintext space (red) and the original single-byte bias attack (blue) for S = 224 sessions (based on 256 experiments).
Figure 9: Recovery rates for the restricted plaintext space (red) and the original single-byte bias attack (blue) for S = 226 sessions (based on 256 experiments).
The attack was run 128 times for each of S = 1 · 230,...,13·230 encrypted copies of the plaintext to estimate the success rate of the attack. The results are shown in Figure 11: the dashed line shows the average fraction of successfully recovered plaintext bytes versus the number of encrypted plaintexts, whereas the solid line shows the success rate of recovering the full 16-byte plaintext versus the number of encrypted plaintexts. We note:
Figure 10: Recovery rates for the restricted plaintext space (red) and the original single-byte bias attack (blue) for S = 228 sessions (based on 256 experiments).
In addition, similar to Section 5.1, we simulated the attack for plaintexts encoded with a 6-bits-per-byte (base64) and a 4-bits-per-byte encoding scheme. Specifically, we firstly ran a modified version of Algorithm 5 which takes into account the restricted plaintext space by only considering candidate plaintext bytes which correspond to byte-values used in a base64 encoding. Furthermore, we used a plaintext where the 16 bytes targeted by the attack consisted of bytes with a byte-value corresponding to the character ‘b’
, which is a valid base64 encoded message. As in the attack above for a non-restricted plaintext space, the probability estimates {pr,k1,k2}1≤r≤255,0x00
≤k1,k2≤0xFF
were based on the biases from [12]. The attack was run 128 times for each of S = 1·230,...,12·230 encrypted copies of the plaintext, and the results are shown in Figure 12. We note:
Figure 11: Average fraction of successfully recovered plaintext bytes (dashed line), and success rate for recovering the full 16-byte plaintext (solid line) of the double-byte bias attack based on 128 experiments. The unit of the x-axis is 230 encrypted copies of the plaintext.
Figure 12: Average fraction of successfully recovered plaintext bytes (dashed line), and success rate for recovering the full 16-byte plaintext (solid line) of the double-byte bias attack for base64 encoded plaintexts (based on 128 experiments). The unit of the x-axis is 230 encrypted copies of the plaintext.
Regarding the 4-bit-per-byte encoding scheme, we again assumed a plaintext character set consisting of ‘0
’ to ‘9
’ and ‘a
’ to ‘f
’. The setup was similar to the above experiment for base64 encoded messages: we ran a modified version of Algorithm 5 which takes into account the restricted plaintext space, the probability estimates {pr,k1,k2}1≤r≤255,0x00
≤k1,k2≤0xFF
was based on the biases from [12], and we used a plaintext consisting of bytes with a byte-value corresponding to the character ‘b’
. The attack was run 128 times for each of S = 1·230,...,10·230 encrypted copies of the plaintext, and the results can be seen in Figure 13. We note:
Figure 13: Average fraction of successfully recovered plaintext bytes (dashed line), and success rate for recovering the full 16-byte plaintext (solid line) of the double-byte bias attack for 4-bit-per-byte encoded plaintexts (based on 128 experiments). The unit of the x-axis is 230 encrypted copies of the plaintext.
We tested the success rates of our plaintext recovery algorithms in realistic attack settings involving web servers and browsers that are connected through TLS-secured network links. Here, we report on the results.
We first experimentally verified that the OpenSSL implementation of TLS does indeed use RC4 in the way explained in Section 2.2, in particular without discarding any initial keystream bytes. We did this by setting up an OpenSSL version 1.0.1c client and server running in a virtualised environment, making use of s_client
and s_server
, generic tools that are available as part of the OpenSSL distribution package. The two virtual machines were running Ubuntu 12.10 and kernel version 3.5.0-17.
Recall that our single-byte bias attack targets the first 256 bytes of plaintext across multiple TLS sessions or connections with random keys. In order to efficiently generate the large number of ciphertexts needed to test our attack, we again used the s_client
and s_server
tools, this time modifying the s_client
source code to force a session resumption for each TLS packet sent.
Using this approach, we were able to generate around 221 encryptions of a fixed plaintext per hour; with 225 recorded ciphertexts, we obtained results comparable to the simulation of our single-byte bias attack reported in Section 5.1 above. A second possible approach to ensure frequently enough rekeying is to actively interfere with the TLS session after each ciphertext is sent, causing it to fail and be restarted, by injecting a bad TLS packet or by resetting the corresponding TCP connection.
We admit that we do not currently have an automated mechanism for forcing session resumption, e.g., from JavaScript. However, JavaScript running in the browser can trigger the browser to establish a fresh TLS session (with a fresh, random key) after each HTTP connection torn down by the attacker. We estimate that this second approach would be significantly slower than using session resumption because of the additional overhead of running the full TLS Handshake. Thus, even though our double-byte bias attack has higher complexity in terms of its ciphertext requirements than our single-byte bias attack, in practice it could be the more efficient attack in terms of total running time, because it can be executed in a single session (or a small number of sessions).
Furthermore, while the single-byte bias attack successfully recovered fixed plaintext bytes in the initial 256 bytes of the TLS ciphertexts, our subsequent experimentation with modern web browsers revealed that these bytes consisted mostly of less interesting HTTP headers rather than cookies. For this reason, after this basic validation, we switched our experimental focus to the double-byte bias attack.
The double-byte bias attack does not rely on session resumption or session renegotiation and is hence easier to implement in practice. As our experimental setup for this attack, we used a network comprising three (non-virtualized) nodes: a legitimate web server (www.abc.com
) that serves 16-byte secure cookies over HTTPS, a malicious web server (www.evil.com
) serving a malicious JavaScript, and a client running a web browser representing a user. The legitimate and malicious web servers run Apache and PHP. For the client, we experimented with various browsers, including Firefox, Opera and Chrome. The nodes were connected through a 100 Mbps Ethernet link; they were equipped with Intel Core i7 processors with 2.3 GHz cores and 16 GB of RAM. None of our experiments used all available CPU resources, nor saturated the network bandwidth.
In this setup, we let the client visit https://www.abc.com
. This will result in the legitimate web server sending the client a secure cookie which will be stored by the client's browser. This cookie will be the target of the attack. We then let the client visit http://www.evil.com
and run the malicious JavaScript served by the malicious web server. Note that the same-origin policy (SOP) implemented by the client's browser will prevent the JavaScript from directly accessing the secure cookie. However, the JavaScript will direct repeated HTTP requests to the legitimate server over TLS (i.e. using HTTPS)11. The client's browser will then automatically attach the cookie to each request and thereby repeatedly encrypt the target cookie as required in our attack.
The JavaScript uses XMLHttpRequest
objects12 to send the requests. We tested GET
, POST
, and HEAD
requests, but found that POST
requests gave the best performance (using Firefox). Furthermore, we found that the requests needed to be send in blocks to ensure that the browser stayed responsive and didn't become overloaded.
For all the browsers we tested (Firefox, Chrome, and Opera), we found that the requests generated by the JavaScript resulted in TLS messages containing more than 256 bytes of ciphertext. To keep the target cookie in a fixed position in the TLS message (modulo 256) as needed for the double-byte bias attack, we therefore added padding by manipulating the HTTP headers in the request to bring the encrypted POST
requests up to exactly 512 bytes. This padding introduces some overhead to the attack. The exact amount and location of padding needed is browser-dependent, since different browsers behave differently in terms of the content and order of HTTP headers included in POST
requests. In practice, then, the attacker's JavaScript would need to perform some browser fingerprinting before carrying out its attack.
As an alternative method for generating request to the legitimate web server, we tried replacing the JavaScript code with basic HTML
code, using HTML
tags such as img
, pointing to https://www.abc.com
. The target cookie was still sent in every request, but we found this approach to be less effective (i.e. slower) than using JavaScript.
For Firefox with 512-byte ciphertexts encrypting padded XMLHttpRequest
POST
requests, we were able to generate 6 million ciphertexts per hour on our network, with each request containing the target cookie in the same position (modulo 256) in the corresponding plaintext. Given that our attack needs on the order of 13 · 230 encryptions to recover a 16-byte plaintext with high success probability, we estimate that the running time for the whole attack would be on the order of 2000 hours using our experimental setup. The attack generates large volumes of network traffic over long periods of time, and so should not be considered a practical threat. Nevertheless, it demonstrates that our double-byte bias attack does work in principle.
We have shown that plaintext recovery for RC4 in TLS is possible for the first about 200 or so bytes of the plaintext stream (after the F